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Introduction

Abstract

The primary topic of this thesis lies at the crossroads of Commutative Algebra and its interactions
with Algebraic Geometry and Combinatorics. It is mainly focused around the following themes:

Defining equations of blow-up algebras.
Study of rational maps via blow-up algebras.

Asymptotic properties of the powers of edge ideals of graphs.

We are primarily interested in questions that arise in geometrical or combinatorial contexts and
try to understand how their possible answers manifest in various algebraic structures or invariants.
There is a particular algebraic object, the Rees algebra (or blow-up algebra), that appears in many
constructions of Commutative Algebra, Algebraic Geometry, Geometric Modeling, Computer Aided
Geometric Design and Combinatorics. The workhorse and main topic of this doctoral dissertation
has been the study of this algebra under various situations.

The Rees algebra was introduced in the field of Commutative Algebra in the famous paper [121].
Since then, it has become a central and fundamental object with numerous applications. The study
of this algebra has been so fruitful that it is difficult to single out particular results or papers, instead
we refer the reader to the books [144] and [146] to wit the “landscape of blow-up algebras”.

From a geometrical point of view, the Rees algebra corresponds with the bi-homogeneous
coordinate ring of two fundamental objects: the blow-up of a projective variety along a subvariety
and the graph of a rational map between projective varieties (see [66, §I1.7]). Therefore, the
importance of finding the defining equations of the Rees algebra is probably beyond argument. This
is a problem of tall order that has occupied commutative algebraists and algebraic geometers, and
despite an extensive effort (see [14,20,34-36, 38,39, 78,100, 103-105, 108, 113, 143]), it remains
open even in the case of polynomial rings in two variables. In [29], Chapter 2 of this dissertation,



we use the theory of D-modules to describe the defining ideal of the Rees algebra in the case of a
parametrization of a plane curve.

The study of rational and birational maps is classical in the literature from both an algebraic
and geometric point of view, and it goes back to the work of Cremona [41], at least. A relatively
new idea, probably first used in [80], is to look at the syzygies of the base ideal of a rational map to
determine birationality. This algebraic method for studying rational maps has now become an active
research topic (see [16,46,51,67,68,102,119,124,129]). In a joint work with Busé and D’Andrea
[22], Chapter 3 of this dissertation, we introduce a new algebra that we call the saturated special
fiber ring, which turns out to be an important tool to analyze the degree of a rational map. Later,
in [30], Chapter 4 of this dissertation, we compute the multiplicity of this new algebra in the case
of perfect ideals of height two, which, in particular, provides an effective method to determine the
degree of a rational map having those ideals as base ideal.

Often a good tactic to approach a challenging problem is to go all the way up to a generic case
and then find sufficient conditions for the specialization to keep some of the main features of the
former. The procedure depends on taking a dramatic number of variables to allow modifying the
given data into a generic shape, and usually receives the name of specialization. This method is
seemingly due to Kronecker and was quite successful in the hands of Hurwitz ([86]) in establishing
a new elegant theory of elimination and resultants. More recent instances where specialization is
used are, e.g., [84], [85], [141], [132]. In a joint work with Simis [33], Chapter 5 of this dissertation,
we consider the behavior of the degree of a rational map under specialization of the coefficients of
the defining linear system.

The Rees algebra of the edge ideal of a graph is a well studied object (see [54,56,136,147-150]),
that relates combinatorial properties of a graph with algebraic invariants of the powers of its edge
ideal. For the Rees algebra of the edge ideal of a bipartite graph, in [31], Chapter 6 of this dissertation,
we compute the universal Grobner basis of its defining equations and its total Castelnuovo-Mumford
regularity as a bigraded algebra.

It is a celebrated result that the regularity of the powers of a homogeneous ideal is asymptotically
a linear function (see [42,99]). Considerable efforts have been put forth to understand the form of
this asymptotic linear function in the case of edge ideals (see [3,4,8-10,62,90]). In a joint work
with Jafari, Picone and Nemati [32], Chapter 7 of this dissertation, for bicyclic graphs, i.e. graphs
containing exactly two cycles, we characterize the regularity of its edge ideal in terms of the induced
matching number and determine the previous asymptotic linear function in special cases.

The basic outline of this thesis is as follows. In Chapter 1, we recall some preliminary results
and definitions to be used along this work. Then, the thesis is divided in three different parts. The
first part corresponds with the theme “ Defining equations of blow-up algebras” and consists of
Chapter 2. The second part corresponds with the theme “ Study of rational maps via blow-up
algebras” and consists of Chapter 3, Chapter 4 and Chapter 5. The third part corresponds with the
theme “ Asymptotic properties of the powers of edge ideals of graphs” and consists of Chapter



6 and Chapter 7. The common thread and main tool in the three parts of this thesis is the use of
blow-up algebras.

In the subsequent sections of the introduction, we describe the motivations, organization, and
main contributions and results of this dissertation.

Defining equations of blow-up algebras

Let F be a field of characteristic zero, R be the polynomial ring R = F[x1,x2], and I =
(fy,f2,f3) C R be a height two ideal minimally generated by three homogeneous polynomials of
the same degree d. The Rees algebra of I is defined as R(I) = R[It] = P77, I't'. We can see R(I)
as a quotient of the polynomial ring S = R[Ty, T, T3] via the map

S=R[T, To, T3l & R(1), W(Ty) = fit.

Of particular interest are the defining equations of the Rees algebra R(I), that is, the kernel J =
Ker(1p) of this map 1. A large number of works have been done to determine the equations of the
Rees algebra, and the problem has been studied by algebraic geometers and commutative algebraists
under various conditions (see e.g. [144] and the references therein). In recent years, a lot of attention
has been given to find the minimal generators of the equations of the Rees algebra for an ideal
in a polynomial ring (see e.g. [20,34-36, 38,39, 79, 100, 103-105, 108]), partly inspired by new
connections with Geometric Modeling. Despite this extensive effort, even in the “simple” case
studied in Chapter 2, the problem of finding the minimal generators of J remains open.

By the Hilbert-Burch Theorem (see e.g. [47, Theorem 20.15]) we know that the presentation of
I is of the form

[f1.f2.f3
R

0— R(—d— ) @ R(—2d + w) % R(—d)? L1,

and [ is generated by the 2 x 2-minors of ¢; we may assume that 0 < p < d — p. The symmetric
algebra of I can easily be described as a quotient of S by using the presentation of 1. The defining
equations of the symmetric algebra are given by

[g1,92] = [T7, T2, T3] - o,

and so we have Sym(I) = S/(g1, g2). There is an important relation between Sym(I) and R(I) in
the form of the following canonical exact sequence

0 — X — Sym(I) = R(I) — 0.

Here we have X = J/(g1, g2), which allows us to take X as the object of study.

The main novelty of Chapter 2 is the use of D-modules to find different descriptions of XK. In
Chapter 2, we prove that K can be described as the solution set of a system of differential equations,

3



that the whole bigraded structure of XK is characterized by the integral roots of certain b-functions,
and that certain de Rham cohomology groups can give partial information about X.

The polynomial ring S is bigraded with bideg(T;) = (1,0) and bideg(x;) = (0,1), and X,
Sym(I) and R(I) have natural structures of bigraded S-modules. Let T be the polynomial ring T =
A2 (F)[Tq, Tz, T3] over the Weyl algebra A, (F) and consider the differential operators L1 = F(g1)
and L, = F(g2) by applying the Fourier transform to g7 and g, (see Definition 2.14).

The first main result of Chapter 2 gives that K can be described by solving a system of differential
equations.

Theorem A (Theorem 2.18). Let I C R = F[x1,x2] be a height two ideal minimally generated by
three homogeneous polynomials of the same degree d, and g1 and gy be the defining equations of
the symmetric algebra of 1. Let Ly = F(g1) and Ly, = F(g2) be the Fourier transform of g1 and
g2, respectively. Then, we have the following isomorphism of bigraded S-modules

K = 501<L] , LZ;S>§(—2, —d+2),

where Sol(L1,L,;S) ={h € S| Ly eh = 0and L, e h = 0} and the subscript-F denotes the
twisting by the Fourier transform (Section 2.2).

Since g1 and g, generate all the linear part of J (the syzygies of I) and X = J/(g1, g2), then we
have K, . = 0 for all p < 2. As an application of Theorem A we give a complete characterization
of the graded structure of each R-module Xy, . (p > 2) in terms of the integral roots of certain
b-functions (Definition 2.26).

Theorem B (Theorem 2.31). Let I C R = F[x1,x2] be as in Theorem A. Then, for each integer
P = 2 there exists a nonzero b-function by (s), and we have a relation between the graded structure
of Ky« and the integral roots of by, (s) given in the following equivalence

Even more, we have that these are the only possible roots of by, (s), that is

bp(s)= [ (s+d-2-aq).

{qezZ| Ky q7#0)

Theorem B is interesting for us in the sense that it gives a tool for deducing information about
X, but on the other hand, from a D-module point of view it is worthy to note that it describes the
b-function of a family of holonomic D-modules like those in Setup 2.21.

Let U be the polynomial ring U = F[Ty, T», T»].

In the last main result of Chapter 2, we change the role of L and L,, more specifically, instead
of having them as operators we place them in a quotient. We make this change by means of a
duality proven in Theorem 2.32, which allows us to establish an isomorphism of graded U-modules

4



between X and a certain de Rham cohomology group. In particular, this isomorphism could give an
alternative way to compute or estimate the dimension dimg (X, «) of each X, . regarded as finite
dimensional F-vector space (see Corollary 2.6).

Theorem C (Theorem 2.37). Let I C R = F[x1,x2], Ly and L, be as in Theorem A, and let Q be
the left T-module Q = T/T(Ly,L,). Then, we have the following isomorphism of graded U-modules

K=HR(Q) =weQ|d;ew=0andd; ew =0}.
In particular, for any integer p we have an isomorphism of F-vector spaces
Kp+ =HR(Qp) =w e Qp |37 ew=0and d; e w = 0}.

The basic outline of Chapter 2 is as follows. In Section 2.1, we prove Theorem 2.5. In Section
2.2, we make a translation of our problem into the theory of D-modules and we prove Theorem A. In
Section 2.3, we prove Theorem B. In Section 2.4, we prove Theorem C. In Section 2.5, we present a
script in Macaulay2 [60] that can compute each b-function by, (s) from Theorem B, and using it we
effectively recover the bigraded structure of KX for a couple of examples.

Study of rational maps via blow-up algebras

Questions and results concerning the degree and birationality of rational maps are classical
in the literature from both an algebraic and geometric point of view. These problems have been
extensively studied since the work of Cremona [41] in 1863 and are still very active research topics
(see e.g. [2,45,46,64,80,129] and the references therein). However, there seems to be very few
results and no general theory available for multi-graded rational maps, i.e. maps that are defined by a
collection of multi-homogeneous polynomials over a subvariety of a product of projective spaces. At
the same time, there is an increasing interest in those maps, for both theoretic and applied purposes
(seee.g. [15,16,77,127,128]).

In Chapter 3, we give formulas and effective sharp bounds for the degree of multi-graded
rational maps and provide some effective criteria for birationality in terms of their algebraic and
geometric properties. Sometimes we also improve known results in the single-graded case. Our
approach is based on the study of blow-up algebras, including syzygies, of the ideal generated by
the defining polynomials of a rational map, which is called the base ideal of the map. This idea
goes back to [80] and since then a large amount of papers has blossomed in this direction (see
e.g. [16,46,51,67,68,102,119,124,129]).

One of the main contributions in Chapter 3 is the introduction of a new algebra that we call
the saturated special fiber ring (see Definition 3.3). The fact that saturation plays a key role in this
kind of problems has already been observed in previous works in the single-graded setting (see [67],
[92, Theorem 3.1], [118, Proposition 1.2]). Based on that, we define this new algebra by taking
certain multi-graded parts of the saturation of all the powers of the base ideal. It can be seen as an



extension of the more classical special fiber ring. We show that this new algebra turns out to be a
fundamental ingredient for computing the degree of a rational map (see Theorem 3.4), emphasizing
in this way that saturation has actually a prominent role to control the degree and birationality of a
rational map. In particular, it allows us to prove a new general numerical formula (see Corollary 3.12)
from which the degree of a rational map can be extracted. Another interesting feature of the saturated
special fiber ring is its relation with the j-multiplicity of an ideal (see Lemma 3.10).

Next, we refine the above results for rational maps whose base locus is zero-dimensional. We
begin by providing a purely algebraic proof (see Theorem 3.16) of the classical degree formula
in intersection theory (see e.g. [55, Section 4.4]) adapted to our setting. Then, we investigate the
properties that can be extracted if the syzygies of the base ideal of a rational map are used. This idea
amounts to use the symmetric algebra to approximate the Rees algebra and it allows us to obtain sharp
upper bounds (see Theorem 3.21) for the degree of multi-graded rational maps. Some applications to
more specific cases of multi-projective rational maps (see Proposition 3.24) and projective rational
maps (see Theorem 3.34) are also discussed, with the goal of providing efficient birationality criteria
in the low-degree cases (see e.g. Proposition 3.27, Theorem 3.28 and Proposition 3.35).

The problem of detecting whether a rational map is birational has attracted a lot of attention
in the past thirty years. A typical example is the class of Cremona maps (i.e. birational) in the
projective plane that have been studied extensively (see e.g. [2]). Obviously, the computation of
the degree of a rational map yields a way of testing its birationality. Nevertheless, this approach is
not very efficient and various techniques have been developed in order to improve it and to obtain
finer properties of birational maps. Among these specific techniques, the Jacobian dual criterion
introduced and fully developed in [46, 124, 129] has its own interest. In Section 3.3, we extend the
theory of the Jacobian dual criterion to the multi-graded setting (see Theorem 3.39) and derive some
consequences where the syzygies of the base ideal are used instead of the higher-order equations of
the Rees algebra (see Theorem 3.44).

In Chapter 3, we also study the particular class of plane rational maps whose base ideal is
saturated and has a syzygy of degree one. In this setting, we provide a very effective birationality
criterion (see Theorem 3.59) and a complete description of the equations of the associated Rees
algebra (see Theorem 3.57).

Now, we fix a basic notation in order to describe some results of Chapter 3 in more detail.

Let K be a field, X7 C PL‘,XZ - PEZ, o Xm C Pﬁ‘“ and Y C P} be integral projective
varieties over k. For i = 1,..., m, the homogeneous coordinate ring of X; is denoted by A; =
Klxil/ai = Klxi0,%i1,...,%ir]/ai, and S = K[yo,y1,...,ys]/b stands for the homogeneous
coordinate ring of Y. Set R = A1 ®k A2 ®k - - - @k Am = KIx]/ (a7,0a2,...,0m). Let

F: X=Xy Xk Xg Xk Xk X --» Y C Py

be a dominant rational map defined by s + 1 multi-homogeneous elements f = {fy, f7,...,fs} CR
of the same multi-degree d = (dq, d2, ..., dm). We also assume that X is an integral variety.



The degree of the dominant rational map F : X = Xy Xk X3 Xk - -+ Xk Xy -+ Y is defined as
deg(F) = [K(X) : K(Y)], where K(X) and K(Y) represent the fields of rational functions of X and Y,
respectively.

The ring R = A1 ®k A2 ®k - - - ®k Am has a natural multi-grading given by

R= P (A1), (A2, @ Ok (Am);,,

For an arbitrary ideal ] C R, let J* be the ideal (]J: 91°°). Let T be the multi-Veronese subring which
is given by the standard graded k-algebra

o0
= P Rna.
n=0

The homogeneous coordinate ring S is often called the special fiber ring in the literature, and using
the canonical graded homomorphism associated to J we obtain the identification

S = Klfo, f1,...,fs) = klla] :@

In Chapter 3, we define the following saturated version of S.

Definition D (Definition 3.3). The saturated special fiber ring of | is the graded S-algebra

o0

@ In sat

e~

Interestingly, the algebra §r(I) turns out to be finitely generated as an S-module.
The main result of Chapter 3 is given in the following theorem. It shows, for instance, that a
comparison between the multiplicities of S and §r(I) yields the degree of &, and that under some

conditions J is birational if and only if S = Fr(I).

Theorem E (Theorem 3.4). Let F: X = X7 Xk X2 Xk -+ Xk X -—* Y be a dominant rational
map. If dim(Y) = dim(X), then we have the following commutative diagram



\\\\\A

Proj (1))

where the maps F' : Proj(T) --+ Y, G : Proj(T) --» Proj (g/];(ﬂ) and H : Proj (ER\(T)) — Yare

e

induced from the inclusions S — T, Fr(1) — T and S — Fr(1), respectively.
Also, the statements below are satisfied:

(i) H : Proj (ER\(T)) — Y is a finite morphism with deg(F) = deg(H).
(ii) G is a birational map.
(iii) e (E;(I/)) = deg(F) - e(S), where e(—) stands for multiplicity.

(iv) Under the additional condition of S being integrally closed, then F is birational if and only if

—_—

Sr(I) =S.

We remark that all the hypotheses and consequences in the previous theorem do not depend
on the characteristic of the field k. By applying Theorem E, we give formulas and effective sharp
bounds for the degree of multi-graded rational maps and provide some criteria for birationality in
terms of their algebraic and geometric properties.

An example of such a criterion for birationality is the following characterization of birational
maps from a multi-projective space onto a projective space, which in particular applies to Cremona
transformations.

Corollary F (Proposition 3.24). Let F : PE Xk PE XK+ Xk PE‘“ -3 Pﬁ be a dominant rational
map with 11 +712 + ...+ 1m = 8. Then, the map F is birational if and only if for all n > 1 we have

M =[] e
An example of such an upper bound for the degree of a rational map is the following.

Proposition G (Proposition 3.35). Let F : Pﬁ -—> Pﬁ be a dominant rational map with a dimension
1 base ideal 1 minimally generated by three polynomials of degree d. Then, the following statements

hold:

(i) deg(F) < M2 dimy (0941, ) + 1.



(ii) If 1is of linear type and d < 3, then deg(F) = W + dimy ([Isat/l]d> +1.

Now, we briefly describe the relation of the saturated special fiber ring with the j-multiplicity
of an ideal. The j-multiplicity of an ideal was introduced in [1] and serves as a generalization of
the Hilbert-Samuel multiplicity for non m-primary ideals. It has applications in intersection theory
(see [53]), and the problem of finding formulas for it has been addressed in several papers (see e.g.
[91,92,114,120]). Let A be a standard graded k-algebra of dimension & + 1 which is an integral
domain. Let m be its maximal irrelevant ideal m = A and let J** be (J: m*) for any ideal ] C A.
For a non necessarily m-primary ideal ] C A its j-multiplicity is given by

) = 5t tim i (e 07/7770))

n—oo ‘I’L6

Lemma H (Lemma 3.10). Let ] C A be a homogeneous ideal equally generated in degree d.
Suppose ] has maximal analytic spread £(]) = & + 1. Then, we have the equality

i =d-e(3a0),

where S/A\@ =P [(]”)Sat] nd IS the saturated special fiber ring of ].

n=0

Another sought interest of Chapter 3 is to develop a multi-graded version of the Jacobian dual
criterion of [46]. This remarkable criterion gives necessary and sufficient conditions to test the
birationality of a rational map, and, also, it should be noted that does not depend on the characteristic
of the field k. Additionally, when the map is birational, we can get the inverse map.

The following theorem contains a multi-graded version of the Jacobian dual criterion.

Theorem I (Theorem 3.39). Let F: X7 Xk X2 Xk -+ Xk Xm --+ Y be a dominant rational map.
Let and i for 1 < 1 < m be the Jacobian dual matrices of Notation 3.37. Then, the following
three conditions are equivalent:

(i) F is birational.
(ii) ranks (i ®@kpy) S) =11 foreachi=1,....,m.
(iii) ranks()p Qg S) =711 +T2+ - + T

In addition, if F is birational then its inverse is of the form G : Y --+ X7 Xk X2 Xk« Xk X,
where each map Y --+ Xy is given by the signed ordered maximal minors of an vy X (ri + 1)
submatrix of by of rank r;.

The basic outline of Chapter 3 is as follows. In Section 3.1, we introduce the saturated special
fiber ring and we prove Theorem E. In Section 3.2, we study rational maps with a finite base locus. In
Section 3.3, we extend the Jacobian dual criterion to the multi-graded setting and we prove Theorem I.
In Section 3.4, we study a particular class of plane rational maps.



The case of perfect ideals of height two

In Chapter 4, we compute the multiplicity of the saturated special fiber ring for a general family
of perfect ideals of height two. Interestingly, this formula is equal to an elementary symmetric
polynomial in terms of the degrees of the syzygies of the ideal. As two simple corollaries, for
this class of ideals, we obtain a closed formula for the j-multiplicity and an effective method for
determining the degree and birationality of rational maps defined by homogeneous generators of
these ideals.

Let K be a field, R be the polynomial ring R = K[x¢, X1, . ..X;], and m be the maximal irrelevant

ideal m = (xg,%1,...,%r). Let I C R be a perfect ideal of height two which is minimally generated
by s + 1 forms {fp, f1, ..., fs} of the same degree d.

To determine the multiplicity of §g(I), we need to study the first local cohomology module
of the Rees algebra of I, and for this we assume the condition Gy 1. The condition G, 1 means
that p(I,) < dim(Ry) for every non-maximal ideal p € V(I) C Spec(R), where p(I,) denotes
the minimal number of generators of I,. To study the Rees algebra one usually tries to reduce the
problem in terms of the symmetric algebra, the assumption of G, 1 is important in making possible
this reduction. After reducing the problem in terms of the symmetric algebra, we consider certain
Koszul complex that provides an approximate resolution (see e. g./\[l/()l], [24]) of the symmetric
algebra, and which permits us to compute the Hilbert series of §r(I). By pursuing this general
approach, we obtain the following theorem which is the main result of Chapter 4.

Theorem J (Theorem 4.8). Let I C R = K[xg,X1,...,Xy] be a homogeneous ideal minimally
generated by s + 1 forms {fo, f1,...,fs} of the same degree d, where s > r. Suppose the following
two conditions:

(i) Lis perfect of height two with Hilbert-Burch resolution of the form

S
0— PR(=d—w) = R=d)* w10

i=1

(ii) 1 satisfies the condition Gy1, that is u(I,) < dim(Ry) for all p € V(I) C Spec(R) such that
ht(p) <r+1.

—_——

Then, the multiplicity of the saturated special fiber ring Fr(1) of L is given by
e (31{(1)) =er(11, 12,. .., Ks),
where er (L1, U2, ..., s ) represents the T-th elementary symmetric polynomial

eT(u]’uz""’uS): Z I”LNI”LJZI’L)T

1<j1<j2<+<jr<s
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The following result gives a formula for the j-multiplicity of a whole family of ideals.

Corollary K (Corollary 4.10). Assume all the hypotheses and notations of Theorem J. Then, the
j-multiplicity of 1 is given by
J(I) =d- eT(}‘Ha na,..., HS)

In the second application of Theorem J, we study the degree of a rational map F : P} --» P§
defined by the tuple of forms {fy, f1,..., fs}. We show that the product of the degree of F and the
degree of the image of F is equal to e (i1,..., lts). From this we can determine the degree of a
rational map by just computing the degree of the image, and conversely, the degree of the map gives
us the degree of the image. In particular, we obtain that the map is birational if and only if the degree
of the image is the maximum possible.

Corollary L (Corollary 4.11). Assume all the hypotheses and notations of Theorem J. Let J be the
rational map J : Py --» P} given by

(g i+ :%p) (fo(xo,...,xr) D fs(xo,...,xr)),
and Y C Py be the closure of the image of F. Then, the following two statements hold:
(i) deg(F) - degps (V) = er(p1, 12, ..., 1s).
(ii) F is birational onto its image if and only ifdegpﬁ (Y)=er(1,12,..., Hs)-

The basic outline of Chapter 4 is as follows. In Section 4.1, we prove Theorem J. In Section 4.2,
we study rational maps whose base ideals satisfy the conditions of Theorem J.

Specialization of rational maps

The overall goal of Chapter 5 is to obtain bounds for the degree of a rational map in terms of the
main features of its base ideal. In order that this objective stays within a reasonable limitation, we
focus on rational maps whose source and target are projective varieties.

Now, to become more precise we should rather talk about projective schemes as source and target
of the envisaged rational maps. The commonly sought interest is the case of projective schemes over
a field (typically, but not necessarily, algebraically closed).

One tactic that has often worked is to go all the way up to a generic case and then find sufficient
conditions for the specialization to keep some of the main features of the former. The procedure
depends on taking a dramatic number of variables to allow modifying the given data into a generic
shape. The method is seemingly due to Kronecker and was quite successful in the hands of Hurwitz
([86]) in establishing a new elegant theory of elimination and resultants. Of a more recent crop, we
have, e.g., [84], [85], [141], [132].

In a related way, we have the notion of when an ideal specializes modulo a regular sequence:
given an ideal I C R in a ring, we say that I specializes with respect to a sequence of elements
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{ar,...,an} C Rif the latter is a regular sequence both on R and on R/I. A tall question in this
regard is to find conditions under which the defining ideal of some well-known rings — such as the
Rees ring or the associated graded ring of an ideal (see, e.g., [49], [97]) — specialize with respect to
a given sequence of elements. Often, at best we can only describe some obstructions to this sort of
procedure, normally in terms of the kernel of the specialization map.

The core of Chapter 5 can be said to lie in between the two ideas of specialization as applied to
the situation of rational maps between projective schemes and their related ideal-theoretic objects.

It so happens that at the level of the generic situation the coefficients live in a polynomial ring A
over a field, not anymore on a field. This entails the need to consider rational maps defined by linear
systems over the ring A, that is, rational maps with source P}, . As it turns out, it is not exceedingly
more complicated to consider rational maps with source an integral closed subscheme of P .

Much to our surprise a complete such theory, with all the required details that include the
ideal-theoretic transcription, is not easily available. For this reason, the first part of Chapter 5 deals
with such details with an eye for the ideal-theoretic behavior concealed in or related to the geometric
facts. A tall order in these considerations will be a so-called relative fiber cone that mimics the
notion of a fiber cone (or special fiber ring; see Remark 5.4) in the classical environment over a field
— this terminology is slightly misleading as the notion is introduced in algebraic language, associated
to the concept of a Rees algebra rather than to the geometric version (blowup); however, we will
draw on both the algebraic and the geometric versions.

Another concept dealt with is the relative saturated fiber cone, an object perhaps better understood
in terms of global sections of a suitable sheaf of rings. In Chapter 5, the saturated special fiber
ring (Definition D) is extended to the case when the coefficients belong to a Noetherian integral
domain of finite Krull dimension. It contains the relative fiber cone as a subalgebra and plays a role
in rational maps (see Theorem 5.25).

With the introduction of these considerations, we will be equipped to tackle the problem of
specialization of rational maps, which is the main objective of Chapter 5. The neat application so far
is to the multiplicity of the saturated fiber cone and to the degree of a rational map defined by the
maximal minors of a homogeneous (r 4 1) X r matrix, when in both situations we assume that the
coefficient ring A is a polynomial ring over a field of characteristic zero.

Another important result is that under a suitable general specialization of the coefficients, we
show that the degree of the rational map never decreases, that the degree of the corresponding image
never increases, but that the product of the two previous degrees remains constant.

Next there is a more detailed summary of the main results of Chapter 5.

Here we assume that the ground ring is a polynomial ring A = K[z, ..., z] over a field k. In
this setting we specialize the variables z; to elements of K. Thus, we consider a maximal ideal of the
formn = (z1 — &1,...,2m — &m) where o; € K. Since clearly kK = A /n, the A-module structure
of K is given via the homomorphism A — A/n = k. We take a standard graded polynomial ring
R = Alxg,-...,%r] ([Rlp = A) and a tuple of forms {go, ..., gs} C R of the same positive degree.
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Let{go,...,gs} C R/nR denote the corresponding tuple of forms in R/nR = Kl[xo, ..., X;] where
g1 is the image of g under the canonical homomorphism R — R/nR.

Consider the rational maps
G:Pjy--»P3 and g:Pp--»Pg

determined by the tuples of forms {go, ..., gs} and {go,. .., gs}, respectively.

The main target is finding conditions under which the degree deg(g) of g can be bounded above
or below by the degree deg(G) of G. SetJ = (gop,...,gs) C Rand I = (gp,...,gs) C R/nR. Let
E(J) be the exceptional divisor of the blow-up of P} along J. A bit surprisingly, having a grip on the
dimension of the scheme E(J) x o K is the main condition to determine whether deg(g) < deg(9)
or deg(g) > deg(9). The main result in this direction is the following theorem.

Theorem M (Theorem 5.44). Suppose that both G and g are generically finite.
(i) Assume that the following conditions hold:

(a)  Proj(Algl) is a normal scheme.
(b) dim (E(J) xa k) <.

(c) Kis a field of characteristic zero.

Then
deg(g) < deg(9).

(ii) If dim (E(J) xa K) < v —1, then
deg(g) > deg(9).

(iii) Assuming that K is algebraically closed, there exists an open dense subset W C K™ such that,
ifn=(z1 —1,...,2m — &m ) with (&1, ...,%m) € W, then we have

deg(g) > deg(9).

(iv) Consider the following condition:
(IX) k > 0 is a given integer such that {(Jp) < ht(B/nR) + k for every prime ideal
B € Spec(R) containing (I, n).

Then:

(K1) If (IX) holds with k < 1, then condition (b) of part (i) is satisfied.
(IX2) If (IX) holds with k = O, then the assumption of (ii) is satisfied.
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An additional interest in this chapter is the specialization of the saturated fiber cone of J. By
letting the specialization be suitably general, we prove that the multiplicity of the saturated special
fiber ring of I is equal to the one of the saturated special fiber ring of J @ Quot(A), where Quot(A)
denotes the field of fractions of A. As a consequence, when the coefficients of the forms {go, ..., gs}
are general, we obtain a formula for the product of the degree of g and the degree of the image of Q.

Let K = Quot(A) denote the field of fractions of A and let T = K[xo,...,x;] denote the
standard polynomial ring over K obtained from R = A[xo, ..., X,] by base change (i.e., considering
the A-coeflicients of a polynomial as K-coefficients). In addition, let G denote the rational map
G : Pg --» Pg defined by the tuple of forms {Go, ..., G5}, where Gj is the image of g; along the
canonical inclusion R < T. Finally, let Y C P{ and Y C Py be the closures of the images of g and
G, respectively. The following theorem contains the second main result of Chapter 5.

Theorem N (Theorem 5.47). Suppose that both G and Q are generically finite. Assuming that K is
algebraically closed, there exists an open dense subsetV C K™ such that, ifn = (21 —1,...,Zm —
) With (x1,...,0tm) €V, then we have

deg(g) - degps (Y) = deg(G) - degps (Y).
As a consequence of Theorem M(iii) and Theorem N we obtain the following corollary.

Corollary O (Corollary 5.48). Suppose that both G and Q are generically finite. Assuming that K is
algebraically closed, there exists an open dense subset Q C K™ such that, ifn = (21 —&1,...,Zm —
om ) with (1, ..., %m) € Q, then we have

degP;(Y) < deng((Y)-

The basic outline of Chapter 5 is as follows. In Section 5.1, we fix some terminologies and
notations. In Section 5.2, we develop in an algebraic fashion the main points of the theory of
rational maps with source and target projective varieties defined over an arbitrary Noetherian integral
domain of finite Krull dimension. In Section 5.3, we gather a few algebraic tools to be used in the
specialization of rational maps. In Section 5.4, we prove Theorem M, Theorem N and Corollary O.
In Section 5.5, we consider the problem of specialization of rational maps in the particular case of
perfect base ideals of height two.

Asymptotic properties of the powers of edge ideals of graphs

Let I be a homogeneous ideal in a polynomial ring R = K[x1,...,x;] over a field K. The
Castelnuovo-Mumford regularity of I, denoted by reg(I), has been an interesting and active research
topic for the past decades. There exists a vast literature on the study of reg(I) (see e.g. [25]). A
celebrated result on the behavior of the regularity of powers of ideals was proved independently in
[42] and [99]. In both papers, by making a detailed study of the Rees algebra of 1, it is shown that for
all @ > qo, the regularity of the powers of I is asymptotically a linear function reg(19) = dq + b,
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where (o is the so-called stabilizing index, and b is the so-called constant. The value of d in the
above formula is well understood (see [139, Theorem 3.2]). For example, d is equal to the degree of
the generators of I when I is equigenerated in degree d (see loc. cit.). However, there is no general
or precise method to determine qp and b.

In recent years, many researchers have tried to compute qo and b for special families of ideals.
One of the simplest cases, yet interesting and wide open, is when I is the edge ideal of a finite simple
graph. Let G = (V(G), E(G)) be a finite simple graph on the vertex set V(G) = {x1,...,Xxy}. The
edge ideal I = I(G), associated to G, is the ideal of R generated by the set of monomials x;x; such
that x; is adjacent to x;.

The problem of determining the stabilizing index and the constant have been settled for special
families of graphs. The approach is focused on the relations between the combinatorics of graphs
and algebraic properties of edge ideals. We refer the reader to see e.g. [3-5,8-10,12,52,63,75, 89,
96,112,115, 151] for more information on this topic.

In Chapter 6 and Chapter 7, partly inspired by the interest of this problem, we study the regularity
of edge ideals and their powers for the families of bipartite graphs and bicyclic graphs, respectively.

Bipartite graphs

In Chapter 6, we consider several aspects of the Rees algebra of the edge ideal of a bipartite
graph.

One can find a vast literature on the Rees algebra of edge ideals of bipartite graphs (see e.g.
[54,56,136,147-150]), nevertheless, in Chapter 6 we study several properties that might have been
overlooked. From a computational point of view we first focus on the universal Grobner basis of its
defining equations, and from a more algebraic standpoint we focus on its total and partial regularities
as a bigraded algebra. Applying these ideas, we give an estimation of when reg(I®) starts to be a
linear function and we find upper bounds for the regularity of the powers of I.

Inside this subsection, let G = (V(G), E(G)) be a bipartite graph on the vertex set V(G) =
{x1,...,x:}. As before, let k be a field, R be the polynomial R = K[x1, ..., x;], and I be the edge
ideal I = I(G) of G. Let fy,..., fq be the square free monomials of degree two generating I. We
can see R(I) as a quotient of the polynomial ring S = R[Ty,. .., T4] via the map

S=Kbx1.....xm: T10. .. Tql 5 R(I) C RIL, W(Ty) = fit.

Then, the presentation of R(I) is given by S/XK where X = Ker(1p).

The universal Grobner basis of the ideal K is defined as the union of all the reduced Grobner
bases G- of the ideal X as < runs over all possible monomial orders (see [138]). In the first main
result of Chapter 6, we compute the universal Grobner basis of the defining equations X of the Rees
algebra R(1).
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Notation P (Notation 6.3). Given a walk w = {vo, ..., Va}, each edge {v;_1,v;} corresponds to
a variable Ty;, and we set T+ = [ ;s oyen Tiy and Tyy— = T1; i aa Ty; (in case a =1 we make
T+ = 1). We adopt the following notations:

(i) Letw ={vp,...,vq = Vvo} be an even cycle in G. Then, by T,,, we denote the binomial
T+ — T- € K.
(ii) Letw ={vo,...,va} be an even path in G. Then, the path w determines the binomial

Vo T+ —VvaT- € K.

(iii) Let w1 = {uo,...,Uq}, W2 = {vo,...,Vu} be two disjoint odd paths. Let T(yy, 1v,)+ =
i Ty and T, wyy— = T Ty, then Wy and w) determine the binomial

uouaT(Wth)-*— — VOVbT(w1,wz)— e XK.

Theorem Q (Theorem 6.5). Let G be a bipartite graph and X be the ideal of defining equations of
the Rees algebra R(1(G)). The universal Grobner basis U of X is given by

U ={T\, | wis an even cycle}
U{voTww+ —VvaTw- | W= (vo,...,Vq) is an even path}
U{uota T,y )t —VoVe Tiwyw, )~ | W1 = (Wo, ..., uq) and
wy = (vo,...,Vp) are disjoint odd paths}.

The polynomial ring S is equipped with the bigrading: bideg(x;) = (1,0) and bideg(T;) = (0, 1).
The algebra R(I), as a bigraded S-module, has a minimal bigraded free resolution

0—Fp —-—F —F —R(I) —0,
where F; = @;S(—ajij, —bi;). In the same way as in [122], we can define the partial x-regularity of
R(I) by
reg, (R(I)) = ny)@x{aij —il,

the partial T-regularity by
regp(R(I)) = H%X{bij —1i},

and the total regularity by
reg (R(I)) = max{ay; + by; — i}
1)

In the second main result of Chapter 6, we prove that the total regularity of R(I(G)) coincides
with the matching number of G and estimate both partial regularities of R(I(G)).
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Theorem R (Theorem 6.22). Let G be a bipartite graph. Then, we have:
(i) reg(R(1(G))) = match(G),

(ii) regy(R(I(G))) < match(G) —1,

(iii) regg(R(I(G))) < match(G),

where match(G) denotes the matching number of G.

In Corollary 6.23, from the Chardin-Romer equality [27, Theorem 3.5], we obtain the upper
bound
reg(I1(G)®) < 2s +reg,(R(I)) < 2s+ match(G) — 1

for any bipartite graph G (this upper bound in some cases is weaker than the one of [90], but it
is interesting how it follows from a mostly algebraic method). In Corollary 6.24, by using the
relation between the partial T-regularity and the stabilization of the regularity of the powers of I
[42, Proposition 3.7], we obtain that

reg(1(G)ST1) = reg(1(G)®) + 2.

for all s > match(G) + q + 1.

The basic outline of Chapter 6 is as follows. In Section 6.1, we compute the universal Grobner
basis of K (Theorem Q). In Section 6.2, we consider a specific monomial order that allows us to get
upper bounds for the partial x-regularity of R(I). In Section 6.3, we exploit the canonical module of
R(I) in order to prove Theorem R. In Section 6.4, we give some general ideas about a conjectured
upper bound (Conjecture 6.9).

Bicyclic graphs

In Chapter 7, we study the regularity of the edge ideal and its powers for the case of bicyclic
graphs.

A bicyclic graph is a graph containing exactly two cycles. The family of bicyclic graphs has
three possible types of base graphs: two cycles joined at a vertex, two cycles connected by a path,
and two cycles sharing a path. In [61], it was computed the regularity of all the powers of the edge
ideal of a graph given by two cycles joined at a vertex.

In Chapter 7, we consider the family of bicyclic graphs where the base graph is a dumbbell. A
dumbbell graph C,, - Py - C,, is a graph consisting of two cycles C;, and C,,, connected with a
path Py, where n, m, and 1 are the number of vertices. In the example below we show two different
dumbbell graphs.

Example S. Two base cases when 1 = 2 and 1 = 1 are the following:
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>— >0

The dumbbell graphs C3 - P - Cz and C3 - Py - Cy.

Notation T. Let G be a graph and H C G be a subgraph.

(i) The maximum size of an induced matching in G is called its induced matching number and it

is denoted by v(G).
(ii) Tg(H) denotes the subset of vertices
lg(H)={veG|dv,H) =1},
i.e. the vertices at distance one from H.

(iii) The Lozin transformation of a vertex x € G is an operation that replaces x by four new vertices,
and produces a new graph denoted by Ly (G) (see Definition 7.23).

From [96, Corollary 1.2] and [11, Theorem 4.11] we have the following inequalities relating
regl(G) and v(G) in the case of bicyclic graphs

v(G)+ 1 <regl(G) < v(G) + 3.

In the main result of Chapter 7, we obtain a full combinatorial characterization of the regularity of
the edge ideal of a bicyclic graph G (having a dumbbell subgraph) in terms of the induced matching
number of G. This result adds a new family of graphs for which the regularity is known, and extends
the results of [4] where the family of unicyclic graphs was studied. For a dumbbell graph C;, - P1- Copy,
we always assume that “n mod 3 < m mod 3”. Since the graphs Cy, - Py - Cyy and Cy - Py - Cy
are clearly isomorphic, the cases “n = 2 (mod 3), m = 0,1 (mod 3)” have the same results as the
cases “n=0,1 (mod 3), m = 2 (mod 3)”.

Theorem U (Theorem 7.64). Let G be a bicyclic graph with dumbbell subgraph C,, - Py - Cy.
(I) Ifn,m=0,1 (mod 3), then regl(G) = v(G) + 1.
(1) Ifn=0,1 (mod 3) and m = 2 (mod 3), then
v(G) + 1 <regl(G) < v(G) + 2,
and regl(G) = v(G) + 2 ifand only if v(G) = v(G\ Tg(C)).
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() Ifn,m =2 (mod 3) and 1 > 3, then v(G) + 1 < regl(G) < v(G) 4 3. Moreover:

(i) regl(G) = v(G) +3ifand only if v(G\ Tg(Cn, U C)) = v(G).
(ii) regl(G) = v(G) + 1 if and only if the following conditions hold:

(a) v(G) = v(G\Tg(Ch UCn)) > 1;
(b) v(G) > v(G\Tg(Cn));
(c) v(G) > v(G\TG(Cm)).

(IV) Ifn,m = 2 (mod 3) and 1 < 2, then v(G) + 1 < regl(G) < v(G) + 2. Let x be a point
on the bridge Py and let L+ (G) be the Lozin transformation of G with respect fo x given as
in Construction 7.62. Then, regl(G) = v(G) + 1 if and only if the following conditions are
satisfied:

(a) v(Lx(G)) = v(Lx(G)\ FLX(G)(CTL UCm)) > 1;
(b) v(£x(G)) > v(Lx(G)\Tg, (6)(Cn));
(c) V(Lx(G)) > v(Lx(G)\ Ty, (G)(Cm)).

For a particular family of dumbbell graphs, we obtain a formula for the regularity of all the
powers of the edge ideal.

Theorem V (Theorem 7.76). For the dumbbell graph C,, - Py - Cyy with 1 < 2, we have
regl(Cn - Py - C)9 =2q +regl(Cp, - P - Cppy) — 2
forallq > 1.

The basic outline of Chapter 7 is as follows. In Section 7.1, we recall some preliminary results.
In Section 7.2, we compute the induced matching number of a dumbbell graph and the regularity of
its edge ideal. In Section 7.3, we prove Theorem U. In Section 7.4, we prove Theorem V.
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Chapter 1

Preliminaries

In this chapter we collect some basic definitions, concepts and results that will be used throughout
this work. We are mostly interested in recalling some fundamental and known results in the “theory
of blow-up algebras”.

For a very comprehensive treatment about blow-up algebras, the ultimate references are the
books [144] and [146] by Vasconcelos.

1.1 The Rees algebra of an ideal

This initial section closely follows [83, Chapter 5] and [111].
For the time being, let R be a commutative ring with unit.

Definition 1.1. Let I C R be an ideal and t a variable over R. The Rees algebra of 1 is the subring
of R[t] defined as

n

RO ={ Y ait'[neNa el =Pr,
i=0 i>0
and the extended Rees algebra of I is the subring of R[t, 1] defined as
n . . . .
RIIt, t'] = { Y ait'|neNa e P} - Prit,

i=—m icz

where, by convention, for any non-positive integer n, [ = R,
For every ideal | of R we have

J=JRIIt]NR =JR[It,t ']NR=JR[t, t"']NR.
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1.1. The Rees algebra of an ideal

Thus every ideal of R is contracted from an ideal of R[It] and R[It, t—1]. Also

R RIIt] c RIIt, t] c Ribt]
J T IR tTINRIY TRt ARt TR ]

where the two quotients in the middle are isomorphic to the Rees algebra and the extended Rees
algebra of (14])/] in the ring R/J. In particular, if P is a minimal prime ideal of R, then PR[t,t~']N
R(It] and PR[t, t—'] N R[It, t~'] are minimal prime ideals in their respective rings. Any nilpotent
element in R[It] or R[It, t~'] is also nilpotent in R[t, t '], so it lies in Np PRI, t=1], as P varies
over the minimal primes of R. Hence all minimal primes of the two Rees algebras are contracted
from minimal primes of R[t, £~ 1] each of which is of the form PR[t, t~'], for some minimal prime
P of R. Therefore

dim(R[It]) = max { dim (E [IJ];PtD IPe Min(R)}, (1.1)
dim(R[It, t~]) = max { dim <E [I—;Pt, t—‘D IPe Min(R)}. (1.2)

Theorem 1.2. Let R be a Noetherian ring and 1 an ideal of R. Then, dim R is finite if and only if the
dimension of either the Rees algebra or the extended Rees algebra is finite. If dim R is finite, then

dim(R) + 1 if 1 ¢ P for some prime ideal
(i) dim(R[It]) = with dim(R/P) = dim(R);

dim(R) otherwise.
(ii) dim(R[It,t~']) = dim(R) + 1.

(iii) IfR is local with maximal ideal m, and if 1 C m, then mR[It, t— ']+ ItR[It, t ']+t~ "R[It, t~ ]
is a maximal ideal in R[It, t~ ] of height dim(R) + 1.

Proof. (i) From (1.1) we may assume that R is an integral domain, and so it is enough to prove
that dim(R[It]) = dim(R) if I = 0 (which is clear) and dim(R[It]) = 1 + dim(R) if I # 0. From
Lemma 1.24 we have that

dim (R[It]) = dim(R) + ht (ItR[It]) = dim (R[It]) 4 trdegg (R[It]) = dim(R) + T.

(i1) Similarly, by (1.2) we may assume that R is an integral domain. From the Dimension
Inequality [110, Theorem 15.5], we obtain dim(R[It,t~']) < 1 + dim(R). On the other hand,
we have dim (R[It,t7']) > dim (R[It,t7'], 1) = dim (R [It,t~", 7]) = dim (R[t,t7"]) =
dim(R) + 1.

(iii) Let Py € Py € --- C Py, = m be a maximal chain of prime ideals in R with h = ht(m) =
dim(R). Set Q; = PiR[t,t~ '] N R[It,t~']. Since Qi "R =P;,Qp € Q7 C --- C Qnisa
chain of distinct prime ideals in R[It,t~']. The biggest one is Q;, = mR[t,t'] N R[It, t~'] =
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1.1. The Rees algebra of an ideal

mR[It,t~'] 4+ ItR[It, t—'], which is properly contained in Qp + t~'R[It,t~'] = mR[It,t~'] +
ItR(It,t ']+t~ "R[It, t']. So the result follows. d

Notation 1.3. The Rees algebra R[It] of the ideal 1, will also be denoted by R(1). Sometimes, when
we want to stress the role of the ring R, we will write R (1).

The study of Rees algebras is strongly interrelated with the following two rings:

Definition 1.4. The associated graded ring of 1 is defined by

gri(R) = E(I™/1™"") = RILJ/IRIY = R[It,t ']/t ROt ],
n>0

If R is Noetherian local with maximal ideal w, the fiber cone (or special fiber ring) of 1 is given
by the ring
ROt R 1 12 I3

oRI m e ml P2 P mB P

Sr(D) =

The analytic spread of 1, denoted by {(1), is equal to the dimension £(1) = dim (Fr (1)) of Fr(1).
Clearly, we also have that Fr (1) = gr{(R)/mgr;(R).

We recall the following well-known result: for a finitely generated M over a local ring (R, m),
the minimal number of generators of M, denoted by (M), is equal to the dimension u(M) =
dimg /, (M/mM) of M/mM as a vector space over R/m (see e.g. [110, Theorem 2.3]).

Proposition 1.5. Let (R, m) be a Noetherian local ring and 1 C m an ideal. Then, the following
statements hold:

(i) dim(gr;(R)) = dim(R).

(i) ¢(I) < dim(R).

(iii) ¢(IR,) < ¢(I) forall p € V(I) C Spec(R).
(iv) If1is m-primary, then {(1) = dim(R).

(v) ht(I) < (1) < p(D).

Proof. (i) As t~! is a non-zerodivisor in R[It,t~'] and gr;(R) = RIIt, t N/t TR, t n,
Theorem 1.2(ii) implies that dim (gr;(R)) < dim(R). Let Q = mR[It,t~'] + ItR[It,t~"] +

t~R[It,t~'] be the prime ideal in Theorem 1.2(iii), since dim (gr;(R)) > dim <ng(R)Q),
it is enough to show dim (ng(R)Q> > R. Now, t~! is a non-zerodivisor in the local ring
R[It, tq]Q and ng(R)Q = R[It, t*]]Q/t*]R[It, t*]]Q, thus we obtain that dim (ng(R)Q> =
dim (R[It, r‘]Q) — 1 =dim(R) (see e.g. [19, Proposition A.4], [110, Exercise 16.1]).
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1.1. The Rees algebra of an ideal

(ii) Since Fr(I) is a quotient of gry(R), the result is clear from part (i).

(iii) Let p € V(I) C Spec(R). The Hilbert functions of the graded algebras Fr(I) and
SR, (IRp) are given by H (Fr(I),n) = dimg/p (I"/mI™) = p(I") and H(%RP(IRp),n) =
dimg, /pR, (I"Rp/pI™Ry) = w(I™Rp). Clearly p(I™) > p(I™Ry), then H(Fr(I),n) >
H(FR, (IRp), 1), which from the relation of the Hilbert-Samuel polynomial and the Krull dimension
implies £(I) = dim(Fr (1)) > dim(Fr, (IRp)) = £(IRy) (see e.g. [19, Theorem 4.1.3]).

(iv) If T is m-primary (i.e., m¢ C I for some ¢ > 0), then the ideal mgr;(R) is nilpotent.
Therefore, £(I) = dim (gr;(R)/mgr;(R)) = dim(gr;(R)), and so part (i) implies £(I) = dim(R).

(v) Let p € Spec(R) be a minimal prime of I with ht(p) = ht(I), due to parts (iii) and (iv) we
get

ht(I) = dim (Rp) = € (IR,) < £(I).

Letn = p(I) and fy,..., f;, be a minimal set of generators of I. Set a variable T; for each one of
the generators, then we have the following canonical epimorphism

m=0
Ti — fil
Thus it follows that £(I) = dim(Fr (1)) < w(I). 0

LetI = (fy,...,fnh) C Rbe an ideal. The Rees algebra Rg (1) = R[It] = R[fyt,...,fnt] can
be written as a homomorphic image of the polynomial ring R[Tq,. .., T ] by the map 7t sending T; to
fit. The kernel is a graded ideal ] = J; + J2 4+ --- C R[Ty,..., Tx]. Here we give cases where we
can describe the generators of |, which we refer to as the defining equations of the Rees algebra.

The ideal ] is generated by homogeneous polynomials F(Tq,...,T) € R[Ty,..., Ty] with
the property F(fit,...,fnt) = 0. Since F is homogeneous, F(fit,...,fnt) = 0 if and only if
F(fy,...,fn) = 0. In the short exact sequence

0—J]—RI[M,...,Thl = Rg(I) = 0,

we are interested in finding the ideal J.

Generators for the linear part J1 can be found with a presentation of I. Namely, given a presenta-
tion R™ 23 R™ — I — 0, where ¢ = (ai;) represents the map R™ — R™, then the linear part J4
is generated by the linear polynomials

gi=aiil1+...+aniTn,

thatis J1 = (g1,...,9m).
From these previous discussions, we identify the symmetric algebra of I with

SymR(I) = R[T],...,Tn]/]1.
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1.1. The Rees algebra of an ideal

Also we identify the Rees algebra of I with

So we have the following commutative diagram

L

Symg(I) — 5 Rp(D),

where « is an epimorphism.
Definition 1.6. An ideal 1 is said to be of linear type if | = J1 (i.e., Symg(I) = Rg(I)).

Ideals of linear type are the simplest in terms of the defining equations of their Rees algebras.
In fact, the symmetric algebra can always be computed from a presentation of the ideal. If R is an
integral domain then clearly Ry (1) is also an integral domain.

The following important result was first obtained in [111].

Proposition 1.7. Let R be an integral domain and 1 an ideal of R. The following conditions are
equivalent:

(i) Symg (1) is an integral domain;
(ii) Symg (1) has no R-torsion;
(iii) o is injective (and hence Symg (1) = Rg(1)).

Proof. (1) = (ii) and (iii) = (i) are trivial. The implication (ii) = (iii) follows from
Lemma 1.8(i1) below. O

Lemma 1.8. Let I = (fq,...,fn) be an ideal of R and
K = Ker(o: Symg(I) — Rr(1)) = J/J1.
Then, the following statements hold:
(i) There exists an integer ¢ > O such that fjc - K=0foralll <j<n

(ii) Additionally, if R is an integral domain, then the kernel X is equal to the R-torsion submodule
of Symg (I).
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1.1. The Rees algebra of an ideal

Proof. (i) We can assume that j = n. We shall prove that for every homogeneous polynomial
F e R[Ty,..., Tu] with F(fy,..., fn) = O there exists some ¢ > 0 such that f$F € J;.

Let F € ] C R[Ty,...,Tal. We proceed by induction on the degree of the polynomial F; for
degree 1 the result is vacuous. So, we assume that F has degree d > 1 and we write it as

F :T1H](T1,...,Tn) +T2H2(T2,...,Tn) +"-+Tan(Tn),

where each H; € R[T;,..., Tn] C R[Ty,..., Tx] is a homogeneous polynomial of degree d — 1.
We define the degree 1 homogeneous polynomial

G =TiH1(f1,eeosfn) + ToHa(f2see ) 4+ TuHn(fn) € RTy,..., Tnl,
that belongs to J1. We write
PTG =Ty (T HI (T T) = T MO (1, )
+T2(f$}*1H2(T2,...,Tn) —TS*1H2(f2,...,fn))

o T (R HA (T) = T TH ()

= T1G1 (Th-'-,Tn) + e +TTLGTL(TTL)’
where each Gj is a homogeneous d — 1 degree polynomial in J. Using the inductive hypothesis
there exist c; such that f$'G; € J; foreachi = 1,...,n. So we get f4 1 Fe1H+enf ¢ J1, that
concludes the proof of this part.
(i) Clearly we have that the R-torsion of Symp(I) is contained in K. In the other direction,

since R is an integral domain, each f; # 0 is a regular element and so part (i) implies that X is
contained in the R-torsion of Symg (I). O]

Definition 1.9. Let R be a Noetherian ring and M be a finitely generated R-module. We say that M
has rank r if one of the following equivalent conditions is satisfied:

(i) M ®g K is a free K-module of rank r where K denotes the total ring of fractions of R.
(ii) My is a free R,-module of rank v for each associated prime p € Ass(R).
(see [19, §1.4] for details.)
Below we generalize Lemma 1.8.
Lemma 1.10. Let R be a Noetherian ring and 1 be an ideal having rank. Then, we have

Symg(I) ~_ Sym(I)

Tl = G Syme(D) ~ HO(Sym(D))"

where Tr (Symg (1)) denotes the R-torsion of Symg (I).
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1.1. The Rees algebra of an ideal

In particular, if R is local with maximal ideal m and 1 is m-primary then we have

Sym(I)

%= (1) = o (Sym(D)°

Proof. By the assumption that I has rank then we have grade(I) > 1 (see e.g. [19, proof of Corollary
1.4.7]), and from the Unmixedness Theorem (see e.g. [19, Exercise 1.2.21], [95, Theorem 125]) we

can assume that I = (fy,...,f) where each fj is an R-regular element. Thus Lemma 1.8(i) yields
that X C H(I) (Symg(I)) € Tr (Symg(I)). Since we always have T (Symg(I)) C X, then we are
done. ]

In the last part of this section we show that an ideal generated by a regular sequence is of linear
type. More generally, every ideal generated by a d-sequence is of linear type.

Definition 1.11 ([83, Definition 5.5.2]). Let R be a commutative ring. Set fo = 0. A sequence of
elements {1, ..., Ty is said to be a d-sequence if one (and hence both) of the following equivalent
conditions hold:

(i) (fo,ﬁ,...,fi) 2fi+1fj = (fo,f],...,fi) . f)-forallO < i <n-— 1 andforallj > i+ 1,’
(ii) (fo,f1,..., i) figr () (F1,.eosfn) = (f1,...,f) forall 0 <i<n—1.
Remark 1.12. A regular sequence is a particular case of a d-sequence.

Let F € RI[Ty,...,Th]. We define the weight of F to be i if F € (Tq,...,T;) but F &
(Ty,..., Ti_1). We set the weight to be 0 if F = 0.

Theorem 1.13. Let fq,..., T be a d-sequence in R, and 1 = (f1,...,fn). If F(Ty,...,Tq) €
R[Ty,..., Talis a form of degree e such that F(f1,...,fn) € (f1,...,f;), then there exists a form
G(Ty,...,Tn) of degree e and weight at most j such that F — G € ] (again ] is the linear part of
the defining equations of the Rees algebra).

Proof. We use induction on e. Suppose that e = 1. Since F(fq,...,f) € (f1,...,fj), we may
write F(fy,...,fn) = 2:1 rifi. Set G(Tq,...,Th) = ZL] riT;. Clearly G has degree 1 and
weight at most j. So F — G € Jy, because F has degree 1 and (F — G)(fy,...,fn) =0.

Now we assume e > 1 and we use induction on the weight of F. If the weight of F is at most j we
take G = F. If not, set F = T Fy 4 F,, where the weight of F is k and the weight of F, is at most k—1,
and both F; and F, are homogeneous. Note that deg(F;) = e — 1. We have that F(fy,...,fy) =
i F1 (f],...,fn) —I—Fz(f],...,fn) € (ﬁ,...,fj),ansz(ﬁ,...,fn) S (f],...,fk_]). Hence

Fi(fr,....fn) € ((Fr,.. fm1) s ) N D= (1, ..o fremr).

We apply induction on F; to obtain a homogeneous polynomial G; of degree e — 1 and weight at
most k — 1 such that F; — Gy € J5.
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1.2. The Rees algebra of a module

Set G’ = Ty G + F,. The weight of G’ is at most k — 1. Moreover, F — G’ = Ty (F; — G1).
Notice that G’ (fy,...,fn) = F(f1,...,fn) € (f1,...,f;) and G’ has weight at most k — 1 and
degree e. By induction there exists a homogeneous polynomial G of degree e and weight at most j
such that G’ — G € J;. It follows that F — G = (F — G’) + (G’ — G) € ]y, finishing the proof. []

Corollary 1.14. If fy,..., Ty is a d-sequence in R, then the ideal 1 = (f1,...,Tn) is of linear type.

Proof. If F € ] is homogeneous of degree d, then since F(fy,...,fn) = 0, we can apply Theo-

rem 1.13 with weight j = O to conclude that F € J;. O
Corollary 1.15. Let fq,...,fn be a regular sequence. Then, the defining ideal ] C R[Ty,..., Tyl
of the Rees algebra of (f1,...,Tn) is generated by the 2 X 2 minors of the matrix

f1. f2 - fn

L T Ta )
Proof. Due to Corollary 1.14, the Rees algebra of (f1, ..., f;) coincides with its symmetric algebra.
Since f1,..., fn is a regular sequence, the syzygies of (f1,..., T ) are given by the Koszul syzygies
XiTj - X Ti. ]

1.2 The Rees algebra of a module

This section is devoted to digress in the possible definitions/generalizations of the Rees algebra
for a module. Certainly we would like that this new definitions coincide in the case of an ideal with
the previous definition Rg (I) = ®%_,I™t™ = R[It] C R[t]. We present three possible definitions
and say under which conditions they are equivalent.

One may think at first sight that defining the Rees algebra of a module is an useless generalization.
But this is completely false, the notion of the Rees algebra of a module appears naturally in many
important constructions and applications. For instance, in Section 3.3, to develop the Jacobian dual
criterion in a multi-graded setting, the concept of Rees algebras for modules will be an essential tool.

Here we will use some basic properties of symmetric algebras, we refer the reader to [47,
Appendix 2] for a detailed treatment.

Definition 1.16 (First definition for the Rees algebra of a module). Let M be an R-module and
g : M — R™ be an injective homomorphism, then the Rees algebra of the module M is defined as
the image of the map Symg(g) : Symg (M) — Symg (R™) = R[Ty,..., Tql.

This first generalization is the most naive possible, and indeed for an ideal I C R we have that
Rr(I) is the image of the map Symg (I) — Symg(R) = R[t]. But unfortunately this definition has
major drawbacks because it is not an invariant of the module and it depends on the embedding used.
In [50, Example 1.1], there is an example of an embedding g : I — R? of an ideal I, where the algebra
given by image of Sym(g) : Symg(I) — Symg(R?) is not isomorphic to Ry (I) = o oImt™.
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1.2. The Rees algebra of a module

Remark 1.17. The second definition will be given trying to extend the relation between Symg (1) and
R (1) over an integral domain that we found in Lemma 1.8. This will be our preferred definition
and we will always use it as default.

Definition 1.18 (Second (and our default) definition for the Rees algebra of a module [132]). Let
R be a Noetherian ring and M be a finitely generated R-module having a rank. The Rees algebra
Rr (M) of M is defined to be Symg (M) modulo its R-torsion submodule.

From Lemma 1.10, under the previous assumptions the second definition agrees with the usual
definition for an ideal.
We recall the following well-known fact.

Definition-Lemma 1.19. Let R be a Noetherian ring and M be an R-module (not necessarily finitely
generated). We say that M is torsion if one of the following equivalent conditions is satisfied:

(i) M ®gr K = 0 where K denotes the total ring of fractions of R.
(ii) My = 0 for each associated prime p € Ass(R).

Proof. (i) = (ii) This is clear because M, is a localization of M ®@g K.

(i1) = (i) Let S be the multiplicative set of non-zerodivisors of R. We need to prove that for
any 0 # m € M we have Anng(m) NS # 0.

Assume by contradiction that Anng(m) N'S = () for some 0 # m € M. Thus Anng(m) C
p1 U---Upyx where Ass(R) = {p1,...,pxr} (see e.g. [110, Theorems 6.1 and 6.5]), and by the prime
avoidance lemma (see e.g. [7, Proposition 1.11]), Anng(m) C p; for some i. Therefore, we obtain
the contradiction 0 # Ry, - m C My, . So the proof follows. O

When M is a finitely generated torsion-free module having rank, then Definition 1.16 and
Definition 1.18 agree:

Lemma 1.20. Let R be a Noetherian ring and M be a finitely generated R-module. Then, the
following statements hold.:

(i) If M has rank and g : M. — R™ is any embedding into a free R-module, then we have an
isomorphism

Symg(M)
T (Syme (V)] = 1M (Syme(9)).

where Tr (Symg(M)) denotes the R-torsion of Symg (M) and Im (Symg(g)) denotes the
image of the natural map Symg(g) : Symg (M) — Symg (R™).

(ii) If M is torsion-free and has rank v, then there exists an embedding g : M. — R'.
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Proof. (i) (this part is essentially taken from [50, Theorem 1.6]) We need to prove that kernel of the
homomorphism
Symg(g) : Symg (M) — Symg(R™) = R[Ty,..., Tyl

is exactly the R-torsion of Symg(M). Let K be the total ring of fractions of R. We always have
that T (Symg(M)) C Ker (Symg(g)), so it is enough to show that Ker (Symg(g)) ®g K = 0.
Equivalently, from Definition-Lemma 1.19, we can show that Ker (Symg(g)) ®r Ry = 0 for all
p € Ass(R).

Since the formation of symmetric algebras commutes with localization, we can localize at any
associated prime and assume that R is local with maximal ideal m and depth(R) = 0. Since M has
rank, then it is free, say M. = R". After these reductions, g : R" — R™ is injective and we need to
prove that

Symg(g) : Symg(R") = R[Uy,..., U] — Symg(R™) =R[Ty,..., Ty]

is injective. Since depth(R) = 0, m € Ass(R), and so [19, Lemma 1.3.4] yields that g splits and
we have that g(R") is a direct summand of R™ (i.e. R™ = g(R") @ R™" 7). Therefore, by choosing
an appropriate basis on the target R™ of g, we obtain that Symg (g) corresponds with a canonical

inclusion of the form Symg (R") = R[Uy,..., U] — R[Uq,..., U, T ..., T ] = Symg (R™).
So the proof of this part follows.
(i) This is well-known (see e.g. [19, Exercise 1.4.18]). L]

The last definition is the most complete in the sense of requiring less assumptions, but on the
other hand it is more abstract and sometimes more difficult to handle.

Definition 1.21 (Third definition for the Rees algebra of a module [50]). If R is a ring and M is an
R-module, we define the Rees algebra of M to be

Rr(M) = Symg (M)/ (ﬁgl—g)

where the intersection is taken over all maps g from M to free R-modules, and 1y denotes the kernel
of Symg(g).

Remark 1.22. Let R be a Noetherian ring and M be a finitely generated R-module having rank,
then Definition 1.18 and Definition 1.21 agree.

Proof. See [50, paragraph after Lemma 1.7]. 0

1.3 Kirull dimension of symmetric and Rees algebras

The purpose of this section is to develop formulas to compute the Krull dimension of the
symmetric and Rees algebras of a module.
First we start with the symmetric algebra, for this we introduce the Foster-Swan number.
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Definition 1.23. Ler M be an R-module, then the Foster-Swan number is

b(M)= sup {dim(R/p) +n(M,)}.
pESpec(R)

where | denotes minimal number of generators.

The following important lemma ([135, Lemma 1.1.2], [144, Lemma 1.2.2]) is popularly known
as the “dimension formula for graded domains”.

Lemma 1.24. Let B be a Noetherian integral domain that is finitely generated over a subring A.
Suppose there exists a prime ideal Q of B such that B =A 4+ Q and AN Q = 0. Then

dim(B) = dim(A) + ht(Q) = dim(A) + trdeg 5 (B)

Proof. We may assume that dim(A) is finite. By our assumptions, we have dim(B) > dim(A) +
ht(Q) (using the map B — B/Q = A, we can construct an increasing sequence of prime ideals of
length dim(A) 4 ht(Q)). On the other hand, we use the Dimension Inequality [110, Theorem 15.5]
to obtain

ht(P) < ht(p) + trdegp (B) — trdegy () k(P),

for any prime ideal P C B and p = P N A. Thus we get
dim(B) < dim(A) + trdeg (B).

LetS = A—(0),K =Quot(A) = S~ TA and B’ = S~ "B, then we may see B’ as a finitely generated
K-algebra and from [110, Theorem 5.6] we have

trdeg 5 (B) = trdegy (B’) = dim(B’).
Finally, since AN Q =0and B =A + Q, we get dim(B’) = ht(Q). O

There are two cases of particular interest. If B is a Noetherian graded ring and A denotes its
degree 0 component then:

dim(B/P) = dim(A/p) + trdegy ) (k(P))
for any graded prime P € Spec(R) and p =P N A, and
dim(By) = dim(A}) + trdeg (B)
for any p € Spec(A).
In the next lemma we gather some basic facts when R is a Noetherian integral domain. Notice

that in this case any finitely generated R-module has rank and so we can freely apply our default
definition (Definition 1.18) for Rees algebras.
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Lemma 1.25. Let R be a Noetherian integral domain and M be a finitely generated R-module. Let
K = Quot(R) be the field of fractions of R. Then, the following statements hold.:

(i) Rr(M) is an integral domain and there is a canonical inclusion

o Symg (M)
ReM) = Sy (M)

— Symg (M) ®g K = Symy (M @ K) =K[Ty,..., T,]
where v = rank(M).

(ii) trdegg (Rr(M)) = rank(M).

(iii) dim (Rg(M)) = dim(R) + rank(M).

Proof. (i) There is a canonical map y : Symg(M) — Symgz(M) ®r K = Symy (M ®g K) =
K[Ty,..., Ty] where r = rank(M) = dimg (M ®g K). The result follows because by construction
Ker(y) = Tg (Symg(M)).

(i1) It is clear form part (i) and the fact that

Symg (M)
Rr(M K= —F—— K=S M K.
rR(M) ®r T (Symg (MJ) ®R ymg (M) ®g
(iii) Tt is obtained from Lemma 1.24 and part (ii). O

Now we are ready for the Huneke-Rossi dimension formula of symmetric algebras ([81]).
Theorem 1.26. Let R be a Noetherian ring and M be a finitely generated R-module. Then
dim (Symgz (M)) = b(M).

Proof. We make use of the observation that if R is an integral domain, then the R-torsion submodule
of a symmetric algebra Symg (M) is a prime ideal of Symg (M).
For a prime ideal p of R, we denote by T(p) the R/p-torsion submodule of

Symg (M) ®@r R/p = Symg ,,(M/pM),
thus Rg /,, (M/pM) = (Symg (M) ®@g R/p) /T(p). From Lemma 1.25 above, we have

dim (UQR/p (M/pM)) = dim(R/p) + rankg /, (M/pM)
— dim(R/p) + 1(M,),

Since Rg/, (M/pM) can be seen as a quotient of Symg (M), it follows that dim (Symg (M)) >
b(M).
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Conversely, let P be a prime of Symg (M) and set p = P N R. There is a canonical surjection
Symg (M) ®gr R/p — Symg (M)/P, and by taking out the R/p-torsion we obtain the surjection

Rr/p (M/pM) — Symg (M) /P.

So it is clear that dim (Symg (M)/P) < dim (UQR/p (M/pM)).
Therefore, it follows that dim (Symg(M)) < b(M). O

Next we compute the Krull dimension of the Rees algebra of a module.

Theorem 1.27 ([132, Proposition 2.2]). Let R be a Noetherian ring and M be a finitely generated
R-module having rank. Then

dim (Rg(M)) = dim(R) + rank(M).

Proof. Let r = rank(M). Since by the definition of the Rees algebra we mod out the R-torsion, we
may assume that M is torsion-free. From Lemma 1.20(ii) we can embed M into a free module
G = R". By using Lemma 1.20(1), Rg(M) is identified as a subalgebra of the polynomial ring
S = Symy(G) = R[Ty,..., T;]. Asin the case of ideals, the minimal primes of Rg (M) are exactly
of the form P = pS N Rg (M), where p ranges over all minimal primes of R. Write R = R/p and
M for the image of M in R ®g G. Since Rg(M)/P = Rx(M) and M has rank T as an R-module,
we may replace R and M by R and M to assume that R is an integral domain. But then the result
follows from Lemma 1.25(1ii). O

Remark 1.28. If an ideal 1 has rank then it contains a regular element ([19, proof of Corollary
1.4.7]), which implies 1 cannot be contained in any minimal prime of R. Therefore, we have that
both Theorem 1.2 and Theorem 1.27 agree with dim(Rg (1)) = 1 4+ dim(R).

1.4 Certain Fitting conditions

In this section we review certain Fitting conditions that are important in the study of blow-up
algebras. By imposing them one can deduce desirable properties (for instance, deducing that an
ideal is of linear type or computing the analytic spread).

Let R be a commutative ring and M be a finitely generated R-module with finite presentation

R™ & R™ 5 M — 0. (1.3)

The Fitting invariants of M are given by the various ideals generated by the minors of a matrix
presentation of .

Definition 1.29. Given an n X m matrix @ with entries in the commutative ring R, we set 1 (@) for
the ideal generated by the t X t minors of the matrix @. The ideal 11 (@) is called the content of .
For systematic reasons we set 1y(@) = R for t < 0and I:(¢) = 0 for t > min(n, m).
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Definition 1.30. For any integer v, the ideal Fitt,. (M) generated by the minors of order n — r of the
matrix @ is the r-th Fitting ideal of M, that is Fitt, (M) = I,,_+(@).

Lemma 1.31. The previous definition of Fitt,(M) is independent of the presentation (1.3) chosen.
Proof. See e.g. [47, §20.2], [137, Tag 07Z6]. O]

One of the most important properties of Fitting ideals is that they serve as an obstruction for the
number of generators of a module.

Proposition 1.32 ([47, Proposition 20.6]). Ler (R,m) be a local ring and M be a finitely generated
R-module. Then, M can be generated by v elements if and only if Fitt, (M) = R.

Now, let R be a Noetherian ring and I C R be an ideal.
Definition 1.33. Ler m > 0 be an integer.

(G) (oneallows m = oo) I satisfies the condition G, if u(I,) < ht(p) forallp € V(I) C Spec(R)
such that ht(p) < m.

(F) Isatisfies the condition Fy if u(Ip) < ht(p) +1—m forallp € V(I) C Spec(R).
In terms of Fitting ideals we have the following translation:

Lemma 1.34. Suppose | is an ideal of positive height. Then, 1 satisfies Gy if and only if
ht(Fitt; (1)) > iforall 1 < i < m, whereas 1 satisfies Fr, if and only if ht(Fitt; (1)) > m + 1
foralli> 1.

Proof. It follows from Proposition 1.32. O

These conditions were originally introduced in [6, Section 2, Definition] and [71, Lemma 8.2,
Remark 8.3], respectively. Both conditions are more interesting when the cardinality of a global set
of generators of I is large and m stays low. Thus, F,;, is typically considered for m = 0, 1, while
Gm gets its way when m < dim R. Also, we have that F; is equivalent to G.

First we note that G, is an important necessary condition for an ideal being of linear type.

Lemma 1.35. Let R be a Noetherian ring and 1 C R be an ideal. Then, if R(1) = Sym(I) then 1
satisfies the condition G .

Proof. See [71, Proposition 2.4]. ]
An important family of ideals is the following:

Definition 1.36 ([82][144, Definition 3.3.9]). Let R be a Noetherian local ring. An ideal I C R is
said to strongly Cohen-Macaulay, if the Koszul homology modules with respect to one (and then to
any) generating set are Cohen-Macaulay.
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1.4. Certain Fitting conditions

With this notion, we get a partial inverse to Lemma 1.35.

Theorem 1.37 ([69, Theorem 2.6]). Let R be a Cohen-Macaulay ring and 1 be an ideal of positive
grade. Assume that

(i) 1satisfies the condition G.
(ii) 1is a strongly Cohen-Macaulay ideal.
Then, 1 is an ideal of linear type. Furthermore, R(1) is Cohen-Macaulay.
Important families of strongly Cohen-Macaulay ideals are given by:

Proposition 1.38 ([82, Proposition 0.3][144, Corollary 4.2.5]). Let R be a regular local ring and
I C R be an ideal. If 1 is either perfect of height two or Gorenstein of height three, then 1 is strongly
Cohen-Macaulay.

Combining these previous results we obtain a desirable equivalence:

Corollary 1.39. Let R be a regular local ring and I C R be an ideal. Assume that 1 is either perfect
of height two or Gorenstein of height three. Then, the following conditions are equivalent:

(i) 1satisfies the condition G .
(ii) Lis an ideal of linear type.
Proof. It follows from Lemma 1.35, Theorem 1.37 and Proposition 1.38. O
We will use a version of Corollary 1.39 on the punctured spectrum of R.

Corollary 1.40. Ler (R, m) be a regular local ring of dimension d and 1 C R be an ideal. Assume
that 1 is either perfect of height two or Gorenstein of height three. Then, the following conditions
are equivalent:

(i) 1satisfies the condition G 4.

(ii) Lis an ideal of linear type on the punctured spectrum of R (i.e., Symg (Ip) = Ry, (1) for all
p € Spec(R) \ {m}).

Proof. Since the strongly Cohen-Macaulay condition localizes, we can assume that R is a regular
local ring of dimension < d — 1 and that I satisfies Go,. Again, the result follows from Lemma 1.35,
Theorem 1.37 and Proposition 1.38. O

Finally, we recall the following result for computing the analytic spread of an ideal.

Proposition 1.41 ([142, Corollary 4.3]). Let R be a Cohen-Macaulay local ring of dimension d and
let 1 be a strongly Cohen-Macaulay ideal of positive grade. Suppose that w(1) > d + 1 and that 1
satisfies the G q condition. Then {(1) = d.
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Chapter 2

A D-module approach on the equations of
the Rees algebra

Let F be a field of characteristic zero, R = F[x1, x2] be a polynomial ring in two variables, and
[ = (f1,f2,f3) C R be a height two ideal minimally generated by three homogeneous polynomials
of the same degree d. The Rees algebra of I is defined as R(I) = R[It] = 2, ['t'. We can see
R(I) as a quotient of the polynomial ring S = R[Ty, T, T3] via the map

S=R[T, To, T3l & R(1), W(Ti) = fit. 2.1

In this chapter we are interested in the defining equations of the Rees algebra R(I), that is, the
kernel J = Ker(1p) of this map . The main feature of this chapter is the use of the theory of
D-modules in the problem of finding the equations of R(I).

2.1 An “explicit” description of the equations

In this section we use the following setup.

Setup 2.1. Let K be an arbitrary field, and R = K[x1, x2] be the polynomial ring in two variables.
Let I C R be a height two ideal minimally generated by three homogeneous polynomials {f1,f2,f3}
of the same degree d. From the Hilbert-Burch Theorem we have a presentation

05 R(—d—p) ®R(—2d+p) B R(—d)> =10, (2.2)

where the elements of the first column of ¢ are homogeneous of degree |\, and the elements of
the second column are homogeneous of degree d — (. Let U and S be the polynomial rings
U = K[Ty,T2, T3] and S = R[Tq, T2, T3] = Klx1,%x2, Ty, T2, T3], respectively. We regard S as
a bigraded K-algebra, where bideg(T;) = (1,0) and bideg(xi) = (0,1). The equations of the
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2.1. An “explicit” description of the equations

symmetric algebra are given by (g1, g2] = [Ty, T2, T3] - @. We are interested in the kernel X of the
surjective map « : Sym(I) — R(I).

We denote by Sy, 4 the F-vector space spanned by the monomials x{"x32 T T)? T} with
Y1+v2+7v3 =pand o1+ = . The map1p from (2.1) becomes bihomogeneous when we declare
bideg(t) = (1,—d), and also from the fact that bideg(gy) = (1, 1) and bideg(g>) = (1,d — n),
we get that R(I), Sym(I), J and X have natural structures as bigraded S-modules. For an arbitrary
bigraded S-module N we use the notations

Np. = P Np g and  N.gq =D Npq.
qez peZ

where Ny, . is a graded R-module and N, 4 is a graded U-module. For simplicity of notation, the
R-module Ny, . sometimes will be denoted by just N,.

From Lemma 1.10 we can compute X as the torsion in Sym(I) with respect to the maximal ideal
m = (x1,x2) C R, that is

K = (0 tsym(1) m*) = HY, (Sym(I)).

Given a bigraded S-module M, by definition each local cohomology module Hgn(M) is only an
R-module. In the following lemma we endow HJ, (M) with a structure of bigraded S-module. We
use [17, Chapter 13] for the foundations of local cohomology modules in the graded case.

Lemma 2.2. Let M be a bigraded S-module. Then, the following statements hold:

(i) Use the decomposition M = @pez My, where M, is the graded R-module given by M, =
@Dqecz Mp.q. Then

HL (M) = (D HL (M), (2.3)
peZ
is a bigraded S-module with HL(M)p,q

q-th graded part of the graded R-module H%(Mp) ). The actions of the xi’s are natural

because H%n (M) is an R-module. The action of the T;’s over M can be seen as homogeneous
homomorphisms Ty : My, — My, 1 of graded R-modules, then the induced homogeneous

= H%(Mp) q (where H%(Mp)q represents the

homomorphisms Hzn(Ti) : H%(Mp) — H%,I(MPH ) of graded R-modules give us the action
of the Ty ’s over Hy, (M).

(i) For any a,b € Z, we have the isomorphism of bigraded S-modules HL(M(a,b)) =
H}, (M)(a,b).

Proof. (i) The decomposition (2.3) comes from the fact that local cohomology commutes with direct
sums, and that each HQ“(MP) has a natural structure of graded R-module (see e.g. [17, Chapter 13]).
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2.1. An “explicit” description of the equations

) (ii) The shifting on the T;’s follows from the construction (2.3) and so we are left to check that
H?n(Mp(b)) = H%(Mp)(b) for each p € Z. For this, we use [17, Theorem 13.4.5] and any of the
remarks in page 273 of [17], for instance using the construction as a direct limit of Ext’s we have

HJ, (M (b)) = lim *Exth (R/m™, M, (b)) = lim *Exth (R/m™, M,,) (b) = H], (M) (b).
n n
(see e.g. [19, Section 1.5] for graded dual *Homg and its derived functors *Ext];2 in the category of

graded modules). O

The “philosophy” that we follow in this section is similar to the one used in [108]. Explicitly,
we shall try to find information by deleting the columns of ¢ and hopefully work with “simpler”
modules. Let @7 be the matrix given by the first column of ¢, then we we are interested in the
module E = Coker( 1) with presentation

0 5 R(—d—pn) 2L R(—=d)? 2 E—oO.
Lemma 2.3. For the module E we have
(i) Sym(E) =S/(g1);
(i) Sym(E) is an integral domain.

Proof. (i) Follows from the presentation of E.
(i1) Since I1 (@1) D I2 (@), we have that ht(I; (@1)) = 2. Then, by [133, Theorem 3.4] we get
that Sym(E) is an integral domain. 0

Now we can find explicit relations between the local cohomology modules of Sym(I) and Sym(E)
from the important fact that Sym(E) is an integral domain.

Lemma 2.4. We have the following exact sequences of bigraded S-modules

0 — HS, (Sym(1)) & H, (Sym(E)) (=1, —d + ) 2% H], (Sym(E)); 2.4)
0 — H}, (Sym(E)) 2 HZ (S) (=1, —) 25 HA(S). 2.5)

Proof. Since Sym(E) = S/(g1) is an integral domain we have a short exact sequence
0 — Sym(E)(—1,—d + u) 2% Sym(E) — Sym(I) — 0.

Using the corresponding long exact sequence in local cohomology and the fact that HS, (Sym(E)) = 0,
we get the required exact sequence

0 — HO,(Sym(1)) < HY, (Sym(E))(=1,—d + p) £ H], (Sym(E)),
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2.1. An “explicit” description of the equations

where 0 is the induced connecting homomorphism.
Similarly, from the short exact sequence

0—S(—1,—n) 25 S — Sym(E) — 0, (2.6)
and the fact that
1 =T fe—T =1 o
- R) = X7 X5 KXy, ] ifj=2
" 0 otherwise,
we can follow the same long exact sequence argument and obtain (2.5). O

The next theorem contains the main result of this section, where we find an “explicit” way of
computing the equations of the Rees algebra of I. We remark that this result is already known (see
e.g. [39, Lemma 2.4] or [103, Theorem 2.4]), but we present a different proof. The rest of this
chapter will depend on it.

Theorem 2.5. Adopt Setup 2.1. Then, we have the following isomorphism of bigraded S-modules
K= {w € HZ(S)(—2,—d) | g1 -w=0and g5 - w :O}.

Proof. The commutative diagram

S(=2,—d) — L (-1, —d + )
lgz lgz
S(—1,—p) L S

can be extended to the following one with exact rows (each row is as in (2.6))

0 —— S(—2.—d) 2 S(—1,—d + ) — Sym(E)(—1,—d + 1) — 0
lgz ng ng
0 —>sSl—p— .5 Sym(E) ——— 0.

From the “naturality of the connecting homomorphism 9 [123, Chapter 6] and (2.5), we get the
following commutative diagram with exact rows

0 —— HY (Sym(E)) (—1. —d + ) —2 H2 (S)(—2,—d) 2 H2 (S) (1, —d + )
l 92 l 92 l 92
0 HL (Sym(E)) ——2—— H2,($)(—1, 1) — 2 H2(S).

40



2.2. Translation into D-modules

From this diagram and (2.4), we get the exact sequence
0 — % — Ker(HA (S)(=2,—d) 25 HE () (—1,—1) ) £ Ker (HE (S)(~1, ~d+) 22 H(S)),
from which we finally identify

X = {WEHﬁl(S)(—Z,—d) | g1 -w:Oandgz~w:O}.

Corollary 2.6. Adopt Setup 2.1. The following statements hold:

(i) Forp > 2 the graded part Xy, . is a finite dimensional K-vector space with X, ¢ 2 # 0 and
Kp.q=0forq>d—2

(ii) Ky a—2 = U(=2) is an isomorphism of graded U-modules.

Proof. (i) Forany q > d—2 we have q—d > —2, and so H,Z.H(R)q_d = 0 which implies X}, 4 = 0.
If g =d— 2 then Hﬁl(R)qfd =k- ﬁ, and so it follows that X}, ¢ # O since x7 - X11X2 =0 and
1

Xz.MXz =0

(ii) It follows from the fact that S -

=Kk[T, T, T3] =W O

]
X1X2

In Corollary 2.6 we have seen that the maximal x-degree of every graded part X, . is the same
and equal to d — 2, but for the minimal x-degree of X, . there is no such nice characterization. In

Section 2.3 under the assumption of working over a field of characteristic zero, we shall relate the
minimal x-degree with the integral roots of certain b-functions.

2.2 Translation into D-modules

The core of this section is to translate our problem into D-modules. A good introduction to the
theory of D-modules can be found in [13] or [37]. The section is divided into two subsections, a
first one containing some notations and definitions regarding D-modules that we shall use for the
rest of this chapter, and a second one containing our translation.

Notations

For the rest of this chapter we work over a field F of characteristic zero, and from now on we
shall use the following setup.

Setup 2.7. Adopt Setup 2.1 and change the arbitrary field K for a field F of characteristic zero.

We introduce the ring of F-linear differential operators over R = F[x1,x2], which in our
characteristic zero case coincides with the Weyl algebra.
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2.2. Translation into D-modules

Definition 2.8. The Weyl algebra D = A,(F) is defined as a quotient of the free algebra
F<x1,%2,01,02> by the two sided ideal generated by the relations

XiXj = XjXi, aiaj = ajai, ain = Xjai + 513',
where i is Kronecker’s symbol.

The D-module structure of R is given by: for any f € R, the operator x; is the usual multiplication
xi  f = x;f and the operator 0; is the differentiation 0; e f = aaTi' We shall always stress the action
of the Weyl algebra by using the symbol ““ o”. Thus, for instance, if we regard x; € R then we have
071 e x7 = 1, but instead for x; € D we have 91x7 =x707 + 1.

Of particular interest are the holonomic D-modules. A finitely generated left D-module M # 0
is said to be holonomic if it has Bernstein dimension d(M) = 2, or equivalently, if Ext}j (M, D)
vanishes for all i # 2. A left D-ideal ] is said to be holonomic when D /] is holonomic.

All the modules in the Cech complex are localizations of R, thus by defining the D-module
structure of any localization Ry of R, the local cohomology modules obtain a natural structure as
D-modules (see e.g. [88, Lecture 23]). For any localization R¢ the D-module structure is defined by

10 kg of
Xi®—— =X{ and al.f%:fikaiyi_%aim

Due to the non-commutativity of D, we need to take some care with the maps of left or right
D-modules. Let A € D% be an v X s matrix with entries in D. Multiplying with A gives us a
map of left D-modules,

D" DS . ... 0] [0, 0] A,

where we regard D" and D* as row vectors.
The matrix A € D" also defines a map of right D-modules in the opposite direction,

O A o) [, ] s A

where the superscript-T means that (D*$ )T and (Dr)T are considered as column vectors. The right
D-module (D*)" may be regarded as the dual module Homp (D$, D). Applying Homp (—, D) to

the map D" ‘A, DS of left D-modules induces the map (DS)T A (Dr)T of right D-modules.
We have an equivalence between the category of left D-modules and the category of right
D-modules, given by the algebra involution

DSD : x*PF — (—0)Pxx

The map T is called the standard transposition. For instance, given a left D-module D" /M, its
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2.2. Translation into D-modules

corresponding standard transposition is the right D-module

DT DT
(o) = s (M) ={r(L) | L e Mo}
Mo ©(Mo)
See [117] for more details on the standard transposition T.
Finally, to describe all the graded parts X, . together, we need to define a larger algebra to work
in.

Definition 2.9. We define T as a polynomial ring in the three variables Ty, T, Tz over the Weyl
algebra, that is T = A, (F)[Ty, T2, T3] = Flx1,x2]<01,02>[Ty, T2, T3]

We extend the standard transposition T over 7 by making T(T;) = T;. This algebra T is naturally
a graded U-module with grading on the T;’s, and by T, we denote the free D-module spanned by the

monomials TY with [y| = p, thatis, T, = D(pzz). Also, for technical purposes we need to introduce
the subcategory Mh (T) of left T-modules with an underlying structure of graded U-module. The
subcategory M, (7) of U-graded right T-modules can be defined in a completely similar way. We
essentially follow the exposition of [19, Section 1.5].

Definition 2.10. We say that a left T-module M has an underlying structure of graded U-module
(or simply that it is U-graded) when it has a decomposition M = @); ., My, where each M is a
left D-module and T}, « My C M1 p.

Definition 2.11. The category Mh (T, has as objects the left T-modules with an underlying structure
of graded U-module. A morphism @ : M — N in Mh(‘J’) is a homomorphism of left T-modules
satisfying @(My) C Ny foralli € Z.

If M belongs to Mh (T),then M(1) € Mh (7) denotes the U-graded left T-module with grading
given by M (i), = M ;p. All the following assertions follow from the fact that the T;’s are central
in7.

Since each module M € Mh(‘J’) is a homomorphic image (in Mh (7)) of a free module (in
J\/[{1 (7)) of the form € T (i) (simply by choosing homogeneous generators of M), then the category
Mh(‘I) has enough projectives. Thus, every module M € Mh(‘J’) has a free resolution in Mh(‘T),
and this fact allows us to define derived functors in Mh(ﬂ') (see e.g. [123, Chapter 6]).

Let M € M{,;(7T) be a U-graded right T-module and N € Mh (T) be a U-graded left T-module.
Then from the non-commutativity of D follows that the tensor product M ®< N has only a structure
of graded U-module; its homogeneous component (M @+ N),, is generated (as an F-vector space)
by the elements u ®g v withu € My, v € Nj and i + j = n. Using that each module in J\/[h(i)’) or
in M{, (7) has a free resolution (in Mh (7) or in M{; (7)), then (the F-vector space) Tori‘:r(M, N)
has a natural structure of graded U-module for any i > 0. We shall use the notation *Tor?(M, N)
to stress its graded structure as a U-module.

Let M,N € M}, (T) be U-graded left T-modules. A homomorphism of left T-modules ¢ :
M — N is called homogeneous of degree i if @(M;) C Ny forallm € Z. We denote by
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2.2. Translation into D-modules

Hom; (M, N) the F-vector space of homogeneous homomorphisms of degree i. The F-vector
subspaces Hom; (M, N) of Homg (M, N) form a direct sum, and we have that

*Homg(M,N) = EBHOHH(M, N)
ieZ

is naturally a graded U-module. Also, when M is finitely generated we have that *Homqg (M, N) =
Hom+g (M, N).

For any N € Mlu (T) we define *Extij(M, N) as the i-th right derived functor of *Homs(—, N)
in Mh(‘T). Hence, given a projective resolution P, of M in Mh(‘J’), we have

*Ext;- (M, N) = H'(*Homg (P, N)),

foralli > 0. A particular and important case is when N = T, since T can be seen as a bimodule then
we have that *EXLJ—(M, T) is a module in the category M{; (T) of right T-modules with a structure
of graded U-module.

The Weyl algebra D = A, (F) is a left Noetherian ring (see e.g. [13, Proposition 2.8, page
6]), then from the Hilbert basis theorem (see e.g. [123, Theorem 3.21]) we have that T is also a
left Noetherian ring. Thus, for M € Mlu (7) finitely generated we can find a resolution in Mlu (T
made-up of finitely generated free modules, and so we have that *ExtiT(M, N) = Extiq(M, N). We
shall use the notation *Ext&(M, N) to emphasize its graded structure as a U-module.

The translation

We can see that S = EBV RTY and HZ (S) = @Y H2 (R)TY both belong to the category M, (T)
of U-graded left T-modules.

Proposition 2.12. (i) The left T-module Hi(S) is cyclic with generator ﬁ and presentation
1
0= T(x1,%x2) — g am, HZ (S) — 0.

(ii) The left T-module S is cyclic with generator 1 and presentation

0= T(31,02) » T 2L s 0.

4.(S) it is enough to show that any monomial
but this is obtained from the fact that char(F) = 0 and the

Proof (i) To prove tha
oc] o TR belongs to Te

followmg identity

xx’

] :(_1)rx1+(x2(0¢1 oz — 1)1
X1X2 X;"lxgz

o=l —TTY1TY2TY3 Y1iTY2TY3
61 az T] Tz TS ° T1 T2 T3 .
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2.2. Translation into D-modules

On the other hand, the annihilator of i is given by the left ideal T(x1,x2).
(ii) Follows in a similar way by taking 1 as the generator. O

From this previous proposition we get the isomorphisms of left T-modules
S=7/7(07,02) and  HZ(S) = T/T(x1.%x2).
Remark 2.13. For any w € H2 (S) we have that g; e w = g; - W, and so we have that
{weHﬁl(S) |grew=0and g, ew =0} = {weHﬁl(S) |gi-w=0and g, -w=0},

which gives us that we can enlarge S into T and still recover the same object XK that we are interested
in.

At the moment we have a description of X as the set of elements in Hﬁl( S) annihilated by
the polynomials g1 and g3, but certainly it would be interesting to have a description as the set
of elements in S annihilated by certain differential operators. To achieve this, we use the Fourier
transform (see [37, Section 5.2]).

Definition 2.14. By F we denote the automorphism on T defined by
Flxi) =01, F(01) =—x, F(T) =T,
Notation 2.15. For the rest of this chapter we shall use the notations Ly = F(g1) and L; = F(g2).

Lemma 2.16. The F-vector space Sol(L1,L,;S) = {h €S|Lieh=0andl; eh = O} has a
structure of S-module given by the twisting of the Fourier transform:

lettf €S, heSol(L1,L,;S) then wedefine f-h=3F(f)eh. 2.7
Also it has a bigraded structure induced from S, that is,

Sol(L1,L2;S) = €D Sol(Ly,Ly;S)i;, (2.8)
1>0,j<0

where Sol(L1, LZ;S)i,j = Sol(L{,L2;8) N Si,fj.

Proof. For any h € Sol(Ly,L,;S) we have that T;h € Sol(Ly,L,;S) and 9; e h € Sol(Ly,Ly;S),
therefore it follows that Sol(Ly, L2;S) has a structure of S-module given by (2.7).

The bigraded decomposition of (2.8) comes from the fact that L; and L, are bihomogeneous,
both with degree 1 on the T;’s, and degree 1 and d — p respectively on the 0;’s. We need to index
with non-positive integers j < 0 on the x-degree to satisfy the condition x; - Sol(Ly,L2;S)i; C
Sol(Ly,L2;S)i5+1- O
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2.2. Translation into D-modules

Notation 2.17. We denote & = Sol(L1, Ly;S) 4 to stress the bigraded S-module structure induced
on Sol(L1,Ly;S) by the twisting of the Fourier transform F.

Theorem 2.18. Adopt Setup 2.7. We have the following isomorphism of bigraded S-modules
K =6(-2,—d+2),
induced by the Fourier transform .

Proof. We divide the proof into three short steps.
Step 1. We define the following two canonical maps

M : T — T/T(01,02) (=8), Mo : T = T/T(x1.x2) (= HE(S)).
For any z € T we have the equivalence
(z € Txi.x2) ) &= ( F(z) € T(91,02) ).

therefore we get an induced isomorphism J : Hi(S) — S of left T-modules, where S4 denotes S
twisted by F. This isomorphism satisfies

F(Ma(2)) =TIk (F(2)).

Step 2. For any z € T we have the following equivalences

g1 ella(z) =0 g1z € T(x1,%x2) F(g1)
< g2ell5(z) =0 > A ( g2z € T(x1,%x2) ) = <

Ly o Tk (F(z)) =0 Ly e F(MMa(2)) =0
= < LeM(F(z) =0 ) T \ LyeF(Ms(z) =0 )
Therefore J induces an isomorphism of S-modules
{weHL(S)|grew=0and g, ew =0} = Sol(Ly,L2;S) -

Step 3. From the definition of F we have that F is homogeneous of degree 0 on the T;’s. On the
other hand, we have that F makes a shift degree of 2 in the x;’s since it sends

1 = (—1 x]+o 6?1_1632_1 1
X1, X2 ( )

X1 %y N (0(]—])!(0(2—])!.7(])(2

€ Hy(R)

to

1 \x1 o2
F <( 1) (

x1—1yo—1 o —1 _oxp—1
07" 93 )_ X1 %

o — oy —1)! € R

X1 —1)!(062—1)
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2.3. The bigraded structure of X and its relation with b-functions

Then adding the shift degrees (0, 2) to Theorem 2.5 we obtain the result. O

Notation 2.19. Since both L1 and L, are linear on the Ty s, then we get that T(L1,L5) € Mh (T)
and T/T(Lq,1L,) € Mh(ﬂ’). We denote this last quotient by Q = T /T (L4, Ly).

Before finishing this section we present an isomorphism of graded U-modules that will be the
starting point of Section 2.4.

Proposition 2.20. Adopt Setup 2.7. We have the following isomorphism of graded U-modules
X = *Homg(Q, S)(—2).
Proof. The following isomorphism of F-vector spaces
Homry(?’/ﬂ'(h,l_z),S) = {h €S|Lijeh=0and, eh = O} = Sol(Ly,Ly;S)

follows in the same way as in [37, Chapter 6, Theorem 1.2]. From the discussions of Section 2.2, we
actually have an isomorphism *Homs(Q, S) = Sol(Ly, Ly;S) of graded U-modules. The shifting
of degree follows from Theorem 2.18. O

2.3 The bigraded structure of X and its relation with b-functions

For organizational purposes we have divided this section into two subsections. In the first one,
we use the theory of D-modules (specifically, the existence of b-functions) to obtain an upper bound
for the degree of the polynomial solutions of the system of differential equations Sol(Ly, L;S), then
from Theorem 2.18 follows a lower bound in the possible x-degree. In the second subsection, using
the local duality theorem for graded modules we prove that this bound it is always strict.

Polynomial solutions

Our treatment in this subsection follows [117, Section 2], but we need to make some variations
since the algorithm given there is restricted to holonomic ideals inside the Weyl algebra. We use
[125] as our reference regarding Grobner deformations and the algorithmic aspects of D-modules.

Setup 2.21. Adopt Setup 2.7. We fix the integers p > 2, m = () and n = (]DJZr1 ). The graded part
Sp 2.« is given as the solution set of the system of differential equations

V={h=(hy,....hm) ER™|[L;]]eh=0and [L;] e h =0}, (2.9)

where [Li] € D™*™ is an 1 x m matrix with entries in D and induced by restricting L; to the
monomials TY of degree |y| = p — 2. We join both matrices in a single matrix H € D?™*™ defined

by
_ (L
H= (Lz> : (2.10)
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2.3. The bigraded structure of X and its relation with b-functions

then equivalently we can write V = {h =(hy,...,hm) ER™|Heh= O}. We define N C D™
as the left D-module given as the image of H, i.e., N = D?™ . H. With M we denote the quotient
module M. = D™ /N, we have an isomorphism Homp (M, R™) = V of F-vector spaces.

Example 2.22. We give the explicit form of the system of differential equations (2.9) in the cases
p =2andp = 3. Suppose that L1 = a1 Ty + axTr + a3T3 and L; = b1 Ty + by T, + bz T3, For
P = 2 we have that h = (hy) € So = R, and the equations 1.; e h = 0 and L, e h = 0 can be
expressed as

aq b1
a |e(hy)=0 and by | e(hy)=0,
as b3

and in this case we have that N is actually the left ideal D(aq, az,a3,b1,b2,b3). Whenp =3,
we have that h = (hi,ha,h3) € S; = RTy + RT> + RT3, and sorting the monomials TY in
lexicographical order we get that the equations 1.1 e h = 0 and L, e h = 0 can be expressed as

T T2 T3 T T T3
T /a1 0 0 T /by 0 0
T] Tz az aj 0 h] T] Tz bz b1 0 h1
T] Tg, as 0 aj ° hz =0 and T] T3 b3 0 b] ° hZ =0
T3 10 a O hs T2 [0 b O hs
T2T3 0 as ap T2T3 0 b3 bz
T2 \0 0 a3 T3 \0 0 b;

Proposition 2.23. The left D-module M. = D™ /N is holonomic.

Proof. From the exact sequence (2.16) of Proposition 2.35 we take the graded part p in the T;’s,
which gives the following exact sequence of left D-modules

0—Tp2 72 BT, 5 Qp -0, @.11)

where A = (—[LZ]T | [L1]T> and [L;]7 represent the transpose of the matrix [L;] from Setup 2.21.1
Applying the functor Homp (—, D) we obtain the following complex of right D-modules

B- T A
0= (Tp)T =5 (T51) 55 (Tp—2)' =0,
where the cokernel of the last map A- is Extlzj (Qp, D), but from the form of A this coincides with

the standard transposition T(M) of M, that is, ExtzD (Qp,D) = 1(M). Finally, from [13, Lemma

'With the same notations of Example 2.22, whenp =2 wehave A = ( —b; —b, —bs | a1 a a3 )€
Dl ><6'
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2.3. The bigraded structure of X and its relation with b-functions

7.3, page 73] we have that EXtZD (Qp, D) is a holonomic right D-module, and this clearly implies
the holonomicity of T(M) and M. O

We recall the notion of Grobner deformations (see [125, Section 1.1]). For a given weight
w = (wj,w3) and an element { = Zoc,ﬁ c“,ﬁx"‘af’ € D, we denote by in(_,, ,,)(£) the initial
form of £ with respect to w and it is defined as

Ny (0) = > Capx*0B. (2.12)
— oW [3-w is maximum

We are interested in the weight w = (—1, —1) that makes deg(xi) = 1 and deg(9;) = —1, thus we
drop the subscript (—w, w) and the definition of the initial form (2.12) turns into

in(0) = Z Capx*0P. (2.13)
|o¢x— B | is maximum

Definition 2.24. [125, Corollary 1.1.2, Definition 1.1.3] Let ] C D be a left ideal, then the F-vector
space

in(J) = F - {m(e) 1te J}
is a left ideal in D and it is called the initial ideal of ].

Definition 2.25. [125, Definition 5.1.1] Let ] C D be a holonomic left ideal. The elimination ideal
in(J) N F[=x107 —x202] (2.14)

is principal in the univariate polynomial ring F(s], where s = —x101 — x20;. The generator by (s)
of the principal ideal (2.14) is called the b-function of ].

An important fact is that the b-function of a holonomic ideal is a non-zero polynomial (see e.g.
[125, Theorem 5.1.2]). Now we present a suitable definition for the b-function of a left D-module,
which is essentially the same as the one given in [116, Section 4] (see [116, Lemma 4.2]).

Definition 2.26. Let M’ be a holonomic left D-module given as the quotient module M = D" /N,
For eachi=1,...,r with the canonical projection T; : DT — D of D" onto the i-th component e,
we define a left D-ideal

Ji=m(N' N D-e)={teD[(0,.... L .....00eN'}.

i-th

Then, the b-function of M is given as the least common multiple of the b-functions of the D-ideals
Ji, that is,

.....
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2.3. The bigraded structure of X and its relation with b-functions

In this previous definition for eachi = 1,. .., r, the canonical injection D/J; < D™ /N’ implies
that each ideal J; is holonomic, and so we get that the b-function of a holonomic module is a non-zero
polynomial. Before proving the main result of this subsection, we recall an easy but important
lemma.

Lemma 2.27. Let P(s) € F[s] be apolynomialins = —x101—x202 and let f € R be a homogeneous
polynomial of degree deg(f) = K, then we have P(s) o f = P(—k)f.

Proof. Tt follows from Euler’s formula (x107 + x202) e f = kf. O

Theorem 2.28. Adopt Setup 2.7. Consider the b-function b (s) of the holonomic D-module M
defined in Setup 2.21. For any integer q, if by (—d + 2 + q) # O then we have that X, q = 0.

Proof. Suppose by contradiction that X, 4 # 0, then from Theorem 2.18 there exists 0 # h €

Sp_2,k where —k = —d + 2 + (. Indexing this element as in Setup 2.21 we have a non-zero
polynomial vector h = (hq,...,hyy) € V where each polynomial h; has degree deg(h;) = k.
Foreacheachi = 1,...,m, letb ]i(s) be the b-function corresponding to the left D-ideal

Ji = mi(N N D -ei). Then we have by, (s) - e; @ h = 0, which implies by, (s) e hy = 0. Using
Lemma 2.27 we get by, (—k)h; = 0, but since by, (—k) # 0 then we have h; = 0. Finally, we have
obtained the contradiction h = 0. O

Corollary 2.29. Adopt Setup 2.7. Let q be the lowest possible x-degree for an element in the graded
part Kp ., that is, Kp g # 0 and K, q—1 = 0. Then the polynomial s(s +1)--- (s +d —2—q)
divides the b-function bpy (s).

Proof. Follows from the contrapositive of the previous theorem. 0

The equality

In this subsection we shall prove that the approximation given above is actually strict.

Lemma 2.30. For any k > 0 we have the identity
k+1

k+1\ i i

s(s+1)---(s+k)_(—1)k+1z< J* )le‘g“ Tl okt
j=0

Thus, we have that

(i) s(s+1)---(s+k) € D(01,02)%"", where D(d7,02)%"" denotes the left D-ideal generated
by the elements{a?‘ag’z [B1+P2=k+1})

(ii) s(s+1)---(s+ k) is homogeneous, that is

in(s(s+1)---(s+k)) =s(s+1)---(s+k).
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2.3. The bigraded structure of X and its relation with b-functions

Proof. We proceed by induction on k. For k = 0 it is clear since s = —x107 — x203.

First we prove the identity x?iaf’i(xiai —Bi) = xf’ﬁ] af'iﬂ using induction on {3;. For
31 = 0 it is vacuous, thus we assume that 3; > O and that the statement holds for any non-negative
integer smaller than (3;. Hence, we have the equalities

X0l (601 — Bi) = xP1al T (9ixi01 — B1d:)
— Xixiﬁi_] a{“—‘ (xi0; — (B1 —1))0; = xixiﬁia?iai = X{sﬁq 6{5#1.

Then, we can obtain that
i k+T—jrj Ak+1—j 1 kAT aj+ T ak+T1—) | j k+2—jaj Ak+2—j
x5 10703 ](S+k+1):(—1)(x]] Xy TS T Xk TT0)0; )),

and using (ijH) + (1;31 ) = (ijrZ) the proof of the lemma follows similarly to the usual binomial
formula. =
From Setup 2.21 we can define the matrix F = F(H) = (F(Hy;)) € RZMXM (where m =
(5).n= (p;] ), that is, the 2n x m matrix with entries in R obtained after applying the Fourier
transform to each entry of the matrix H. In a similar way to Setup 2.21, we define the graded
R-module L = R™/(R?™ . F) (all the rows of F are homogeneous of degree (1 or degree d — ).
Since {g1, g2} is a regular sequence in S (see the proof of Proposition 2.35), by restricting the
Koszul complex K (g1, g2) to the graded part p, the module Sym,, (I) gets the graded free resolution

0 R(=a)) = R (") @ R(—a+ (") 5 R = sym (1) — 0.

Similarly to Proposition 2.23, when we apply Homg (—, R) we get a complex

Y

0 R(F) 5 R @R —w ) 5 RE@E 0, 2.15)

where the cokernel of the map on the right is the graded R-module *EXtZR (Symp (I),R). Making a
shift degree of —d on the modules of (2.15) gives us a complex that has the module L as the cokernel
of the map on the right. Therefore, we have an isomorphism L(d) = *EthR (Sym]D (I), R) of graded
R-modules.

Now, as an application of the local duality theorem in the graded case (see e.g. [17, Section
14.4] or [19, Section 3.6]) we can prove our sought equality.

Theorem 2.31. Adopt Setup 2.7. Let b (s) be the b-function of the holonomic module M defined
in Setup 2.21 and let q be the lowest possible x-degree for an element in the graded part X, .. Then

bm(s) =s(s+1)---(s+d—2—q).

Proof. From Corollary 2.29 we already know that s(s +1)--- (s +d —2 — q) | bm(s), then is
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2.4. Computing Hom with duality

enough for us to prove that for eachi =1,..., m we have
s(s+1)---(s+d—2—gq) €in(J;) N FIs],

where J; = m (NN D - ey).
Let a = end(L) = max{k | Ly # 0} (since L is a finite length module), then for any x%’“ chz
with ot1 + &2 = a + 1 we have that

x7'x3%e; = (0,...,x]"x3%,...,0) € R?™.F,
~———
i-th
where 1 = 1,..., m and by an abuse of notation e; also represents the i-th component of the free

R-module R™. Applying the Fourier transform and using Lemma 2.30 we obtain that
s(s+1)---(s+a) €in(]Jy) N Fls]

for each i = 1,..., m. From the local duality theorem in the graded case, we get the following
isomorphisms of graded R-modules

Kp.» = Hp, (Sym,, (I) = *Homg (*Extg (Sym,, (1), R(=2)),F) = *Homg (L(d — 2), F).
Since the grading of *Homg (L(d —2), F) is given by

*Homg (L(d —2), F). = "Homg (L(d —2)

1

F),

—1

we have that a = d — 2 — q, and so the statement of theorem follows. O

2.4 Computing Hom with duality

The aim of this section is to compute *Homq(Q, S) (where Q = T/T(L;,L,)) by means
of some duality that was previously used in [140]. In the general Weyl algebra A, (F), for two
holonomic left A, (F)-modules M and N we have the following duality (see e.g. [13, Proposition
4.14, page 58] or [140, Theorem 2.1])

i - o An(F
Exty (7 (M,N) = Tor), " )(EXtRn(F)(M,An(F)), N),

which is one of the main tools used in [140]. Unfortunately we want to work over our previously
defined algebra T and for this we will have to make some variations. Nevertheless, we can achieve
the following duality in our case.

Theorem 2.32. For any i we have the following isomorphism of graded U-modules (see Section 2.2)

“Ext(Q,S) = *Tory_; (*Ext3(Q, 7), S).
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2.4. Computing Hom with duality

To prove this duality we use [13, Chapter 2] as our main source. We start by defining a Bernstein
filtration on T and exploiting the induced graded ring.

Definition-Proposition 2.33. For any i > 0 we define the F-vector space Fi which is generated by
the set of monomials {x]" xg‘za§5‘ OEZT?”TQ/ZT;/3 | lodd + 1B+ [yl < 1}, and we denote F_1 = 0.
Since we have

(1) 0=F4CFChCkhC---CY,

(2) T = Ui;o Fi,
(3) Fi-F CFiyy,

then ¥ = {Fi} is a filtration of T. With this filtration we induce the associated graded ring gr(7T) =
@12 o Fi/Fi—1, which is isomorphic to a polynomial ring of 7 variables with coefficients in F. We
use the notation

gr(T) =T :=Fx1,%x2,81,82,T1, T2, T3),

where we get a canonical map o : T — T given by 0(xi) = x4, 0(01) = 6 and o(Ty) = Ti.
Proof. See [13, Proposition 2.2, page 4] or [37, Theorem 3.1, page 58]. OJ

We denote by q1 = o(L;) and q2 = o(L;) the elements in T corresponding to Ly and L. Here
we have, that q; and g, are bihomogeneous polynomials which are linear on the T;’s, and have
degree p and d — p on the 8;’s respectively. But from the graded structure of T, we only see them
as homogeneous polynomials having degree it + 1 and d — 1 + 1 respectively.

A filtration on a left T-module M consists of an increasing sequence of finite dimensional
F-subspaces 0 =T_7 C To C T C Ty C --- satisfying | JI} = M and the inclusions F; - [y C T
for all i and j. With a filtration we get the associated graded T(= gr(7))-module grr(M) =
@i> o Ti/Ti—1. We say that I' = {T}} is a good filtration if gr-(M) is a finitely generated T-module.
Using a good filtration we can define a Hilbert-Samuel function, and so we can get a notion of
dimension for left T-modules.

Definition-Proposition 2.34. Given a good filtration T = {T} for a finitely generated left T-module
M, there exists a polynomial XrM(t) = aqtd + - -+ art + ag with rational coefficients such that
dimg(T}) = XFM (t) when t > 0. The integer d is independent of the good filtration chosen, and we
define d(M) = d as the Bernstein dimension of M.

Proof. See [13, Section 1.3] or [37, Chapter 9]. O

Since the Hilbert-Samuel function of T is given by (*1”), thus we have d(T) = 7. Now we want

to study the left T-module Q = T/T(Ly,L2) € M}, (T), and we begin by proving that the Koszul
complex gives a free resolution for it in M}, (7).

Proposition 2.35. The following statements hold.

53



2.4. Computing Hom with duality

(i) The dimension of Q is d(Q) = 5.

(ii) The following Koszul complex in Mh(‘J’) is exact

i

Szt b, T(=1)? —25T 5 Q — 0. (2.16)

Ae: 05 T(=2)

Proof. (i) The module Q being a quotient of T gets a natural good filtration given by F;/(Fi N
T(L1,L2)) and then we get gr(Q) = Do Fi/(Fim1 + Fi N T(L1, L)) = T/(4q1, q2).

Let B = F[x1,%x2, 67, 8>], and h; be the polynomials in B obtained from f; by making the
substitution x; — 8y, i.e., hy = o(F(f;)). By the Hilbert-Burch Theorem we have that | =
(h1,hy,h3) C B is a perfect ideal of height two, and making the substitution x; +— &; in the
resolution (2.2) of I we get a resolution

hi,hsh
0 B2 &, g3 sl

where [q1,q2] = [Ty, T2, T3] - @. Hence T/(q1,q2) = Sym(]), and from [133, Corollary 2.2]
the Krull dimension is given by dim(T/(q1,q2)) = dim(Sym(J)) = dim(B) + rank(]J) = 4 +
1 = 5. Finally, this coincides with the degree of the Hilbert-Samuel polynomial, i.e., d(Q) =
dim(T/(q1,q2)) =5 (see e.g. [110, Theorem 13.4]).

(i1) The shifting of degrees in (2.16) are clear since L and L, are both linear on the T;’s, then it
will be enough to prove exactness of (2.16) just in the category 7 (i.e., forgetting the graded structures
induced in Section 2.2). So, inside this proof, to avoid confusions the only additional structure that
we assume on 7 is the Bernstein filtration and the induced graded ring T.

Since T is non-commutative we should check that (2.16) is even a complex, but fortunately L;
and L are only defined in the 9; and Tj variables, and so L1L, —L,L; = 0.

The complex (2.16) induces the following graded Koszul complex in T

q1

MT(—LL—UGST(—C“FH_” M>T—>T/(Cl1,<12) — 0.

0 T(—d—2)

Using thatdim(T/(q1, q2)) = 5 we getthat (q1, q2) is a T-regular sequence (see e.g. [110, Theorem
17.4]) and so this new complex is exact. Finally, [13, Lemma 3.13, page 46] implies that (2.16) is
exact. O

Corollary 2.36. For any j # 2 we have *Exth(Q, T) =0, and *EXt%-(Q, T) #£0.

Proof. Since (2.16) is a free resolution of Q we clearly have *Extjj(Q, T) =0forj > 2. On the
other hand from [13, Theorem 7.1, page 73] we have that j(Q) + d(Q) = 7, where j(Q) = inf{k |
*Eth}(Q, T) # 0}. Since d(Q) = 5, then j(Q) = 2 and the statement of the corollary follows. [J

Now we are ready to prove the duality that we have claimed at the beginning of this section.
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Proof of Theorem 2.32. A resolution of S in Mh (7) is given by the Koszul complex

01

By: 0 F 1020 42 13)

T—-S—0. .17
We define the following third quadrant double complex *Hom(Ae, T) @ Be:

*HOIan‘(.Az,‘I) R By «— *Homry(./‘l] ,(.T) Qg By «— *HOm"J’(.AO,T) Qg By

l | l

*Homg (A3, T) ®7 By «— *Homg(A1,T) ®5 By < *Homg (Ao, T) @7 B4

l | l

*Hom:;r(Az,‘J') R By «— *Hom{r(./h ,‘T) Qg By «— *Homq(ﬂo,ﬂ') R Bo.

Thanks to our construction of Mlu (7) and MY, (T), we have that this double complex fits naturally
in the category of graded U-modules, that is, all its elements are graded U-modules and all its maps
are homogeneous homomorphisms of graded U-modules.

Since each *Homg (A;, T) € M, (7T) is a free module then by computing homology on each
column we get that the only row that does not vanish is the last one. On the other hand, from
Corollary 2.36 we have that when we compute homology on each row the only column that does not
vanish is the leftmost one.

Therefore the spectral sequence determined by the first filtration is given by

Igpa _ *Extg(Q,S) ifq=2,
2 0 otherwise,

and the spectral sequence determined by the second filtration is given by

HEpd _ *Torgfp(*ExtizT(Q,‘J‘),S) if ¢ = 2,
2 0 otherwise.

From the fact that both spectral sequences collapse we get the following isomorphisms of graded
U-modules ‘ . _
'E}? = H' 2 (Tot(*Homg (Al, T) @7 Ba)) = "ES?,

and so we obtain the duality of the theorem. O

Theorem 2.37. Adopt Setup 2.7. Then, we have the following isomorphism of graded U-modules

K=HR(Q) =weQ|dew=0andd; ew =0}.
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In particular, for any integer p we have an isomorphism of F-vector spaces
Kp = HR(Qp) ={w € Qp |37 ew=0and d; e w = 0}.

Proof. From the resolution (2.16) of Q we get the following complex in M{, (7)

[11]: (Lol -
— —

*Homg(Ae,T): 0— T T(1)? T(2) — 0.

Then, computing the second cohomology of this complex gives that *Ext%(Q, T =
(T/(Ly,L2)T) (2), where T/(Ly,L2)T = 1(Q) is the standard transposition of Q.

Since the Koszul complex (2.17) gives a resolution of S, then computing the second homology
of the Koszul complex T(Q)(2) @7 B, gives the following isomorphisms of graded U-modules

“Tord (*Ext3(Q,7),S) = H(1(Q)(2) ® Ba)
=wet(Q)(2)|wed; =0and wed, =0}.

From the fact that T(T;) = T;, we have an isomorphism of graded U-modules
wet(Q)(2)|wed; =0andwedr, =0}={we Q(2)|0jew=0and 0, ew =0},

then from Proposition 2.20 and Theorem 2.32 we get the following isomorphisms of graded U-
modules
X = "Homg(Q, S)(-2)
*Torj (*Ext3(Q, T),S)(—2)
={we Q|0 ew=0and 0, ew =0},

lle

that imply the statement of the theorem. 0

2.5 Examples and computations

In this short section we show a simple script in Macaulay?2 [60] that we have implemented to
compute the b-function of each D-module M from Setup 2.21. Actually, we have to say that an
enormous number of examples and computations led us to believe the equality of Theorem 2.31 in
the first place.

needsPackage "Dmodules"

bFunctionRees = (I, p) -> (

ring I;

makeWeylAlgebra R;

W[T1, T2, T3], U := QQl[Z1, Z2, Z3];

Fourier (map(W, R, {(vars W)_(0,0),(vars W)_(0,1)})) (res I).dd_2;

==
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L := matrix{{T1, T2, T3}} * A;
L1 :=L_(0, 0), L2 :=L_(0, 1);
src := flatten entries (map(T, U, {T1, T2, T3})) basis(p - 2, U);
dest := flatten entries (map(T, U, {T1, T2, T3})) basis(p - 1, U);
m := #src, n := #dest;
H := mutableMatrix(W, m, 2 * n);
for i from 0 tom - 1 do (
multl := src#i * L1;
mult2 := src#i *x L2;
for j from 0 ton - 1 do (
R1 := multl // gens ideal(dest#j);
R2 := mult2 // gens ideal(dest#j);
H_(i, j) = (map(W, T, {1, 1, 1})) R1_(0, 0);
H_(i, j + n) = (map(W, T, {1, 1, 1})) R2_(0, 0);
);

:= bFunction(coker matrix H, {-1,-1}, toList(m:0));
e R;

oEe o~
=0 2.

We will carry out a couple of examples to show how we can use Theorem 2.31 to deduce the

bigraded structure of K. We can save the previous code in a file that we will call “bFunctionRees.m2”

Example 2.38. Let I = (x>, x2y3,y5) C QIx,yl, then from [36] we know that a minimal set of
generators of J is given by

{Y?To —x*T3, v’T1 —X°Ty, XT3 —yTiTs, yT3 —xTiT3, T3 —T{T3),

so a minimal set of generators for X is given by

{(xT3 —yTi T3, yT53 —xTiT§, T3 —T{T5},

We make the following session in Macaulay?:

il :

ol

ol :
i2
i3 :

o3

o3 :

i4

R = QQ[x,y]
R

PolynomialRing
load "bFunctionRees.m2"
I = ideal(x"5, x"2*y~3, y~b)

5 23 5
= ideal(x, xy, vy )
Ideal of R

: for p from 2 to 5 do << factorBFunction bFunctionRees(I, p) << endl;

(s)(s + (s + 2)
(8)(s + (s + 2)
(8)(s + (s + 2)
(s)(s + (s + 2)(s + 3)

From Theorem 2.31 we see that for p = 2,...,4 we have X, q # 0 if and only if 1 < q < 3,

and that X5 q # 0 if and only if 0 < q < 3.
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2.5. Examples and computations

Example 2.39. We assume that in Setup 2.7 we have W = 1. In this case it is known (see e.g.
[39, Theorem 2.3] or [20, Proposition 3.1]) that the minimal generators of J have bidegrees

(1,1), (1,d—1), (2,d—2), (3,d—3), ..., (d,0).

We can make an interesting session with ideals of this form created randomly, we take the particular
casep=1landd =7:

il : R = QQ[x,y]
ol = R
ol : PolynomialRing
i2 : 1load "bFunctionRees.m2"
i3 : A = matrix{{random(1,R),random(6,R)},{random(1,R),random(6,R)},
{random(1,R) ,random(6,R)}};
3 2
03 : Matrix R <--- R
i4 : I = minors(2, A);
04 : Ideal of R

i5 : assert(codim I == 2);

i6 : for p from 2 to 7 do << factorBFunction bFunctionRees(I, p) << endl;
(s)

(s)(s + 1)

(s)(s + 1)(s + 2)

(8)(s + 1)(s + 2)(s + 3)

(s)(s + 1)(s + 2)(s + 3)(s + 4)

&)+ DG +2)(6+3)(6 +4)( +5)

Here we need to check ( assert(codim I == 2);) that the created ideal 1 has height 2,
although it is extremely improbable that this is not the case.
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Geometry
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Chapter 3

Degree and birationality of multi-graded
rational maps

In this chapter, we give formulas and effective sharp bounds for the degree of multi-graded
rational maps and provide some effective and computable criteria for birationality in terms of their
algebraic and geometric properties. We also extend the Jacobian dual criterion to the multi-graded
setting. Our approach is based on the study of blow-up algebras, including syzygies, of the ideal
generated by the defining polynomials of the rational map. A key ingredient is a new algebra that we
call the saturated special fiber ring, which turns out to be a fundamental tool to analyze the degree
of a rational map.

Note. The results of this chapter are based on joint work with Laurent Busé and Carlos D’Andrea.

3.1 The degree of a multi-graded rational map

In this section we focus on the degree of a rational map between an integral multi-projective
variety and an integral projective variety. Our main tool is the introduction of a new algebra which is
a saturated version of the special fiber ring. The study of this algebra yields an answer for the degree
of a rational map.

Our main result here is Theorem 3.4 where we show that the saturated special fiber ring (Def-
inition 3.3) carries very important information of a rational map. Another fundamental result is
Corollary 3.12, which is the main tool for making specific computations.

Preliminaries on multi-graded rational maps

Let k be a field, X1 C P.', X2 C P2,...,Xm C P,™and Y C P be integral projective
varieties over K. For i = 1,..., m, the homogeneous coordinate ring X; is denoted by A; =
klxil/ai = Klxi0,%i1,...,%ir)/ai, and S = K[yo,y1,...,ys]/b stands for the homogeneous
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3.1. The degree of a multi-graded rational map

coordinate ring of Y. We set R = A; ®k A2 Rk -+ Qk Am = K[x]/ (a1,a2,...,a;m). We also
assume that the fiber product X = X7 X X2 Xk - -+ Xk Xy is an integral scheme (a condition that
is satisfied, for instance, when K is algebraically closed; see e.g. [57, Lemma 4.23]).

Since we will always work over the field K, for any two k-schemes W7 and W5, their fiber product
W1 xk W5 will simply be denoted by Wy x W,. Similarly, for any k > 1, P¥ will denote the k-th
dimensional projective space PE over k.

LetF : X = X7 x X2 X+ X Xy -=+ Y C P? be arational map defined by s 4+ 1 multi-
homogeneous elements f = {fp,fq,...,fs} C R of the same multi-degree. We say that JF is
birational if it is dominant and it has an inverse rational map given by a tuple of rational maps

G:Y -5 (X1, X2y, Xm)-

Fori = 1,...,m, each rational map Y --» X; C P"t is defined by r; + 1 homogeneous forms
gi =1{91.0,91.1,.--,9ir) C S of the same degree.

Definition 3.1. The degree of a dominant rational map F : X = X7 x Xo X -+ X Xy ==> Y is
defined as deg(F) = [K(X) : K(Y)], where K(X) and K(Y) represent the fields of rational functions
of X and Y, respectively.

Now, we recall some basic facts about multi-graded rings; we refer the reader to [87], [59] and
[58] for more details.
The ring R = A1 ®k A2 Rk - - - ®k Am has a natural multi-grading given by
R= P (A1), @ (A2, @ @k (Am);

m

Similarly to the single-graded case, we can define a multi-projective scheme from R. The multi-
projective scheme MultiProj(R) is given by the set of all multi-homogeneous prime ideals in R which
do not contain 91, and its scheme structure is obtained by using multi-homogeneous localizations.

For any vector ¢ = (cq,...,cm ) of positive integers we can define the multi-Veronese subring
o
R(c) — @ Rj-c’
j=0

which we see as a standard graded k-algebra. The canonical injection R(¢) < R induces an

isomorphism of schemes MultiProj(R) = Proj (R(c)) (see e.g. [66, Exercise 11.5.11, Exercise
I1.5.13]). In particular, if we set A = (1,..., 1), then Proj(R(?)) corresponds with the homogeneous
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3.1. The degree of a multi-graded rational map

coordinate ring of the image of X under the Segre embedding
PT' X P"2 x ... x PTm — PN,

with N = (r;1 + 1)(r2 + 1)+ (rm + 1) — 1. Therefore, for any positive vector ¢ we have the
following isomorphisms

X = MultiProj(R) = Proj(R4)) = Proj(R®)). (3.1)

Given a multi-graded R-module M, we get an associated quasi-coherent sheaf M = M of
Ox-modules. We have the following relations between sheaf and local cohomologies (see e.g. [87],
[47, Appendix A4.1]):

(i) There is an exact sequence of multi-graded R-modules

0 — HR(M) = M — B HO(X.M(n)) = HR(M) — 0. (3.2)
nezZm

(i) Forj > 1, there is an isomorphism of multi-graded R-modules

Hy (M) = D HI(X. M(n)). (3.3)
nezZm

Let I be the multi-homogeneous ideal I = (fp,...,fs). Since F is a dominant rational map, the
homogeneous coordinate ring S of Y is often called the special fiber ring in the literature (see (3.5)).
Using the canonical graded homomorphism associated to J

klyo,...,ysl/b — R
yi — fy,

we classically identify S with the standard graded k-algebra k[I4], which can be decomposed as

S =kllg) = P M4
n=0

(see the next subsection for more details).
For the rest of this section we shall assume the following.

Setup 3.2. Let F: X =X; x Xz X +-- X Xjn == Y C P?® be a dominant rational map defined by
s+ 1 multi-homogeneous forms £ = {fy, f1,...,Ts} C Rof the same multi-degreed = (dq,...,dm).
Let &; be the dimension 6; = dim(Xy) of the projective variety Xi, and & = &1 + - -+ + O the
dimension of X. Let 1 be the multi-homogeneous ideal generated by fy,f1,...,fs. Let S be the
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3.1. The degree of a multi-graded rational map

homogeneous coordinate ring S = K[fo, T1,...,Ts] = K({Iq] of Y and let T be the multi-Veronese
subring T = R@) = Kk[Rq]. After regrading, we regard S C T as standard graded K-algebras.

The saturated special fiber ring

In this section, we introduce and study an algebra which is the saturated version of the special
fiber ring. For any ideal ] C R, the saturation ideal (] : 91°°) with respect to 91 will be written as J*.
Definition 3.3. The saturated special fiber ring of 1 is the graded S-algebra

[e¢]

Fr(D =& [(M™], &

=0

—_~—

Interestingly, the algebra § (I) turns out to be finitely generated (Lemma 3.8(ii)).

The central point of our approach is a comparison between the two algebras S and Fr (1). Perhaps
surprisingly, we show that assuming the condition of S being integrally closed, then J is birational
if and only if these two algebras coincide, and more generally, we show that the difference between

their multiplicities yields the degree of &F. In addition, we also prove that the algebra § (I) reduces
the study of the rational map J to the study of a finite morphism.

Theorem 3.4. Let F: X = X7 X X3 X -+ - X Xin, -=+ Y be a dominant rational map. If dim(Y) = §,
then we have the following commutative diagram

\\\\\)

Proj (§w(1))

where the maps F' : Proj(T) --» Y, G : Proj(T) --» Proj (aq\(l/)) and H : Proj (5;(1/)) — Y are

induced from the inclusions S — T, Fr(1) — T and S — Fr(1), respectively.
Also, the statements below are satisfied:

(i) H : Proj (g;(l/)) — Y is a finite morphism with deg(F) = deg(H).

(ii) G is a birational map.

(iii) e (SR(I)) = deg(F) - e(S), where e(—) stands for multiplicity.
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3.1. The degree of a multi-graded rational map

(iv) Under the additional condition of S being integrally closed, then F is birational if and only if
Sr(I) =S.

The rest of this section is dedicated to the proof of this theorem. Before, we need some interme-
diate results and definitions. We begin with the following lemma that has its roots in a similar result
for the single-graded case (see e.g. [131, Proof of Theorem 6.6], [46, Proof of Proposition 2.11],
[102, Remark 2.10]).

Lemma 3.5. The degree of F is given by deg(F) = [T : S].

Proof. By definition we have that deg(F) = [K(X) : K(Y)] = [(R(d)) o) S(O)}. Let0 # f € 1.
Then, we have
Quot(S) = S(o)(f)  and  Quot(T) = (RW) (f).

Finally, since f is transcendental over (R(d)) (0) and S ¢, then it follows that

deg(F) = [(R™) o) :S(0)] = [(RY) (,(1): (0 (1)] = [T:8],
as claimed. ]

Now, we introduce a new multi-graded algebra 2 defined by 2 = R[yo,y1,...,Ys]. By an
abuse of notation, for any multi-homogeneous element g € 2 we will write bideg(g) = (a, b) if
a € Z™ corresponds with the multi-degree part in R and b € Z with the degree part in K[y]. We give
the multi-degrees bideg(xi) = (deg(xi),0), bideg(yi) = (0,1), where 0 € Z™ denotes a vector
0=(0,...,0) of m copies of 0.

Given a multi-graded 2(-module M and a multi-degree vector ¢ € Z™, then M, will denote the
c-th multi-graded part in R, that is

M = € Men.

nez

We remark that M, has a natural structure as a graded K[y]-module.
We can present the Rees algebra R(I) = @,_, I"™t™ C R[t] as a quotient of the multi-graded
algebra 21 = R[yo,y1,...,Ys] via the map

Y.2A — R(I) C R[] 3.4)
yp — fit.

We set bideg(t) = (—d, 1), which implies that ¥ is multi-homogeneous of degree zero. Thus, the
multi-graded structure of R(I) is given by

RD= P RO, and [R(D, =g
ceZm neZ
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3.1. The degree of a multi-graded rational map

We denote [R(I)],. = @fzo [R(I)]c’n, and of particular interest is the case [R(I)], = P (1], .4

c n=0

..........

R(1) = R & | PIRD]e | = [R(D]o © MR(1).
c#0

Therefore, we obtain the following isomorphisms
S =kllal = [R(D]y = R(1)/MR(I) 3.5)

of graded k-algebras. So, as in Definition 1.4, we may write S = §r(I).

We note that each local cohomology module H}ﬂ(iR(I)) has a natural structure of multi-graded
2(-module (see Lemma 2.2), and also that [H}ﬁ(ﬂz(l))}c =Pz [H&(I”)}Hn.d has a natural
structure as a graded k[y]-module. Let b = Ker(K[y] — K[ft]) be the kernel of the map

k[y] — k[ft] C R(I), Yi — fit,

then we have that S = K[y]/b and that for any h € b the multiplication map R(I) My R(I) is zero.

So the induced map on local cohomology [H}R(TR(I) )] . S [H}Tt (R(I) )} . is also zero for any h € b.
This implies that [H}n (R(T) )] . has a natural structure as a graded S-module.

Remark 3.6. The blow-up X = Bl (X) of X along V(1) is defined as the multi-projective scheme
obtained by considering the Rees algebra R(1) as a multi-graded A-algebra. We shall use the
notation B

X = MultiProjg o, (R(1)) C X x P?,

where X can be canonically embedded in X x P*.
By considering the Rees algebra R(1) only as a multi-graded R-algebra, then we obtain a
multi-projective scheme which is an “affine version” of the blow-up X, and that we shall denote by

MultiProjg . (R(I)) C X x ASHT

where MultiProjg o, (R(1)) can be canonically embedded in X x AST1.
Proposition 3.7. Foreachi> 0 andc = (c1,...,cm), we have the following statements:

(i) [H}n(ﬂ%(l))] . I8 a finitely generated graded S-module.
(ii) H (MultiProj R-gr(R(1)), OMuhipij_gr( R(1)) (c)) is a finitely generated graded S-module.

Proof. (i) It is enough to prove that [H;}I(R(I))] . is a finitely generated K[y]-module. Suppose that
Fe :--- — F2 = F; — Fo — 0 represents the minimal free resolution of R(I) as an 2-module. Let
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3.1. The degree of a multi-graded rational map

C%; be the Cech complex with respect to the ideal 9. We consider the double complex Fo @5 Cx-
Computing cohomology by rows and then by columns, gives us a spectral sequence that collapses on
the first column and the terms are equal to H; (R(I)). On the other hand, by computing cohomology
by columns, we get the spectral sequence

E, P9 =Hg(Fp) = Hg P (R(D)).

Since each [H&(Fp )] . is a finitely generated (free) K[y]-module, then it follows that [Hg{p (IR(I))]
is also finitely generated as a K[y]-module.

(il) When i > 1, we get the result from (3.3) and the previous part (i). By (3.2) we have the
exact sequence

c

0 — [R(I)], — H° (MultiProjR-gr(ﬂz(I)), oMumpij_g,(m)(c)) — [Hy(R(1)], — 0.

The S-module [R(I)], is clearly finitely generated, and from part (i) the S-module [HJﬁ(IR(I))] I N
also finitely generated. Therefore, the exact sequence above gives us the result for i = 0. O

By Proposition 3.7, the multi-projective scheme MultiProjg o, (R(I)) yields the following finitely
generated S-algebra

S.—HO (MultiProjR_gr(IR(I)), oMultiijR_gr(R(m) .

We will see that S carries the same information as Fr(I), but has the advantage of having some
geometrical content as the global sections of an “affine version” of the blow-up X, a fact which is
going to be fundamental in the proofs of Theorem 3.4 and Corollary 3.12.

Let{d1,..., 9} be a set of generators of N, then MultiProjg_,.(R(I)) has an affine open cover

U= (U)iy U; = Spec (R(I)({,i)) , (3.6)

where R(I) (9,) denotes the graded S-module

R (9 = [R(U“’Jo,*

obtained by restricting to multi-degree 0 in the multi-grading corresponding with R. Since

R(D) = PI(n-d),
n=0
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3.1. The degree of a multi-graded rational map

then computing Cech cohomology with respect to U gives us the following equality

S= é HO (X, (1) (n - d)).
n=0

P

In the next lemma, with some simple remarks, we show that §g (I) and S are almost the same.

Lemma 3.8. The following statements hold:

e —_~—

(i) There is an inclusion §r(1) C S, which becomes an equality §r(1),, = Sn formn > 0.

e~

(ii) §r(1) is a finitely generated S-module.

—_——

(iii) The two algebras have the same multiplicity, that is e(Fr (1)) = e(§).

(iv) Proj(Fr (1)) = Proj(S).

(v) If grade(M) > 2, then Fr(1) = S.

Proof. (i) Since we have an isomorphism of sheaves (I") (n-d) = ((I“)Sat)N(n -d), from (3.2)
we get the short exact sequence

0= [(IM)*™] 4 =2 HO (X, (IM) (n-d)) — [Hy (IM)*™)],,4—0 (3.7)

for each n > 1. The short exact sequence 0 — (I")** — R — R/(I™)*™ — 0 yields the long exact
sequence

[H5 R/ ™), g = [Ha (1)) g = HR R, g = [Hy R/T)] 0 GB)

We always have that HY, (R/(I"™)*") = 0, and that [HJﬂ(R)] g = 0forn>>0(seee.g. [98, Lemma
4.2]). Hence, we get that [H,]ﬂ ((1™)**)] .q = 0forn.>> 0, and so the result follows.

(i1) Straightforward from part (i) and Proposition 3.7(ii).

(iii) It is clear from part (1).

(iv) Follows from part (i) (see e.g. [66, Exercise 11.2.14]).

(v) The condition grade(Dt) > 2 implies that HJﬁ(R) = 0, then the required equality is obtained
from (3.7) and (3.8). L]

All the rational maps that are considered in specific applications are usually such that grade(0t) >

—_—~—

2. So, in practice, we always have Fgr(I) = S. Nevertheless, we give an example where §r(I) and S
are different.
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3.1. The degree of a multi-graded rational map

Example 3.9. Let R = k [54, s3t, st3 ,t4] be the homogeneous coordinate ring of the rational
quartic C in the three projective space parametrized by

P! 5@ cP3, (s:t) > (s*:s3t:std: th).
Computing directly with Macaulay?2 [60] or using [47, Exercise 18.8], we get the isomorphism

R = Klxo0,x1,%2,%3]

2 2 2 2
(X]Xz — Xng,X% — X1X3,X0X5 — X]X3,X? — XOXZ)

and that R is not Cohen-Macaulay with dim(R) = 2 and depth(R) = 1. Moreover, by setting
B = Klxo,x1,%2,%x3] and m = (x0,%x1,%x2,%3) C B, further computations with Macaulay2 [60]
show that

Extg (R, B(—4)) = (B/m)(1),

and so the graded local duality theorem (see e.g. [19, Theorem 3.6.19]) yields the isomorphism
HL(R) = (B/m)(—1).

Let 1 = (x0,%1,%x3) C R be the ideal corresponding with the morphism

€ = Proj(R) —>(X°:X1:X3) P2

Isat —

Since we have R, then our previous computation gives

[l ()], = [HY, (1)), = [HLR)], = [(B/m) (1)), =k £0

—_——

Finally, from (3.7) we obtain that §r (1), # §1.
We are now ready to give the proof of the main result of this section.

Proof of Theorem 3.4. From our previous discussions (3.1), we have the following commutative
diagram

The rational map F’ can be given by the tuple (fo : f1 : --- : fs) because each f; € T. From a
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3.1. The degree of a multi-graded rational map

geometrical point of view, here we are embedding X in the “right” projective space

PM  of dimension M = H ( v l) -1,
- Ti
i=1
where the f;’s are actually linear forms. Then the rational map F’ : Proj(T) --» Y = Proj(S) is
induced from the canonical inclusion S < T. Since we have the canonical inclusions

—_——

S—SFr(D) =T

then J’ is given by the composition of the rational maps

—_~—

Proj(T) --» Proj(gr(I)) --» Proj(8S).

From the condition dim(X) = dim(Y), we have that

P

Quot(S) C Quot(Fr(I)) C Quot(T)

are algebraic extensions. Therefore, by using the same argument of Lemma 3.5, we get the equalities

—_~—

deg(F) = [T :S], deg(G) = [T : Fr(I)] and deg(H) = [Fr(I) : S].

P

(1) First we check that the rational map H : Proj(§r(I)) --» Y is actually a finite morphism.

—_—

Since Fr (1) is a finitely generated S-module (Lemma 3.8(ii)), we even have that §g(I) is integral

over S. By the Incomparability Theorem (see e.g. [47, Corollary 4.18]), the inclusion S — Fr(I)
induces a (well defined everywhere) morphism

—_~—

H : Proj(§r (1)) — Proj(S).

—~—" ~—"

Indeed, for any q C [SR(I)] =P.-o [SR(I)} we necessarily have that
+ c

qns ¢ (s, =& sl..

c>0

The finiteness of Fgr(I) as an S-module yields that K is a finite morphism.

Next we will prove that deg(H) = deg(F). Let us denote by X = MultiProjg; o, (R(I)) the
blow-up of X along B = V/(I), which can also be seen as the closure of the graph of F. We then
have the commutative diagram
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3.1. The degree of a multi-graded rational map

)N(CX><Ps
l K
us!
X ----- ertf”f%YCPS

with 717 being an isomorphism outside B (see e.g. [23, Proposition 2.3], [66, Proposition I1.7.13]).
Let & be the generic point of Y and consider the fiber product W := X xy Spec (Oy ¢ ). Denoting
1 as the generic point of X, since 71, is assumed to be generically finite, then we have the isomorphism

Spec (O % n) = W, this is a classical result, for a detailed proof see [137, Tag 02NV].
Even though W is just a point, we will consider a convenient (and trivial) affine open cover of

it. The scheme Y has an affine open cover given by Y; = Spec (S(yj)> forj =0,...,s. The open

yj)>’ where R(I)

Ry, = [RDy,], |

defined by restricting to elements of degree zero in the grading corresponding with S. Then W can
be obtained by glueing the open cover

set 7(51 (Y;) is isomorphic to MultiProj g, (fR(I)( ) denotes the multi-graded

Yj
R-module

W]' = MultiProjR_gr <1R(I)(yj)) XSpec(S(y.)> Spec((‘)y’g)
j
forj=0,...,s.

Fix 0 < j <'s. Similarly to (3.6), the scheme MultiProjg_,, <iR(I) (u; )) has an affine open cover

.....

where we are using the similar notation R(I), Siy;) = {R(I)S } 00" Now, W; is obtained by glueing

the affine open cover given by

(spec (R(I)(Mj) ®syy,) oy,a) )1:1 ..... g (3.9)
Since Oy, = S(¢), then we have that the ring ‘(R(I)(ﬁiyj) ®3(yj) Oy,¢, does not depend on j.
Therefore we obtain that W = Wj.
Let K be the multiplicative set of homogeneous elements of S and B be the localized ring
B = K™'S. We denote by W = (W;);_;__,. the affine open cover of (3.9). Since we have the
following isomorphisms of multi-graded 2(-modules

Ry ®5yj B = R(I)ﬁ']ﬁiz-"ﬁit ®s B forany 1 <ij <ix <---<ig <1,

ERAPREATS
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3.1. The degree of a multi-graded rational map

the corresponding Cech complex is given by
0, ®s B PRIy, ®sB - = R(Dy, .9, ®s B — 0.

C* (W) : 0— PR
i i<k

Using the affine open cover (3.6) of MultiProjg . (R(1)), we get the similar Cech complex
CW: 0= EPRMy, = P RMy, — - — R(Dy,..., — O
i i<k
Since B is flat over S, we get the isomorphism of multi-graded 2(-modules
H(C*(W) ®s B = H(C*(W)),

and restricting to the multi-degree 0 part in R, we get the following isomorphisms of graded S-modules

S®s B =H° (MultiProjR_gr(R(I)), OMultiProjR,gr(fR(I))> ®s B
= [H°(C*(W)], ®s B = [HO(C*(W))],.

From the fact that S < S is an algebraic extension, we have Quot(g) = ®s Quot(S). So, by

restricting to the degree zero part, we get the following isomorphisms of rings
= [H(C*(W))]yo = HO(W,Ow) = Oy

Sio) = [SesB| = |[HO(C*(W)], ©s B
N(O) = §(0) (Lemma 3.8(iv)), we obtain

Finally, since 717 is a birational morphism and §g (1)
|:S(O) S(O)} = [Of(ﬂ : Oy’a} = deg(T[z) = deg(ff).

deg(30) = [3r (Do)  S(0)]
(i1) From part (i) we have deg(F) = deg(H ). Then, the equality deg(F) = deg(G) deg(H)

gives us that deg(G) = 1.
(ii1) From the associative formula for multiplicity [19, Corollary 4.6.9] and part (i), we get

e(Fr(D) = [Fr(D) : 5] e(S) = deg(F)e(s).

(iv) We only need to prove that assuming the birationality of F and that S is integrally closed,

then we get f’sfk\(l/) = S. The equality deg(F) = deg(H) = [S/R\(I/) : S} and the birationality of F
imply that Quot(§r (1)) = Quot(S). Therefore we have the following canonical inclusions
S C Fr(I) C Quot(Fr(I)) = Quot(S),
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3.1. The degree of a multi-graded rational map

e~

and so from the fact that S is integrally closed and that S < Fr(I) is an integral extension, we

—~—

obtain §g(I) = S. O

We end this subsection by providing a relation between the j-multiplicity of an ideal and the
multiplicity of the corresponding saturated special fiber ring. The j-multiplicity of an ideal was
introduced in [1]. It serves as a generalization of the Hilbert-Samuel multiplicity, and has applications
in intersection theory (see e.g. [53]).

Let A be a standard graded k-algebra of dimension & + 1 which is an integral domain. Let n be
its maximal irrelevant ideal n = A_. For a non necessarily n-primary ideal ] C A its j-multiplicity
is given by

i) = 8! lim Sk (He /1))

n—oo TLS

Lemma 3.10. Let | C A be a homogeneous ideal equally generated in degree d. Suppose | has
maximal analytic spread {(]) = & + 1. Then, we have the equality

i) =d-e(3a0)),

P

where Fa(]) = P [(]”)Sat] na 18 the saturated special fiber ring of .

n=0

Proof. We consider the associated dominant rational map G : Proj (A) --» Proj (K[J q]), that satisfies
dim(A) = dim(K[J q]) because £(]) = 6 + 1. From [102, Theorem 5.3] and Theorem 3.4(iii) we
obtain

() =d-deg(9) e (klal) and e (Fa(])) =deg(9) e (Kla)),
respectively. So the result follows by comparing both equations. 0

As a direct consequence of this lemma we obtain a refined version of [92, Theorem 3.1(iii)].

Corollary 3.11. Let ] C A be a homogeneous ideal equally generated in degree d. Suppose | has

maximal analytic spread {(]) =0+ 1. If [(]n)sat] na = UM g foralln > 0, then

i(J) = d-e(klJal).

Formula for the degree of multi-graded rational maps

In this subsection, we prove a new formula that relates the degree of F with the multiplicity
of the S-module [HJﬂ(ﬂQ(I))] o and the degree of the image. This result will be our main tool for
making specific computations. To state it, we will need the following additional notation: for any
finitely generated graded S-module N, the (& + 1)-th multiplicity is defined by (see e.g. [19, §4.7])

es.1(N) = e(N) if dim(N)=58+1,
o1 0 otherwise.
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3.1. The degree of a multi-graded rational map

Corollary 3.12. LetF : X = X7 x X3 X - - - X Xy ==+ Y be a dominant rational map. If dim(Y) = §,
then the degree of F can be computed by

di H) (I
degps(Y)(deg(ff")—U:ea+1<[HJﬂ(R(I))]O):6! i 3 (Mo (1] )

In particular, we have that F is birational if and only if dimg ([H%t (R(1))] 0) <d+1.

Proof. From (3.2) we have the exact sequence
0 = [R(D)]y — H° (MultiProjR-gr(ﬂz(I)), oMumpij_grm))) — [HR(R(1)], — 0

which by using our previous notations can be written as

0—S$—S— [HRH(R(D)], — 0.
We clearly have es 1(S) = degps (Y), then it follows that
es11(5) = 511 (Fr(D) (by Lemma 3.8(iii))

es
de (3’) es+1(S) (by Theorem 3.4(iii))
deg(F) - degps (Y).

Therefore, the previous exact sequence yields the equality

es1 ([HR(R(D)], ) = es41(5) — e51(S) = degps (V) (deg(5) — 1),

as claimed. L]
Remark 3.13. Let | be an ideal in the polynomial ring K[x1, ..., xp], and m the maximal irrelevant
ideal (x1,...,%p). In [43], it was shown that the limit
1/ 0 n
f AHLO™) A (R/™)
n—oo npP n—oo npP

always exists under the assumption that K is a field of characteristic zero, but, interestingly, it is
proved that it is not necessarily a rational number. Later, in [74] it was obtained that when ] is a
monomial ideal this limit is a rational number. From the previous Corollary 3.12 we have that a
similar limit obtained by restricting to certain graded strands, is always rational and also can give
valuable information for a (multi-graded) rational map.
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3.2. Rational maps with zero-dimensional base locus

3.2 Rational maps with zero-dimensional base locus

In this section we restrict ourselves to the case where the base locus B = V/(I) has dimension
zero, i.e. that B is finite over K. In this case, we obtain four main different lines of results, that we
gather in four subsections. Firstly, in §4.2.1, we provide an algebraic proof of the degree formula in
the general multi-graded case. Then, in §4.2.2, we derive bounds for the degree of a rational map
from Corollary 3.12, in terms of the symmetric algebra. Thirdly, in §4.2.3, we apply our methods in
the case of rational maps defined over multi-projective spaces. And we conclude by providing an
upper bound for the degree of a single-graded rational map in terms of certain values of the Hilbert
function of the base ideal in §4.2.4.

We shall see that these upper bounds are sharp in some cases, and also that we obtain new
effective birationality criteria under certain conditions.

The degree formula

We give a formula for the degree of a multi-graded rational map, which depends on the degrees
of the source and the image, and the multiplicity of the base points. This known formula can also be
obtained with more geometric techniques (see [55, Section 4.4]). It can be seen as a generalization of
the same result in the single-graded case (see [23, Theorem 2.5] and [131, Theorem 6.6]). Hereafter
we use the same notations and conventions of §4.1.1. We begin with two preliminary results.

Proposition 3:14. Assume that F : X = X1 X - -+ X Xy -—+ Y is generically finite. Then, we have
that dimg ([H}ﬁ(fR(I))]O) < dim(S) for alli > 2.

Proof. We have defined MultiProj R_gr(ﬂl(l)) by considering R(I) as a multi-graded R-algebra, and
so we have the following morphisms

72 : MultiProjg o, (R(I)) C X x P* — Proj(S) C P*
Vv : MultiProjg o, (R(I)) C X x AST! 5 Spec(S) c ASH!

where both 71, and v are determined by the inclusion S = K[y]/b < R(I) that sends y; into fit, and
the only difference consists on whether we take into account the grading in y or not. Therefore, we
have that v is also generically finite, and there exists some L € S for which the morphism

VL MultiProjR_gr(R(I)L) — Spec(St)

is finite (see [66, Exercise 11.3.7]). Thus, it follows that MultiProjR_gr(R(I)L) is affine (see [66,
Exercise 11.5.17]).
From the vanishing of sheaf cohomology (see [66, I11.3]) and (3.3), we get

(HR(R(D)],) = [HR(RD))], =H (MultiProjR_gr(fR(UL), OMultiProjR_gr(fR(I)L)) =0
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3.2. Rational maps with zero-dimensional base locus

for all i > 2. Since [H}n(IR(I))} o is @ finitely generated graded S-module then it is annihilated by
some power of L, and the claimed result follows. O

We define the degree of X as the degree of its corresponding projectively embedded variety in
PN by means of the Segre embedding. We have the following relation between the degree of X and
the degrees of the projective varieties X; C P™i,i=1,...,m.

Lemma 3.15. The degree of X = X1 X - -+ X Xy can be computed as

5!

degpN (X) 6]'52—6

degpr (X1) degpr, (X2) - - degprm (Xm).

Proof. Since the homogeneous coordinate ring of the image of X in the Segre embedding is given
by R(4), we have the following equality

Pria)(t) = Pa, (t)Pa,(t)---Pa, (1)

between the Hilbert polynomials of the standard graded k-algebras A1, ..., Ay, and R(4). By
comparing the leading terms of both sides of the equation we get the claimed result. O

Under the present condition dim(B) = 0, we define the multiplicity of B in X by the following
formula

e(B) :=5! lim dim <HO <X, OX/(IH)N» .

n—oo TL6

(3.10)

Since we have the equalities

dimic (HO (X, 0x/(1")7) ) = Zdlmk( (0x/(1)7),)

peB

— Z ] - length ((OX/(I“)”)J
peB

= Z ] - lengthg <RP/IE),
peB

the expression dimy (HO (X, Ox/ (I“)N)) becomes a polynomial for n >> 0. Also, we can compute
(3.10) with the following equation

e(B) =) [K(p):Kl e, (Rp),

peB

where ey, (Ry) denotes the Hilbert-Samuel multiplicity of the local ring R, with respect to the
pRp-primary ideal I, (see [19, Section 4.5]).
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The degree of the base locus B = V(1) is defined in a similar way to its multiplicity (3.10).
When dim(B) = 0, deg(B) is given by the formula

deg(B) := dimg (HO (X, (‘)X/I“)) = Z dimy ((OX/IN)J

peB

— Z [k(p) : K] - lengthy ((OX/IN)p)

peB

- Z [k(p) : k] - lengthg (Rp/Ip)-

peB

The theorem below provides a new algebraic proof of the degree formula for a multi-graded
rational map with finitely many base points.

Theorem 3.16. Let F : X = X7 X X3 X - -+ X X4, -+ Y be a dominant rational map. If dim(Y) = &
and dim(B) = 0, then

d?‘ e dfﬁ“ degpn (X) = degps (Y) deg(F) + e(B),

or equivalently

5!
s dﬁym degpr; (X1) - - - degprm (Xm ) = degps (Y) deg(F) + e(B).
[ 8!

Proof. Forn > 1 we have the exact sequence of sheaves

0—= (I (n-d) = O0x(n-d) —

that gives us the following equation relating Euler characteristics:

X (- d)) = X Ox(n- ).

x(X. (") (n - d)) +X<X’W

The term x (X, Ox(n - d)) for sufficiently large n becomes

ad ... ddmd X
X(X, 0x(n-d)) = dimk (H°(X, Ox(n-d))) = dimk(Rn.q) = — ”E' egen { )n5+lower terms

the Hilbert polynomial of the standard graded k-algebra T(= R(4)) (recall that H*(X, Ox(n-d)) =0
fori > 1 and n > 0; see [87, Theorem 1.6]).
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Since dim(B) = 0, the summand x(X, (23} (n- d)) for all n > 0 is a polynomial

1

Ox
(Im)”

(n- d)) = dimy (HO (X, (1(23})) = e(g))né + lower terms

X (X,

whose leading coefficient is equal to the multiplicity of the base points.

We clearly have that J is a generically finite map, so Proposition 3.14 yields that for any i > 1
and n > 0, the expression

dimy (H'(X, (I")" (- 4))) = dimy ([HE ' (R(1)] )
becomes a polynomial of degree strictly less than §. This implies that the leading coefficient of the
polynomial determined by x(X, (Im)y (- d)) coincides with the one of the polynomial determined
by
dimy (HO(X, (I™)™(n.- d))).

From Theorem 3.4(iii), for n > 0 the function X(X, (I (m- d)) is also a polynomial that has the

form ) _
X(X,(I“)N(n.d)) _ egps(é)! eg(F)

Finally, comparing the leading coefficients of these polynomials, the equation

n® + lower terms.

d?‘ e d% degpn (X) = degps (Y) deg(F) + e(B)

follows. The other formula is equivalent from Lemma 3.15. O

Degree and syzygies of the base ideal

In this subsection, using the close link between Rees and symmetric algebras, we derive
some consequences of Corollary 3.12 in terms of the symmetric algebra of the base ideal of
a rational map. Under the assumption of having a zero dimensional base locus, we bound
the multiplicity eg. 1 ([HJ)T(R(I))]O) of the Rees algebra with the corresponding multiplicity
€541 ([H;T (Sym(I))] 0) of the symmetric algebra, and the later one is bounded by using the Z,
approximation complex.

We keep here similar notations with respect to the previous one, but we assume that the image Y
is the projective space P®. We take this assumption because in general the symmetric algebra Sym(I)
is only a K[y]-module and not an S-module (Setup 3.2). To be precise, we restate the notations that
we use in this subsection.

Setup 3.17. Let T : X = X1 X X3 X - - X Xn --+ P® be a dominant rational map defined by & + 1
multi-homogeneous forms £ = {fo,f1,...,Ts} C R of the same multi-degree d = (dq,...,dm),
where § is the dimension of X. Let 1 be the multi-homogeneous ideal generated by fo, f1,...,fs. Let
S be the homogeneous coordinate ring S = K[yo,y1,...,ysl of P°.
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3.2. Rational maps with zero-dimensional base locus

Remark 3.18. Given a finitely generated S-module N, from the associative formula for multiplicity
[19, Corollary 4.6.9], we get
es+1 (N) =rank (N).

The Rees algebra R(I) has a natural structure of multi-graded 2A-module by (3.4). Also, from
the minimal graded presentation of I

GRS SONLCIELLIN Y

the symmetric algebra
Sym(I) = /I ((yo. - .Ys) - @)

has a natural structure of multi-graded 2(-module. Therefore, we have a canonical exact sequence of
multi-graded -modules relating both algebras

0 — X — Sym(I) — R(I) — 0. (3.11)

The following result is likely part of the folklore, but we include a proof for the sake of com-
pleteness.

Lemma 3.19. Let M be a multi-graded R-module (not necessarily finitely generated) and Z C X
be a closed subset of dimension zero. If (Suppr (M) N X) C Z, then we have H), (M) = 0 for any
i>2

Proof. Leti: Z — X be the inclusion of the closed set Z, M the sheafification M = /I\Z(n) of M
twisted by n € Z™, and M |, the restriction of M to Z. Since the support of M is contained in Z,
then extending M |, by zero gives the isomorphism M = i, (M |, ) (see [66, Exercise I1.1.19(c)]).
Using (3.3), [66, Lemma I11.2.10] and the Grothendieck vanishing theorem [66, Theorem II1.2.7],
we get

[ ()] =T (X 20 =BT 061 (M) = B (ZM ) =0
forany j > 2andn € Z™. O
Lemma 3.20. The following statements hold:

(i) Foreachi >0, [H&(Sym(l))] o i a finitely generated graded S-module.

(ii) If dim(B) = 0, then

rank([H;}t(Sym(I))]o) = rank([Hth(R(I))]O) —|—rank<[H;}I(H(I)(Sym(l)))]o).

Proof. (i) The proof of Proposition 3.7(i) applies verbatim.
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(ii) From Lemma 1.10, we can make the identification X = H?(Sym(l)) in the short exact
sequence (3.11). Hence, we can obtain the following long exact sequence in local cohomology

H$ (R(1)) — HY (HY (Sym(1))) — Hy(Sym(I)) — HL(R(D)) — HE (H (Sym(1))).

We clearly have that H§;(R(I)) = 0, and from Lemma 3.19 we get that H%, (H? (Sym(I))) = 0.
Therefore, the assertion follows. O]

In the rest of this subsection one of the main tools to be used will be the so-called approximation
complexes. These complexes were introduced in [134], and extensively developed in [69], [70]
and [71]. In particular, we will consider the Z, complex in order to obtain an approximation of a
resolution of Sym(I).

We fix some notations regarding the approximation complexes, and for more details we refer the
reader to [71]. Let Kq = K(fy,..., fs; R) be the graded Koszul complex of R-modules:

d d d d d
Ke:0 = Ksp1 — 5 Ks = ... 5K 5 Ko ~%0

associated to the sequence {fo, ..., fs}. Foreach i > 0, let Z; be the i-th Koszul cycle and H; be
the i-th Koszul homology, that is Z; = Ker(d;) and H; = H;(K,). Using the Koszul complex
K(yo,---,Ys;2), one can construct the approximation complexes Zo and M, (see [71, Section 4]).
The Z, complex is given by

Ze:0—= 2541 2 25— —21 = Zo—0,

where Z; = [Zi R Ql} (i-d,—i)forall 1 <1< &+ 1. We have that Hy(Ze) = Sym(I) and
Zs+1 = 0. Similarly, the M, complex is given by

Me:0 > Msyp1 = Ms = -+ =My — My — 0,
where M; = [H; ®g ] (i-d,—1) forall 1 <1< 5+1.
The next theorem contains the main results of this subsection.

Theorem 3.21. LetF : X = X7 X X3 X - - - X Xy --» P® be a dominant rational map. Ifdim(B) = 0,
then the following statements hold:

(i) deg(F) = rank([H%(H}(Sym(I)))]o) + 1.

(ii) We have
deg(F) < rank([H%q(Sym(I))]()) +1,

with equality if 1 is of linear type.
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(iii) In terms of the Koszul cycles Z;, we get the following upper bound
5 .
deg(d) <1+ dimic ([HE"(20)],4)-
i=0

Proof. (i) We consider the double complex F** = C§; ®r C] ®g Sym(I), where C§; and C7 are
the Cech complexes corresponding with 91 and I, respectively. We have the spectral sequence

ED'9 = HE, (H{ (Sym(1))) = HP"9(Tot(F**)) = HE,"9(Sym(I)).
From Lemma 3.19 we obtain that EE’q = 0 for p > 2. Therefore, the spectral sequence converges

with E§d = ER9.
The filtration of the term H' (Tot(F**)) = H;}I(Sym(l)) yields the equality

rank([H&(Sym(I))]o) = rank([H& (H} (Sym(I)))]()) + rank([HJn (H?(Sym(l)))]()),

and assembling with Remark 3.18, Corollary 3.12, and Lemma 3.20(ii) we get

deg(F) = rank([H&(H} (Sym(I)))}o) +1.

(i) It follows from Remark 3.18, Corollary 3.12 and Lemma 3.20(i1).

(ii1) For any i > 0, we have that I - H; = 0 and so the support of Hj is contained in B = V/(I).
Hence, for any p ¢ B we have (M,), = 0. Applying basic properties of approximation complexes
(see e.g. [71, Corollary 4.6]), we can obtain that H;(Z4), = O for any p ¢ B and i > 1. Therefore,
from Lemma 3.19 we get that H?n(Hi(Z.)) =0foranyj >2andi> 1.

Let {91,...,9;} be a set of generators of 9T and G** be the corresponding double complex

0 4’25®RC&4>25,]®RC&*>~--*>Zo®RCgT*> 0

! ! !
1 1 !

0 4>Z'5®RC;’{4>25_]®RCJR*>"'*)Z’O®RCY}I4> 0
I 1 !

0 — 25 ®r CY — 251 @R CY — -+ — Zo DR CY — 0

given by Z @r C%;. The double complex above is written in the second quadrant. Then, the spectral
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sequence corresponding with the second filtration is given by

HY (Sym(I))  ifq=0
gp—d HP, (Hg(Ze)) ifp<landq>1
0 otherwise.

Thus, it converges with HEg’fq = TER; 9. In particular, we have H' (Tot(G**)) = HJn(Sym(I)).
On the other hand, by computing with the first filtration we get

'Ey P9 =HG(2p).

Therefore we obtain the following upper bound

5
rank([H;]JQ(Sym(I))]()) < Zrank([Hg{] (Z’i)]o)'
i=0
For each 0 < i < 9, since Z; = [Z; ®r U] (1 - d, —1) then we have that
rank ([ (20)] ) = rank ([H5 ' (Z0)] g @k S(=1)) = dimi ([H5(Z0)] )
Finally, the inequality follows from part (ii). 0

Rational maps defined over multi-projective spaces

Here we specialize further our approach to the special case of a multi-graded dominant rational
map from a multi-projective space to a projective space. The main results of this subsection are
given in Theorem 3.28 and Theorem 3.30, where we provide effective criteria for the birationality of
a bi-graded rational map of the form P! x P! --» P? with low bi-degree. We set the following.

Setup 3.22. Let m > 1. Foreachi = 1,...,m, let Xi be the projective space X; = P"t and A be its
coordinate ring Ay = K[xi] = K[xi0,%i,1,...,Xir ). Let T : X =X X X X+ x X -2 P® bea
dominant rational map defined by 6+ 1 multi-homogeneous polynomials f = {fo,f1,...,fs} C R:=
A1 ®k Az Rk - - - Am of the same multi-degreed = (d1,...,dwm), whered =11 +12+ -+ T
is the dimension of X. Let 1 be the multi-homogeneous ideal generated by fo,f1,...,fs. Let S
be the homogeneous coordinate ring S = K[yo,y1,...,Ys) of P3. Let M be the irrelevant multi-
homogeneous ideal of R, which is given by 0 = @j 150, jm >0 Ry
First we give a description of the local cohomology modules H?n (R), with special attention to its
multi-graded structure. We provide a shorter proof than the one obtained in [15, Section 6.1].
Given any subset « of {1,...,m}, then we define its weight by ||| = } ;. 7i. Fori €
{1,...,m}, let m; be the maximal irrelevant ideal m; = (xy) = (xi,0,%i,1,...,Xir ). We then have
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that

Lkix("l ifj=ri 4
0 otherwise.

Proposition 3.23. For anyj > 0 we have that

- @ (@be)e(@n
m} t

xC{1,.., i€ i
el |4+1=j

Proof. First we check that H&(R) = HJn(R) = 0. It is clear that H&(R) = 0, and using (3.2) we
get the exact sequence

0—R— P HO(X,0x(n)) — Hy(R) — 0.
neZ™m

From the Kiinneth formula (see [137, Tag 0BEC] for a detailed proof) and [66, Proposition I1.5.13]
we obtain

HO(X, Ox(n)) = H® (X1, 0x, (n1)) @k - - - @k H (Xom, Ox,, (Nm))
= [Aq], @k @k [Amly,
% th

so we conclude that H;}I(R) =0.
Letj > 2. Then, the Kiinneth formula and (3.3) yield the following isomorphisms

Hy(R) = €D W' (X, 0x(n))

nezZ™m
= @ @ H'' (X1,0x, (1)) @k - - @k H™ (Xim, O, (in))
neZm \ji+-+jm=j—1
Foreachi=1,..., m we have that
Aq ifj; = 0
P H (X, 0x, () = SHEF(AY - ifji =
nez 0 otherwise.
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Therefore, we get the formula

HyR = P Q HiAY) e | & Al
it tim=i—1 \{ilji=ri) {iljs=0}
]1_00r)1_7'1

which is equivalent to the statement of the proposition. 0

Now we give a different proof of Theorem 3.4(iv); in this case we recover the equivalence

—_~—

between the birationality of F and the equality Fr(I) = S. The following result is a generalization
of [118, Proposition 1.2].

Proposition 3.24. Let ¥ : P™' x P™2 x ... x P™ -5 P® be a dominant rational map with
T1 + 712+ ... 4+ 1Tm = 0. Then, the map F is birational if and only if for all n > 1 we have

Mg = [ a

Proof. From Theorem 3.4(iii), the equality above implies the birationality of F.

For the other implication, let us assume that & is birational. Since ¥ is dominant, then S =
klyo,...,Ysl is isomorphic to the coordinate ring S = K[Ig] = K[fo,...,fs] of the image. Let
T be the multi-Veronese subring T = K[Rq], then after regrading we have a canonical inclusion
S = Kk[I4] C T of standard graded k-algebras. From Lemma 3.5 and the assumption of birationality
we get

[T:S] =deg(F) =1.

So we have Quot(S) = Quot(T) and the following canonical inclusions
S C T C Quot(T) = Quot(S).

Letn > 1. It is enough to prove that for any w € [(I“)Sat] n.a C Tn, we have that w is integral
over S. Indeed, since S is integrally closed, it will imply that w € Sy, = [I™], 4.

Letw € [(I™)™] n.a- We shall prove the equivalent condition that S[w] is a finitely generated
S-module (see e.g. [7, Proposition 5.1]). From the condition w € [(I“)Sat]
T > 0 such that

n.d? we can choose some

Tin W =Rrn.a-wC [In](r—H jn-d:

We claim that for any q > v + 1 we have w9 € S - Ryy,.q. If we prove this claim, then it will follow
that S[w] is a finitely generated S-module.
Let{Fy,...,F.} be a minimal generating set of the ideal I™. For q = r + 1, since w" € Ryn.q
we can write
WT_H =w'w=h1F; + h1F; +--- + h.F,
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where deg(hi) =rn-dforeachi=1,...,c. For q =1+ 2, since hy € Ry,.q we get

C C

C
W2 =™ = Z (hiw) Fy = Z ZhijF)' Fi = ZhijFiFJ”
ij

i=1 i=1 \j=1

where each hy; has degree deg(hij) = ™ - d. Following this inductive process, we have that for
each g > v + 1 we can write
wi =3 hgFP,

B

where deg(hg) = rn - d for each multi-index 3. This gives us the claim that w9 € S - Ryjy.q for
eachq >r+1. O

From Proposition 3.24 we deduce that for single-graded birational maps with non saturated base
ideal, the module I* /1 is generated by elements of degree > d + 1.

Corollary 3.25. Let F : P" --» PT be a birational map whose base ideal 1 = (fo,--- ,f,) is given
by v + 1 relatively prime polynomials of the same degree d. Then, we have that

[1/1] g =O.

Proof. From Proposition 3.24 we already have [[*] ; = I4. If we assume that there exists 0 #
h € [I*],_,, then we get the contradiction I4 = (xoh,x1h,---,xyh). Therefore, we have
[Isat/ﬂgd =0. OJ

For multi-graded birational maps the previous condition must not be necessarily satisfied.

Example 3.26. Let F: P! x P! -5 P2 be the birational map given by

(X1,0 1 X1,1) X (X2,0 :X2,1) — (X1,0X2,0 1 X1,1X2,0 : X1,1X2,1)-

Here, the base ideal 1 = (x1,0%2.0, X1,1X2,0, X1,1X2,1) is generated by forms of bi-degree (1, 1)
and N = (x1,0,x1.1) N (x2.0,%2.1). The map F is birational, but we have that ' = (I : ™) =
(x1,1,%2,0) and so

(/1] 10y #0  and [P/ o) #0.

From now on, we focus on a dominant rational map of the form F : P! x P! --5 P2. We
shall adapt our previous results to this case and obtain a general upper bound for the degree of J.
More interestingly, we give a criterion for birationality when the bi-degrees of the f;’s are of the
formd = (dy,d2) and d; = 1. This result extends the work of [16], where a criterion was given
for the bi-degrees (1,1) and (1,2). Also, in the case d = (dy,d>) = (2,2) we provide a general
characterization for the birationality of F (see [16, Theorem 16] for a more specific result).
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3.2. Rational maps with zero-dimensional base locus

Proposition 3.27. Ler F : P! x P! --s P2 be a dominant rational map such that dim(B) = 0.
Then, we have the inequality

deg(F) <1+ (dy = 1)(dz — 1) + dimyc ([1/1],).
Proof. From Theorem 3.21(iii) we have the inequality
. 3 . 2 . 1
deg(F) < 1+ dimy ([H(22)] .4 ) + dimic ([H3(21)]) + dimic ([HR(Z0)] )

By Proposition 3.23 and the fact that Zp = R and Z, = R(—3 - d), we obtain the isomorphisms
HJn(Zo) =0 and

H3,(Z2) = B (R)(—3 - ) = <1k[x1‘]) (3d1) @i <1k[x2‘]> (3dy).
X1 X2
Thus, we get that
1 1
dimy ([H3(22)] .4 ) = dimi ([mk[x11]] oK [sz[x21]] ) — (dy = T)(d2—T).
—dy —d,

The exact sequences

05272 5R(=dy,—da) =150
0—-1I—-R—-R/I—=0

and Proposition 3.23 yield the isomorphisms

dimy ([H(21)],) = dimi ([HR (1)],) = dimic ([HQ(R/D)] ) = dime ([1/1],).
Therefore, by combining these computations, we get the claimed upper bound. 0

Theorem 3.28. Let F : P! x P! ——5 P2 be a dominant rational map such that dim(B) = 0 and
d = (1,d;). Then, F is birational if and only if Iq = [I*],.

Proof. We get one implication from Proposition 3.24 and the other by specializing the data in the
inequality of Proposition 3.27. O

To illustrate this theorem, let F be as above and assume moreover that there exists a nonzero syzygy
of T of bi-degree (0, 1). Asin[16, Remark 10], we get that x; o (Zizzo oifi)—x2.1 (Zizzo Bifi) =0
for some «;’s and (3;’s in k and hence we deduce that there exist three polynomials p, g, T of bi-
degree (1,d2 — 1) such that I = (x2.0p, X2.1P, X2,09 + x2,17). Therefore, the ideal I admits a
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3.2. Rational maps with zero-dimensional base locus

Hilbert-Burch presentation of the form
Fe: O0—R(—=1,-1—d2)®R(—2,-2d, +1) = R(—1,—d2)®> = R.

Studying the two spectral sequences coming from the double complex Fo ®r C%,, together with
Proposition 3.23, it is then easy to see that [I*/I]; = [H%(R/I)}d = 0. Thus, Theorem 3.28
implies that J is birational, a fact that can be deduced more directly and that is the main ingredient
to ensure birationality in [127]. But Theorem 3.28 provides actually a finer result. Indeed, suppose
that the ideal I admits the following more general Hilbert-Burch presentation

0 5 R(—=1,—pu—dy) ®R(=2,-2d, + 1) = R(—=1,—d3)> = R

where L is a positive integer. Then, a similar computation shows that [Hg1 (R/ I)] a= [H%t (R)] (0 )

and from here we deduce that & cannot be a birational map if 1 > 1.

Lemma 3.29. Let F : P! x P! -5 P2 be a dominant rational map such that diim(B) = 0 and
d = (2,2). Then, 1q = [I*™], if and only if deg(B) = 6.

Proof. From (3.2) we have the short exact sequence
0= [HR(R/D], — [R/Tg — HO (X, (0x/17) (@) = [HyR(R/T)], — 0.
Using [16, Lemma 5] we deduce that [Hgn(R/ I)] g = 0. Therefore, we obtain
deg(B) = dimy (H° (X, (0x/17) ()))
= dimy ([R/1]g) — dimy ([H§ (R/T1)],) = 6 — dimy ([H§(R/1)],)
from the exact sequence above, and so the claimed result follows. O

Theorem 3.30. Let F : P! x P! - P2 be a dominant rational map. Suppose that dim(B) = 0
and d = (2,2). Then, F is birational if and only if the following conditions are satisfied:

(i) Iaq = [I*],.
(ii) Lis not locally a complete intersection at its minimal primes.

Proof. The degree formula of Theorem 3.16 applied to our setting gives
deg(F) =8 — e(B).

Hence, we deduce that e(B) < 7 and that & is birational if and only if e(B) = 7. We know that
deg(B) < e(B), and that deg(B) = e(B) if and only if I is locally a complete intersection at its
minimal primes. Moreover, we have already seen that the condition Iq = [I**]; is necessary for
the birationality of F (Proposition 3.24) and that it is equivalent to deg(B) = 6 (Lemma 3.29).
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3.2. Rational maps with zero-dimensional base locus

Therefore, assuming Iq = [I*'];, we have that I is not locally a complete intersection at its minimal
primes if and only if
6 =deg(B) < e(B) =7,

and the later one is equivalent to the birationality of J. O

An explicit upper bound for the degree of a rational map defined over a projective
space

In this subsection we consider the more specific case of single-graded dominant rational maps.
The main result here is Theorem 3.34 where the upper bound for the degree of a rational map given
in Theorem 3.21(ii1), is expressed solely in terms of the Hilbert functions of R/I and I** /1, instead
of some local cohomology modules of Koszul cycles. We also show that this upper bound is sharp
in some cases. We set the following.

Setup 3.31. Let R be the standard graded polynomial ring R = Klxo,X1,...,X;], and m be the

maximal irrelevant ideal m = (xg,...,Xy). Let F : PT --s PT be a dominant rational map
defined by v + 1 homogeneous polynomials £ = {fy,f1,...,f:} C R of the same degree d. Let 1 be
the homogeneous ideal generated by fo,f1,...,fr. Let S be the standard graded polynomial ring

S =K[yo,Y1,--.,Yrl. Let U be the bigraded polynomial ring A = R®y S, where bideg(x;) = (1,0)
and bideg(y;) = (0, 1). For any graded R-module M, we set MY = *Homy (M, K) to be the graded
Matlis dual of M (see e.g. [19, Section 3.6]).

The following lemma is equivalent to [21, Lemma 1] in our setting; we include a proof for the
sake of completeness and the convenience of the reader.

Lemma 3.32. Let Z; and H; be the cycles and homology modules of the Koszul complex K(f;R),
respectively. Assume that dim(R/1) < 1andlet & = (r+ 1)(d —1). Then,

(i) Zyy7 =0, Zy = R(—(r+1)d), Zo = R, Hy = 0fori > 1, Hy = 0 if and only if
dim(R/T) = 0. Ifdim(R/T) =1, then H; = wpg /1(—&).

(ii) If r > 2and 1 < p <, then
HI2(R/T) ifp=landq<r

H3(Z,) = H\é_p_1 (—&) if2<p<randq<r
ZY_p(—é) ifq=r+1.

Proof. (i) This part follows from well known properties of the Koszul complex (see e.g. [19, Section
1.6]).

(il) We only need to compute the local cohomology modules of Z,, for 1 <p <.

Let 2 < £ < r. We denote by K¢ the truncated Koszul complex

Ko 09 Kepg = Ke = 2 Ky = Zg — 0,
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3.2. Rational maps with zero-dimensional base locus

which is exact from the condition dim(R/I) < 1. Let F**® be the double complex given by F** =
Ko ®@g C2,. The exactness of K¢ implies that H® (Tot(F**)) = 0. Hence computing with the first
filtration we get the spectral sequence IE;p’q = Hg (K; Y) = 0, which at the first page is given by

HLP (Kppq) — HE(Ky) — - — HL T (Keg ) — HLT(Ze)

0 0 0 H, (Z,)

0 0 0 HO (Z,).

From the graded local duality theorem (see e.g. [19, Theorem 3.6.19]) and the self-duality of the
Koszul complex, we have the following isomorphisms of complexes

HL T (Ke) = (Homg (Ke, R(—1—1)))" = (Ko[r+ 11 (r+ Nd—1—1))" = (Ko[r+11)”

(_ E,) )
where [r + 1] denotes homological shift degree. So the top row of the diagram above is given by the
complex

K3 (&) = K (&) = -+ = K g g41)(—8) = HM T (Zo).

For each q < 1, when we compute cohomology in the page T 4+ 3 — ¢, we get the exact sequence

(e +2—q) T —t,
0— IEH(;:: e, Hy ¢ 1(—&) = HL(Ze) — IF_qufq — 0.

. Ir—(+r+2—q)r+1
Since Er+3_q
isomorphism HJ\ (Z,) = H _¢_1(=&) whenq <.

In the case of q = 1+ 1, we have the exact sequence

D IE;f’f_q = TER" = 0, we get the

a

KY () (=8) = Ky () (—8) = HET(Ze) — 0,

that induces the isomorphism H;.jq (Zy) = ZY? o(=E).
When £ = 1, we consider the truncated Koszul complex

Ko 02K —=Ki—= - 2Ky = Z7 =0,

that is not exact only at the module Z1. The double complex G** =K' @y C2, now yields the
spectral sequence

Hy(Hi) if—p+q=0

Ir—P.9 _ 119 >{ —p+q o0
E =HY (K = H G =
! m L¢ ) ( ) {O otherwise.
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3.2. Rational maps with zero-dimensional base locus

Thus again we have the exact sequence
K 2(=8) = K 4(=&) = Hi 1 (Z1) = 0,

and this gives us the isomorphism Htrn“ (Z7) = Z¥_1 (—¢&).
Finally, using the following two short exact sequences

02721 —-Ky—>I1I—-0
0—-1—-R—=R/I—=0

we can obtain the isomorphisms Hi\ (Z) = HE (D) = Hﬂfz(R/I) forq <. O

Since the linear type condition has almost no geometrical meaning, we briefly restate the equality
of Theorem 3.21(i1) in the locally complete intersection case.

Lemma 3.33. Let F: P" --» P be a dominant rational map with a dimension 1 base ideal 1. If |
is locally a complete intersection at its minimal primes then

deg(F) = rank([HJn (Sym(I))]o) +1.

Proof. From either [71, Section 5] or [134, Proposition 3.7] we get that I is of linear type. Thus, the
assertion follows from Theorem 3.21 (ii). L]

The next theorem translates Theorem 3.21(iii) in terms of the Hilbert functions of R/I and
[sat/1.

Theorem 3.34. Let F : P™ --» PT be a dominant rational map with base ideal 1. If dim(R/1) < 1,
then we have the following upper bound

r—1

—1
deg(F) <1+ (d . > + dimy ([I/1] ;) + ) dimye ([R/I](rﬂfi)dfﬁ) :
i=2

Proof. Since Zy = Rand Z, = R(—(r + 1)d), we have H,]H(Zo) =0 and

dimyc ([H"(Z3)], ) = dini q;k[xﬂd) _ <(d_t” +r> _ (d;1).

From Lemma 3.32 we obtain that

dimy ([H3(Z1)] ) = dimy ([H, (R/D)] ) = dimy ([I%/1] )
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and

dimy ([H}n+1 (Zi)]id) = dimy ([HX} ) = dimy <[R/H(r+lfi)dfrf1)

(i—r—1)d+r+1

for any 2 < 1 < r — 1. Finally, by substituting these computations in Theorem 3.21(iii), we obtain
the required upper bound. O

To end this subsection, we show that the above upper bound becomes sharp for dominant plane
rational maps when the base ideal is of linear type and is defined by polynomials degree d < 3.

Proposition 3.35. Let F : P2 —-» P? be a dominant rational map with a dimension 1 base ideal 1.
Then, the following statements hold:

(i) deg(F) < L4=10d=2) 4 iy, ([Isat/ﬂd> 1.

(it) If Lis of linear type and is generated in degree d < 3, then

(d—1)(d—2)

deg(¥) = 3

+dim ([14/1] ) + 1.

Proof. (i) It follows from Theorem 3.34.
(ii) From Theorem 3.21(ii), the linear type assumption implies deg(JF) =

rank([HJ11 (Sym(I))]o> + 1. The spectral sequence IE?p’q = H&(Zp) of the proof of
Theorem 3.21(iii) is given by:

H3,(22) H3, (21) H3, (20)
0 H2 (Z1) 0
0 0 0
0 0 0

Therefore, if we prove that [H;:’l (Z1 )] o = O then the convergence of this spectral sequence implies the
required equality. Since Z7 = [Z1 ®R Ql} (d,—1), then it is enough to check that [Hﬁ.‘(L )] 4 =0.
The short exact sequence

057 5R(=d) o150

yields the following exact sequence

0 — HZ (1) — H3,(Z1) — H3,(R3)(—4),
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3.3. Multi-graded Jacobian dual criterion of birationality

and so we have [H;:‘,(L )] 4= [H,zn(l)] 4= [H,L(R/I)] 4- Finally, from [67, Theorem 1.2(ii)] we
have that end(HJn(R/I)) < 2d — 4, and so under the assumption d < 3 we have [H,L(R/I)] q=
0. O

3.3 Multi-graded Jacobian dual criterion of birationality

A rational map is birational if and only if its degree is equal to one, so the results we have
previously developed provide birationality criteria. Nevertheless, because of its theoretical and
practical importance, some more specific techniques have been developed to decide birationality,
mostly for single-graded rational maps. In particular, it has been shown that birationality is controlled
by a single numerical invariant that corresponds to the rank of a certain matrix called the Jacobian
dual matrix (see [130], [129], [46, §2.3 and §2.4] and [16, Section 2.2]). In this section, we extend
this theory to the multi-graded setting. In §4.3.1, the multi-graded version of the Jacobian dual matrix
is introduced and a general birationality criterion is proved (Theorem 3.39). As an illustration, a very
simple birationality criterion is deduced for certain monomial multi-graded maps (Corollary 3.41).
Then, in §4.3.2, we investigate how birationality can be detected by using only the syzygies of the
base ideal I of a rational map, instead of the whole collection of equations of the Rees algebra of I
(Proposition 3.43), which are required for the Jacobian dual matrix. Under the assumption that I is
of linear type, we also obtain a syzygy-based birationality criterion (Theorem 3.44).

In this section we use the same notations and conventions of §4.1.1. If the dominant rational
map F: X =X; X Xz X --- X Xy —-+ Y has an inverse, then it is denoted by

G:Y -5 (X1, Xas ., Xn)-

Each rational map Y --» X; C P't is defined by r; + T homogeneous polynomials g; =
{91,0.9i,1,---,Gir;} C S of the same degree. For eachi = 1,...,m, we set J; to be the ho-
mogeneous ideal generated by g;.

Jacobian dual matrices and the main criterion

We begin this section with the following preliminary lemma which is based on [16, Lemma 1],
[129, Proposition 2.1] and [46, Theorem 2.18].

Lemma 3.36. Assume that F is a birational map with inverse §. Let 1 = (f) and 1 =
(1),...,Jm = (8m). Then, the identity map of K[X,y] induces a K-algebra isomorphism between
the Rees algebra Ry (1) and the multi-graded Rees algebra Rs(J1 ® J2 D -+ D Jm).

Proof. First we note that both algebras can be identified as a quotient of R ®y S = #ﬁlb)' The
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3.3. Multi-graded Jacobian dual criterion of birationality

algebra Ry (I) has a presentation given by

kix
X [yl — Rgr(I) = RIft]
(a1 B L] am)
Yyi fit.
LetJ = (J,a1,...,am)/(a1,...,am) denote the kernel of this map. Since Y can be identified with

Proj(K[f]) and the two algebras K[f] and k[ft] are isomorphic, then we get b = Ker(k[y] — k[f]) =
Ker(k[y] — kIft]) C J, as required.
Similarly, the algebra Rs(J1 @ - - - @ Jm ) has a presentation

kE’][X] - Rs(J1®--®Jm)=Slgit1,...,8mtml

Xij = Gijti

We denote by J = (J,b)/b the kernel of this map. Foreachi=1,..., m, we can identify X; with
Proj(K(gi]) and as before we get a; = Ker(K[x;] — Klgi]) = Ker(k[x;] — klgiti]) C 7.

Since now we can regard Rg (1) and Rs(J1 @ - -+ @ Jm) as quotients of W]L‘ﬂ,b), then it is
enough to prove that J C (J,a1,...,am) and that J C (J,b).

Let F(y,X1,...,Xm) € J be multi-homogeneous, then we have

.....

and using the multi-homogeneity of F we get F(y, g1,...,8m) = 0 € S. From the canonical injection
S = k[f] <— R we make the substitution y; — f;, and we obtain

F(f,gi(f),....gm(f)) =0€ R

By the assumption of F being birational, there exist nonzero multi-homogeneous forms D1, ..., Dy,
in R, possibly of different multi-degrees, such that

g1(f) = Di1xq, g2(f) = Daxz, ..., gm(f) = Dinxpm.
Again, from the multi-homogeneity of F we get
F(f,g1(f),....gm(f) =D - - DX F(f,x1,...,Xm) =0 € R,

and so F(f,x7,...,Xm) = 0 because R is an integral domain. From the identification K[f] = K[ft]
we get
F(ft,xq,...,xm) = 0 € R[ft],

then by definition we get F € (J,a1,...,am). Therefore, J C (J,aq,...,0m).
We can prove the other containment with similar arguments. O
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Let (a7,...,am,J) C K[x,y] be the defining equations of the Rees algebra Rg(I). We shall
adopt the following notation.

Notation 3.37. For each 1 < i < m, let {hi1,...,hi,} be a minimal set of generators of the
multi-graded part of (a1,. .., am,J) of multi-degree

where x denotes arbitrary degree in'y. We denote by \p; the Jacobian matrix of the collection of

polynomials {hi 1, ..., hiy,} with respect to Xi, that is
hia hivn . _hi
Oxip  0OXqi] OXir;
hio hio  hip
0xi0 0% OXir,
Py =
ik, hig 0 Mg
0xi0 0% OXir,

Following [16,46,129], the matrix \b; will be called the xi-partial Jacobian dual matrix. We note
that its entries are polynomials in K[yl. Finally, the matrix obtained by concatenating all the \Dy’s in
the main diagonal

W 0 - 0
0 ¥y --- 0
b= C :
0 0 - Um

will be called the full Jacobian dual matrix.

The next proposition is based on [46, Proposition 2.15]. It shows that the ranks of the Jacobian
dual matrices are sensitive to the dimensions of the source and the target.

Proposition 3.38. Let F : X1 X - -+ X Xjn —--+ Y be a dominant rational map. Then, we have the
Jfollowing inequalities:

dim(X7) + - -+ + dim(Xy,) — dim(Y) <

.

—_

1

m

i — Y ranks(1h; @) S)- (3.12)
i=1

ranks (i ®kpy) S) < riforeachi=1,...,m. (3.13)

Proof. We begin with the first inequality. For each T < 1 < m. Let E; be the S-module E; =
Cokers (P! @y S) with presentation

. Wi®ky S )
Ski L5 8Tt L Ep - 0.
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The direct sum E =E; G E; & - - - ® By is an S-module with presentation

V' ®ky S
-

S @Sk q... @Sk st gsntl g g8t L E 0.

By the definition of the Jacobian dual matrices we have that I; (x - ') C J, and we saw in the proof
of Lemma 3.36 that b C J. Hence, we get a canonical surjective homomorphism Symg (E) — Rgr(I)
of S-algebras given by

o Symg(E) = S[x]/I1(x - (1|)t Rk ly] S)) = Kly] [x]/(b, Ii(x- wt)) —» R[y]/(b, Ii(x- tl)t))
— R (1).

Following [132], we have that Rs (E) = Symg (E)/T where T represents the S-torsion submodule
of Symg (E). Let G € T, there exists some s € S \ O such that s - G = 0 € Symg/(E). By using the
isomorphisms S = K[f] = K[ft] C Rg(I), we can see that

0=ua(s-G) =a(s)x(G) = s(ft)x(G) € Rg(I)

where s(ft) # 0. Since Rg(I) is an integral domain then it follows that «(G) = 0, and so we have a
canonical surjective homomorphism

Rs(E) — Rg(I) (3.14)

of S-algebras.
Finally, from Theorem 1.27 we get

dim (Rg(I)) < dim (Rs(E))

m m
dim(R) + 1 < dim(S) + m+ > 71— ) ranks(wh; Ry S).

i=1 i=1

and using the equality dim(R) = dim(A) + - - - 4+ dim (A, ), we substitute

m m
dim(Xy) 4 -+ + dim(Xp) + m+1 <dim(Y) + T+ m+ > 11— ) ranks(1h; Ry S)

i=1 i=1

dim(X7) + - - - + dim(Xyn) — dim(Y)

nl\/]a

Z ranks (i @iy ).

Now, we turn to the proof of the second claimed inequality. We follow one of the steps in the proof
of [16, Proposition 3]. Fixi=1,...,m. Wehave that A1 Q- - Qk Ai_1 Ok Air1 k- Rk Am
is an integral domain, and let us denote by L its quotient field. Let X = Proj (L[Xﬂ / (ai)), we define
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a rational map
F X, --» Y =Proj(S') Cc P}

given by the classes of fo,...,fs inside L[x;i]/(a;), and we denote S’ := L[f]. Using the field
inclusion K < L we can check that any polynomial in the defining equations of the Rees algebra
Rr(I) is also contained in the defining equations of the Rees algebra R x,]/(a;) (I) In particular,
we have that the row space of i @y S is contained in the row space of U’ QL [y] S/, where |/
denotes the Jacobian dual matrix of F’. Hence, ranks (\; ®jy) S) < ranks/ (P’ @y S’) < 74, and
the last inequality follows from [46, Corollary 2.16] or (3.12). U

The following birationality criterion is the main result of this section; it is the multi-graded
version of [46, Theorem 2.18] and [16, Theorem 2].

Theorem 3.39. Let F : Xy X -+ X Xyy —-+ Y be a dominant rational map. Then, the following
three conditions are equivalent:

(i) F is birational.
(ii) ranks(\; Rky] S)=mr; foreachi=1,...,m.
(iii) rankg(\{ Rkly] S)=r1+12+- - +Tm.

In addition, if F is birational then its inverse is of the form G : Y —--+» Xy X - -+ X Xy, where
each map Y --+ X is given by the signed ordered maximal minors of an vy x (ri + 1) submatrix of

Vi of rank 1.

Proof. (i) = (ii). Let us suppose that F is birational. From Lemma 3.36 we get an isomor-
phism Rr(I) = Rs(J1 @ - -+ @ Jm) induced by the identity of K[x,y]. So we obtain the equality

(J,a1,...,am) = (J, b) that in particular gives us
(a1, am)i0, 1,00« ) =1@0)] « 0. 1.0 (3.15)
—Y 7 e

foreachi =1,..., m. By reducing modulo b, the right hand side of (3.15) yields a presentation
0— [(3, b)/b](*,o,...J,...,O) — S[Xi] — SymS (gi) —0

of the symmetric algebra Symg (g;) of g;. On the other hand, from the definition of Jacobian dual
matrices we have

[(Toar,.sam)/bl o 1 0. = 11 (Xi- (Wi @iy S))-

..........

Let Syzg(gi) be the matrix of syzygies of g;. By the two previous reductions of (3.15), we obtain

I (xi - (W] ®kiy1 S)) = L1 (xq - Syzs (g1)). (3.16)
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Since both matrices |} ®xk[y] S and Syzg (g;) have entries in S, the column space of Syzg (g ) is equal
to the one of P} ®[y)S. Finally, the fact that ranks (Syzg (gi)) = i implies that rankg (Wt Ry S) =
Ti.

(it) = (i). We assume that ranks (i ®ypy S) = 7 foreachi = 1,...,m. Leti =
1,...,m. Let Mj be ari x (r; + 1) submatrix of \; such that rankg (Mi Rk ly] S) = 1i. De-
note by Ao (y), A1(y),- -+, Ay (y) the ordered signed minors of M}. The Hilbert-Koszul lemma
([46, Propositon 2.1]) implies that the vector eq Ay, (y) — epAq(y) belongs to the column space of

.......... %)
we get Xi,aAb (Y) - Xi,bAa(Y) S [(j, at,..., am)](o ..... 1,..,0,%)"
Making a substitution via the canonical homomorphism K[x,y] — Rg(I), we automatically get

Xi.aAp (f) —x1pAa(f) =0 € R, forevery pair a, b.
From the inclusion S = k[f] = K[ft] C Rgr(I) and the rank assumption, we have that the tuple

(Ao(f),.... Ar (F))

does not vanishon R. Let G: Y --» X7 X --- X X;, where each map Y — Xj is given by the tuple
(Ao(y), ..., Ar(¥)) ®kiy) S. We have proven that § is the inverse of J.
(i1) & (iii). This part follows from the inequalities of (3.13) and the fact that ranks (P ®y(yS) =

Zin;] rankg (lbl ®k[y] S) ]

To illustrate this theorem, we provide two corollaries. The first one is a rigorous translation of
birationality in terms of an isomorphism between the corresponding Rees algebras; this result is
the multi-graded version of [129, Proposition 2.1]. The second is a specific birationality criterion
dedicated to some particular monomial maps.

Corollary 3.40. The rational map F : X = Xq X -+ X Xy -=+ Y is birational with inverse G if
and only if F is dominant, the image of G is X, and the identity map of K[x,y] induces a K-algebra
isomorphism between the Rees algebra Ry (1) and the multi-graded Rees algebra Rs(J1 & J2 @
P ] m)'

Proof. One implication was proved in Lemma 3.36. Let us assume that J and G are dominant and
the identity map of K[x, y] induces an isomorphism between R (I) and Rs(J1 & - - & Jm).

As in Proposition 3.38, let E = Cokers({* ®ky) S). Identity (3.16) gives us a canonical
isomorphism of S-algebras

Symg(E) = Symg(J1 & - & Jm).
From the assumption Rs(J1 & - - ® Jm) = Rg(I), we get the following isomorphisms

Rs(B) =Rs(J1 @ -+ @ Jm) = Rr(1),
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3.3. Multi-graded Jacobian dual criterion of birationality

which are induced by the identity map on K[x, y].
Performing the same computation of Proposition 3.38, now we get

dim(S) + Z(Ti + 1) —ranks (Y ®ypy) S) = dim(R) + 1

i=1

m
dim(Y) + m+ 1+ Y 7y —ranks(h @y S) = dim(Xq) + -+ + dim (X ) + m 4 1.

i=1

Since F and G are dominant, we have dim(Y) = dim(X;) + - -+ + dim(X; ). So it follows that
ranks (Y @iy S) = 2 {4 Ti

Therefore, from Theorem 3.39 we have that F is birational. Let us denote by G its inverse. Let
J4,- .., ] be the base ideals of §’. Applying Lemma 3.36, we have that the identity map of K[x, y]
induces the following isomorphisms

Rs(J1@ - @) =Rr(D) =Rs(J1 D+ @ Jm)-

In particular, we have an isomorphism between the symmetric algebras of J; & --- @ J;, and
J4 @ - @ Jh, over S, which implies an equality between their syzygies. Therefore, the tuples
defining G and G’ are proportional and so they define the same rational map. 0

Now, we focus on the case of a monomial multi-graded rational map J : (P1 ) ® 5 PS. We
assume that I = (x*0,x%1, ..., x%s), where each oy = (&i.1,..., i 2s) is a vector of 2s entries,
and x*t denotes the monomial

o KT X2 Xi2s—1 , Xq2s

X =X10X%11 " X500 Xs1

In this setting, the presentation (3.4) of R(I) can be encoded by the following matrix:

€1 €2 ... €25 &0, x1.1 e g
M = . . . . , (3.17)
x0,2s ®12s ... Xg2sg
1 1 1

where eq, ez, ...exs are the first 2s unit vectors in Z25t 1. For any integer vector 3 € 7351 we
denote by xy® the following monomial

B1y B2 . yBas—1yB2s o B2st ?zwz_

B _ . B3s+1
Xy" =X30%113 s0 %51 Y0 Y s ‘

..y

The ideal of defining equations of R(I) is a toric ideal (see [138, Chapter 4]). It is generated by the
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3.3. Multi-graded Jacobian dual criterion of birationality

following binomials
7= (xy® —xy IMBp=0, p=p"—p, p*.p">0). (3.18)

The following corollary contains a very effective way of testing the birationality of I, which can
be done for instance by using Hermite normal form algorithms.

Corollary 3.41. Let F : (P1 ) * —_5 PS be a monomial dominant multi-graded rational map. Let A
be the submatrix of M in (6.3) given by the last s + 1 columns. Then, F is birational if and only if
the following conditions are satisfied for eachi=1,...,s:

{yezZ' | Ay =eai1—exn} #0. (3.19)
Proof. From Theorem 3.39 we only need to check that

(0 T .“O*)#O foreach i1i=1,...,m.

By the description of (3.18), this inequality is equivalent to the solution of the systems of equations
given in (3.19). U

Linear syzygies and some consequences

The birationality criterion provided in Theorem 3.39 requires the computation of the equations
of the Rees algebra of the base ideal of a rational map. In this subsection, we investigate how the
syzygies of the base ideal can be used instead in order to deduce, or to characterize, the birationality
of a multi-graded rational map.

Notation 3.42. Let @ be the matrix of syzygies of | whose entries are multi-homogeneous polynomials.
We denote by @1 the submatrix of © whose columns are the columns of \p corresponding to syzygies
of I of multi-degree (1,...,0), (0,1,0,...),..., 0r (0,...,1). The matrix @1 is called the linear part
of the matrix .

The following proposition is based on [46, Theorem 3.2] and [16, Proposition 3].

Proposition 3.43. Let F : P x ... x P™ ——s P"""FtT™m he q dominant rational map. If
rank(@1) =11 + -+« + T, then F is birational.

Proof. We choose a matrix p with entries in S such thaty - @1 = x - p. Let E = Coker(p), then the
previous equality gives us the isomorphism Symy (Coker(¢1)) = Symg (E). We present the Rees
algebras Rr(Coker(¢1)) and Rs(E) by

K[x,y]
(Ii(y - @1).77)

klx,y]

Rr(Coker(@1)) = & 0.7

and Rg(E) =
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where T represents the R-torsion of Symp (Coker(¢@1)) and T7 is the S-torsion of Symg(E), both
lifted to K[x, y]. Since S is an integral domain and E has rank, then Rg(E) is an integral domain and
so (I1(x - p),T2) is a prime ideal.

Let G(x,y) € 77. There exists F(x) € K[x] \ 0 such that F(x)G(x,y) € I1 (y - 1) C (I1(x-
p),T2). We assume G(x,y) € (I;(x - p),T2), then it follows that F(x) € T, due to the fact that
(I1(x - p), T2) is prime and the ideal I; (x - p) is generated by multi-homogeneous polynomials with
positive degree on y. Thus, there exists a polynomial H(y) € K[y] \ O such that H(y)F(x) € I;(x- p).
Since I; (x - p) is generated by syzygies of I, when we substitute y; — fj, we get H(f)F(x) = 0.
From the fact that H(f) # O (note that here we have S = K][y]), it follows the contradiction F(x) = 0.

Therefore, we have a surjective R-algebra map Rg(Coker(@1)) - Rs(E), and so we get the
inequality

dim(Rs(E)) < dim(Rg(Coker(¢1)))
dim(S) + Z(Ti + 1) —rank(p) < dim(R) + 1+ Zri —rank(@1).

i=1 i=1
Substituting rank(¢@1) = Y (% 1, dim(S) =1+ Y " ri and dim(R) = > ", (ri + 1), we get

m

Z ri < rank(p).

i=1

The inclusion 17 (x - p) C I (x . ll)t) gives us the inequality rank(p) < rank(\{*). Combining this
with Proposition 3.38 we necessarily get ranks (1 Qkly] S) = Z?; T;. Therefore, the result follows
from Theorem 3.39. ]

The above proposition gives a sufficient syzyzy-based property to ensure birationality. In the next
result we prove that it becomes also a necessary condition under the assumption that the base ideal
is of linear type. This effective birationality criterion is the multi-graded version of [46, Proposition
3.4].

Theorem 3.44. LetF : P™1 x - .- x P™™ ——» PT1F"t"m he g rational map whose base ideal 1 = (f)
is of linear type. Then, the following conditions are equivalent:

(i) F is birational.
(ii) rank(@q) =11+ - + T

To prove this theorem, we will need the following preliminary lemma on the torsion of symmetric
algebras in the multi-graded setting. It is essentially an adaptation of Lemma 1.10 to the multi-graded
case. As we are following the general setup of [132], Rgr(I1 @ - - @& [y) means Symy (I1 &--- B 11)
modulo its R-torsion.
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3.3. Multi-graded Jacobian dual criterion of birationality

Lemma 3.45. Let R be a Noetherian commutative ring and 11, ..., 1, be ideals having rank. Then,
we have the following relation between (multi-graded) symmetric and Rees algebras

SymR(h - In)

Re(li®---l,) = .
U (Symp(ly @ @ 1))

In particular, if R is local with maximal ideal m and each 1; is m-primary then we have

SymR(I1 @"'@In)
Re(li®---ly) = .
" Hf?n(SymR(h @‘--@In))

Proof. As part of the proof of this lemma we shall obtain that Rg (17 @ - - - @ I}, ) coincides with the
usual multi-graded Rees algebra

:RR(I1>~--,In) = @ Iﬁl I:-’Lntﬁl t}f

By the assumption that each ideal I; has rank then we have grade(I;) > 1 (see e.g. [19, proof of
Corollary 1.4.7]), and from the Unmixedness Theorem (see e.g. [19, Exercise 1.2.21], [95, Theorem
125]) we can assume that I; = (f;) where f; = (fi1,...,fim,) and each f; ; is an R-regular element.

Let A be the polynomial ring A = R[Ty,...,Tn] where Ty = {Ti1,..., Ty m, ) foreach i =
1,...,m. The symmetric algebra Symg (17 @ - - - @ I;,) can easily be presented by

029 =A—Symg(ly®---dL) =0,

where J1 = (11 (Tq - Syz(fy)),..., 1 (Ty - Syz(fn))). On the other hand, the Rees algebra can be
presented by

0—-J—=A— Rg(ly,...,I.)—0

T; — fity,
where J is the ideal generated by the multi-homogeneous polynomials F(T1,..., Ty ) € 2 such that
F(fy,...,f) = 0. Therefore, we want to analyze the canonical exact sequence

0—(3/97) = Symg(l; @ --- @ 1,,) = Re(Iy,...,1,) — 0.

It is clear that the R-torsion submodule of Symg (17 & - - - & I,,) is contained in Ker(«), and in
particular, by the assumption on the ideals I;, the elements of Symg (17 & - - - & I,,) annihilated by
some power (17 ... I,)" are also contained in Ker(«). If we prove that any element in Ker(«) is
contained in the R-torsion submodule of Symg(I; & - - - & I5,) and is annihilated by some power
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(Iy -+~ In)l, then we are done because we get the following equality and isomorphism

_ SymR(Il @"'@In)
H%...In (SymR(Il b---D In))

fRR(I]@"'@In) %fRR(h,...,In).

By the assumption that all the f; j are R-regular, the proof of the two previous assertions will
follow from the next claim.
Claim. Let F € J. Then, for any element of the form fy ;, 25, - - - fr j,, (i.e. a generator of Iy - - - Iy),
there exists some integer 1 > O such that (fq;,f2;, - -~ fn,jn)lF € Jy.
Proof of the claim. Fix any generators f1 5, € I1,f25, € I2,...,fnj, € In. Let F € J be multi-
homogeneous of multi-degree (d1, d2, ..., dn,) we shall proceed by inductionon d = d; +- - -+ dn,.
In the inductive step, it is enough to prove that there exists integers &1 > 0,..., ¢ = 0 such that

X1 X2 [0
fl,j1f2,j2 - fnSnF € Jy.

If d = 1 then F clearly satisfies the previous condition. So, we assume that d > 1 and by simply
ordering the variables T; we may suppose that d; > 1. We can write F in the following way

my
F= Z T],ka(TLk,...,T],m],Tz,...,Tn>
k=1

Then we define the following polynomial
m
G = Z T],ka<f1,k5 e 7f1,m] ’f29 e ,fn>
k=1
which belong J;. We compute

fd1 —1 fdz

di—1d; . e _
15 123, T " G=

dn ¢
fﬂ,jnF T1 J1 22 jn

my

di—1,d d
ZTLk(f]j).] fzﬁz---fn’“jnHk(TLk,...,TLmVTz,...,Tn)_
k=1

di—1+d; d
T TZJZ...TngnHk(ﬁ,k,...,ﬁ,m],fz,...,fn)),

where each polynomial

di—1,.d> d
r g 8 M (T Ty a0 T )
di—14d; d
_TL]'] Tz,jz"'Tn,lenHk<f]’k"“’ﬁ’ml’fz""’fn)

belongs to J and has total degree smaller than d. Therefore, the proof of the claim follows by
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induction. O

Proof of Theorem 3.44. (ii) = (1) Since [ is of linear type, the polynomials of f are algebraically
independent. Therefore, this implication follows from Proposition 3.43.

(1) = (ii) From the assumption of F being birational, let g1, ..., gm be a set of representatives
of the inverse map G : P71 m — 5 P71 x ... x PTm,

Since I is of linear type, we have 3 = I (y - @) and so we obtain the following equality

Ly @) =T (x-bY). (3.20)

Due to the isomorphism obtained in Lemma 3.36, the module (g1) & - - - & (gm ) has the following
presentation

t
SP Y grit T ™ (0 @ @ (gn) — 0.

We also also consider the module E = Coker (1) with presentation
RP 2L RritTmtl L E 0.

From the equality (3.20) we get an isomorphism Symg ((g1 DD (gm)) = Symg (E) induced
by the identity map of K[x, y]. Then, we have the following

Symg((g1) @+ @ (gm)) = Symg(E) - Rg(I).

Let T be the S-torsion of Symg ((g1) @ - -+ @ (gm)) and A be the isomorphism

A:Syms((g1) @ -~ @ (gm)) — Symg(E)
If we prove that A(7) is contained in the R-torsion of Symg (E), we will get the following epimorphims

Rs((g1) @ @ (gm)) - Rr(E) - Rg(I).

Therefore, from Lemma 3.36 we get Rs((g1) B+ P (gm)) = Rr(E) = Rg(I) and so rank(E) =1
which implies the statement.

Thus we shall focus on the claim below:
Claim: A(7) is contained in the R-torsion of Symg (E).
Proof of the claim. First, by applying Lemma 3.45 we get that there exists some | such that
((g1)---(gm))"T = 0. Here, we are considering (g1) - - - (gm) C S C Symg((g1) @ --- @ (gm)),

thus ((g1 JEEE (gm))l lifts to K[x, y] exactly as ((g1) e (gm))l. We map into Symp (E) using the
canonical map

kix,y] — Symg(E)

Xi — Xi, Yi— €4,
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where e; are the homogeneous generators of E given by its presentation. Summarizing, we have that

(1) (8m)'T) = ((g1(€)) -+ (gm(€)) 'AT).

We have the canonical surjections

Also, we can make the identification
o2(¢1(((1(e) -+ (gm(e))")) = (&1 (F1) - (gm(F1)))" € Re(D),

and from the birationality assumption we have that ((g1 (ft))--- (gm(f’c)))l # 0. Hence, it follows
that

¢1(((21(e))- - (gm(€)) ") b1 (A(T)) =0 € Re ()

with ¢ (((g1 (e))--- (gm(e)))l) # 0. Since Rg(E) is an integral domain, we get our claim
b1 ()\(‘.T)) =0. O

3.4 Rational maps in the projective plane with saturated base ideal

In this section we focus on dominant rational maps F : P2 --» P2 whose base ideal I is saturated
and has dimension 1. To emphasize our interest in these cases, we recall, for instance, that the base
ideal of birational maps of degree d < 4 must be saturated (see [67, Corollary 1.23]).

A straightforward application of the Auslander-Buchsbaum formula yields that the conditions of
I being saturated and perfect are equivalent. Therefore, we will assume that I has a Hilbert-Burch
presentation (see e.g. [47, Theorem 20.15]). We adopt Setup 3.31 with v = 2, and also the following.

Setup 3.46. Assume that 1 = (o, f1,f2) C R(= Klxo, x1,x2]) is saturated and dim(R/1) = 1. The
presentation of 1 is given by

0 R(—d—p1) ®BR(—d— ) B R(—=d)® 51— 0, (3.21)

where 1 is generated by the maximal minors of @, w1 + w2 = d and w1 < wa. The matrix of @,
which we just denote by @, is

ap,1 Qo2
© = a; ai2
azi azp

The main result of this section is Theorem 3.59 where we derive a very simple birationality
criterion for rational maps J whose base ideal satisfy (3.21) with the additional assumption that
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3.4. Rational maps in the projective plane with saturated base ideal

t; = 1. This result is based on a complete description of the equations of the Rees algebra of I in
this setting, which is given in Theorem 3.57.

Before going further, we first notice that the degree of I under our assumptions is connected to
the couple of integers (L1, t2) defined in (3.21).

Proposition 3.47. Let F : P? —-» P2 be a dominant rational map with a dimension 1 base ideal 1
that is saturated. Then,

deg(F) < miuz

with equality if and only if 1 is locally a complete intersection at its minimal primes.

Proof. The degree formula of Theorem 3.16 gives us deg(F) = d? — e(B). We also know that
deg(B) < e(B) and deg(B) = e(B) if and only if I is locally a complete intersection at its minimal
primes. Now, using the resolution (3.21) and a simple computation with Hilbert polynomials , we get

deg(B) = Pg,1(t) = <t;2> —3<t_czl+2> n <t—d—2m +2> N (t—d—zuz+2>

= d? — .
Therefore, we deduce that deg(F) < wyu2 and deg(F) = pqpy if and only if I is locally a complete
intersection at its minimal primes. O
Properties of saturated base ideals

Below, we gather three technical results on some properties of the base ideal I under our
assumptions. We will need them in the sequel.

Lemma 3.48. Assume that dim(R/1) = 1 and 1 is saturated. Then, the following statements hold.:
(i) HL(R) # 0 if and only if j = 2.

(ii) Assy (H%(R)) is a finite set and equal to

Assg (Hf(R)) = Assg (Extg(R/LR)) = Assg (R/1).

Proof. (i) From the Grothendieck vanishing theorem [17, Theorem 6.1.2] we get that H’I (R)=0
for j > 3. The connection of grade(I) with local cohomology [17, Theorem 6.2.7] implies that
HJI(R) =0 forj < 2and H%(R) # 0. Finally, a graded version of the Lichtenbaum-Hartshorne
theorem [17, Theorem 14.1.16] yields H%(R) =0.

(i1) From [109, Proposition 1.1(b)] we have that Assg (H%(R)) = Assg (EXtZR(R/L R)). The
module ExtzR(R /1, R) is the so-called canonical module wg 1, and its associated primes are given
by the unmixed part [*" of I (see [126, page 250, Lemma 1.9(c)]), that is

Assg (Ext3(R/LR)) = {p € Assg(R/I) | dim(R/p) = 1}.
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Since dim(R) = 3, we finally get that ["" coincides with I%® = 1. O
Using the present hypotheses we would like to better exploit the exact sequence
0 — X — Sym(I) — R(I) — 0.

We recall that the symmetric algebra can be easily described with the presentation (3.21) of I, and
its defining equations are given by

(91.92) = (Yo, y1,Y2) - @. (3.22)
Hence, we have an isomorphism
Sym(I) =21/ (g1,92).

We also have that {g1, g2} is a regular sequence in 2 (see [133, Corollary 2.2]) and so the corre-
sponding Koszul complex

()

—l

Le: 0 2(—d,—2) A—pr,—1) & Al—pa,—1) 992 o (3.23)
is exact.

Lemma 3.49. Assume that dim(R/1) = 1, and 1 is saturated. Then, the torsion submodule X is
described by the exact sequence
g1
e

Proof. We consider the double complex L, ®g C7. Computing with the second filtration we obtain
the spectral sequence

0 — K — Hf (A)(~d,~2) HE () (1, —1) @ HE (A) (—pa2, —1).

pp—a _ H{’(Sym(l)) ifq=0
2 0 otherwise.

On the other hand, by using the first filtration we get that '"E; "% = HJ(L,). Hence, from
Lemma 3.48(1), the only row that does not vanish in IE;" is given by the complex

Hf(Ls): 0 — Hf(A)(—d.—2) — H (A)(—w1.—1) @ Hf (A)(—p2.—1) — HF (A) — 0.
Thus we obtain

ig-pa _ ) Hp (Hf(Ls))  ifq=2
2 0 otherwise.
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Since both spectral sequences collapse, from Lemma 1.10 we get
K =HY (Sym(I)) = H, (Hf (L.)),
and so the assertion follows. O

Notation 3.50. For z = xi orz =y; and F € 2, we denote with deg, (F) the maximal degree of the
monomials of F in terms of z.

Using the presentation matrix ¢ of I, we characterize when I is of linear type.

Lemma 3.51. Assume that dim(R/1) = 1 and 1 is saturated. Then, 1 is of linear type if and only if
I1 (@) is an m-primary ideal.

Proof. Using Setup 3.46, we have that g1 = ap.1yo + a1,1y1 + az,1y2 and g2 = ap2yo +
aj2y1 +az2yo.

(=) Let us assume that I (@) is not m-primary. Then, we have that I (@) D I5(¢@) = I and
ht(I1 (¢)) = ht(I) = 2. So the minimal primes of I (@) are contained in the set of associated
primes of I. In particular, there exists some p € Assg(R/I) with I1 (@) C p. From Lemma 3.48(i1)
we have that p € Assg (H% (R)), and this implies the existence of an element 0 # v € H% (R) that is
annihilated by I (). Considering v as an element in H%(SZ[) we get g1 - v = gz - v = 0. Therefore,
from Lemma 3.49 we obtain X # 0.

(&) Here we suppose that 17 (@) is m-primary. By contradiction, we assume X # 0, and choose
0 #w € XK. Since H%(Ql) = H%(R) ®k S, w can be written as w = Z}:1 vi ®k My where
vi € H2(R) and m; is a monomial in S. For each 0 < j < 2, we have a unique decomposition

w=wj +wj,

where wj # 0 is obtained by adding all the terms vi ®x m; such that the value of degy]_ (my) is
maximal. From the condition g7 -w = g2 -w = 0, we automatically get that a;j 1 -wj = a; 2-wj = 0.
Therefore, we have obtained that I () is composed of zero divisors in H% (20). By the isomorphism
H%(Ql) = H%(R) ®k S and Lemma 3.48(ii), we have that Assg (H%(Ql)) = Assg (H%(R)) =
Assg (R/I). Finally, the prime avoidance lemma implies that I (@) C p for some p € Assg(R/I),
and this contradicts the fact that I is saturated. [

Remark 3.52. Asin [67], an alternative proof of Lemma 3.51 can be obtained from either 71, Section
5] or [134, Proposition 3.7]. Indeed, one can note that 1 is locally a complete intersection at its
minimal primes if and only if 11 (@) is an m-primary ideal. Therefore, the result follows from the
fact that 1 is an almost complete intersection.

An effective birationality criterion in the case |t = 1

In this subsection, we focus on computing the defining equations of the Rees algebra in the case
= 1 (Setup 3.46). As a corollary of this computation, we obtain a simple characterization of
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birationality in the particular case 1y = 1 (Theorem 3.59) by means of the Jacobian dual criterion
(see Section 3.3, but also [46]). Our proof is inspired by the method used in [39]. We shall see that
it is enough to treat the following special case.

Setup 3.53. Assume that dim(R/1) = 1 and 1 is saturated. Suppose that the presentation matrix in
(3.21) is of the form

X0 Po
=1 —Xx1 P1
0 P2

Here we have that g1 = xoYo — x1Y1 and g2 =PpoYo + P1Y1 + p2Y2.

We now give a version of Lemma 3.49 that uses the more amenable ideal (xp,x1) as the support
of the local cohomology modules.

Lemma 3.54. Using Setup 3.53, the following statements hold:
(i) K =Hp, ) (Sym(I)).

(ii) The torsion submodule X is determined by the following exact sequence
—92
()
s

(iii) Via this identification, we have that X is generated by

O—>J<—>H%

oo () (—d.=2) HZ, () (=1, -1 @ HE . (A)(—d+1,-1),

(x0,x1) (x0.%1)

K = Q[-{wn lo<n<d—2 and gz-wn:O}

where each wn, is of the form

d—2-—m

1 I 5
wn= ) arai¥e 0 Y€ [H(XO,XI)(QU(O,—Z)}
i—0 %o X

n—d
Proof. (i) From Lemma 3.49 we have that any F € X can be written as F = Z}:] aiyYi, where
each a; € H%(R), and satisfies g1 - F = g2 - F = 0. Since g1 = xoyo — x1Y1, we can conclude
that there exists some u > 0 such that x§F = xj'F = 0. From the fact that I C (xo,x7), we get a
neater description of K given by
0 0 0 0
g{ — H(XO,X]) (g{) — H(XO,X]) (HI (Sym(l))) — H(Xo,X]) (Sym(l)) .
(il) To obtain the required exact sequence we follow the same arguments as in the proof of

Lemma 3.49. We consider the double complex L, Qg CFXO 1)’ where L, is the Koszul complex
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of (3.23). Examining the spectral sequences corresponding to the first and second filtrations of
Le ®r C Txoxy)> W€ obtain

K =H, ,(Sym(I)) = Hp (HE,_ (Ls)).

(x0,x1)

From this isomorphism we get the claimed exact sequence.

(iii) First we note that H%XO’X] ) () = X;X] k[xoq,xf1 ,X2,Y0,Y1,Y2l. In this part, we describe

a set of generators of the kernel of the multiplication map

2 91, 192
Hi ) () (=4, =2) S5 HE ) () (—d +1,-1). (3.24)
Using that g7 = xoyo — Xx1Yy1 does not depend on the variables x, and y;, then a set of

generators of the kernel of this map is given by just considering elements inside the subring
L [xo X7 ! y0,y1], then we expand it as follows:

X0X1 k[xo ’X1 ’yo y]]
m .
F=Y FySil
i=1

[xg] ,XT]]. The condition (xoyo — x1y1)F = 0 gives the relations

Br1+1 m+1 Bi+1 Bi1

XOF],y y _O X1 meo y] :O, and (XOFlyO — X1 Fl 1y0 )yii =0

forl+1<ig<m
We can easily conclude that a set of generators of the kernel of (3.24) is given by elements of the
form

1 T 1 m
WHO wyo Yy + - F Xg)nT‘Ji

where m > 0. Therefore, to conclude we only need to take into account the shifting of —d in the
grading part corresponding with R, and intersect with the elements that are also anihilated by the
other equation g;. O

Now, we describe the process of computing the so-called Sylvester forms that have been success-
fully used in several papers like [39,67,78].

Algorithm 3.55. Using Setup 3.53, we compute iteratively the set of forms Sylv . (@), as follows.
(I) Seti=0, Fo = gz and 8ylv(y_ +,)(®) = 0.

(II) While Fy € (xo,X1) we perform the following steps:
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3.4. Rational maps in the projective plane with saturated base ideal

(a) Write Fy in the convenient form Fy = (Fi)xoxo + (Fi)x]m to get the equation

(91)_( Yo —y1><xo>
Fi (Fi)yy  (Fily, x1 )’

Then, the (1 + 1)-th Sylvester form is computed with the determinant

Yo —Yi1
Fip 1 = det .
b1 = e ( (Fi)y, (Fi)y, )

(b) Set 8yIv(xy x11 (@) = 8yv(xy x,) (@) U{Fiy1}
(c) Seti=1+1.

(IlI) Set m = iand return the set of computed forms Sylv (. ,1(®) ={F1,...,Fm}
We emphasize for later use that bideg(F;) = (d —1—1,1+ 1) foreach 0 < i< m.
The next lemma relates the torsion of the symmetric algebra with the Sylvester forms.
Lemma 3.56. In Algorithm 3.55, for each 1 < 1 < m the following statements hold:
(i) {g1,Fi}is a regular sequence.

(ii) There is an isomorphism
0: , i } ~ |2 2
[( Sym(1) (x0,x1) ) d—1—1 |:

Proof. The proof is obtained by induction on 1.
Leti = 1. Since {xo, X1} and {g1, g2} are regular sequences, from Wiebe’s lemma (see e.g. [93,
Proposition 3.8.1.6]) we get the following exact sequence

(%)

0= 2A/(x0,x1) 5 2A/(g1,92) ~——2 2/(g1,92)1, (3.25)

where F; is the first Sylvester form. Thus we have Fy ¢ (g1, g2), and since g7 is an irreducible
polynomial, we get that {g1, F1} is a regular sequence. From the fact that bideg(g,) = (d —1,1),
for any v € 2 with deg, (v) < d — 2 the exact sequence (3.25) gives the following equivalences

ve ((g1,92) : (x0.x1)) &= v € (g1,92.F1) &= v e (g1.F1).

[(91,F1 )}
(91) dfz.

In other words, we obtain the isomorphisms

[l2
Il2

,g2,F
[(O sym(1) (X0, X1 ))} d—2 [(9(193292)])} d—2
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3.4. Rational maps in the projective plane with saturated base ideal

Therefore, both conditions hold fori = 1.
Let 2 < i < m. By induction we assume that conditions (i) and (ii) are satisfied for i — 1.
Again, from Weibe’s lemma we get the exact sequence

X0

0 = 2A/(x0.x1) =5 A/(g71. Fi1) ~—2 [%/(g1. Fi_1)]%, (3.26)

where F; is the i-th Sylvester form. By the same previous argument, it is clear that (gq,F;) is a
regular sequence. Using the exactness of (3.26) and similar degree considerations, we have that

ve ((g1,Fiz1) : (x0.x1)) &< v € (g1,Fio1,F) <= v € (g1, Fy)

for any v € 2 with deg,(v) < d — 1 —i. Thus, we also have the isomorphisms

[((91511) : (Xo,X1))] - {(9151151)} ~ [(91,&)}
4 d—1—i d—1-1

(g1.Fi—1) (g91.Fi—1) L (g1)

Since deg, (Fi_1) =d—1—(i—1) and [Sym(I)]gd_z = [A/(g1 )]gd—z’ we get

((91.Fi—1) = (x0,%1)) [((91,F11) _ )}
[ @ F) |, (g s e )|

[l2

From the inductive hypothesis we already have

(g1,Fi—1)

. i—1 ~
[(O-Sym(l) (x0,%1) )} _[ (g1) :|d1(i1).

a—1—(i-1)

By assembling these isomorphisms we conclude that the condition (ii)

(9] ’Fi):|
d—1—1

[(0 ‘Sym(1) (XO’X1)i)]d—1—i B [ (91)

also holds for the form F;. Therefore, we have that both conditions are satisfied for all the Sylvester
forms. L]

The following theorem gives explicit generators for the presentation of R(I). It can be seen as a
natural generalization of both [39, Theorem 2.3] and [67, Theorem 2.7(1)].

Theorem 3.57. Let Sylv(y ) (@) be the set of Sylvester forms computed in Algorithm 3.55. Then,
the defining equations of R(1) are minimally generated by

{91’92} U Sylv(xo,x1)((p)-
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3.4. Rational maps in the projective plane with saturated base ideal

In particular, it is minimally generated in the bi-degrees
(1,1),(d—1,1),(d—2,2),...,(d—1T—m,m+1).

Proof. Lete =d—1—m. In Lemma 3.56(ii) we proved that

m] ~ ,Fm
[(0 'sym(1) (X0,%1) )L = [(9(191))]6

which implies that for any j > 0 we have

m+j ~ (glva) j
0 :sum(q) (x0,x7)™") = [( o (%0, % )’)] ) (3.27)
[( Sym(I) (%0, *1 )] e j (91) Sym(I) (%05 *1 e

Since Fin € (x0,%1) and g1 € (x0,x1), we deduce that the term on the right is always equal to zero.
From Lemma 3.54(1ii), a set of generators for X is given by elements of the form

d—2—n
1 .
Wn = ;) X})-HX?_] —n—iyg 2 ly% € [H%Xo,m ) (91) (0’ _2)} n—d
Hence, for any j > 0 we have that (x¢, X1 )m+j We_j = 0. The vanishing of the equation (3.27)
implies that we_j ¢ X for all j > 0. Therefore, the elements wq_2,Wq_1,..., W, generate XK.
Using the isomorphisms of Lemma 3.54(iii) and Lemma 3.56(ii), we identify wq_1_; as a multiple
of Fi, and this implies that Fy, F2, ..., Fy, is also a set of generators of K. Finally, simple degree
considerations yield that{g1, g2, F1,F2, ..., Fin} is a minimal set of generators. ]

We are now ready to provide our birationality criterion. We notice that from Proposition 3.47,
we have that the rational map JF is birational for d < 2 under our assumptions. Therefore, we only
need to consider the cases d > 3. Before stating the main result we make the following point.

Remark 3.58. In the presentation matrix ¢ of (3.21), if w1 = 1 and ht(17(@)) = 2 then the vector
space spanned by the linear forms of the first column has dimension 2. Therefore, in this case we
can make a linear change of coordinates and assume that @ is given as in Setup 3.53.

The following result covers a family of birational maps that include the classical de Jonquieres
maps (see e.g. [67, §2.1]).

Theorem 3.59. Let F : P? - P2 be a dominant rational map with a dimension 1 base ideal 1 that
is saturated. Suppose that @ in (3.21) satisfies 11 = 1 and d > 3. Then, F is birational if and only
if the following conditions are satisfied:

(i) ht(Ii (@) = 2.

(ii) After the linear change of coordinates of Remark 3.58, in Algorithm 3.55 we have m = d — 2.
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3.4. Rational maps in the projective plane with saturated base ideal

Proof. After a linear change of coordinates the condition of birationality remains invariant. From
the Jacobian dual criterion ([46, Theorem 2.18] or Theorem 3.39) we have that & is birational if
and only if there is another equation of bi-degree (1, ), and by Theorem 3.57 this is equivalent to
m=d-—2. O]

112



Chapter 4

Multiplicity of the saturated special fiber
ring of height two perfect ideals

Let R be a polynomial ring and I C R be a perfect ideal of height two minimally generated by
forms of the same degree. In this chapter, we provide a formula for the multiplicity of the saturated
special fiber ring of 1. Interestingly, this formula is equal to an elementary symmetric polynomial in
terms of the degrees of the syzygies of I. Applying ideas introduced in Chapter 3, we obtain the
value of the j-multiplicity of I and an effective method for determining the degree and birationality
of rational maps defined by homogeneous generators of .

4.1 Multiplicity of the saturated special fiber ring

The following will be assumed in the rest of this chapter.

Setup 4.1. Let K be a field, R be the polynomial ring R = K[xo, X1, ..., Xy}, and m be the maximal
irrelevant ideal m = (xo,X1,...,%Xy). Let I be a homogeneous ideal minimally generated by
I = (fo,f1,...,fs) C R where deg(fi) = dand s > r. Let S be the polynomial ring S =
kKlyo,yi,---.,Ysl, and A be the bigraded polynomial ring A = R @k S = K[x0,...,%Xr,Y0,---»Ysl.
Let Q be the special fiber ring Q = K[14] = Kkl[fo,f1,...,fs] of L

We assume that 1 is a perfect ideal of height two with Hilbert-Burch resolution of the form

S
0= PR(=d— ) B R(=d)* 510 4.1)
i=1

We also suppose that 1 satisfies the condition Gy, that is

u(ly) <dim(Rp) forall p € V(I) C Spec(R) such that ht(p) < v+ 1.
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4.1. Multiplicity of the saturated special fiber ring

We shall determine the multiplicity of the following algebra.

Definition 4.2 (Definition 3.3). The saturated special fiber ring of 1 is given by the algebra

The Rees algebra R(1) = @5_, I™t™ C RIt] can be presented as a quotient of 2/ by using the
map

Y:A — R(I) CRH
Yyi = fit.

We set bideg(x;) = (1,0), bideg(y;) = (0, 1) and bideg(t) = (—d, 1), which implies that ¥ is
bihomogeneous of degree zero, and so R(I) has a structure of bigraded 2A-algebra. If M is a bigraded
2-module and c a fixed integer, then we write

M, = @ M(cn)-

neZ

We remark that [M] . has a natural structure as a graded S-module.

e

As noted in Chapter 3, to study the algebra § (1) it is enough to consider the degree zero part in
the R-grading of the bigraded 2l-module HJ11 (R(I)) (see Lemma 2.2).

Remark 4.3. Let X be the scheme X = Projg o, (R(1)), where R(1) is only considered as a graded
R-algebra. From [47, Theorem A4.1], we obtain the following short exact sequence

0 = [R(D]y = H°(X,0x) — [Hy, (R(1))], — O.

P

By identifying Q = [R(I)], and §r(I) = HC (X, Ox), we obtain the short exact sequence

P

0— Q — Fr(D) — [HY (R(1)], — 0. 4.2)

P

Remark 4.4. From Proposition 3.7(1) and Lemma 3.8(i1) we have that (1) and [HJn (IR(I)H
have natural structures of finitely generated Q-modules.

0

The Rees algebra is a very difficult object to study, but, under the present conditions, we have
that the module [HJn (R(I))] o coincides with [HJn (Sym(I))] o (see Lemma 4.5(iii) below). So, the
main idea is to consider the symmetric algebra instead of the Rees algebra. From the presentation
(4.1) of I, we obtain the ideal

3:(9],---,95)211([90,---,95]’(P)
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4.1. Multiplicity of the saturated special fiber ring

of defining equations of the symmetric algebra. Thus, Sym(I) is a bigraded 2-algebra presented by
the quotient
Sym(I) = /7.

We have the following canonical short exact sequence relating both algebras
0— X — Sym(I) — R(I) — 0, (4.3)

where X is the R-torsion submodule of Sym(I).
We will consider the Koszul complex Ly = Ko(g1, ..., gs;2) associated to {g1,...,gs}:

Le: 0—2Lg—---—Li—---—> L —Lo

where
Li= /A [PA-w.—1)]. (4.4)
=1

This complex will not be exact in general, but the homology modules will have small enough Krull
dimension. It will give us an “approximate resolution” of the symmetric algebra (see e.g. [101],
[24]), from which we can read everything we need.

In the following lemma we gather some well-known properties of Sym(I) under the present
conditions, we include them for the sake of completeness.

Lemma 4.5. Using Setup 4.1, the following statements hold:
(i) dim (Sym(I)) = max (dim(R) 4+ 1, u(I)) = max (r+ 2,s + 1).
(i) X = Hy, (Sym(T)).
(iii) H, (R(I)) = HL (Sym(1)) forall i > 1.
(iv) If s < v+ 1, then Sym(1) is a complete intersection.
(v) Foralls > 1, Sym(1) is a complete intersection on the punctured spectrum of R.

Proof. (i) It follows from Theorem 1.26 and the condition Gy 1.
(i) It follows from Corollary 1.40 (also, see [104, §3.7]).
(iii) For each i > 1, the short exact sequence (4.3) yields the long exact sequence

HE, (X) — HY, (Sym(I)) — HY, (R(1)) — HY™ (X).

From part (ii) and [17, Corollary 2.1.7], we have that H:, (X) = H}J] (X) = 0, and so we obtain
the required isomorphism.
(iv) Using part (i), in this case we have that dim(Sym(I)) = r + 2. Hence, we get

ht(J) =dim(A) — (r+2)=(r+s+2)— (r+2) =s = u(d),

115



4.1. Multiplicity of the saturated special fiber ring

and so Sym(I) is a complete intersection.
(v) For each p € Spec(R) such that ht(p) < r+ 1, the same argument of part (i) now yields that
dim(Sym(I),,) = dim(R) + 1. Thus, we have

ht(d,) = dim(2A,) — dim(Sym(I)p) =dim(Ry) + s+ 1— (dim(Rp) + 1) =s = pu(dp).

Then, for i > 1, the homology module Hi(Lo) is supported on the maximal ideals of
Spec(R), but since the associated primes Assg (Hi(Lo)) are homogeneous, it necessarily gives that
Suppg (Hi(Le)) = {m}. Therefore, Sym(I)p is a complete intersection for p € Spec(R) \ {m}. O

The restriction to degree zero part in the R-grading of the equality X = HS (Sym(I))
(Lemma 4.5(i1)) and the short exact sequence (4.3) yield the following

0 — [H, (Sym(I))], =S —Q — 0, (4.5)

0

under the identifications [Sym(I)], = S and [R(I)], = Q.
The next proposition will be an important technical tool.

Proposition 4.6. Assume Setup 4.1. Then, we have the following isomorphisms of bigraded 2l-
modules
1—i e
H; (Hrm+1 (L.)) ~ JHRTT (Sym(I) ifi <7t
Hiy—1(Le) ifi>r+2,

where H;IH (Lo) represents the complex obtained after applying the functor H;f] (o) fo L,.

Proof. Let G** be the double complex G** = L, @ C&, where C®, is the Cech complex corre-
sponding with the maximal irrelevant ideal m.
Since we have that

_{1k[x5],x?1,...,x:1]®ks ifp=r+1 @6)

0 otherwise,

the spectral sequence coming from the first filtration is given by

—— HiF (L) ifg=T1+1
! 0 otherwise.

On the other hand, Lemma 4.5(v) implies that (L) p isexactforallp € Spec(R) \{m}. So, for all

i > 1,H;(L,) is supported on V(m) and the Grothendieck vanishing theorem (see e.g. [17, Theorem
6.1.2]) implies that

150

m(

Hi(L.)) =0

for all j > 1. Also, we have that
HY, (Hi(L,)) = Hi(L,)
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4.1. Multiplicity of the saturated special fiber ring

for i > 1. Therefore, the spectral sequence corresponding with the second filtration is given by

HY (Sym(I)) ifq=0
TER™9 = ¢ Hq(L) ifp=0
0 otherwise.

Finally, from the convergence of both spectral sequences we obtain the following isomorphisms
of bigraded 2A-modules

. <rT
Hi (i (L)) = HTT (To(G29)) = 1(La) ifi>r
1—T— [ ] =

{ng‘—i (Sym(I)) ifi
foralli > 0. O

The following lemma contains some dimension computations that will be needed in the proof of
Theorem 4.8. The first one shows that I has maximal analytic spread and it is obtained directly from
[142]. The second one is a curious interplay between the algebraic properties of I and the geometric
features of the corresponding rational map (4.15), that follows from Proposition 3.14.

Lemma 4.7. Using Setup 4.1, the following statements hold.:
(i) {(I) =dim(Q) =r+1.
(i) dim ([HE, (Sym(D))],) < r foralli> 2.

Proof. (i) In the case v = s, we have u(I) =s + 1 =1+ 1 = dim(R), and so the condition G, 1
is equivalent to G,. Thus, when 1 = s, we get from Theorem 1.37 that I is of linear type and so
dim(Q) =1+ 1. When s > r + 1, then the result follows from Proposition 1.41.

(ii) Let i > 2. From Lemma 4.5(ii1), we have [H}n (Sym(I))}o = [H}n (fR(I))}O. Since I has
maximal analytic spread £(I) = dim(Q) = v+ 1, then the corresponding rational map is generically
finite and so the inequality follows directly from Proposition 3.14. O

Now we are ready for the proof of the main theorem of this chapter.

Theorem 4.8. Let I C R = K[xq,X1,...,Xy] be a homogeneous ideal minimally generated by s + 1
fJorms {fo,f1,...,Ts} of the same degree d, where s > 1. Suppose the following two conditions:

(i) Lis perfect of height two with Hilbert-Burch resolution of the form

S
0— PR(=d—w) B R(=d)* 510

i=1

(ii) 1satisfies the condition Gy 1.
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4.1. Multiplicity of the saturated special fiber ring

e~

Then, the multiplicity of the saturated special fiber ring Fr (1) is given by

e (C?R\(T)) =er(M1, 12,5 1s),

where er (L1, U2, ..., s ) represents the T-th elementary symmetric polynomial

er(Hl’HZ’---,Hs): Z I"LNI”LJZI"L)T

1<j1<j2<+<jr<s

Proof. We analyze the homology modules of the complex

Fo=[H, (L), 0 0= [HE (L), — -+ — [HEH (L1)], — [HE (Lo)]

0 0

obtained by applying lenﬂ (e) to the complex Lo and then restricting to the degree zero part in the
R-grading. From (4.4) and (4.6), we can make the identification

Fi = [HL (L)), = S(=)™,

my = Z <Zie—1:l'je —1)'

1<1 < <ji<s

where

First, from Proposition 4.6 we have
Hi(F,) = [Hi_r_1(Ls)]y for i>142,
then the fact that [Ly ], = 0 for k > 1 (see (4.4)) yields the vanishing
Hi(Fe) =0 forall i>1+ 2. 4.7

On the other hand, Proposition 4.6 also gives that

Hi(Fo) = [HL" " (Sym(I))], fori<r+1,
and Lemma 4.7(ii) implies that
dim (H;(Fe)) < r foralli <r—1. 4.8)

Let Bo, Zo and H, be the boundaries, cycles and homology modules of the complex F,, respec-
tively. We have the following short exact sequences

0—Bi —=Zi —->H; =0
0—-27Zi —=Fi —=Bi_1 =0
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4.1. Multiplicity of the saturated special fiber ring

for all 1. By using the additivity of Hilbert series and assembling all these short exact sequences we

obtain the following equation

S N

D> (=D (T) =) (=1)'Hg(T).

i=0 i=0
Using (4.7) and (4.8), it follows that Hyy, (T) = 0 for i > r + 2, and that we can write

Gi(T)

Hy, (T) = (R

fori<r—1

where Gi(T) € Z[T] and e; = dim(H;) < r (see e.g. [19, Section 4.1]). Therefore, we obtain the

following equation

_CM Ly Cyre _ G6m
e DT (D e (T) = oo
where B

CM =) =N'A-=T)"""%Gy(T) and G(T) =) (—1'mT"

i=0 i=0
The isomorphisms of Proposition 4.6 yield that

(—N)"G(T) + (=) 'C(T)
H[Hll‘ﬂ(sym(l))]o(_r) - H[H%(Sym(l))]o(T) + (1 _ T)S+1

From the short exact sequence (4.5) we obtain that

1

i a_p

T) =Hs(T) —Hg(T) = —Hg(T),

2\(Sym(1))}o(

and the short exact sequence (4.2) and Lemma 4.5(iii) yield that

He—r (T) =Ho(T) + H[Hzn(symm)}o(T)-

Hence, by summing up (4.9), (4.10) and (4.11) we get

T4+ (=1)"G(T) + (=) 'c(m)
Hg;(_l/](_r) = (] _T)S+1 .

4.9)

(4.10)

(4.11)

—~—

Let F(T) = 1+ (—=1)"G(T) + (=)™ C(T). From Lemma 4.7(i) we have that dim (gR(I)) -
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4.1. Multiplicity of the saturated special fiber ring

dim(Q) = r + 1, then well-known properties of Hilbert series (see e.g. [19, Section 4.1]) give us
F(T)=(1-T)* "F (T),

where F1(1) # O and e (g;(?)) = F1(1). The fact that e; < v fori < r — 1, implies that

C(s=7)(1) = 0. By denoting

PM =1+ (-D'GM=1+) (-1)"'mT",
i=0

we get P(5=7)(1) = F(s=7)(1), and so by taking the (s — 7)-th derivatives of F(T) and P(T) we
obtain that

(1) (s —m)!-Fi (1) =PBT(1)

o 1+ Zir:O (—])Himi ifs=r
D )T (s = (L) ifs >

—~—

The substitution of e (3’ R(I)) = F; (1) gives us that

e (SR(U) = tZFO ( s)—i—i m i Lot (4.12)
2 i—s—r (=) mi(s_r) if s >r.
Finally, the result is obtained from Lemma 4.9(iii), (iv) below. O

In the following lemma we use simple combinatorial techniques to reduce the equation (4.12).

Lemma 4.9. The following formulas hold:

u VA s—k\ _[(=1° ifk=r
2 (_”<s—r>(i—k>_{o ifk<r.

i=max{k,s—7}

(i) ForO<k<r,

(ii) For1 <0<,

: if 1 k A\ (=)l -er(py,..., 1) ifl=1
2 0 (s—f> X (Xwm) _{o ifl<r

1<1<-<ji<s e=1
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4.1. Multiplicity of the saturated special fiber ring

(iii) Fors >,

S L) X (BT et et

1< < <ji<s

(iv) Fors =,

r . S —1
1+ (=07 < L )ZMHZ'“M-
i=0

1< 1< <ji<r

Proof. (i) We start from the identity

S

s—kTk _ ik s—k\ 4
e i (A L

i—k
then by taking the (s — r)-th derivative in both sides we get

S

(s—7) . — i .
((] _T)kaTk> — Z (_])l—k<i_]]z> (S_Y)!<81T>Tls+r-

i=max{k,s—1}

Since s — k > s — 7, the substitution T = 1 yields the result.
(ii) For each set of indexes {j1,...,ji} we have

(Zuje)z: Z <g1 : g>“f3“fi (4.13)
e=1 ¢ it

O+t b=

14

We will proceed by determining the coefficients of each of the monomials uf: Soo ) in the equation.

Since (61,.6..,&) = (217.._&1’0), we can consider the case where {1 # 0, ..., {; # 0.

We fix 1 < k < r and the monomial p.?: e ufk“ where by #0,...,bx #Oand by +---+by =
€. For each set of indexes {j1,...,ji} D {i1,..., 1k}, the monomial uz‘ . p.gl‘ appears once in the
equation (4.13), and the number of these sets is equal to (i:t) Thus, for each 1 > k, the coefficient

of p?]‘ - “?kk in the expression

1

> uje)e

1<1<-<ji<s e=1
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is equal to (f:t) (b1 ¢ bk)' So, the total coefficient of pﬁ‘ cee Hik is given by

.....

<b1,..€.,bk> . Z (_”i<sir> C—t)

i=max{k,s—1}

From part (i), we have that this coefficient vanishes when k < r and that it is equal to (—1)°r! when
k = r because ¢ < r.

Therefore, for £ < r we have that the equation vanishes, and for £ = r that the only monomials in
the equation are those of the elementary symmetric polynomial e, (ft1,. .., lts) and the coefficient
of all of them is (—1)°r!.

(iii) We can write

<Zl—1 Hje — 1) _ (22:1 Mje — 1) (Zfa:] Hje —2) (Zla Mje —T)

T T!

(4.14)

] T i ¢
:F (_])T—zerie(],z,...,r) (Z Hje> .
' e=1

=0

Therefore, by summing up and using part (ii), we obtain the required formula.
(iv) From equation (4.14) and part (ii) we have

Z(*])HT Z (Ze_1ruje—1> =P-1P-2"'Hr+z(1)ic>-
i1

i=0 T<ji<--<jisr
Thus we get the result from the identity } {_, (—1 )t (I) =0. O
From Theorem 4.8 we obtain a closed formula for the j-multiplicity of I.

Corollary 4.10. Assume all the hypotheses and notations of Theorem 4.8. Then, the j-multiplicity
of Lis given by
i) =d-er(mr,mz,..., 1s).

—~—

Proof. From Lemma 3.10 we have that j(I) = d - e (312(1)), then the result follows from the
computation of Theorem 4.8. O
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4.2 Degree of rational maps

In this short section we study the degree of the rational map

F.PT __, PS (4.15)
(g :--:1%p) (fo(xo,...,xr) D fs(xo,...,xr)),
whose base base ideal I = (fg, f1,...,fs) satisfies all the conditions of Setup 4.1. Here we obtain

a suitable generalization of [102, Theorem 4.9 (1), (2)], where we relate the degree of F and the
degree of its image with the formula obtained in Theorem 4.8. An interesting result is that F is
birational onto its image if and only if the degree of the image is the maximum possible.

Let Y C P*® be the closure of the image of F. From Lemma 4.7(i) we have that dim(Y) =
dim(P7), and that the degree of F is equal to the dimension of the field extension

deg(F) = [K(P") : K(Y)],

where K(P") and K(Y) represent the fields of rational functions of P™ and Y, respectively.
The main result of this section is a simple corollary of Theorem 3.4 and Theorem 4.8.

Corollary 4.11. Assume all the hypotheses and notations of Theorem 4.8. Let F be the rational map
F . P --» PS5 given by
(X0t v+ i xp) = (fo(X0s vy Xp) 1ot s (X0, .00 X)),
andY C P*® be the closure of the image of F. Then, the following two statements hold:
(i) deg(TF) - degps(Y) = er(p1, 12, -+, Ks).
(ii)  is birational onto its image if and only if degps (Y) = er (11, 12, ..., Hs)-

——

Proof. From Theorem 3.4(1ii) we have that e (SR(I)) = deg(F) - degps(Y), then the result is
obtained from the computation of Theorem 4.8. O

We have that in the literature special cases of Corollary 4.11 have appeared before. For instance,
in [40, Proposition 5.3] a particular case of Corollary 4.11 was obtained for parameterized surfaces.
In the following simple corollaries, we proof the same result of [102, Theorem 4.9 (1), (2)], and we
generalize [22, Proposition 5.2].

Corollary 4.12. With the same notations above, if v =1, i.e. F is of the form F : P! -=» PS, then
deg(F) - degps(Y) = d.

Proof. We only need to note that ey (w1, 2,..., ts) = d. O

Corollary 4.13. With the same notations above, if v = s, i.e. F is of the form F : PT --» PT, then
deg(F) = wipz - Ky
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4.2. Degree of rational maps

Proof. In this case we have Y = P and so degpr (Y) = 1. Hence the equality follows from the fact
that ey (11, K2, . ..o ) = HH2 -+« Wy O
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Chapter 5

Degree of rational maps via specialization

In this chapter, we consider the behavior of the degree of a rational map under specialization of
the coeflicients of the defining linear system. The method rests on the classical idea of Kronecker as
applied to the context of projective schemes and their specializations. For the theory to work we are
led to develop the details of rational maps and their graphs when the ground ring of coefficients is a
Noetherian integral domain.

Note. The results of this chapter are based on joint work with Aron Simis.

5.1 Terminology and notation

Let R be a Noetherian ring and I C R be an ideal. We recall the following definitions and notions
from Section 1.1.

Definition 5.1. The Rees algebra of 1 is defined as the R-subalgebra

Re(I) == RIt] = @5 I"t" C R[],

n=>0

and the associated graded ring of 1 is given by

gri(R) = Re(/1RR (1) = P /1.

n=>0

If, moreover, R is local, with maximal ideal m, we define the fiber cone of 1 to be
Sr(1) == Re(I)/mRe (1) = gr;(R)/mgr;(R),

and the analytic spread of 1, denoted by {(1), to be the (Krull) dimension of §r(1).
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The following notation will prevail throughout most of the chapter.

Setup 5.2. Let A be a Noetherian ring of finite Krull dimension. Let (R, m) denote a standard graded
algebra over A = [R]o and m be its graded irrelevant ideal m = ([R]1). Let S := Alyo,...,Ys]
denote a standard graded polynomial ring over A.

Let I C R be a homogeneous ideal generated by s + 1 polynomials {fo, ..., fs} C R of the same
degree d > 0 — in particular, I = ([I]q). Consider the bigraded A-algebra

:=R®a S =Rlyo,...,ysl

where bideg([R];) = (1,0) and bideg(y;) = (0,1). By setting bideg(t) = (—d, 1), then
Rg(I) = R[It] inherits a bigraded structure over A. We have a bihomogeneous (of degree zero)
R-homomorphism

A — Re(I) C R[t], y;+— fit. (5.1

Thus, the bigraded structure of R (I) is given by

Re() = P Re(D], and [ Re(D]., = [ at™
cnez

We are primarily interested in the R-grading of the Rees algebra, namely, [Rg(I)], =
D—o [Rr(D)], ., and of particular interest is

[Re(D]p = P MM qt™ = Allllatl = Alla) = P Mg CR

n=0 n=0

Clearly, R (I) = [Rg(D)]o @ @021 [RR(I)]C> = [Rr(D]o ® mRg(I). Therefore, we get

as graded A-algebras.

Definition 5.3. Because of its resemblance to the fiber cone in the case of a local ring, we refer to the
right-most algebra above as the (relative) fiber cone of 1, and often identify it with the A-subalgebra
A [[Ila] C R by the above natural isomorphism. It will also be denoted by Fr(I).

Remark 5.4 (Definition 1.4). If R has a distinguished or special maximal ideal m (that is, if R is
graded with graded irrelevant ideal m or if R is local with maximal ideal m), then the fiber cone
also receives the name of special fiber ring.
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5.2 Rational maps over an integral domain

In this part we develop the main points of the theory of rational maps with source and target
projective varieties defined over an arbitrary Noetherian integral domain of finite Krull dimension.
Similar results will take place in the case the source is a biprojective (more generally, a multi-
projective) variety — the interested reader can readily provide the main analogous results. From now
on assume that R is an integral domain, which in particular implies that A = [R] is also an integral
domain. Some of the subsequent results will also work assuming that R is reduced, but additional
technology would be required.

Dimension

In this subsection we consider a simple way of constructing chains of relevant graded prime
ideals and draw upon it to algebraically describe the dimension of projective schemes. These results
are probably well-known, but we include them anyway for the sake of completeness.

For convenience of the reader we recall the following easy fact.

Lemma 5.5. Let B be a commutative ring and A C B a subring. Then, for any minimal prime
p € Spec(A) there exists a minimal prime 3 € Spec(B) such that p =R N A.

Proof. First, there is some prime of B lying over p. Indeed, any prime ideal of the ring of fractions
By, = B ®a Ay is the image of a prime ideal P C B not meeting A \ p, hence contracting to p.
For any descending chain of prime ideals P = Py 2 P7; 2 --- such that P; N A C p for every i,

their intersection Q is prime and obviously Q N A C p. Since p is minimal, then Q N A = p.
Therefore, Zorn’s lemma yields the existence of a minimal prime in B contracting to p. O

Proposition 5.6. Let A be a Noetherian integral domain of finite Krull dimension k = dim(A) and
let R denote a finitely generated graded algebra over A with [R]g = A. Let m := (R.) be the graded
irrelevant ideal of R. If ht(m) > 1, then there exists a chain of graded prime ideals

0=Fo & & Pr—1 &P«
such that Py 2 m.

Proof. Proceed by induction on k = dim(A).

The case k = 0 it is clear or vacuous. Thus, assume that k > 0.

Let n be a maximal ideal of A with ht(n) = k. By [110, Theorem 13.6] we can choose
0 # a € n C A such that ht(n/aA) = ht(n) — 1. Let q be a minimal prime of aA such that
ht(n/q) = ht(n) — 1. From the ring inclusion A/aA — R/aR (because A/aA is injected as a
graded summand) and Lemma 5.5, there is a minimal prime £ of aR such that q = Q N A.

Clearly, m Z €. Indeed, otherwise (g, m) C Q and since m is a prime ideal of R of height at
least 1 then (g, m) has height at least 2; this contradicts Krull’s Principal Ideal Theorem since Q is a
minimal prime of a principal ideal.
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5.2. Rational maps over an integral domain

Let R = R/Q and A’ = A/q. Then R’ is a finitely generated graded algebra over A’ with
[Rlo = A’and m’ := ([R’]) = mR’. Since Q 2 m, it follows ht(mR’) > 1 and by construction,
dim(A’) = dim(A) — 1. So by the inductive hypothesis there is a chain of graded primes 0 = P},
-+ C Py inR'such that Py 4 2 mR'. Finally, forj > 1 define *; as the inverse image of P;_,
via the surjection R — R’. O

Recall that X := Proj(R) is a closed subscheme of P, , for suitable r (= relative embedding
dimension of X) whose underlying topological space is the set of all homogeneous prime ideals of
R not containing m and it has a basis given by the open sets of the form D (f) :={p € X|f € g},
where f € R, is a homogeneous element of positive degree. Here, the sheaf structure is given by
the degree zero part of the homogeneous localizations

r (D+(f), Ox |D+m> =R = {f% | g.f € R, deg(g) = kdeg(f)}.

Let K(X) := R() denote the field of rational functions of X, where

f
Ri0) = {5 | f.g € R, deg(f) = deg(g). g # 0},

the degree zero part of the homogeneous localization of R at the null ideal (0) C R.

Likewise, denote P§, = Proj(S) = Proj(Alyo,...,ysl).

The dimension dim(X) of the closed subscheme X is defined to be the supremum of the lenghts
of chains of irreducible closed subsets (see, e.g., [66, Definition, p. 5 and p. 86]). The next result is
possibly part of the dimensional folklore (cf. [87, Lemma 1.2]).

For any integral domain D, let Quot(D) denote its field of fractions.

Corollary 5.7. For the integral subscheme X = Proj(R) C P, we have
dim(X) = dim(R) — 1 = dim(A) + trdegque(a) (K(X)) .

Proof. For any prime P € X, 8 + m is a proper ideal and so ‘B is not maximal. Therefore
ht(%B) < dim(R) — 1 for any P € X, which clearly implies that dim(X) < dim(R) — 1.
From Lemma 1.24 we get the equalities

dim (R) = dim(A) + ht(m) = dim(A) + trdegq,o () (Quot(R)).

There exists a chain of graded prime ideals 0 = Lo C - -+ C Pn_1 C Pr = m such that h = ht(m)
(see, e.g., [110, Theorem 13.7], [19, Theorem 1.5.8]). Let T = R/B,_7. Since ht(mT) = 1,
Proposition 5.6 yields the existence of a chain of graded prime ideals 0 = Qp € --- C Qy in T,
where k = dim(A) and Qi 2 mT. By taking inverse images along the surjection R — T, we obtain
a chain of graded prime ideals not containing m of length h — 1 4+ k = dim(R) — 1. Thus, we have
the reverse inequality dim(X) > dim(R) — 1.
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5.2. Rational maps over an integral domain

Now, for any f € [R];, we have
Quot(R) = R(q(f)
with f transcendental over K(X) = R(). Therefore
dim(X) = dim(A) + trdeggye(a) (Quot(R)) — 1 = dim(A) + trdeggue(a) (K(X)),
and so the proof follows. O

Next, we deal with the general multi-graded case, which follows by using an embedding and
reducing the problem to the single-graded setting.

Let T = @, cnm [T], be astandard m-graded ring over [T]) = A, where 0 = (0,0,...,0) € N™.
The multi-graded irrelevant ideal in this case is given by 91 = € (T] .- Here,
we also assume that T is an integral domain.

Similarly to the single-graded case, we define a multi-projective scheme from T. The multi-
projective scheme MultiProj(T) is given by the set of all multi-homogeneous prime ideals in T which
do not contain 1, and its scheme structure is obtained by using multi-homogeneous localizations.
The multi-projective scheme Z := MultiProj(T) is a closed subscheme of PX XA P;\z e XA PR“,
for suitable integers 11,..., 1.

Let T(A) be the single-graded ring T(A) = Dnso M

n1>0,.,ny>0 ni,..,n

m) then the canonical inclusion

T(A) < T induces an isomorphism of schemes Z = MultiProj(T) = Proj (T[ A)) (see, e.g., [66,
Exercise 11.5.11]), that corresponds with the Segre embedding
PK XA P;\Z XA XA PTAm N PX1+1)(T2+1)”'(?"1+])71.

Since we are assuming that Z is an integral scheme, the field of rational functions of Z is given
by

f
KZ):=Tio) = { .9 € T.des(f) = deslg). g #0}.
The following result yields a multi-graded version of Corollary 5.7.

Corollary 5.8. For the integral subscheme Z = MultiProj(T) C P} xa P32 -+ xa P™, we have
dim(Z) = dim(T) — m = dim(A) + trdegqgu(a) (K(Z)).
Proof. From the isomorphism Z = Proj (T(A)) and Corollary 5.7, it follows that
dim(Z) = dim(A) + trdeggu(a) (K(Z)).
The dimension formula of Lemma 1.24 gives

dim(T) = dim(A) + trdeggyei(a) (Quot(T)).
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5.2. Rational maps over an integral domain

,,,,,,,,,,,

we have
Quot(T) = T(g)(f1,f2,..., fm)

with {fy,f2,..., fm} a transcendence basis over K(Z) = T(y). Therefore
dim(Z) = dim(A) + trdeggye(a) (Quot(T)) — m = dim(T) —m,
and so the result follows. O
A generalization for closed subschemes of P;\‘ X A P;{ XA - XA P;{“ is immediate.

Corollary 5.9. For a closed subscheme W = MultiProj(C) C P} xa P32 xa -++ XA PR™, we
have

dim(W) = max { dim (C/p)—m|p € WﬁMin(C)}.

Main definitions

We restate the following known concept.

Definition 5.10. Let SR(X, P3, ) denote the set of pairs (U, @) where U is an open dense subscheme
of X and where @ : U — P35 is a morphism of A-schemes. Two pairs (U7, @1), (U2, @2) €
R(X, P4 ) are said to be equivalent if there exists an open dense subscheme W C Uy N Uy such
that ©1 |\ = @2 |\ This gives an equivalence relation on R(X, P%, ). A rational map is defined
to be an equivalence class in R(X, P%, ) and any element of this equivalence class is said to define
the rational map.

A rational map as above is denoted F : X --» P35, where the dotted arrow reminds us that
typically it will not be defined everywhere as a map. In [65, Lecture 7] (see also [46]) it is explained
that, in the case where A is a field the above definition is equivalent to a more usual notion of a
rational map in terms of homogeneous coordinate functions. Next, we proceed to show that the same
is valid in the relative environment over A.

First it follows from the definition that any morphism U — P3% as above from an open
dense subset defines a unique rational map X --» P3. Now, let there be given s + 1 forms
f ={fo,f1,...,fs} C Rof the same degree d > 0. Let h : S — R be the graded homomorphism of
A-algebras given by

h:S=AlYo,y1,....ys) — R
yil—>f1.

There corresponds to it a morphism of A-schemes

®(f) = Proj(h) : D (f) — Proj(S) = P4

130



5.2. Rational maps over an integral domain

where D (f) C Proj(R) = X is the open subscheme given by

Therefore, a set of s + 1 forms f = {fy, fy,...,fs} C R of the same positive degree determines a
unique rational map given by the equivalence class of (D (f), @ (f)) in 53(X, P5, ).

Definition 5.11. We call @ (f) the f-coordinate morphism and denote the corresponding rational
map by Fs.

Conversely:

Lemma 5.12. Any rational map F : X = Proj(R) --» P$, is of the form J, where £ are forms of
the same positive degree.

Proof. Let U be an open dense subset in X and ¢ : U — Pj be a morphism, such that the
equivalence class of the pair (U, @) in R(X, P%, ) is equal to J.

Consider V. = D, (yo) and W = ¢~ '(V) and restrict to an affine open subset, W/ =
Spec(R(g)) € W, where € € R is a homogeneous element of positive degree. It yields a mor-
phism @ |\, : W/ — V, that corresponds to a ring homomorphism

T: S(

vo) — Reo)s

where Ty, stands for the degree zero part of the homogeneous localization of a graded ring T at the
powers of a homogeneous element h € T.

For each 0 < 1 < s we have
(2)-2
Yo i

where deg(gi) = o deg(f). Setting o := maxj<i<s{Xi}, we write

fo:=4L%* and f;:= E“% =% %ig;for1 <1i<s.
By construction, @ |y, = @(f) |\,,, where @ (f) denotes the f-coordinate morphism determined by
f ={fo,...,fs}, as in definition Definition 5.11, hence F = F¢ where f = {fo,..., fs}. O

Given a rational map J : X --» P4, any ordered (s + 1)-tuple f = {fo, f1,...,fs} of forms of
the same positive degree such that F = J is called a representative of the rational map F.
The following result explains the flexibility of representatives of the same rational map.

Lemma 5.13. Let f = {fo,...,fs}and £’ ={f},... fL} stand for representatives of a rational map
F:X -+ P Then (fo :---:fs)and (fy : - - - : f) are proportional coordinate sets in the sense
that there exist homogeneous forms h,h' of positive degree such that hf; = Wf; fori=0,...,s.
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5.2. Rational maps over an integral domain

Proof. Proceed similarly to Lemma 5.12. Let ®(f) : D (f) — P% and @ (f') : D (f') — P be
morphisms as in Definition 5.11. Let V = Spec (D (yo)) and choose W = Spec(R ;) such that
WcC o) (V)N oF) " (V)and O(F) |y, = D) |y

The morphisms @(f) |, : W — Vand ©(f’) |,,, : W — V correspond with the ring homomor-
phisms T: S(y,) — Rygy and T': Sy — Rygy such that

. . . i
T (yl> = ﬁ and T <y1) = 71,
Yo fo Yo o
respectively. Since this is now an affine setting, the ring homomorphisms T and 1’ are the same
(see e.g. [57, Theorem 2.35], [66, Proposition 11.2.3]). It follows that, for every i = 0,...,s,

f{/fy = fi/fo as elements of the field of fractions of R. Therefore, there are homogeneous elements
h,h/ € R (h = fo, h/ = f) such that hf; = h'f; fori =0,...,s. The claim now follows. O

In the above notation, we often denote JF¢ simply by (fo : - -+ : fs) and use this symbol for a
representative of J.

Remark 5.14. Note that the identity morphism of P’ is a rational map of P}, to itself with natural
representative (Xo : - - - : Xy ) where Py = Proj(Alxo,...,x.]). Similarly, the identity morphism of
X = Proj(R) is a rational map represented by (x¢ : - -+ : Xy ), where now Xo, ..., X, generate the
A-module [R]y, and it is denoted by Idx.

The following sums up a version of [129, Proposition 1.1] over an integral domain. Due to
Lemma 5.13, the proof is a literal transcription of the proof in loc. cit.

Proposition 5.15. Let 7 : X --» P be a rational map with representative f. Set 1 = (f). Then, the
Jollowing statements hold:

(i) The representatives of F correspond bijectively to the non-zero homogeneous vectors in the
rank one graded R-module Homg (1, R).

(ii) If grade(1) > 2, any representative of F is a multiple of £ by a homogeneous element in R.

Proof. (i) Follows from Lemma 5.13 and the isomorphism Homg (I, R) = (R:Quot(R) I).
(i1) The condition grade(I) > 2 is equivalent to Homg(I,R) = R (see e.g. [19, Exercise
1.2.24]). ]

Remark 5.16. If R is in addition an UFD then any rational map has a unique representative up to a
multiplier — this is the case, e.g., when A is a UFD and R is a polynomial ring over A.

One more notational convention: if f = {fp, ..., fs} are forms of the same degree, A[f] will
denote the A-subalgebra of R generated by these forms.
An important immediate consequence is as follows:
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5.2. Rational maps over an integral domain

Corollary 5.17. Let f = (fo : --- : fs) and £’ = (f] : - : f]) stand for representatives of
the same rational map F : X = Proj(R) --» P%. Then Alf] = A[f’] as graded A-algebras and
RRr (1) = Rg(I') as bigraded A-algebras, where 1 = (f) and ' = (f’).

Proof. Let J and J’ respectively denote the ideals of defining equations of Rg(I) and Rg(I’), as
given in (5.1). From Lemma 5.13, there exist homogeneous elements h, h’ € R such that hf] = h'f;
fori=0,...,s. Clearly, then I = I’ have the same syzygies, hence the defining ideals £ and £’ of
the respective symmetric algebras coincide. Since R is an integral domain and I and I’ are nonzero,
then Lemma 1.10 yields

J=L:1°=L":T*°=7".

Therefore, Rg (1) = A/J = A/ = Rg(I') as bigraded 2A-algebras. Consequently,
Alf] = Rp(I)/mRg (1) = Re(I') /mRg (1) = Alf']

as graded A-algebras. O

Image, degree and birational maps

This part is essentially a recap on the algebraic description of the image, the degree and the
birationality of a rational map in the relative case. Most of the material here has been considered in
a way or another as a previsible extension of the base field situation (see, e.g., [23, Theorem 2.1]).

Definition-Proposition 5.18. Let J : X --» P% be a rational map. The image of T is equivalently
defined as:

(I1) The closure of the image of a morphism U — P35, defining JF, for some (any) open dense
subset U C X.

(I12) The closure of the image of the f-coordinate morphism ®(f), for some (any) representative f
of F.

(I13) Proj (Alf]), for some (any) representative £ of F, up to degree normalization of Alf].

Proof. The equivalence of (I1) and (12) is clear by the previous developments. To check that (12)
and (13) are equivalent, consider the ideal sheaf J given as the kernel of the canonical homomorphism

Ops — @(f),Op, (1)

It defines a closed subscheme Y C P which corresponds with the schematic image of @ (f) (see,
e.g., [57, Proposition 10.30]). The underlying topological space of Y coincides with the closure of the
image of @ (f). Now, forany 0 <1 <'s, Ops (D (yi)) = S(y,) and (@ (f),Op, () (D4 (yi)) =
R(¢,). Then, for 0 < 1 < s, there is an exact sequence

0—J(D+(yi)) = Sy — Rery-
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Thus, J (D4 (yi)) = J(y,) forany 0 < i < s, where ] is the kernel of the A-algebra homomorphism
«: S — A[f] C Rgiven by y; — f;. This implies that J is the sheafification of J. Therefore,
Y = Proj(S/]) = Proj(Alf]). O

Now we consider the degree of a rational map J : X --» P% . By Definition-Proposition 5.18,
the field of rational functions of the image Y of JF is

where f = (fo : -+ - : fg) is arepresentative of F. Here, A[f] is naturally A-graded as an A-subalgebra
of R, but we may also consider it as a standard A-graded algebra by a degree normalization.
We get a natural field extension K(Y) = A[ﬂ(o) — R(p) = K(X).

Definition 5.19. The degree of F : X --» P, is
deg(F) := [K(X) : K(Y)].

We say that F is generically finite if [K(X) : K(Y)] < oo. If the field extension K(X)|K(Y) is
infinite, we agree to say that J has no well-defined degree (also, in this case, we often say that
deg(F) =0).

The following properties are well-known over a coefficient field. Its restatement in the relative
case is for the reader’s convenience.

Proposition 5.20. Let F : X --» P% be a rational map with image Y C P3,.

(i) Let f denote a representative of F and let ©(f) be the associated f-coordinate morphism.
Then, F is generically finite if and only if there exists an open dense subset U C Y such that
O (f)~ ' (U) — U is a finite morphism.

(ii) F is generically finite if and only if dim(X) = dim(Y).

Proof. (i) Let ®(f) : D (f) C X — Y C P$, be the f-coordinate morphism of J. One has an
equality of fields of rational functions K(X) = K (D4 (f)). But on D (f) the rational map F is
defined by a morphism, in which case the result is given in [66, Exercise 11.3.7].

(i) By Corollary 5.7 we have dim(X) = dim(A) + trdegq,oi(a) (K(X)) and by the same token,
dim(Y) = dim(A) + trdegqyo(a) (K(Y)). It follows that

dim(X) = dim(Y) & trdeggue (o) (K(X)) = trdegguoa) (K(Y)).
The later condition is equivalent to trdegy (v (K(X)) = 0, and so the proof follows. O

Next we define birational maps in the relative environment over A. While any of the three
alternatives below sounds equally fit as a candidate (as a deja vu of the classical coefficient field
setup), showing that they are in fact mutually equivalent requires a small bit of work.
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Definition-Proposition 5.21. Let 7 : X C P}, --» P3 be a rational map with image Y C P%. The
map F is said to be birational onto its image if one of the following equivalent conditions is satisfied:

(B1) deg(F) =1, that is K(X) = K(Y).

(B2) There exists some open dense subset U C X and a morphism ¢ : U — P%, such that the pair
A
(U, @) defines F and such that ¢ is an isomorphism onto an open dense subset V C Y.

(B3) There exists a rational map G : Y C P§ --+» X C P, such that, for some (any) representative
f of F and some (any) representative g = (go : - - - : gr) of G, the composite

g(f) = (go(f) : -~ : gr(f))
is a representative of the identity rational map on X.

Proof. (B1) = (B2). Let ¢’ : U’ — P be a morphism from an open dense subset U’ C X such
that (U’, ¢’) defines F. Letn denote the generic point of X and & that of Y. The field inclusion
Ov,: = K(Y) = K(X) = Oxy, coincides with the induced local ring homomorphism

((pl)i : Oy,g — OX,n-

Since by assumption deg(F) =1, (@ ) is an isomorphism. Then, by [57, Proposition 10.52] (¢ )n
“extends” to an isomorphism from an open neighborhood U of 1 in X onto an open neighborhood V

of & in Y. Now, take the restriction ¢ = ¢’ [, : U =5 V as the required isomorphism.
(B2) = (B3)Letp: U C X = VCYbea morphism defining F, which is an isomorphism

from an open dense subset U C X onto an open dense subset V C Y. Letp = @~ ' : V C Y =
U C X be the inverse of @. Let G : Y C P$, --» X C P}, be the rational map defined by (V,).
Let Idx be the identity rational map on X (Remark 5.14). Take any representatives f = (g :
fs)of Fandg = (go:---:gy) of G. Let G o F be the composition of F and G, i.e. the rational
map defined by (U, o ). Since 1 o @ is the identity morphism on U, Definition 5.10 implies
that the pair (U, o @) gives the equivalence class of Idx. Thus, we have Idx = § o &, and by
construction g(f) is a representative of G o F.

(B3) = (B1) Take a representative (fo : ---: fg) of Fandlet Gand (go : --- : gy) be as in
the assumption. Since the identity map of X is defined by the representative (xg : - - - : Xy), where
[Rl1 = Axo + - -+ + Axy (see Remark 5.14), then Lemma 5.13 yields the existence of nonzero
(homogeneous) h,h/ € Rsuch that h - g;(f) = h’ - x4, fori =0, ..., 1. Then, for suitable e > 0,

xi _ gilf) _ 16 (gilf1/fo..... fm/f0)) _ gilf1/fo.....fm/F0) . o
X0 QO(f) f(e) (go(ﬁ/fo,...,fm/fo)) go(ﬁ/va---afm/fo)’ PRI
This shows the reverse inclusion K(X) C K(Y). 0
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5.2. Rational maps over an integral domain

The graph of a rational map

The tensor product 2 := R ® o Aly] = Rly] has a natural structure of a standard bigraded
A-algebra. Accordingly, the fiber product Proj(R) x o P3 has a natural structure of a biprojective
scheme over Spec(A). Thus, Proj(R) x o P$ = BiProj(2l).

The graph of a rational map F : X = Proj(R) --» P%, is a subscheme of this structure, in the
following way:

Definition-Proposition 5.22. The graph of F is equivalently defined as:

(G1) The closure of the image of the morphism (1, @) : U — X x A P}, where v : U — X is the
natural inclusion and ¢ : U — P% is a morphism from some (any) open dense subset defining

J.

(G2) For some (any) representative £ of F, the closure of the image of the morphism (1, ®(f)) :
D, (f) — XxaP%,wherev: D (f) — Xis the natural inclusion and @ (f) : D (f) — P%
is the £-coordinate morphism.

(G3) BiProj (Rg(1)), where I = (f) for some (any) representative £ of F.

Proof. The equivalence of (G1) and (G2) is clear, so we proceed to show that (G2) and (G3)
give the same scheme. Recall that, as in (5.1), the Rees algebra of an ideal such as I is a bigraded
2A-algebra. The proof follows the same steps of the argument for the equivalence of (12) and (I3) in
the definition of the image of J (cf. Definition-Proposition 5.18).

Let I'(f) denote the morphism as in (G2) and let & C X x 5 P% denote its schematic image.
The underlying topological space of & coincides with the closure of the image of I'(f). Then, the
ideal sheaf of & is the kernel J of the corresponding homomorphism of ring sheaves

OXXAF’f\ — F(f)*OD+(f). (5.2)
Since the irrelevant ideal of 2( is ([R]1) N (y), by letting [Rl7 = Axo + - - - + Ax, we can see that an
affine open cover is given by Spec <Q[(X_ly ) for0 <i<rand0<j < s, where 2y, denotes
the degree zero part of the bihomogeneous localization at powers of x;yj, to wit
Axey;) :{ d_|ge2 and bideg(g) = (o, cx)}. (5.3)
(xiyj)

We have Oxx ,ps, (D+(xiyj)) = A(x;y;) and (F( ),.0p ) (D+(x1y])) (xifj)> ,for0 <i<
rand 0 < j < s. Then (5.2) yields the exact sequence

0= 3 (D4(xiY5)) = Aixryy) = Rixiry)-

Let J be the kernel of the homomorphism of bigraded 2A-algebras A — Rg(I) C R[t] given by
yi — fit. The fact that Rg (1), f1) = = Rix;f;), yields the equality J (DJr XiYj ) = J(xiy;)-
follows that J is the sheafification of Jd. Therefore & = BiProj(4/J) = BiProj(Rgr(1)). D
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5.2. Rational maps over an integral domain

Saturated fiber cones over an integral domain

In this part we introduce the notion of a saturated fiber cone over an integral domain, by closely
lifting from the ideas in Chapter 3. As will be seen, the notion is strongly related to the degree and
birationality of rational maps.

For simplicity, assume that R = A[x] = A[xo, ..., Xy], a standard graded polynomial ring over
A and set K := Quot(A),m = (xg,...,%Xr).

The central object is the following graded A-algebra

e =D (1™ w™)],
n=0

which we call the saturated fiber cone of 1 (Definition 3.3).

Note the natural inclusion of graded A-algebras §r(I) C Fr(I).

For any i > 0, the local cohomology module H: (Rg(I)) has a natural structure of bigraded
Rg (I)-module, which comes out of the fact that H}n(RR(I)) = H;RR(U(RR(I)) (see also [29,
Lemma 2.1]). In particular, each R-graded part

[Hi (Re(1)]

has a natural structure of graded § (I)-module.
Let Projg_o(RRr (1)) denote the Rees algebra Rg (I) viewed as a “one-sided” graded R-algebra.

Lemma 5.23. With the above notation, we have:

(i) There is an isomorphism of graded A-algebras

—_~—

Fr(l) = H° (ProjR_gr(fRR(I)),OprojR_g,(azR(I)))-

e~

(ii) $r(1) is a finitely generated graded §r(1)-module.

(iii) There is an exact sequence

—_—

0 — Fr(D) = Fr(D) = [Hy(Rr(1)], — 0
of finitely generated graded §r(1)-modules.

(iv) If A — A is a flat ring homomorphism, then there is an isomorphism of graded A'-algebras

~— e~

Sr(I) ®a A" = Fr/(IR'),

where R =R @4 A’
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5.2. Rational maps over an integral domain

Proof. (i) Since Rr(I) = @%_,I"™(nd), by computing Cech cohomology with respect to the
affine open covering (Spec (RR (D (x) of Projg o, (Rr (1)), we obtain
) ) ogigr

HO (PrOjR_gr(RR(I)), OPrOjR-gr(fRR(U)> = T@)HO (PrO_](R), (In)w(nd))

— @ [(I™:m™®)] ,  ([66, Exercise IL5.10]).

n=0

P

= gr(I).

(i1) and (iii) From [87, Corollary 1.5] (see also [47, Theorem A4.1]) and the fact that
Hgl(iRR(I)) = 0, there is an exact sequence

0 — [Rr(D)]y — HO(Projg g (R (1)), Oprojy . (e (1)) = Fr(1) = [Hy (Rr(1))], — 0

of §r(I)-modules. Now [H,L(CRR( I))] o is a finitely generated module over §gr(I) (see, e.g., Propo-

—~—

sition 3.7, [26, Theorem 2.1]), thus implying that §(I) is also finitely generated over g (I).
(iv) Since A — A’ is flat, a base change yields

H® (B,0g) = H° <PrOjR-gr(:RR(I)),OProjR_gr(iRR(I)]> @A A/,

where B = Projg o, (Rr (1)) XA A’ = Projg_g, (Rr(I) ®a A'). Also Rg(I) ®a A" = Rg/(IR'), by
flatness, hence the result follows. O

Let J: P,y --» P be arational map with representative f = (fo : ---: fg). Let G : Pg --» P¢
denote a rational map with representative f, where each f; is considered as an element of K[x]. Set
I=(f) CR.

Remark 5.24. The rational map F is generically finite if and only if the rational map G is so, and we
have the equality deg(F) = deg (G) . In fact, let Y and Z be the images of F and G, respectively. Since
K(P%) = R(p) = K[x] 0) = K(Pg) and K(Y) = Alf] 0) = KI[f] 0) = K(Z), then the statement
Jollows from Definition 5.19 and Proposition 5.20.

The following result is a simple consequence of Theorem 3.4.

Theorem 5.25. Suppose that F is generically finite. Then, the following statements hold:
(i) deg(F) = |Fx(D) : x(D)].

(ii) e (g;:(?) QA K) = deg(F) - e(SR(I) A K), where e(—) stands for multiplicity.
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(iii) Under the additional condition of §r(1) being integrally closed, then F is birational if and
only if & (1) = Fr(1).
Proof. (i) Let G : P --» P be the rational map as above. Since A — Kis flat, §r(I) ®a K =
S (IK[x)) and Fr(1) ©a K = Fypq (IK[x]) (Lemma 5.23 (iv)).
Thus from Theorem 3.4, we obtain deg(G) = [g;:(l/) QA K:Fr(D) ®a K] It is clear

—~—

that [SR(I) A K:Fr(I) @A K] = [&'R(I) :SR(I)}. Finally, Remark 5.24 yields the equality

deg(F) = deg(9).
(ii) It follows from the associative formula for multiplicity (see, e.g., [19, Corollary 4.7.9]).
(iii) Tt suffices to show that, assuming that JF is birational onto the image and that Fg(I) is

integrally closed, then Fr(I) = Fr(I). Since deg(F) = 1, part (i) gives

Quot (Fw(1)) = Quot(r(D).

P

Since §r (1) is integrally closed and Fr(I) — Fr(I) is an integral extension (see Lemma 5.23(ii)),

—_——

then §r(I) = §r(D). O

5.3 Additional algebraic tools

In this section we gather a few algebraic tools to be used in the specialization of rational maps.
The section is divided in two subsections, and each subsection deals with a different theme that is
important on its own.

Grade of certain generic determinantal ideals

We provide lower bounds for the grade of certain generic determinantal ideals. This generic
situation will later be specialized in Section 5.5.

In this subsection we agree to change the previous notation, by letting R denote an arbitrary
Noetherian ring.

The next lemma deals with generic ideals deforming ideals in R (see, e.g., [132, Proposition 3.2]
for a similar setup).

Lemma 5.26. Let z = (zij) be a new set of variables with 1 < i < nand1 < j < m and
S be the polynomial ring S = Rlz]. Let I = (fy,...,fm) C R be an ideal. Let | be the ideal
] =(p1.P2,---,Pn) C Rlz] such that

pi="fizig1 +f2zio + -+ fmzim.

Then grade(]) > min{n, grade(I)}.
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5.3. Additional algebraic tools

Proof. Let Q be a prime ideal containing J. If Q contains all the f;’s, then depth(Sq) > grade(I).
Otherwise, say, f1 ¢ Q. Then, we can write

i f f
Pt _ zi1+ *221,2 +---+ ﬂzi,m € R¢, [z]
3 f ]
as elements of the localization S¢, = Ry, [z]. Since {z11,...,zn 1} is a regular sequence in Ry, [z],
then so is the sequence {p1/f1,...,pn/f1}. Then, clearly {p1,...,pn} is a regular sequence in
Ry, [z], hence depth(Sq) > grade (JR¢, [z]) > n. O

The next proposition is now an easy routine procedure of inverting-localizing at a suitable entry.
We give the proof for the sake of completeness.

Proposition 5.27. Let Ij = (fj1,...,fjm;) C R be ideals for 1 < j < s. Set g =
ming ¢j<s{grade(lj)}. Let z = (zi;x) be a new set of variables with 1 < i <1, 1 <j <5
and 1 < k < mj. Let S be the polynomial ring S = R(z]. Let M be the v x s matrix with entries in
S given by

P11 P12 - Pils

P21 P22 - P2s
M= . . .

Pr1 Pr2 - Prs

where each polynomial pij € S is given by
pi,j = fj,lzi,j,l + fj,ZZi,j,Z + -+ fj,mjzi,j,mj-

Then
grade(It(M)) > min{r —t+1,g}.

for 1 <t < min{r, s}.

Proof. Proceed by induction on t. The case t = 1 follows from Lemma 5.26 since 11 (M) is
generated by the py ;’s themselves.

Now suppose that 1 < t < min{r, s}. Let Q be a prime ideal containing I;(M). If Q contains
all the polynomials p; j, then again Lemma 5.26 yields depth(Sq) > min{r, g} > min{r —t + 1, g}.
Otherwise, say, pr.s € Q.

Let M’ denote the (r—1) x (s — 1) submatrix of M of the first r — 1 rows and first s — 1 columns.
Clearly,

Lt (M) Sy, © LMDS,,

140



5.3. Additional algebraic tools

in the localization S, . The inductive hypothesis gives

depth(Sq) > grade (It (M) Spm)

> grade (L1 (M) Sy, )

> grade (It,1 (M'))
>min{(r—1)—(t—1)+1,g}

Therefore, depth(Sg) > min{r —t + 1, g} as was to be shown. O

Local cohomology of bigraded algebras

We study the dimension of certain graded parts of local cohomology modules of a finitely
generated module over a bigraded algebra. It will come out as a far reaching generalization of
Proposition 3.14, a result that has proven to be useful under various situations (see, e.g., proofs of
Theorem 3.16 and Theorem 4.8).

The following setup will prevail along this subsection only.

Setup 5.28. Let K be a field. Let 2 be a finitely generated standard bigraded K-algebra, i.e. 2
can be generated over K by the elements of bidegree (1,0) and (0,1). Let R and S be the standard
graded algebras over K given by R =[], 5) = 69)'20 [0 and S = A (p..) = Brso KMo
respectively. We set m and n to be the graded irrelevant ideals of R and S, respectively, that is
m = R+ = ®]>O [Q[]),O and n = SJr = ®k>0 [Ql]o’k.

Let M be a bigraded module over 2. Denote by [M}j the “one-sided” R-graded part

] = iy,

Note that, for any i > 0, the local cohomology module H}n(M). has a natural structure of bigraded
2(-module, and this can be seen from the fact that H, (M) = Hj (M) (also, see Lemma 2.2). In
particular, each R-graded part .

[HE, (W),

has a natural structure of graded S-module.
By considering 2 as a “one-sided” graded R-algebra, we get the projective scheme Proj R_gr(ill).

The sheafification of M, denoted by M, yields a quasi-coherent (‘)projR_gr(gl)—module.
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For any finitely generated bigraded 2-module M, [Hrin(M)]). and H! <Pr0jR_gr(Ql), I\7I())> are
finitely generated graded S-modules for any i > 0,j € Z (see, e.g., Proposition 3.7, [26, Theorem
2.1]).

The next theorem contains the main result of this subsection.

Theorem 5.29. Let M be a finitely generated bigraded A-module. Then, the following inequalities
hold

(i) dim ([H}H(M)]j) < min{dim(M) — 1, dim(S)},

(ii) dim (Hi (ProjR_gr(Ql), M(j))) < min{dim(M) — i — 1,dim(S)},
foralli>0,j € Z

Proof. Let d = dim(M). Since [H}n(M)]j and H (ProjR_gr(Ql),l\N/I(j)> are finitely generated S-
modules, it is clear that

dim ([H}n(M)]]) < dim(S) and dim (Hi (ProjR_gr(Ql), |\7I(j)>> < dim(S).

. (i) By the well-known Grothendieck Vanishing Theorem (see, e.g., [17, Theorem 6.1.2]),
H;, (M) =0 for i > d, so that we take i < d.
Proceed by induction on d.

Suppose that d = 0. Then [M]j’k = 0 for k > 0. Since [Hg(M)]j C [M]j, we have
=0.

[[H%(M)]J L [H%(M)]j « = 0for k> 0. Thus, dim ([H&(M)]J)
Suppose that d > 0. There exists a finite filtration

0=MgCMyC---CM=M

of M such that My /M, 1 = (4/p1) (a1, by) where py C 2 is a bigraded prime ideal with dimension
dim(2A/p1) < d and a, by € Z. The short exact sequences

0— M1 = My — (2/p1) (ar,b1) = 0
induce the following long exact sequences in local cohomology

[Hy, (Mu1)]; = [HE (MO]; = [Hy ((U/p) (a1, 00) ]

By iterating on 1, we get

dim <[H}n(M)]> < max {dim ([H}n ((2/p1) (al,bl))].) }

) 1<I<n j
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If py O n®A then A/py is a quotient of A/n2A = R and this implies that
(W5 2p0]y] = [HE @/p0];, =0

for k # 0. Thus, we assume that p; 2 n2l.

Alongside with the previous reductions, we can then assume that M = 2(/p where p is a bigraded
prime ideal and p 2 n2l. In this case there exists an homogeneous element y € S; such thaty & p.
The short exact sequence

0 — (2A/p) (0,—1) L 2A/p — 2A/(y,p) — 0

yields the long exact sequence in local cohomology
ML @/ )] — ([ @/0)];) (1) 2 [H @/0)]; — [HE @/ 0)];,
Therefore, it follows that
dim ( [H5, (2/p)]; ) < max { dim ([HE" (2/(y.p))]; ) o1+ dim ( [HE, (24/(y.p))];) |-
Since dim (21/(y,p)) < d — 1, the induction hypothesis gives

dim ([H " (2/(y.p))];) < (d=1) = (i-1) =d—i

and
1 dim ([HY, (24/(y,p))];) <T+(d=1)—i=d—i.
Therefore, dim ([H}n A/ p)] ].> < d — 1, and so the proof of this part follows.
(i1) Fori > 1, the isomorphism H' (ProjR_gr(Ql), |\~/I(])) = [H,ﬁ:r1 (M)]]. (see, e.g., [87, Corollary
1.5], [47, Theorem A4.1]) and part (i) imply the result. So, i = 0 is the only remaining case.
Let M/ = M/HS (M) and 2’ = 21/Anng (M’). We have the following short exact sequence

0— [W], - HC (ProjR_gr(m),M(j)) — [HL(M)]; - 0.

(see, e.g., [87, Corollary 1.5], [47, Theorem A4.1]). From part (i), we have the inequality
dim ([H}n(M)]j) < dim(M) — 1.
Therefore, it is enough to show that dim ([M’]j) < dim(M) — 1. If M’ = 0, the result is clear.

Hence, assume that M’ # 0. Note that grade(m®2l’) > 0, and so dim (21'/m2l’) < dim(2A') — 1 <
dim (M) — 1.
Since A" = [A'], & m2, there is an isomorphism [A'], = A'/m2’ of graded k-algebras.
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Therefore, the result follows because [M’ ]j is a finitely generated module over [2('],. O
Of particular interest is the following corollary that generalizes Proposition 3.14.

Corollary 5.30. Let (R, m) be a standard graded algebra over a field with graded irrelevant ideal
m. For any ideal 1 C m one has

dim ( [HE, (Re(1))];) < dim(R) +1—

and
dim (H* (Projg.g: (Rr(1)), Opugy, (¢ (1)) (7)) ) < dim(R) — i
foranyi>0,j € Z

Proof. Tt follows from Theorem 5.29 and the fact that dim (Rg (1)) < dim(R)+1 (Theorem 1.2). [

5.4 Specialization

In this section we study how the process of specializing Rees algebras and saturated fiber cones
affects the degree of specialized rational maps, where the latter is understood in terms of coefficient
specialization.

The following notation will take over throughout this section.

Setup 5.31. Essentially keep the basic notation as in the previous section, but this time around take

A =Klz1,...,zm] to be a polynomial ring over a field K (for the present purpose forget any grading).
Consider a rational map G : P}, --+ P$ given by a representative g = (go : --- : gs), where
P\ = Proj(R) with R = A[X] = Alxo, ..., X:]. Fix a maximal ideal n = (21 — &1,...,Zm — 0tm)

of A where o € K.
Clearly, we have K = A /n. We set that the structure of A-module of K is given by the canonical
homomorphism A — A/n = K. So, we get that

Xxak=Xxa (A/n) and MR Kk=M®a (A/n),

for any A-scheme X and any A-module M.

Then R/nR = Klxg,...,X;]. Let g denote the rational map Q : P; --» P§ with representative
g€ = (g0 : - :Qs), where @i is the image of gi under the canonical map R — R/uR. Further
assume that g # 0 forall 0 < i< s.

Finally, denote J := (go,...,9s) C Rand 1:= (J,n)/n = (9go,...,gs) C R/nR.

Remark 5.32. Let X be a topological space. We say that a general point of X has a property P if
there exists an open dense subset UL C X such that P is satisfied by every point of U.
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Remark 5.33. In Setup 5.31, under the assumption of K being algebraically closed, we will frequently
require that a property on K™ with the Zariski topology holds for a general point. For that, note
that we can go back an forth between K™ and a naturally corresponding subspace of Spec(A), with
A =Klz1,...,zm]. Namely, consider

MaxSpec(A) := {p € Spec(A) | p is maximal}

with the induced Zariski topology of Spec(A). Then, by Hilbert’s Nullstellensatz, the natural
association

(a1,...,am)— (z1 —ai,...,Zm — am)

yields a homeomorphism of K™ onto MaxSpec(A). In particular, it preserves open dense subsets
and an open dense subset in Spec(A) restricts to an open dense subset of MaxSpec(A) naturally
identified with an open dense subset of K™. In particular, if a general point of Spec(A) has a
property P, then a general point of K™ has also the property P.

Algebraic lemmata

Lemma 5.34. With the notation introduced above, we have a commutative diagram

Algl < Rr(J)
Algl ®a k Rr(J) ®a k
kig] Rr /ar (1)

where Alg] (respectively, K[g]) is identified with Fr(J) (respectively, §g /nr(1)).

Proof. The upper vertical maps are obvious surjections as K = A/n, hence the upper square is
commutative — the lower horizontal map of this square is injective because in the upper horizontal
map Alg] is injected as a direct summand. The right lower vertical map is naturally induced by the
natural maps

R[t] — R[t] ®a k = R[t]/nR[t] = Ax][t]/nAX][t] = A/n[x][t] = KIx][t],
where t is a new indeterminate. The left lower vertical map is obtained by restriction thereof. [
Proposition 5.35. Consider the naturally induced homomorphism of bigraded algebras

5: RR(J) ®a K= Rg /nr(1).
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If Lis not the null ideal, we have:

(i) ker(s) is a minimal prime ideal of Rg(J) @A K and, for any minimal prime 2 of Rg(J) @4 K
other than ker(s), we have that Q corresponds with a minimal prime of grq(R) ®a K =
(Rr(9) ®a K) /T (Rr(I) @A K) and so

dim ((Rr(J) ®a k)/Q) < dim(gry(R) ®a k).
In particular,

dim (Rr(J) ®a k) = max{dim(R/nR) + 1,dim(grs(R) ®a k)}
= max{r + 2,dim(gry(R) ®a K)}.

(ii) Letk > 0 be an integer such that {(Jz) < ht(P/nR) + k for every prime ideal B € Spec(R)
containing (3,n). Then

dim(gry(R) ®a k) < dim(R/nR) + k.

In particular,
dim (Rr(7) ®a k) < max{r+2,r+k+ 1}.

(iii) dim (ker(s)) < dim (grs(R) ®a K).

Proof. (i) Let P € Spec(R) be a prime ideal not containing J. Localizing the surjection s :
Rr(J) ®a k = Rg /nr(I) at R\ P, we easily see that it becomes an isomorphism. It follows that
some power of J annihilates ker(s), that is

7' ker(s) =0 (5.4)

for some 1 > 0. Since I # 0, then I Z ker(s). Therefore, any prime ideal of Rg(J) @A K
contains either the prime ideal ker (s) or the ideal J. Thus, ker(s) is a minimal prime and any
other minimal prime Q of Rr(J) ®a K contains J. Clearly, any such £ is a minimal prime of
(Rr(J) ®a K) /T (Rr(J) ®a k) = gry(R) ®a k. Since dim (Rg/nr (1)) = dim (R/nR) + 1, the
claim follows.

(ii) For this, let 9t be a minimal prime of gr(R) ® o K of maximal dimension, i.e.:

dim(grg(R) ®a k) = dim((grs(R) @ K)/M),
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and let 8 = 9t N R be its contraction to R. Clearly, B O (J,n). By Lemma 1.24 and the hypothesis,

+ dim ( ((grg(R) ®a K)/9M) @g 95 Ryp/BRep)
+ dim (grg(R) @R Rq}/mR‘B)

+ ht(P/n) + k

as required.
The supplementary assertion on dim (Rg(J) ® o K) is now clear.
(ii1) From (5.4) we have Anng,, (9)g 4k (ker(s)) 2 Jt. Therefore

dim (ker(s)) < dim ((Rgr () ®a K) /T (R (J) @A K))

and so the result follow. O

The next lemma is a consequence of the Primitive Element Theorem and will be useful to study
how the degree of rational maps varies under specialization.

Lemma 5.36. Let K denote a field of characteristic zero and let C C B stand for a finite extension of
finitely generated K-domains. Let b C B be a prime ideal and set ¢ := b N C C C for its contraction.
If C is integrally closed then we have

[Quot(B/b) : Quot(C/c)] < [Quot(B) : Quot(C)].

Proof. Let {b7,...,b.} generate B as a C-module. Setting C := C/c ¢ B = B/b, the im-
ages {b7,...,b.} generate B as a C-module. Since the field extensions Quot(B)|Quot(C) and
Quot(B)|Quot(C) are separable, and since k is moreover infinite, we can find elements A1, ..., A¢ € K
such that L := Zf:1 Aib; € Band { := Z(f:] Aib; € B are respective primitive elements of the
above extensions. Let X* + a; X~ + ... 4+ a, = 0 denote the minimal polynomial of L over
Quot(C). Since C is integrally closed, then a; € C forall 1 < i < u (see, e.g., [110, Theorem
9.2]). Reducing modulo b, we get {* +ay¢*~! + ... + @, = 0. Then the degree of the minimal
polynomial of { over Quot(C) is at most u, as was to be shown. O

In the following lemma we use the upper semi-continuity of the dimension of fibers.

Lemma 5.37. The set
{p € Spec(A) | dim (gry(R) ®a k(p)) < T+ 1}
is open and dense in Spec(A).
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5.4. Specialization

Proof. We can consider the associated graded ring gry(R) = @n>o Jn/gn+1 as a finitely generated
single graded A-algebra with zero graded part equal to A. Therefore [47, Theorem 14.8 b.] implies
that for every n the subset

Zn = {p € Spec(A) | dim (gr; (R) @4 k(p)) < 1)

is open in Spec(A).

Let K = Quot(A), T=R®a K=K][xp,...,x;:] and | =3I ® o K. The generic fiber of A —
gry(R) is given by grq(R) ® A K = gr;(T). Since dim (gr|(T)) = dim(T) = r + 1 (Proposition 1.5),
then (0) € Z,, 7 and so Z,1 # (. O

Geometric picture

One further notation for the geometric environment:

Setup 5.38. First, recall from Setup 5.31 that R = Alxo, ..., x| is a standard polynomial ring over
A. We set P}, = Proj(R) as before. In addition, we had A = Flz1,...,zm] and n C A a given
(rational) maximal ideal, with K = A /n.

Let G and g be as in Setup 5.31. Denote by Proj(Alg]) and Proj(KI[g]) the images of G and g, respec-
tively (see Definition-Proposition 5.18). Let B(J) := BiProj(Rg (J)) and B(I) := BiProj(Rg /g (1))
be the graphs of G and g, respectively (see Definition-Proposition 5.22).

Let E(J) := BiProj (grq(R)) be the exceptional divisor of B(J).

Consider the commutative diagrams

B(J)
H/J \ (5.5)
P;\fﬂﬂﬂf””? ffffffffffff > Proj(Alg])

and
B(I)
”’J \ (5.6)
Pk SRR S » Proj(k(g])

where T1" and 7t are the blowing-up structural maps, which are well-known to be birational (see,
e.g., [66, Section II.7]) — note that, had we taken care of a full development of rational/birational
maps in the biprojective situation, this fact would be routinely verified.

We see that T and 7t fall within the general notion of rational maps with source a biprojective
scheme. Most of the presently needed material in the biprojective situation is more or less a
straightforward extension of the projective one. Thus, for example, the field of rational functions of
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5.4. Specialization

the biprojective scheme B(J) is given by the bihomogeneous localization of R+ (J) at the null ideal,
that is

K(B(9)) = Ry(9) o) = {; |1, € Ry(7), bideg(f) = bideg(g). g # 0}.
Then, the degree of the morphism TT (respectively, TT) is given by
[K(B(3)) : K(Proj(Alg]))]  (respectively, [K(B(J)) : K(P)]).

Likewise, we have:
Lemma 5.39. The following statements hold:

(i) K(B(J)) = K(Pg).

(ii) T is a birational morphism.
(iti) deg(TT) = deg(9).

Proof. (i) It is clear that K(Py) C K(B(J)). Let f/g € K(B(J)) with f,g € [R‘T(J)](a,[g), then
it follows that f = ptP and g = p/tP where p,p’ € R+ p- Thus, f/g = p/p’ € R(p) and so
K(B(J)) C K(Pg).

(i) Use essentially the same argument of the implication (B1) = (B2) in Definition-
Proposition 5.21. Let 1 denote the generic point of B(J) and & that of P},. From part (i),
(T )E] : Oprg — Op(g)y is an isomorphism. Therefore, [57, Proposition 10.52] yields the
existence of dense open subsets U C B(J) and V C P, such that the restriction TT" [, : U = Vis
an isomorphism.

(iii) Tt follows from part (). O

Thus, we have as expected: TT and 7t are generically finite morphisms if and only if § and g are
so, in which case we have

deg(G) =deg(TT) and deg(g) = deg(m).
Lemma 5.40. There is a commutative diagram

7t

B(I) Proj(k(g])
P1 l Jq1
B(9) xa k Mxak Proj(Alg]) x A k (5.7)
P2 qu
B() a Proj(Alg))
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5.4. Specialization

where the statements below are satisfied:
(i) p1 and q1 are closed immersions.
(ii) p2 and q; are the natural projections from the fiber products.

Proof. It is an immediate consequence of Lemma 5.34 by taking respective associated Proj and
BiProj schemes. O

Corollary 5.41. The following statements hold:
(i) dim (B(J)) = dim(A) + .
(ii) dim (B(I)) = .

Proof. Tt follows from Corollary 5.8 and the equalities dim (Rg(J)) = dim(R) + 1 and
dim (TRR/nR(I)) = dim(R/nR) + 1 (Theorem 1.2). O

The next result is an immediate consequence of Proposition 5.35 and Corollary 5.9.
Lemma 5.42. Assuming that J ¢ nR, the following statements hold.:

(i) B(1) is an irreducible component of B(J) x a K and, for any irreducible component Z, of
B(J) xa K other than B(1), we have that Z corresponds with an irreducible component of
E(J) xa kand so

dim (Z) < dim (E(J) xa k).

(ii) Let k > 0 be an integer such that {(Jsz) < ht(B/nR) + k for every prime ideal B € Spec(R)
containing (J,n). Then
dim (E(J) xa k) <r+k—1.

In particular,
dim (B(J) x A k) < max{r,r+k—1}
Main specialization result

Proposition 5.43. Under Setup 5.38, assume that both G and { are generically finite. Then, the
following statements are satisfied:

(i) U ={y € Proj(Alg]) | TT—"(y) is a finite set} is an open dense subset in Proj(Alg]) and the
restriction TT—1 (W) — U is a finite morphism.

(ii) If dim (E(J) x A k) < 1 then
q7 ' (g3 ' (W) # 0.
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5.4. Specialization

Proof. (i) Clearly, IT is a projective morphism, hence is a proper morphism. Thus, as a consequence
of Zariski’s Main Theorem (see [57, Corollary 12.90]), the subset

U ={y € Proj(Alg]) | ! (y) is a finite set}

is open in Proj(A[g]) and the restriction TT~' (Ul) — U is a finite morphism. Since TT is generically
finite, U is nonempty (see, e.g., [66, Exercise 11.3.7]).

(i1) In notation of (5.7), considering Proj(k[g]) as a closed subscheme of Proj (A[g]) x Ao K via
q1, take the restriction

Wi W= (Txa k)™ (Proj(klg])) — Proj (k[g]).
From Lemma 5.42 and the fact that g is generically finite, it follows that
dim (B(J) x o K) = r = dim (Proj(k[g])) .

Let & be the generic point of Proj(k[g]). So the map V¥ is also generically finite, and the fiber
Y(E) =W =W Xproj(k[g)) k(&) of W over & is finite.
Letting w = q2(q1(&)), we have the following canonical scheme isomorphisms
vl =w X proj(k[g]) K(&)
((B( ) XA K) X (Proj(Alg]) x ak) Proj(k[g])) X proj(k(g)) K(&)
(B(3) x A K) X (proj(Alg]) x ak) K(E)
(B(J Xproj(Alg]) (Proj (Algl) x a k)) X (Proj(Alg]) x ak) K(&) (5-8)

B(j) ><Pr0]( )k(a)
(B(J) Xproj(Arg)) K
TN (W) Xy () K

Ile

[le

[l2

Ile

Il

where TT- 1 (w) = B(9),, = B(J) X proj(A [g]) k(W) denotes the fiber of TT over w. Thus, it follows that
dim(TT~ " (w)) = dim(¥~'(&)) = 0 (see, e.g., [57, Proposition 5.38]) and so TT~! (w) is also a finite
fiber. Therefore, w € U and & € q]*1 (qu1 (U)), which clearly implies qf1 (qg] (u)) # 0. O

Next is the main result of this part.
Theorem 5.44. Under Setup 5.38, suppose that both G and g are generically finite.
(i) Assume that the following conditions hold:

(a)  Proj(Algl) is a normal scheme.

(b) dim(E(J) xa k) <.
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5.4. Specialization

(c) Kis afield of characteristic zero.

Then
deg(g) < deg(9).

(ii) If dim (E(J) xa K) < v —1, then

deg(g) > deg(9).

(iii) Assuming that K is algebraically closed, there exists an open dense subset W C K™ such that,
ifn=1(z1 —1,...,Zm — &m) With (1, ..., xm) € W, then we have

deg(g) > deg(9).

(iv) Consider the following condition:
(IX) k > 0 is a given integer such that {(Jp) < ht(B/nR) + k for every prime ideal
B € Spec(R) containing (I, n).

Then:

(IX1) If (IX) holds with k < 1, then condition (b) of part (i) is satisfied.
(IX2) If (IX) holds with k = O, then the assumption of (ii) is satisfied.

Proof. (i) Using condition (b), take an open set U as provided by Proposition 5.43 and shrink it
down to an affine open subset U’ := Spec (€) C U such that q1_1 (qz] (U")) # (). The scheme
qfl (q ;] (U)) is also affine because g1 and q are affine morphisms (Lemma 5.40). Then, set

q; (g3 " (W) =: Spec (C).

Since the restriction TT~1(U’) — U’ is a finite morphism, TT—' (U’) is also affine (see, e.g., [57,
Remark 12.10], [66, Exercise 5.17]). Set TT~!(U’) =: Spec (B). Similarly,

py ' (py ' (M1 (W))) = Spec (B)

is also affine.
The following commutative diagram of scheme morphisms stems from these considerations:

T[ |Spec(B)
Spec(B) Spec(C)

(5.9

[l ‘Spec(B)
Spec(B) Spec(C)
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5.4. Specialization

where 7t ISpeC(B) and TT |Spec(B) are finite morphisms. It corresponds to the following commutative
diagram of ring homomorphisms

B

B

i

with finite horizontal maps, which are injective because 7 ISPCC(B) and TT |Spec(B) are dominant
morphisms and C and € are integral domains (see [57, Corollary 2.11]). Since Proj(Al[g]) is given
to be a normal scheme, C is integrally closed. By Lemma 5.36,

C

C

deg(g) = deg(m) = deg (7 Ispec(s) ) < deg (T Ispec(s ) = deg(IT) = deg(9).
(i1) By the hypothesis and Lemma 5.42, we have the set-theoretic equality

B(J) xak=B(I) [ JV
where V is the union of the irreducible components of B(J) x o K other than B(I), and
dim(Z) < r = dim(Proj(k[g]))

for each irreducible component Z C V. With notation as in (5.7), considering Proj(k[g]) as a closed
subscheme of Proj (A[g]) x a K via q7, take the restriction

YW =(TTxak) " (Proj(klg])) — Proj(k[g]).
q2(q1(&)). If Z is any irreducible

Let & be the generic point of Proj(K[g]) and denote w q1
( (), since otherwise the restriction

component of B(J) x o K other than B(I), we have W~ 1 (&) N Z
Yiwnz) : (W N Z) — Proj(k[g])

gives a dominant morphism, thus implying that dim(Z) > dim(Proj(k[g])), which is a contradiction.
Therefore, ¥~ (&) C B(I), and so W~ '(&) and 71" (&) have the same cardinality. Since 7 is
assumed to be generically finite, the generic point u of B(I) is the only point of 7t ' (&). Thus,
set-theoretically 7w~ (&) = {u} and ¥~1(&) = {p1 (u)}.

Referring to (5.9), we take the affine open subsets Spec(D) := pz_1 (Spec(B)) € B(J) x A kand
Spec(E) := q? (Spec(€)) C Proj(Algl) x a k. Then, there is an induced commutative diagram of
scheme morphisms
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5.4. Specialization

T |Spec(B)
Spec(B) Spec(C)
l (TT x A k) |Spec(D) j
Spec(D) Spec(E)

with corresponding commutative diagram of ring homomorphisms
E D
C B
where B and C are integral domains, while D and E may not be. Also, the homomorphism E — D
is not necessarily injective (see [57, Corollary 2.11]).
From (5.4), we obtain J' - ker(s) = 0 where s : Rg(J) @ k — Rr/mr(1). Since I # 0, it

follows that J Z ker(s) and so ker(s) & V (J - (Rgr(J) ®a K)) D Suppg, (5)g .k (ker (s)). In terms
of sheaves, the closed immersion p1 in (5.7) gives the short exact sequence

C

O—)J% OB(g)XAk—m]*OB(U —0 (5.10)

where J is the sheafification of the ideal ker(s). Then, it follows that p; (u) & Supp(J). Restricting
(5.10) to Spec(D) yields the exact sequence

0—-9—-D—=B—0 (5.11)

where £ is the ideal associated with the restriction J [g,e.(p). Since B = D/, the ideal Q €
Spec(D) is the prime ideal of the point p(u), and therefore £ is not in the support of £ as a
D-module (i.e., Q ¢ Suppp (Q)).

Now, after these reductions we have W~ '(&) = Spec (D ®¢ Quot(C)) and m '(§) =
Spec (B ®¢ Quot(C)) as schemes. Since E — C is surjective, C = E/]J for some ideal ] C E.
Since B is a C-module, then B ®¢ C = B/]JB = B and JD C Q. By applying the tensor product
— ®g Cto (5.11) we get the exact sequence

0—9Q/JD - D/JD — B — 0. (5.12)

We also have that Q/]D ¢ Suppp /jp (2/]JD). From the fact that B ® ¢ Quot(C) = Quot(B) # 0,
then (D/JD) ®c Quot(C) # 0 and so we have an injection C <— D/JD. Tensoring (5.12) with
Quot(C) over C, we obtain the exact sequence

0—-q— (D/JD) ®c Quot(C) — B ®c Quot(C) — 0
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where q = (2/]D) ®@c Quot(C) and q & Supp(p /jp)@cquor(c) (9)- Since Y=1(&) has only one
point then ¢ is the unique prime ideal of (D/JD) ® ¢ Quot(C) = D ®g Quot(C), and this necessarily
implies that g = (0).

Therefore, there is actually an isomorphism Y-l (&) = ! (&) of schemes.

By (5.8), V=1 (&) =TT 1(w) Xk (w) k(&), from which follows that

dimy () (0¥ (8))) = dimy sy (O(TTT (W)

Let U be the open set of Proposition 5.43 and n be the generic point of Proj(A[g]). Consider the
finite morphism
m'u) - u.

Then we have

deg(g) = dimy (¢ (O(m ' (&)
= dimy(¢) (O(V'(€)
= dimy () (O(TT " (W)

> dimy () (O(TT'(m))) = deg(9).

0
0

where the inequality follows by the upper semi-continuity of the degree of the fibers of a dominant
finite morphism between integral schemes (see, e.g., [106, Exercise 5.1.25], [57, Corollary 7.30]).
(ii1) By setting

W = {p € Spec(A) | dim (grj(R) QA k(p)) <r+ 1} N MaxSpec(A),

the result is obtained from Remark 5.33, Lemma 5.37, Corollary 5.9 and part (ii).
(iv) Both (IX1) and (IK2) follow from Lemma 5.42. O

Specialization of the saturated fiber cone

This subsection deals with the problem of specializing saturated fiber cones. Under certain
general conditions it will turn out that the multiplicity of the saturated fiber cone remains constant
under specialization.

The reader is referred to the notation of Section 5.2.

Setup 5.45. Keep the notation introduced in Setup 5.31 and Setup 5.38. Let K = Quot(A) denote
the field of fractions of A and let T := K[xo, ..., Xy] denote the standard polynomial ring over K
obtained from R = Alxo, ..., Xy] by base change (i.e., considering the A-coefficients of a polynomial
as K-coefficients). Let G and g be as in Setup 5.31.

In addition, let G denote the rational map G : Pg --» Py with representative G = (Go:--+:Gyg),
where Gy is the image of gi along the canonical inclusion R — T. Set | .= (Gy,...,Gg) C T.
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Finally, let Y := Proj(Kk[g]) and Y := Proj(K[G]) be the images of g and G, respectively (see
Definition-Proposition 5.18).

As in Remark 5.24, the rational map G is generically finite if and only if the rational map G is so,
and we have the equality deg(G) = deg (G) .

Consider the projective R-scheme Projg_o.(Rr(J)), where Rr(J) is viewed as a “one-sided”
R-graded algebra.

For any p € Spec(A), let k(p) = Ap/pA,. The fiber Rr(J) ®a k(p) inherits a one-sided
structure of a graded R(p)-algebra, where R(p) := R, /pR,, = k(p)[x0,...,X,]. Moreover, it has a
natural structure as a bigraded algebra over R(p)[yo,...,Ys] = R(p) ®a A[yo, .5 Ysl

Therefore, for 0 < 1 < 1 the sheaf cohomology

M(p)' = H (Projg g (RR (D) @A K(P)) Oprgj,  (Rer2nkp))  (513)

has a natural structure as a finitely generated graded k(p)[yo,...,ys]-module (see, e.g., Proposi-
tion 3.7). In particular, we can consider its Hilbert function H (J\/[(p)i, t) = dimy () ([M(p)i} )
t

Lemma 5.46. For a given p € Spec(A), consider the function X, : N — N defined by

Xp(t) == Z (—1)'H (M(p)i,t) :

i=0
Then, there exists an open dense subset U C Spec(A), such that Xy, is the same for all p € U.

Proof. Consider the affine open covering

W — (Spec <CRR(3)(M)))

oigr

of Projg o (Rr (7)), with corresponding Cech complex

C.(W) : OH@RR( %@fRR (xix;) . —)RR(S)(XO...XT) — 0.
i

i<j

Note that each C'(‘W) has a natural structure of finitely generated graded algebra over A, and its
grading comes from the graded structure of Aly]. By using the Generic Freeness Lemma (see,
e.g., [47, Theorem 14.4]), there exist elements a; € A such that each graded component of the
localization C*(W) a; 18 a free module over A, .

Let D*® be the complex given by D' = CY{(W)q, where a = apay - - - ar. Hence, now D® is a
complex of graded A [y]-modules and each graded strand [D*], is a complex of free A q-modules.
Notice that each of the free A o-modules [Di] ; 18 almost never finitely generated.
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The i-th cohomology of a (co-)complex F* is denoted by H'(F*). Since each [D*], is a complex
of free A q-modules (in particular, flat), [66, Lemma III1.12.3] yields the existence of complexes L{
of finitely generated free A -modules such that

Hi([D']t RA, k(p)) = H! (L; ®A, k(p)) (5.14)

for all p € Spec(Aq) C Spec(A). Let U := Spec(A4) C Spec(A).

CLAM. X, is independent of p on U; in other words, for any p € U and any q € U, we have
Xp(t) = Xq(t) forevery t € N.

Consider an arbitrary p € U. Since Rg(J) ®a k(p) = Rr(J), ®a, k(p), then D®* @4, k(p)
coincides with the Cech complex corresponding with the affine open covering

(Spec ((fRR(J) XA k(p))(xi))>

ogigr
of Projg (y)-gr (Rr(J) ®a k(p)). Hence, from (5.13) and (5.14), for any t € N there is an isomor-
phism
il ~qrif7e
p)] = H (L @a, k(p).

But since each Lf‘[ is a finitely generated free A 5-module, it follows that

i (—1) " dimy ) ([M(p)i]t) - Z (—1)'ranka, (L).

i=0 i=0
Therefore, for every t € N, xp(t) = > 1_, (—1 )'H <M(p)i,t) does not depend on p. O

The following theorem contains the main result of this part. By considering saturated fiber cones,
we ask how the product of the degrees of the map and of its image behave under specialization.

Theorem 5.47. Under Setup 5.45, suppose that both G and g are generically finite. Assuming
that K is algebraically closed, there exists an open dense subsetV C K™ such that, if n = (21 —
X1yeeesZm — O ) With (Xq,...,0m) €V, then we have

—_—

deg(g) - degpy (¥) = e (Fr/ur (D)) = e (7(1)) = deg(G) - degpy (Y).

Proof. Take an open dense subset U like the one of Lemma 5.46, then from Lemma 5.37 we have
that
vV=uUun {p € Spec(A) | dim (grj(R) QA k(p)) <r+ 1} N MaxSpec(A)

is an open dense subset of MaxSpec(A ). From Remark 5.33, V induces an open dense subset in k™.
From now on, suppose thatn € V.
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Let W := Projgn).g (Rr(J) ®a K, as in (5.13), HY (W, Ow) = M(n)* By a similar to-
ken, HY{(W, Ow) = M((0))', where W := Projg(0).gr (RR(J) ®Aa K), with R(0) := R®a K =
Klxo,...,x] and (0) denotes the null ideal of A.

Now, clearly (0) € V and n € V. Therefore, Lemma 5.46 yields the equalities

i (~1H(H (W, 0w).t) = Z (~1)'H(H (W, Ow), t) (5.15)

i=0 i=0

forall t € N.
From the definition of 'V and Proposition 5.35 we get that dim (Rg(J) ® o K) = dim(R/nR) + 1.
Hence, for any 1 > 1, Theorem 5.29(i1) implies the inequalities

dim (H'(W, Ow)) < dim (R/nR) — 1 and dim (H'(W,Ow)) < dim(T) — 1.
Therefore, (5.15) gives that
dim (H°(W, Ow)) = dim (H°(W, Ow)) = dim(T) = dim (R/nR),

and that the leading coefficients of the Hilbert polynomials of H® (W, Ow/) and H® (W, Ow) coincide,
and so e (H® (W, Ow)) = e (H® (W, Ow)).
Consider the exact sequence of finitely generated graded (Rg(J) ® o K)-modules

0 — ker(s) — Rpr(9) @4 k = Rr/mr (1) =0

where 5 : Rgr(J) ®a K — Ry /yr (1) denotes the same canonical map of Proposition 5.35.
Sheafifying and taking the long exact sequence in cohomology yield an exact sequence of finitely
generated graded K[y]-modules

0 — H® (W, ker(s)™) — H® (W, 0w) — H® (W, Rg /ur(1)7) — H' (W, ker(s)").

Note that

—_—

- :
Sr/nr(l) = H (PrOJ(R/nR)-gr (Rr/nr(D)) 5 Oproj(R/“R]_gr(fRR/nR(I)))
= H (W, Ry /g (1))

(see, e.g., [66, Lemma II1.2.10]).
From the definition of V and Proposition 5.35, it follows that dim(ker(s)) < dim(R/nR). Hence
Theorem 5.29 gives that

dim (H® (W, ker(s)™)) < dim(R/nR) — 1 and dim (H' (W, ker(s)")) < dim(R/nR) — 2.
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Therefore, we get the equality

e ($R/nR(U) =e (H° (W, 0n)).
Since S/T\/(I) = HO(W, Ow), summing up yields

—_—

e (Sr/mr(D)) =€ (HO (W, 0w)) = e (H (W, 0w)) = e (1(1)).

Finally, by Theorem 3.4 it follows that

—_—~—

e (Fr/nr(D)) = deglg) - degey (Y)  and e (§r(1)) = deg(G) - degpy (¥),
and so the result is obtained. OJ

Now as an easy corollary we show that under general conditions the degree of the image of a
rational map never increases under specialization.

Corollary 5.48. Under Setup 5.45, suppose that both G and ¢ are generically finite. Assuming
that K is algebraically closed, there exists an open dense subset Q C K™ such that, if n = (21 —
X1yeeesZm — ) With (Xq,...,0m) € Q, then we have

degp: (V) < degps (Y).

Proof. 1Tt follows from Theorem 5.44(iii) and Theorem 5.47. [

5.5 Perfect ideals of height two

In this section we deal with the case of a rational map J : P} --» P} with a perfect base ideal of
height 2, where K is a field of characteristic zero. Note that the condition G, 1 is satisfied for the
generic perfect ideal of height 2.

The main idea is that we can compute the degree of the rational map (Corollary 4.13) when the
condition Gy 1 is satisfied, then a suitable application of Theorem 5.44 gives an upper bound for all
the rational maps that satisfy the weaker condition Fy.

Below Setup 5.31 is adapted to the particular case of a perfect ideal of height 2.

Notation 5.49. Let K be a field of characteristic zero. Let 1 < ny < pa < -+ < WUy be integers
with W + 2 + -+ + e = d. Given integers 1 <i<r+1land1 <j <, let

zij ={zij1,2ij2, -+ Zijm}

denote a set of variables over F, of cardinality m; = (“jj r) — the number of coefficients of a

polynomial of degree ; in v + 1 variables.
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5.5. Perfect ideals of height two

Let z be the set of mutually independent variables 7 = Ui’j zij, A be the polynomial ring
A = Klz], and R be the polynomial ring R = Alxo,...,x:]. Let M be the (v + 1) X v matrix with
entries in R given by

P11 P12 - Pir
P2.1 P22 - P2r
M= . . .
Pr+1,1 Pr+12 - Pr+ir

where each polynomial pij € R is given by

i wi—1 wi—1 i
Pij =ZijaXo T Zij2Xy X1+ Zigmy—1Xe—1Xr  FZijmXr

Fix a (rational) maximal ideal n -= (th,k — oci,j,k) C Aof A, with xi jx € k.

Set K := Quot(A), and denote T .= R®@a K =K][xg, ..., %] and R/nR = K[xo, ..., X+

Let M and M denote respectively the matrix M viewed as a matrix with entries over T and R/nR.
Let{go,91,...,gr} C R be the ordered signed minors of the matrix M. Then, the ordered signed
minors of M and M are given by {Go, G1,...,Gy} C T and{go,q1,...,gr} C R/nR, respectively,
where G; = gi ®r T and g = ¢gi ®r (R/nR).

Let G : P, —-» PL, G:Pg -——» Py andQ : Py --» Py be the rational maps given by the
representatives (go : ---:9r), (Go:---:Gy)and (go : - - - : gy), respectively.

Lemma 5.50. The following statements hold:
(i) The ideal 1,.(M) is perfect of height two and satisfies the condition G, 1.
(ii) The rational map G : Py --» Py is generically finite.

Proof. Let | = 1..(M).

(1) The claim that | is perfect of height two is clear from Hilbert-Burch Theorem (see, e.g.,
[47, Theorem 20.15]).

From Proposition 5.27, ht(I;(M)) > ht(I;(M)) > r+ 2 —1ifor 1 < i < r. Since the G, 1
condition on | (see Definition 1.33) is equivalent to

ht(I1-1(M)) = ht(Fitt; (1)) > i

for T <1 < 1, and so the result follows.

(i1) Since p(l) = r 4+ 1 = dim(T), then the condition G, 1 is equivalent to G,. Thus, we get
from Theorem 1.37 that | is of linear type and so {(1) = dim (F7(I)) =r+ 1.

Finally, since (1) corresponds with the homogeneous coordinate ring of the image of G, then
the result follows. O

The main result of this section is a straightforward application of the previous developments.
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Theorem 5.51. Let K be a field of characteristic zero and let D = K(xo, . . ., Xy] denote a polynomial
ring over K. Let 1 C D be a perfect ideal of height two minimally generated by v + 1 forms
{fo,T1,..., T} of the same degree d and Hilbert-Burch resolution of the form

N
0 EPD(-d—w) L D(-d) w10
i=1
Consider the rational map JF : Py -+ Py given by
(Xo 1 %) — (fo(xo,...,xr) T :fr(xo,...,xr)).

When T is generically finite and 1 satisfies the property Fo, we have

deg(F) < pypz -« pr.

In addition, if 1 satisfies the condition Gy .1 then

deg(F) = wipz -+ - Uy

Proof. Letthe o j ks introduced in Notation 5.49 stand for the coefficients of the polynomials in the
entries of the presentation matrix ¢. Then, under Notation 5.49, there is a canonical isomorphism

@ (A/n)xo,. ... %] — D =Kxg,....%:]

which, when applied to the entries of the matrix M, yields the respective entries of the matrix @.
Thus it is equivalent to consider the rational map g : Py --» P} determined by the representative
(go:---:gy) where @(g7) = fj.

Since I,.(M) satisfies the condition G, 1 (Lemma 5.50), then Corollary 4.13 gives us that
deg(G) = iz - Wr.

Since § is generically finite by Lemma 5.50(ii) and Remark 5.24, its image is the whole of
P’ the latter obviously being a normal scheme. In addition, since I satisfies F, the conditions of
Theorem 5.44(i)(iv) are satisfied, hence

deg(F) = deg(g) < deg(§) = deg(G) = wimz - - .

When I satisfies G, 1, then the equality deg(F) = w2 - - - iy follows directly from Corol-
lary 4.13. 0

A particular satisfying case is when J is a plane rational map. In this case Fy is not a constraint
at all, and we recover the result of Proposition 3.47.

Corollary 5.52. Let F : Pﬁ -— Pﬁ be a rational map defined by a perfect base ideal 1 of height

161



5.5. Perfect ideals of height two

two. Then,
deg(F) < iz

and an equality is attained if | is locally a complete intersection at its minimal primes.

Proof. In this case property Fo comes for free because ht(I(¢)) > ht(I>(¢@)) = 2 is always the
case. Also, here l.c.i. at its minimal primes is equivalent to G3. O

Finally, we show a simple family of plane rational maps where the degree of the map decreases
arbitrarily under specialization. Also, in the following example, under general specialization of the
coefficients the degree remains constant.

Example 5.53. Ler m > 1 be an integer. Let A = K[a] be a polynomial ring over K. Let R =
Alx, vy, z] be a standard graded polynomial ring over A and consider the following homogeneous
matrix

x zy m—1
M= —y zxm ! pym
az Zxm !

with entries in R. Forany 3 € K, letng := (a — ) C A. LetJ = (go,g1,92) = Io(M) C R
and lg := (7'([5 (go),mp(g1), g (gz)) C R/ngR be the specialization of ] via the canonical map
U R — R/I‘l(g R.

Let G : P%\ -—> PZA and Qg : Pi\/nﬁ - Pi\/nﬁ be rational maps with representatives
(go:9g1:92)and (T[B(go) mig(g1) : 71[3(92)) respectively

When 3 = 0, from [67, Proposition 2.3] we have that Qo : A Jng " P n 15 @ de Jonquiéres
map, which is birational (also, see Theorem 3.59). On the other hand, lf &) 75 0, then I satisfies the
condition Gz and so we have deg (gfg) m.

Therefore, it follows that
1 ifp=0,
deg (9p) = :
m  fR#0.

Also, note that deg(G) = m.
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Chapter 6

Regularity and Grobner bases of the Rees
algebra of edge ideals of bipartite graphs

Let G = (V(G), E(G)) be a bipartite graph on the vertex set V(G) = X U Y with bipartition
X ={x1,....xntand Y = {y1,...,ym}. Let k be a field and let R be the polynomial ring R =
Klx1,...,Xn,Y1,-..,Yml. The edge ideal I = I(G), associated to G, is the ideal of R generated by
the set of monomials x;y; such that x; is adjacent to yj.

Let R(I) = EB;X’:O I't! ¢ R[t] be the Rees algebra of the edge ideal I. Let fy,...,fq be the
square free monomials of degree two generating I. We can see R(I) as a quotient of the polynomial
ring S = R[Tq,..., T4] via the map

S =KIX1.. ... X U1 -2 Y Trae o Tl 5 R(I) C R,

6.1)
PY(xi) =xi, W(yi) =yi, P(Ti) = fit.

Then, the presentation of R(I) is given by S/X where X = Ker(1\»). We give a bigraded structure
to S = Klx1,....Xn,Y1.....Yml] ®k K[T7,..., Tql, where bideg(x;) = bideg(y;) = (1,0) and
bideg(T;) = (0,1). The map P from (6.1) becomes bihomogeneous when we declare bideg(t) =
(—2,1). Then, we have that S/X and X have natural bigraded structures as S-modules.

The universal Grobner basis of the ideal K is defined as the union of all the reduced Grobner
bases G of the ideal K as < runs over all possible monomial orders (see [138]). In our first main
result we compute the universal Grébner basis of the defining equations X of the Rees algebra R(1).

From [147, Theorem 3.1, Proposition 3.1] we have a precise description of X given by the
syzygies of I and the set even of closed walks in the graph G. The algebra R(I), as a bigraded
S-module, has a minimal bigraded free resolution

0—F, — - —F —F —R(I) —0, (6.2)
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6.1. The universal Grobner basis of K

where Fi = @;S(—aij,—by;j). In the same way as in [122], we can define the xy-regularity of R(I)
by the integer
regy (R(1) = max{a; — 1

1)

or equivalently by
regxy(R(I)) =max{a € Z | Bis’(ah,b)(iR(I)) # 0 for some i,b € Z},

where Bis’(a’b) (R(I)) = dimk(ToriS(iR(I), k)(a,b))‘
Similarly, we can define the T-regularity by

regr (R(1)) = max(oy; — i

and the total regularity by
reg(R(I)) = max{ai; + by; — i}.
1)

The aim of this chapter is to investigate different aspects of the Rees algebra R(I) of I. We
compute its total regularity as a bigraded algebra and the universal Grobner basis of its defining
equations; interestingly, both of them are described in terms of the combinatorics of G. We apply
these ideas to study the regularity of the powers of I. For any s > match(G) + [E(G)| 4+ 1 we prove
that reg(15') = reg(I°) + 2, and for all s > 1 we show that reg(I1%) < 2s 4+ match(G) — 1.

6.1 The universal Grobner basis of X

In this section we give an explicit description of the universal Grobner basis U of K. Our
approach is the following: first we compute the set of circuits of the incidence matrix of the cone
graph, and then we translate this set of circuits into a description of U.

The following will be assumed in most of this chapter.

Setup 6.1. Let G be a bipartite graph with bipartition X = {x1,...,xn}and Y ={y1,...,Yym}, and
R be the polynomial ring R = K[x1,...,Xn,Y71,...,Yml. Let I be the edge ideal 1(G) = (fq,...,fq)
of G. We consider the Rees algebra R(1) as a quotient of S = R[Tq,..., Tq] by using (6.1). Let X
be the defining equations of the Rees algebra R(1).

Let A = (ayj) € R™"™9 be the incidence matrix of the graph G. Then we construct the matrix
M of the following form

aii (11’q €1 ... en4m
M = : : 3 , (6.3)
An+m,1 --- Onim,q
1 1
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6.1. The universal Grobner basis of K

where eq, ... en4m are the first n 4 m unit vectors in R M+ (see [56, Section 3] for more details).
This matrix corresponds to the presentation of R(I) given in (6.1). For any vector f € Z"+™+4d
with nonnegative coordinates we shall use the notation

xyTB = x?“” -~-xﬁ‘”“y§3q+“+‘ ...yﬁfﬂwm-l-]& ...qu‘

A given vector o« € Ker(M) N Z™™+4 can be written as « = o™ — o~ where o« and &~
are nonnegative and have disjoint support.

Definition 6.2 ([138]). A vector « € Ker(M)NZ™t ™4 js called a circuit if it has minimal support
supp( o) with respect to inclusion and its coordinates are relatively prime.

Notation 6.3. Given a walk w = {vo, ..., va}, each edge {vj_1,v;} corresponds to a variable Ty,
and we set T,,+ = Hj iseven Ty and Ty = H]- isodd Vi (in case a =1 we make T,,+ =1). We
adopt the following notations:

(i) Let w = {vg,...,vq = Vo} be an even cycle in G. Then by T,, we will denote the binomial
T+ — Th- € K.
(ii) Let w = {vg,...,va} be an even path in G, since G is bipartite then both endpoints of w

belong to the same side of the bipartition, i.e. either vo = Xi,Vq = Xj 0r Vo = Yi,Va = Yj.
Then the path w determines the binomial

voTw+ —va - € XK.
(iii) Let w1 = {ug,...,uq}, w2 = {vo,...,Vp} be two disjoint odd paths, then the endpoints

of w1 and w; belong to different sides of the bipartition. Let T(,y, y,)+ = TWT ng and
Towywy)- = Tw;Tw;’ then wi and wo determine the binomial

uouaT(Wthﬁ —\)ovbT(W]’Wz)f e X.

Example 6.4. In the bipartite graph shown below

X1 X2 Y2

T T3

we have that the odd paths w1 = (x1,Y1) and wy = (x2,Y2,X3,Y3) determine the binomial
x1y1 2Ty —x2ys T Ts.
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6.1. The universal Grobner basis of K

Let U be the universal Gobner basis of K. In general we have that the set of circuits is contained
in U ([138, Proposition 4.11]). But from the fact that M is totally unimodular ([56, Theorem 3.1]),
we can use [138, Proposition 8.11] and obtain the equality

U = {xyT® —xyT* | «is a circuit of M}.

Therefore we shall focus on determining the circuits of M, and for this we will need to in-
troduce the concept of the cone graph C(G). The vertex set of the graph C(G) is obtained by
adding a new vertex z to G, and its edge set consists of the edges in E(G) together with the edges
x1.zh . xnszh {ynszh - {yms 2),

Theorem 6.5. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. The universal Grobner
basis U of K is given by

U ={T,, | wis an even cycle}
U{voTw+ —vaTw- | W= (vo,...,Vvq) is an even path}
U{uouaTiw, wy)+ = VoVe Twyw,)— | W1 = (Uo, ..., uq) and

wy = (vo,...,Vp) are disjoint odd paths}.

Proof. Let K[C(G)] be the monomial subring of the graph C(G), which is generated by the mono-
mials

k[C(G)] = k[{xiyj [{xi,y;} € E(G)}U{xiz [i=1,...,.n}U{yiz|i= 1,...,m}}.
As we did for the Rees algebra R(I), we can define a similar surjective homomorphism

m:S — K[C(G)] C R[zl,
ni(xi) = xiz, m(yi) =yiz, 7(Ty) =fi.

We have a natural isomorphism between R(I) and kK[C(G)] [145, Excercise 7.3.3]. For instance,
we can define the homomorphism @ : R[t] — R[z,z~'] given by @(xi) = xiz, ©(yi) = yiz
and @(t) = 1/2z2, then the restriction ¢ |R(I) of ¢ to R(I) will give us the required isomorphism
because both algebras are integral domains of the same dimension (see Proposition 6.21 (1)).

Hence we will identify the ideal K with the kernel of 7t. Let N be the incidence matrix of the
cone graph C(G). From [147, Proposition 4.2], we have that a vector o« € Ker(N) N Z™ "4 jg a
circuit of N if and only if the monomial walk defined by « corresponds to an even cycle or to two
edge disjoint odd cycles joined by a path.

Since the graph G is bipartite, then an odd cycle in C(G) will necessarily contain the vertex z.
Therefore the monomial walks defined by the circuits of N are of the following types:

(i) Aneven cycle in C(G) that does not contain the vertex z.

(i) An even cycle in C(G) that contains the vertex z.
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6.2. Upper bound for the xy-regularity

(iii) Two odd cycles in C(G) whose intersection is exactly the vertex z.

The figure below shows how the cases (ii) and (iii) may look.

(a) The two possible cycles of (ii). (b) The graph of (iii).

Since the circuits of the matrices M and N coincide, now we translate these monomial walks in
C(G) into binomials of XK. An even cycle in C(G) not containing z, is also an even cycle in G, and
it determines a binomial in X using Notation 6.3. In the cases (ii) and (iii), we delete vertex z in
order to get a subgraph H of G. Thus we have that H is either an even path or two disjoint odd paths,
and we translate these into binomials in X using Notation 6.3. 0

Remark 6.6. Alternatively in Theorem 6.5, we can see that the matrices M and N have the same
kernel because they are equivalent. We multiply the last row of M by —2 and then we successively
add the rows 1,...,n 4+ m to the last row; with these elementary row operations we transform M
into N.

Example 6.7. Using Theorem 6.5, the universal Grobner basis of the defining equations of the Rees
algebra of the graph in Example 6.4 is given by

{x2y2Tr —x1y1 T2, x2y3Ti T3 —x1y1 T2 Ta, x3T2 — x2T3, x3y2Ti —xqy1 T3,
x3y3Tr —x1y1Ta, ysTs —yaTa, x3yzTo —x2y2Ta}.

It can also be checked in [60] using the command universalGroebnerBasis.

Corollary 6.8. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. The universal Grébner
basis U of K consists of square free binomials with degree at most linear in the variables xi’s and at
most linear in the variables y;’s.

6.2 Upper bound for the xy-regularity

In this section we get an upper bound for the xy-regularity of R(I), and the important point is
that we will choose a special monomial order. Using the xy-regularity we can find an upper bound
for the regularity of all the powers of the edge ideal I.

Since most of the upper bounds for the regularity of the powers of edge ideals are based on the
technique of even-connection [8], then a strong motivation for this section is trying to give new tools
for the challenging conjecture:
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6.2. Upper bound for the xy-regularity

Conjecture 6.9 (Alilooee, Banerjee, Beyarslan and Ha). Let G be an arbitrary graph then
reg(I1(G)®) < 2s +reg(I(G)) — 2
foralls > 1.

The following theorem will be crucial in our treatment.

Theorem 6.10. ([122, Theorem 5.3], [27, Theorem 3.5], [73, Proposition 10.1.6]) The regularity of
each power 13 is bounded by
reg(I®) < 2s + reg, ., (R(I)).

By fixing a particular monomial order < in S, then we can see the initial ideal in— (X) as the
special fibre of a flat family whose general fibre is X (see e.g. [73, Chapter 3] or [47, Chapter 15]),
and we can get a bigraded version of [73, Theorem 3.3.4, (c)].

Theorem 6.11. Let < be a monomial order in S, then we have
reg,, (R(I)) < regy, (S/in< (X)),

Let M be an arbitrary maximal matching in G with |M| = r. We assume that the vertices of G
are numbered in such a way that M consists of the edges

M = {{X] ,y]}a {XZ, UZ}a R ’{XT’yr}}’

and also we assume that n = |[X| < |[Y| = m.
InR=K[x7...,%Xn,Y1,-...,Yml we consider the lexicographic monomial order induced by

Xn>...2X2>X1>Ym > ... > Y2 > Y.

We choose an arbitrary monomial order <*on k[Tq,... ,Tq], then we define the following mono-
mial order <™ on S = K[X1,..., X, Y1, s Ym, T1,... , Tql: for two monomials x®1yB1TY1 and
x*2yB2TY2 we have

X0c1y[31TY1 <M XoczyﬁzTYz

if either
(i) X'xlyﬁl < XOCZyBZ or
(i) x*1yPr = x%2yP2 and TV <# TV2,

Let §_(XK) be the reduced Grobner basis of K with respect to <M. The possible type of
binomials inside §_x (X) were described in Theorem 6.5, now we focus on obtaining a more refined
information about the type (iii) in Notation 6.3.
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6.2. Upper bound for the xy-regularity

Notation 6.12. In this section, for notational purposes (and without loss of generality) we shall
assume that w1 and w; are disjoint odd paths of the form

W] = (Xevu] 90 7u2(1’yf)7

w2 = (Xg,V1,...,V2b, Yh)-
Then we analyze the binomial XeYs T, w,)+ — XgYn Tw, wy)—
Lemma 6.13. Let Xe Yt T, w,)+ — XgUh Tiw, w,)~ € Gon(XK), then we have
(i) at least one of the vertices Xe, s is in the matching M, i.e. e < ror f < 1;
(ii) at least one of the vertices X g, Yn is in the matching M, i.e. g <Torh <

Proof. (i) First, assume that a = 0, i.e. Wy has length one. Since M is a maximal matching then
we necessarily get thate < ror f < 1.

Now let a > 0, and by contradiction assume that e > 1 and f > 1. From the maximality of M,
we get that uy = y; where j < r. We consider the even path

w3 = (Yj»...»U2a,Yt)s
then using Notation 6.3 we get the binomial
F= y]'TW}: —yfTW; e XK.

We have in_x (F) = yfng because f > j. So we obtain that in_x (F) divides Xy Ty, v,)+» and
this contradicts that §_x(X) is reduced.
(ii) Follows identically. O

In the rest of this chapter we assume the following.

Notation 6.14. b(G) represents the minimum cardinality of the maximal matchings of G and
match(G) denotes the maximum cardinality of the matchings of G

Theorem 6.15. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. The xy-regularity of
R(1) is bounded by

reg,,, (R(1)) < min {|X| =1, [Y| =1, 2b(G) — 1}.
Proof. From Theorem 6.11, it is enough to prove that

reg,,, (S/in_x (X)) < min {[X| =1, [Y| =1, 2r—1}.
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Let {my,..., m.} be the monomials obtained as the initial terms of the elements of G_ (K). We
consider the Taylor resolution (see e.g. [73, Section 7.1])

0—T.— - — T — Tp — S/in_n(K) — 0,
where each T as a bigraded S-module has the structure

T, = @ S(—degxy(lcm(mj],...,mji)),*degT(lcm(mj],...,mji))).

1)1 <.<ji<e
From it, we get the upper bound
regyy, (S/in (X)) < max { deg,, (lem(my,,....,my.)) —i[{j1,....ji} C {1,...,c}}.
When deg,,, (m;,) < 1, then we have
degxy(lcm(mj], camy)) — i <degyy (lem(my,, .o omy, ) — (= T). (6.4)

So, according with Theorem 6.5, we only need to consider subsets {j1,...,ji} such that for
each 1 < k < iwehave mj, = in_x(Fy) and Fy is a binomial as in Notation 6.12. We use the
notation in_x (Fi) = Xe, Yf, Bk, where By is a monomial in the T;’s. Also, we can assume that
Xe Yfys Xe, Yty - - - Xeyp Yr, are pairwise relatively prime, because we can make a reduction like in
(6.4) if this condition is not satisfied.

Thus, in order to finish the proof, we only need to show that we necessarily have

i< min{X| =1, Y =1, 2r—1}

under the two previous conditions. Since the two paths that define each Fy are disjoint, then by the
monomial order chosen we have that ex > 1 for each k, and by a “pigeonhole” argument follows
that 1 < |X| —1 < |Y| — 1. Also, from Lemma 6.13 there are at most 2r — 1 available positions to
satisfy the condition of being co-primes. Thus we have i < 2r — 1, and the result of the theorem
follows because M is an arbitrary maximal matching. O

Corollary 6.16. Ler G be a bipartite graph and 1 = 1(G) be its edge ideal. For all s > 1 we have
reg(I®) < 2s 4+ min {IXI —1,1Y]—1, 2b(G) — 1}.
Proof. 1t follows from Theorem 6.15 and Theorem 6.10. [

Remark 6.17. From the fact that co-chord(G) < match(G) < min{|X|,|Y|} (see [90]) and
match(G) < 2b(G) (see [75, Proposition 2.1]), then we have the following relations

co-chord(G) — 1 < match(G) — 1 gmin{\X\—L Y| —1, 2b(G)—1}.

171



6.2. Upper bound for the xy-regularity

Although the last upper bound is weaker, it is interesting that an approach based on Grobner
bases can give a sharp answer in several cases.

In the last part of this section we deal with the case of a complete bipartite graph. The Rees
algebra of these graphs was studied in [148].

Setup 6.18. By G we will denote a complete bipartite graph with bipartition X ={x1,...,xn} and

Y={y1,....,ym} Let I ={xiy; | 1 <1< n,1<j < m}bethe edge ideal of G and let Ty; be the

variable that corresponds to the edge xiyj. Thus, we have a canonical map
S =Klxi’s. yj's. Tij's] 2 R(I) C RIt,

(6.5)
PY(xi) =xi, V(yi) =yi,  P(Ty) =xy;t.
Let X be the kernel of this map. For simplicity of notation we keep the same monomial order <™.

Exploiting our characterization of the universal Grobner basis of X, we shall prove that all the
powers of the edge ideal of G have a linear free resolution.

Lemma 6.19. Let G be a complete bipartite graph. The reduced Grobner basis G (K) consists
of binomials with linear xy-degree.

Proof. From Theorem 6.5 we only need to show that any binomial determined by two disjoint odd
paths is not contained in G_x(X). Let XeysT (v, wy)+ — XgYh T(wy.w,)~ be a binomial like in
Notation 6.12. By contradiction assume that XY Ty, w, )+ — XgUnh Tiw, w, )~ € Gon (K).

Without loss of generality we assume that e > g. Since G is complete bipartite, we choose the
edge xe.yn and we append it to wy, that is

W3 = (Xg,v] 90 e 9V2b’yhaxe)‘
Using Notation 6.3 we get the binomial
F=xgT:r =%, €K,

with initial term in_n(F) = xeng because e > g. Thus we get that in_x(F) divides
XeYf T, w,)+» @ contradiction. O

Corollary 6.20. Let G be a complete bipartite graph and 1 = 1(G) be its edge ideal. For all s > 1
we have reg(1%) = 2s.

Proof. Using Lemma 6.19 and repeating the same argument of Theorem 6.15 we can get
regyy (R(I)) = 0. Again, the result follows by Theorem 6.10. O

We remark that this previous result also follows from [90] since it is easy to check that
co-chord(G) =1 (i.e. it is a co-chordal graph) in the case of complete bipartite graphs.
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6.3 The total regularity of R(I)

In the previous sections we heavily exploited the fact that the matrix M (corresponding to R(I))
is totally unimodular in the case of a bipartite graph G. From [56, Theorem 2.1] we have that
R(I) is a normal domain, then a famous theorem by Hochster [76] (see e.g. [18, Theorem 6.10] or
[19, Theorem 6.3.5]) implies that R(I) is Cohen-Macaulay. So, the Rees algebra R(I) of a bipartite
graph G is also special from a more algebraic point of view (see [136]).

For notational purposes we let N be N = 1. + m. It is well known that the canonical module
of S (with respect to our bigrading) is given by S(—N, —q) (see e.g. [18, Proposition 6.26], or
[19, Example 3.6.10] in the Z-graded case). The Rees cone is the polyhedral cone of RN+ generated

by the set of vectors
A = {v|visacolumnof M in (6.3)},

and we will denote it by R .A. The irreducible representation of the Rees cone for a bipartite graph
was given in [56, Section 4].

Proposition 6.21. Adopt Setup 6.1. The following statements hold:
(i) The Krull dimension of R(1) is dim(R(I)) = N + 1.

(ii) The projective dimension of R(1) as an S-module is equal to the number of edges minus one,
that is, p = pdg(R(I)) = q—1.

(iii) The canonical module of R(1) is given by

WR(1) = *Extg (fR(U, S(—N,—q))
(iv) The bigraded Betti numbers of R(1) and wq 1) are related by
Bis,(a,b)m(l)) = Bg—i,(N—a,q—b)(wiR(I))-

Proof. (i) The Rees cone R;.A has dimension N + 1 and the Krull dimension of R(I) is equal to
this number (see e.g. [138, Lemma 4.2]). More generally, it also follows from Theorem 1.2.

Since clearly R(I) is a finitely generated S-module, then the statements (ii) and (iii) follow
from [18, Theorem 6.28] (see [19, Proposition 3.6.12] for the Z-graded case).

The statement (iv) follows from [18, Theorem 6.18]; also, see [18, page 224, equation 6.6]. [

Due to a formula of Danilov and Stanley (see e.g. [18, Theorem 6.31] or [19, Theorem 6.3.5]),
the canonical module of R(I) is the ideal given by

wg(ry = (B Xy g PN a = (aq) € (ReA)TNZNHD),

where (R, .A)° denotes the topological interior of R, A with respect to the standard topology in
RN+1.
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6.3. The total regularity of R(I)

Now we can compute the total regularity of R(I).

Theorem 6.22. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. The total regularity of
R(1) is given by
reg(R(I)) = match(G).

Proof. In the case of the total regularity, we can see R(I) as a standard graded S-module (i.e.
deg(xi) = deg(yi) = deg(T;) = 1), and since R(I) is a Cohen-Macaulay S-module then the
regularity can be computed with the last Betti numbers (see e.g. [126, page 283] or [47, Exercise
20.19]). Thus, from Proposition 6.21 we get

reg(R(1)) = max {a+b—p| By (o) (R(D) #0}
=max{a+b—p| Bg,(N—a,q—b)(wR(I)) #0}
=N+1—min{a+b B qp)(wxm)#0}.

and by the bigrading that we are using (bideg(x;) = bideg(y;) = (1,0) and bideg(t) = (—2,1))
then we obtain

reg(R(1)) =N +1—min{ay +-- +an —ant1 | a=(a;) € (R A)°NZNTT]
One can check that the number
—min{a1 4+t an —ang la=(ay) € (RyLA)° ﬂZNJA}

coincides with the a-invariant of R(I) with respect to the Z-grading induced by deg(x;) = deg(yi) =
1 and deg(t) = —1. This last formula can be evaluated with the irreducible representation of the
Rees cone [56, Corollary 4.3], it was done in [56, Proposition 4.5], and from it we get

reg(R(I)) =N — o,

where 3o denotes the maximal size of an independent set of G. The minimal size of a vertex cover
is equal to N — 3¢, and we finally get

reg(R(I)) = match(G)
from Konig’s theorem. 0
The following bound was obtained for the first power of the edge ideal in [63, Theorem 6.7].

Corollary 6.23. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. For all s > 1 we have

reg(I®) < 2s 4+ match(G) — 1.
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Proof. It is enough to prove that reg,,, (R(I)) < reg(R(I)) — 1. In the minimal bigraded free
resolution (6.2) of R(I), suppose that reg,y (R) = ay; —ifor some i,j € N. Since necessarily
bij = 1 and

aij + by —1 < reg(R(1)),

then we get the expected inequality. O

This previous upper bound is sharp in some cases (see [10, Lemma 4.4]). In the following
corollary we get information about the eventual linearity.

Corollary 6.24. Let G be a bipartite graph and 1 = 1(G) be its edge ideal. For all s > match(G) +
q + 1 we have
reg(I5+") = reg(I°) + 2.

Proof. With the same argument of Corollary 6.23 we can prove that reg (R(I)) < reg(R(I)), here
the difference is that in the minimal bigraded free resolution (6.2) we can have free modules of the
type S(0, —by;) (for instance, in the syzygies of R(I) the ones that come from even cycles). Then
the statement of the corollary follows from [42, Proposition 3.7]. O

6.4 Some final thoughts

In the last part of this chapter we give some ideas and digressions about Conjecture 6.9. Using
a “refined Rees approach” with respect to the one of this chapter, we might get an answer to this
conjecture for general graphs or perhaps for special families of graphs:

e Restricting the minimal bigraded free resolution (6.2) of R(I) to a graded T-part gives an
exact sequence

0— (Fplax) — - — (F1) ) — (Fo) (s) — (R(D)) () — O
for all k. This gives a (possibly non-minimal) graded free R-resolution of
(R(1) (s) = T¥(2K).
But in the case k = 1 we can check that
0— (Fplpty — - — (F1) 1) — (Fo) (1) — 1(2) — 0

is indeed the minimal free resolution of 1(2). Thus, we can read the regularity [ from (6.2),
and a solution to Conjecture 6.9 can be given by proving that

max {ag; — 1} = max {ay —1|by =1}.
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e For bipartite graphs, Grobner bases techniques can give very good results (for instance, in the
case of complete bipartite graphs). Perhaps, for special families of bipartite graphs we can
give “good” monomial orders.

o The existence of a canonical module in the case of bipartite graphs could give more information
about the minimal bigraded free resolution of R(I). From [18, Theorem 7.26], we have that
the maximal xy-degree and the maximal T-degree on each F; of (6.2) form weakly increasing
sequences of integers, that is

max{aij} < max{ai;1;} and  max{by} < max{bi,q;}
j j j j

(see e.g. [47, Exercise 20.19] for the Z-graded case). Thus a more detailed analysis of the
polyhedral geometry of the Rees cone R4.A could give better results.
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Chapter 4

Regularity of bicyclic graphs and their
powers

In this chapter, we study the regularity of the edge ideal and its powers in the case of a bicyclic
graph. Let I(G) be the edge ideal of a bicyclic graph G with a dumbbell as the base graph. We
characterize the Castelnuovo-Mumford regularity of I(G) in terms of the induced matching number
of G. For the base case of this family of graphs, i.e. dumbbell graphs, we explicitly compute
the induced matching number and the regularity of the edge ideal I1(G). Moreover, we prove that
regl(G)9 = 2q +regl(G) — 2, for all ¢ > 1, when G is a dumbbell graph with a connecting path
having no more than two vertices.

Note. The results of this chapter are based on joint work with Sepehr Jafari, Beatrice Picone and
Navid Nemati.

7.1 Preliminaries

Let R = K[xj,...,x;] be a standard graded polynomial ring over a field k and let m =
(x1,...,%) be its maximal irrelevant ideal. For a graded R-module M, one can define the
Castelnuovo-Mumford regularity in different ways. We recall the definition of the regularity of an
R-module M given in terms of the minimal free resolution of M. The minimal graded free resolution
of M is an exact sequence of the form

O=Fp—=Fpqg—=--—=Fo—=>M=0,
where each F; is a graded free R-module of the form F; = € R(—j) B (M) "each ©i:F—> Fiq,
jEN
with F_; := M, is a graded homomorphism of degree zero such that ¢, 1(Fi 1) € mF; for all
i > 0. The number 31 ;(M), called the (i,j )th—graded Betti number of M, is an important invariant
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7.1. Preliminaries

of the module M. In particular, the number 3;(M) = »_ Bi;(M) is called the i-th Betti number of
jeN

M. Note that the minimal free resolution of M is unique up to isomorphism, hence the graded Betti

numbers are uniquely determined.

Definition 7.1. Let M be a finitely generated graded R-module. The regularity of M is given by
reg(M) = max{j —i[ Bi;(M) # 0}.
Remark 7.2. Note that, if | is a graded ideal of R, then reg(R/1) = reg(I) — 1.

Let G = (V, E) be a graph with vertex set V = {x1,...,x.}. Here, we recall some classes of
graphs that we need for this study.

Definition 7.3. Let G = (V, E) be a graph.

(i) G is called a path on 1 vertices, denoted by Py, if V. ={x1,...,x1}and {xi,xi11} € E for all
1<ig<l-1.

(ii) G is called a cycle on n vertices, denoted by Cr, if V. ={x1,...,xn}and {xi,xi,1} € E for
alll1 <i<n—1and{xn,x1} € E

(iii) G is called a dumbbell graph if G contains two cycles C, and Cy, joined by a path Py on 1
vertices. We denote it by Cy, - Py - Ci (see Example 7.24).

For a vertex win a graph G = (V,E), let Ng (u) ={v € V{u,v} € E} be the set of neighbors
of u, and set Ng[u] := Ng(u) U{u}. An edge e is incident to a vertex w if u € e. The degree
of a vertex u € V, denoted by deg (u), is the number of edges incident to u. When there is no
confusion, we omit G and write N(u), N[u] and deg(u). For an edge e in a graph G = (V, E), we
define G \ e to be the subgraph of G obtained by deleting e from E (but the vertices remain in the
graph).

Let G = (V,E) be a graph and W C V, the induced subgraph of G on W, denoted by G[W], is
the graph with vertex set W and edge set {e € E | e C W}. For a subset W C V of the vertices in
G, we define G \ W to be the induced subgraph of G obtained by deleting the vertices of W and
their incident edges from G. When W = {u} consists of a single vertex, we write G \ u instead of
G \ {u}. For an edge e ={u, v} € E, let Ngle] = Ng[u] U Ng[v] and define G to be the induced
subgraph of G over the vertex set V' \ Ng/el.

One can think of the vertices of G = (V,E) as the variables of the polynomial ring R =
K[x1,...,xy] for convenience. Similarly, the edges of G can be considered as square free monomials
of degree two. By an abuse of notation, we use e to refer to both the edge e = {x;,x;} € E and the
monomial e = x;x; € I(G).

Definition 7.4. Let G = (V,E) be a graph. A collection C of edges of G is called a matching if
the edges in C are pairwise disjoint. The maximum size of a matching in G is called its matching
number, which is denoted by match(G).

178



7.1. Preliminaries

A collection C of edges of G is called an induced matching if C is a matching, and C consists of all

edges of the induced subgraph G [ U e] of G. The maximum size of an induced matching in G is
ecC

called its induced matching number and it is denoted by v(G).
Remark 7.5. [10, Remark 2.12] Let Py be a path on | vertices, then we have

5

Remark 7.6. [10, Remark 2.13] Let Cy, be a cycle on n vertices, then we have

V(P = |

Depending on v = n mod 3 we can assume the following:

(i) whenr =0, there exists a maximal induced matching of C,, that does not contain the edges
X1X2 and X1Xn,;

(ii) when v =1, there exists a maximal induced matching of Cy, that does not contain the edges
X1X2, X1Xn and Xn—1Xn;

(iii) when v = 2, there exists a maximal induced matching of C, that does not contain the edges
X1X2, X2X3, X1Xn and Xp—1Xn.

Theorem 7.7. [62, Lemma 3.1, Theorems 3.4 and 3.5] Let G = (V, E) be a graph.
(i) If H is an induced subgraph of G, then regl(H) < regl(G);

(ii) Letx €V, then
regl(G) < max{regl(G \ x),regI(G \ N[x]) + 1}

(iii) Let e € E, then
regl(G) < max{2,regl(G \ e),regl(G.) + 1}.
Now we recall the concept of even-connection introduced by Banerjee in [8].

Definition 7.8 ([8]). Let G = (V, ) be a graph with edge ideal 1 = 1(G). Two vertices x; and x; in
G are called even-connected with respect to an s-fold product M = e - - - e5, where e, ..., es are

edges in G, if there is a path po, . .., P21+1, for some 1 > 1, in G such that the following conditions
hold:

(i) po =xiand pa1+1 = X§;
(ii) forall 0 <j < 1—1,{p2j41,P2j+2} = ei for some i;

(i) for all i,

(5 H{p2j+1.P2j+2) = e}l < [{tlec = eil].
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Theorem 7.9. [8, Theorems 6.1 and 6.5] Let M = eje; - - - es be a minimal generator of 1. Then
(Is+1: M) is minimally generated by monomials of degree 2, and \wv (\ and v may be the same) is
a minimal generator of (1571: M) if and only if either {\u,v} € E or wand v are even-connected
with respect to M.

Remark 7.10. [8, Lemma 6.11] Let (1577 M)poz be the polarization of the ideal (I5+1: M) (see
e.g. [73, §1.6]). From the previous theorem we can construct a graph G’ whose edge ideal is given
by (Ist1: M)” ° The new graph G’ is given by:

(i) All the vertices and edges of G.

(ii) Any two vertices W, v, W # Vv that are even-connected with respect to M are connected by an
edge in G'.

(iii) For every vertex W which is even-connected to itself with respect to M, there is a new vertex \
which is connected to u by an edge and not connected to any other vertex (so u\’ is a whisker).

Theorem 7.11. [8, Theorem 5.2] Let G be a graph and{m.1, ..., M, } be the set of minimal monomial
generators of 1(G)9 for all q > 1, then

regl(G)9+! < max{reg(I(G)9: my) +2q,1 < L < r,1egl(G)9).
We recall a result on the regularity of monomial ideals.

Theorem 7.12. ([94], [72]) Let 11, ...,1s be monomial ideals in R, then

reg (R/Z h) <) reg(R/L)
i=1 i=1

In the particular case of edge ideals we have the following upper bound.

Corollary 7.13. Let G be a simple graph. If G1,...,Gg are subgraphs of G such that E(G) C
Ui_; E(Gy) then

reg(R/1(G Zreg R/I(G

The previous upper bound is sharp when G is a disjoint union of the graphs Gy, ..., Gs.

Corollary 7.14. [9, Corollary 3.10] Let G be a simple graph. If G can be written as a disjoint union
of graphs G1,...,Gg then

reg(R/1(G Zreg R/I(G
The regularity of the edge ideal of a forest was first computed by Zheng in [152, Theorem 2.18].
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Theorem 7.15. [152, Theorem 2.18] Let G be a forest, then
regl(G) =v(G) + 1.
In [96] Katzman proved that the previous equality is a lower bound for any graph.
Theorem 7.16. [96, Corollary 1.2] Let G be a graph, then
regl(G) > v(G) + 1.

The decycling number of a graph is an important combinatorial invariant which can be used to
obtain an upper bound for the regularity of the edge ideal of a graph.

Definition 7.17. For a graph G and D C V(G), if G\ D is acyclic, i.e. contains no induced cycle,
then D is said to be a decycling set of G. The size of a smallest decycling set of G is called the
decycling number of G and denoted by V(G).

Theorem 7.18. [11, Theorem 4.11] Let G be a graph, then
regl(G) < v(G)+ V(G) + 1.

In [10] Beyarslan, Ha and Trung provided a formula for the regularity of the powers of edge
ideals of forests and cycles in terms of the induced matching number.

Theorem 7.19. [10, Theorem 4.7] Let G be a forest, then
regl(G)9 =2q +v(G) — 1.
forallq > 1.

Theorem 7.20. [10, Theorem 5.2]. Let C,, be a cycle with n vertices, then

v(Cn) +1 ifn=0,1 (mod 3),

regl(Cn) = {V(Cn) +2 ifn =2 (mod 3),

where v(Cp) = L%J denote the induced matching number of Cy.. Moreover,

regl(C)9 =29 +v(Cy) — 1.
and for all q > 2.

In addition, the authors of [10] gave a lower bound for the regularity of the powers of the edge
ideal of an arbitrary graph, and an upper bound for the regularity of the edge ideal of a graph
containing a Hamiltonian path.

181



7.2. Regularity and induced matching number of a dumbbell graph

Theorem 7.21. [10, Theorem 4.5] Let G be a graph and let v(G) denote its induced matching
number. Then, for all q > 1, we have

regl(G)9 > 2q + v(G) — 1.

Theorem 7.22. [10, Theorem 3.1] Let G be a graph on n vertices. If G contains a Hamiltonian

path, then

regl(G) < VLT—HJ + 1.

Finally, we recall the Lozin transformation that will be an important tool in this chapter.

Definition 7.23 ([107]). Let G be a graph and x be a vertex in G. We define a graph transformation
as follows:

(i) partition the neighborhood N g (x) of the vertex x into two subsets Y and Z in arbitrary way;
(ii) delete vertex x from the graph together with its incident edges;
(iii) add a path P4 = (y, a, b, z) to the rest of the graph;
(iv) connect the vertexy of the P4 to each vertex in' Y, and connect z to each vertex in Z.

We denote the transformed graph by L (G).

7.2 Regularity and induced matching number of a dumbbell graph

In this section we compute the induced matching number of a dumbbell graph and the regularity
of its edge ideal. Recall that C;, - Py - C, denotes the graph constructed by joining two cycles Cy,
and C,, via a path Py. In this section, we denote the vertices of Cy,, C;, and Py by {x1,...,Xn},
{y1,...,ym}and{z1,..., 2z}, respectively. We make the identifications x; = z; and y; = z;.

Example 7.24. Two base cases when 1 = 2 and 1 =1 are the following:

X2 Y2 X2 Y2

Figure 7.1: The graphs C3 - P, - C3 and C3 - Py - C4.

182



7.2. Regularity and induced matching number of a dumbbell graph

Notation 7.25. Let &3 be the function defined as below

Es(n)Z{] ifn=0,1 (mod 3),

0 ifn =2 (mod 3).
Let C;, - Py be the graph given by connecting the path Py to the cycle C,,. For instance, the
graph C3 - P3 can be illustrated as the following:

X2

X1 =27 %) z3

Proposition 7.26. Letn > 3 and 1 > 1, then

v(Cn Py =3[ +]

l—&a(n)—HJ
3 —= 7 |

3

Proof. Case 1: From Remark 7.6, in the case n = 2 (mod 3) we have that in clockwise and
anticlockwise directions the two consecutive edges to the vertex x1 are not chosen in a maximal
induced matching of C;,. Then, we can choose the edges in Py without any constraint coming from
the maximal induced matching chosen in Cy,, and so we have v(Cy - P1) = [ 3] + L%j

Case 2: It remains to consider the case £3(n) = 1,ie.,n =0,1 (mod 3). Let M be an induced
matching of maximal size in G. We analyze separately the two cases of whether z7z;, (the edge
adjacent to the cycle C;,) is in M or not.

Suppose z1z; is not an edge of M. Then M can be considered as the union of a maximal
matching of C;, as introduced in Remark 7.6 and a maximal matching of the path Py \ z7. Thus
M = v(Cr) +v(Py) = | 3] + 15,

If 21z, € M, then none of the edges incident to the vertices in N¢, [x1] = {x1,%2,Xn} are in
Mlc, ={e e M |e C Cn} Hence [M|c | = v(Pn_3), and sincen = 0,1 (mod 3) then it
follows [M [ | = L%ZJ =[5 ] — 1. From z1z2 € M we have [M |P1| =v(P) = L%J So, by
joining both computations we get (M| = [ 3] — 1+ Y] = 3] + [152].

Therefore, we obtain that v(Cy, - P1) = [ 5] + L%J O
Theorem 7.27. If n,m > 3 and 1 > 1, then

3

V(Cn P Cm) = ||+ |5+ [1—53(11)—363(111) HJ-
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Proof. We use the same argument as in Proposition 7.26. By Remark 7.6 we have that when either
n = 2 (mod 3) or m = 2 (mod 3), the maximal induced matching in C;, or in C, does not affect
the way we choose edges in the path Py.

In the case 1 = 0,1 (mod 3), we can choose a maximal induced matching that does not use the
edge z1z, by Remark 7.6, i.e., the extreme vertex z; on the path Py does not appear in the induced
matching. Similarly, when m = 0,1 (mod 3) we can drop the other extreme vertex. O

The aim of the rest of this section is to explicitly compute the regularity of I(Cy, - Py - Cyyy) in
terms of the induced matching number. We divide it into three subsections depending on the value
of 1 mod 3. The base of our computations is given by the following proposition.

Proposition 7.28. Letn,m > 3 and 1 > 1, then
regl(Cn Py Ci) — V(Cpy - P - Cin) = 1regl(Cyy - Pry3 - Cin) = v(Ci - Pry3z - Cin).
Proof. From the formula obtained in Theorem 7.27 or [107, Lemma 1], we have the equality
V(Ch - P143-Cn) =v(Cyy - PL-Cipy) + 1.

We can apply the Lozin transformation (see e.g. [107], [11]) to any of the vertices in the bridge P;.
Then, from [11, Theorem 1.1] we have

regl(Cp - Pry3 - Cin) =1egl(Cp - Py - Cin) + 1.
Thus, the statement of the proposition follows by subtracting these equalities. O

From the previous proposition, it follows that we only need to consider the cases 1 = 1,1 =2
and | = 3. We treat each case in a separate subsection.
The basic approach in the next three subsections is to obtain lower and upper bounds that coincide.

The casel =1

Throughout this subsection, we consider the dumbbell graph C;, - Py - Cyy,.

Proposition 7.29. Letn,m > 3, then

catcu - cy<mon 3]+ 2] 01252 752 3}

Moreover, regl(Cy, - P - Ci) is equal to one of these terms.

Proof. We use [44, Lemma 3.2] that gives an improved version of the exact sequence that comes
from deleting the vertex z; and its neighbors. We have

regl(Cn - Py -Cin) € {regI((CTL Py Cm)\z1),1egl((Cr - P1 - Cin) \ N[z1]) + 1}.
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Since (C - P1-Cm) \21 =Pn_1UPp_1and (Cp - Py - Cy) \ Niz1] =Pn_3 UP_3, we get
the result by applying Theorem 7.15. O

Theorem 7.30. Let n, m > 3, then

V(Cnh-P1-Cn)+2 ifn=2(mod3), m=2(mod3);

regl(Cy - Py m) {V(Cn -P7-Cm)+1 otherwise.

Proof. Suppose n =2 (mod 3) and m = 2 (mod 3). Since LkT_zj = L%J when k = 2 (mod 3),
we have

n m n-—2 m—2 n m
= == —|+2
max{L3J+L3J—|—1,L 3 1+ 3 | +2} {3J+{3J+
Thus, Proposition 7.29 yields
regl(Cn - P+ Cm) < |5 + 5] +2 (7.1)

Consider the induced subgraph H = (Cy, - Py - Ciy) \ {xn} where xy, is in C;; and it is incident
to x1 (e.g. see x3 in Example 7.24). In fact, H is the graph given by joining C,,, and a path
Pn_1, thatis, H = Cy;, - P,_1. Now, from Proposition 7.26, we have that v(H) = | 5| + [ T].
By Theorem 7.7(i), we get regl(Cy, - P71 - Cy) > regl(H). From [4, Theorem 1.2], we have
regl(H) = v(H) + 2. Therefore, the equality holds in (7.1). The proof of this part is complete since
Theorem 7.27 yields v(Cy, - P1 - Cy) = [ 3] + [ 5.

For any case distinct to n = 2 (mod 3) and m = 2 (mod 3), we have

n m n—2 m—2 n m
max(| 3]+ | 3]+ 1. [P+ | P+ 2 = S+ 1T+
Therefore, from Proposition 7.29, we have
regl(Cp 1+ C) < [5)+ 15 +1. (72)

From Theorem 7.27, we have v(Cy - P1 - Cyn) = [ 5| + | 5F]. Moreover, Theorem 7.16 gives
regl(Cn - Py - Cin) = v(Cy, - Py - Cin) + 1. Thus, the equality in (7.2) holds. So, the proof
follows. O

The case 1 =2

Throughout this subsection, we consider the dumbbell graph C;, - P, - Cypy.

Remark 7.31. From Theorem 7.20 we deduce that regl(Cy) = L“T_ZJ + 2. Similarly, we have
reg(R/I(Cn)) = | 252 + 1.
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Proposition 7.32. Let n, m > 3, then

V(Cp - P2 Cin) <reg<1(cn'§2 ' Cm)> < L“;ZJ + LmT_ZJ +2. (13

Proof. We only need to prove the inequality on the right since the lower bound is given due to
Theorem 7.16. In the original graph C,, - P, - C;, we remove the edge that connects the two cycles C,
and Cy,. The set of vertices of C;, and C,,, are given respectively by {x1,...,xn}and {y1,...,Yym},
and we assume that the edge e = X1y is the bridge between the two cycles. We denote by Cr, UC
the resulting graph given as the disjoint union of the two cycles C;, and C,.

Note that (C, - P2 - Cr)\ e = CrL U Cpand that I ((Cr, - P2 - Ci) ) = I(Pn—3 U Pim—3)
because Ng[x1] U Ngly1l = {x1,%2,%n,Y1,Y2,Ym), where P,,_3 is the path on the vertices
{x3,...,xn_1}and Py,_3 is the path on the vertices {y3,...,Ym—1}. Thus, Theorem 7.7(iii) gives
the inequality

reg( R > gmax{reg<R>,reg< R >—|—1}.
I(Cn P2 Cm) I(Cn U Cm) I(Pn—3 U Pm—3)

From Corollary 7.14 and Remark 7.31, it follows that

reg(l(cnicm)) = V:ZJ + Lm;ZJ +2

Similarly, Theorem 7.15 and Remark 7.5 give that

ety )+ = [

This proves the proposition. 0

As a result of the previous proposition, we can prove the following corollary.

Corollary 7.33. If n = 0,1 (mod 3) and m = 0,1 (mod 3), then

reg<1(cn . 152 : Cm)> = V(Cn P2 Cm) = [gJ + L%J

Proof. Note that | ¥] = |¥52] +1 whenk = 0,1 (mod 3). From Theorem 7.27, in (7.3) the lower

and upper bound coincide for these cases. So, the equality follows. O
Now we have only three more cases left to deal with, i.e., the case n = 0 (mod 3), m =
2 (mod 3), thecase n = 1 (mod 3), m = 2 (mod 3), and the case n = 2 (mod 3), m =

2 (mod 3).
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7.2. Regularity and induced matching number of a dumbbell graph

Lemma 7.34. Ifn = 2 (mod 3) and m = 2 (mod 3), then

reg<I(Cn'§2.Cm)> =v(Cnp-P2-Chp) = L%J + L%J + 1.

Proof. We divide the graph into three subgraphs H;, H, and Hz. We make H; = C, \ {x1} and
H, = Cyn \ {y1}. The subgraph H3 is defined by taking the bridge e = x1y; and the neighboring
vertices {X2, Xn,Y2,Ym}, i.e. the graph below.

Using this decomposition and Theorem 7.12 we get the inequality
regR/I(Cn - P2 - Cin) <reg(R/I(Hy)) 4 reg(R/1(H2)) + reg(R/I(H3)),

where H; and H are paths of length n — T and m — 1, respectively, and using Theorem 7.15 we get

regR/I(Cp - P2 - Con) < [%J + [?J 4

Finally, in the present case n = 2 (mod 3) and m = 2 (mod 3) we have the equality v(Cy, - P2 -
Cm) = |5] 4+ [ 3] + 1, and so the proof follows from Theorem 7.16. O

Lemma 7.35. [fn = 0,1 (mod 3) and m = 2 (mod 3), then

R
Ire
g(l(cn P2 Cm)

Proof. In this case we delete the vertex x7 from the cycle C;,. We have that H = (Cy - P2 - Ci )\ {x1}
is an induced subgraph of C,, - P2 - C;,, which is given as the disjoint union of a path of length
n—1and Cy,,i.e. H= P, 7 U Cy,. From Theorem 7.7(1), Corollary 7.14, Theorem 7.15 and
Theorem 7.20 we get that

)v(cn.pz.cmm 2] [ 2]+

n m

reg(R/I(Cr - P - Crm)) = reg(R/I(H)) = EJ v bJ 4.

It follows from Proposition 7.32 and the fact that |k/3] = [(k —2)/3] + 1 when k = 0, T(mod 3)
that
m

regR/I(Cpr - P2 - Cin) = L%J + L?J + 1.
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7.2. Regularity and induced matching number of a dumbbell graph

So, the proof follows. O

Theorem 7.36. Let n, m > 3, then

V(Ch-P2-C)+2 ifn=0,1(mod3), m =2 (mod 3);

regl(Cn - P2 - Ci) =
g (Cnh - P2 m) {V(Cn Py -Cy) + 1 otherwise.

Proof. It follows from Corollary 7.33, Lemma 7.34 and Lemma 7.35. O

The case 1l =3

Throughout this subsection, we consider the dumbbell graph C;, - P3 - Cyy,.
Proposition 7.37. Let n, m > 3, then
(i) tegl(Cy, - P3-C) < v(Cy - P3-Cin) + 2, ifn,m =2 (mod 3);
(ii) regl(Cn - P3-Cin) =Vv(Cpy - P3-C) + 1, otherwise.

Proof. Let E(P3) = {e, €’} be the set of edges of P3, where e = z1z; and e’ = z,z3 are connected
to C,, and C,, respectively. Note that I ((C,, -P3-Cyn)\e) = I(C, U (e - Cyyy)) and that
I((Cn-P3-Cm).) =1(Pn_3UPm_1) because

Ngle] = {x1 = z1,%2,Xn. 22, Y1 = 23},

where e’ Cy, is the unicyclic graph with C,, and a whisker e’ attached to C.y,, P,,_3 is the path on the
vertices {x3,...,Xn_1}and P, _1 is the path on the vertices {y2,...,Ym}. Thus, Theorem 7.7(iii)
gives the inequality

reg( R ) <max{reg< R >,reg( R >+1}.
[(Cr-P3-Crn) [([ChU (e Cm) [(Ph3UPm—1)

From Proposition 7.26 and [4, Lemma 3.2] follows that reg(I(e’ - Cry)) = [ 5] + L%a%(mj +

1. Thus, using Remark 7.31, Corollary 7.14 and Theorem 7.15, we get reg <WRs~Cm)

-2 3—&3(m) -2
maX{L“TJ—i-]—i-L%J-FL 2 J,{n‘g J—i—{%J—i—]}.
On the other hand, from Theorem 7.27 we have that
n m 4—E&3(n) —&3(m)

V(Cn'PEWCm):LgJ"*—L?J"FL 3

N

|.

Therefore, we see that reg(WM) <v(Cnh-P3-Ci) +1whenn,m = 2 (mod 3), and

that reg(ﬁ) = v(Cy, - P3 - Ci) in all the remaining cases. O
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Theorem 7.38. Let n, m > 3, then

V(Cn-P3-Cr)+2  ifn,m =2 (mod 3),

regl(C - P3-Cpy) =
gl(Cn - P3 m) {\/(Cn‘P3‘Cm)+] otherwise.

Proof. From Proposition 7.37, it suffices to show that regl(C,, - P3 - Ciy) = v(Cy - P3 - Cin) + 2
when n, m = 2 (mod 3). Hence, we assume n, m = 2 (mod 3). Let z, be the middle vertex of
Cp - P3 - Cyn. By removing z; we see that H = (Cy, - P3 - Ciy) \ 22 = C, U Cyyy is an induced
subgraph of C;; - P3 - C;y,. From Theorem 7.20 and Corollary 7.14, we have that

regl(H) = regl(Cy) +regl(Cin) = 1 =v(Cp) + v(Cn) + 3.
Since v(Cy - P3 - Cin) = v(Cy) + v(Cin) + 1, by using Theorem 7.7(1) we get
regl(Cy, - P3 - Cy) = regl(H) =v(Cyy - P3-C) +2. O

Regularity of a dumbbell graph

Now we are ready for the main result of this section. In the following theorem we compute the
regularity of the edge ideal of the dumbbell graph C, - Py - Ciyp.

Theorem 7.39. Let m,n > 3 and 1l > 1, then

(i) ifL=0,1 (mod 3), then

- Py 2 if =2
I’egI(Cn . Pl . Cm) = V(Cn l Cm) + in, m. (mOd 3)’
V(Cn - P1-Ci) +1 otherwise;
(ii) if L = 2 (mod 3), then

V(Ch-P1-Cn)+2 n=0,1(mod3), m=2 (mod 3);

regl(Cy - Py - C =
gl( 1 Cm) {V(Cn'Pl'Cm)+1 otherwise.

Proof. Follows from Proposition 7.28, and Theorem 7.30, Theorem 7.36, and Theorem 7.38. [

7.3 Combinatorial characterization of reg(1(G)) in terms of v(G)

In this section, we focus on any bicyclic graph which admits the dumbbell graph C,, - Py - Cp,
as its base bicycle and study the regularity of the edge ideals of these graphs.
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7.3. Combinatorial characterization of reg(I(G)) in terms of v(G)

Let G be any bicyclic graph with dumbbell graph C,, - Py - C;y,. Then its decycling number is
smaller or equal than 2. Thus by Theorem 7.16 and Theorem 7.18, we get

v(G) + 1 < regl(G) < v(G) + 3.

There are examples of bicyclic graphs with a dumbbell where the regularity of its edge ideal is equal
tov(G) +1,v(G) + 2 and v(G) + 3.

Example 7.40. The following graph G

has regl(G) = 6 and v(G) = 3.

In this section, we give a combinatorial characterization of the bicyclic graphs with regularity
v(G)+1,v(G) 4+ 2and v(G) + 3.

For the rest of the chapter, we shall use the term “dumbbell” of the bicyclic graph G, and it
denotes the unique subgraph of G of the form C;, - Py - Cqy.

The following simple remark will be crucial in our treatment.

Remark 7.41. [4, Observation 2.1] Let G be a graph with a leaf y and its unique neighbor x, say
e = {x,y}. If{er,...,es} is an induced matching in G \ N[x], then {eq,...,es, e} is an induced
matching in G. So we have v(G \ N[x]) +1 < v(G).

Proposition 7.42. Let G be a bicyclic graph with dumbbell C,, - Py - Cy. The following statements
hold.

(i) Whenn,m = 0,1 (mod 3), we have regl(G) = v(G) + 1.
(ii) Whenn = 0,1 (mod 3) and m = 2 (mod 3), we have regl(G) < v(G) + 2.
(iii) When 1 < 2, we have regl(G) < v(G) + 2.

Proof. (1) Again, it is enough to prove the upper bound regl(G) < v(G) + 1. Let E’ be the set of
edges B/ = E(G) \ E(Cp - Py - Cin). We proceed by induction on the cardinality of E’. If [E/| =0
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7.3. Combinatorial characterization of reg(I(G)) in terms of v(G)

then the statement follows from Theorem 7.39, so we assume [E’| > 0. There exists a leaf y in G
such that N[y] = {x}. Let G’ = G \ x and G” = G \ N[x], then by Theorem 7.7 we have

regl(G) < max{regl(G’),regI(G") + 1}.

The graphs G’ and G” can be either bicyclic graphs with the same dumbbell C;, - Py - Cyy, or
the disjoint union of two unicyclic graphs with cycles C,, and Cyy, or unicyclic graphs with a
cycle C; (r = norr = m) of the type r = 0,1 (mod 3), or forests. Using either the induction
hypothesis, or [4, Theorem 1.2] and Corollary 7.14, or [4, Theorem 1.2], or Theorem 7.15, then
we get regl(G’) = v(G’) + 1 and regl(G”) = v(G”) + 1. Since we have v(G’) < v(G) and
v(G”)+ 1 < v(G) (by Remark 7.41), we obtain the required inequality.

(i) and (iii) follow by the same inductive argument, only changing the fact that G’ and G”
could be unicyclic graphs with cycle C,. of the type r = 2 (mod 3). O

Remark 7.43. The inductive process of the previous proposition cannot conclude regl(G) <
v(G) + 2 in the case 1 > 3. Here we may encounter two disjoint induced subgraphs G1 and G
with regl(Gi) = v(Gy) + 2, which implies regl(G1 U G2) = v(Gq U G2) + 3. This is exactly the
case of Example 7.40.

An alternative proof of the inequality regl(G) < v(G) + 3 for 1 > 3 can be given by using the
same inductive technique of Proposition 7.42.

For the rest of the chapter we use the following notation.

Definition 7.44. Let G be a graph, H C G be a subgraph, and v and w be vertices of G. Then, we
assume the following:

(i) d(v,w) denotes the length (i.e., the number of edges) of a minimal path between v and w. In
particular, d(v,v) = 0.

(ii) d(v,H) denotes the minimal distance from the vertex v to the subgraph H, that is
d(v,H) = min{d(v,w) | w € H}.
In particular, d(v,H) = 0 if and only if v € H.
(iii) Let H' C G be a subgraph, then the distance between H and H' is given by
d(H,H’) = min{d(v,H) | v € H}.
In particular, d(H,H’) = 0 if and only if HN H’ # (.
(iv) Tg(H) denotes the subset of vertices

l[g(H ={veG|dv,H) =1}
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7.3. Combinatorial characterization of reg(I(G)) in terms of v(G)

(v) In the case k > 0, Sg x(H) denotes the induced subgraph given by restricting to the vertex set

V(Sgk(H)) ={ve G|d(v,H) > k}.

(vi) Sg.0o(H) denotes the subgraph given by the vertex set
V(Sgo(H)) ={ve G|d(v,H) > 0or deg(v) > 3}.
and the edge set
E(Sg.o(H)) ={(v.w) € E(G) [v,w € V(Sc0(H))}
\{(v,w) € E(G) | v,w € H}.
We clarify the previous definition in the following example.

Example 7.45. (i) Let G be the graph of Example 7.40 and H = Cs U Cs be the subgraph given
by the two cycles of length 5. Then, we have that T'g (H) is the set containing the vertex in the
middle of the bridge joining the two cycles, that Sg o (H) is a graph of the form

z3

Z2

X1 Y1

Z1

and that the graph

represents Sg 2 (H).

(ii) Let G be the graph given by
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and H be the triangle induced by the vertices {x1,%x2,x3}. Then, we have that Tg(H) =
{x4,x6,x8}, that Sg o (H) is a graph of the form

X3 X4 X5
o
x xg X1 X2 X6 x7
o o
and that the graph
X5
@
X9 X7
(¢ @

represents Sg 2 (H).

We have already computed regl(G) in the case n, m = 0,1 (mod 3), for the remaining cases
we divide this section into subsections.

Case 1

In this subsection we focus on the case 1 = 0,1 (mod 3) and m = 2 (mod 3). This case turns
out to be almost identical to a unicyclic graph, and our treatment is influenced by [4, Section 3].

Setup 7.46. Let G be a bicyclic graph with dumbbell C,, - Py - Ci, such that n = 0,1 (mod 3) and
m = 2 (mod 3). We denote by Fq,. .., Fc the connected components of Sg.0(Cm), and in this case
each F is either a tree or a unicyclic graph with cycle Cy, (andn = 0,1 (mod 3)). Then, the graph
SG.2(Cm) can be given as the union of the components Hy, ..., H¢, where each one is defined as

Hi=F\{ve Gld(v,Cn) <1}
Note that each H; can be a disconnected graph or even the empty graph.

Remark 7.47. The following statements hold.
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(i) The graph G\ TG (Cyn) has a decomposition of the form

G\Ts(Cm)=Cm|J (U Hi>,
i=1
and in particular
V(G\TG(Cm)) =V (Cm) + Y v(Hi)
i=1

because d(Cyn, Hi) = 2 forall1 <i<cand d(Hi,Hj) > 2 forall1 <i<j<c
(ii) Foreachi=1,...,¢c, we have that |F; N C| = 1.

Example 7.48. Let G be the graph

and Cs be the cycle given by {y1,Y2,Y3,Y4,Ys}. We have that Tg(Cs) = {z1,ys}. The graph
SG.0(Cs) is given by

z3

X2 Z2 Y3 Ys Yse

Y1
Z1

with connected components Fy (graph on the left) and F, (graph on the right). The graph S 2(Cs)
is given by
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Zz3
X2 ]ZZ Ye
(]

X3

with connected components Hy (graph on the left) and Hy (graph on the right).

Lemma 7.49. Adopt Setup 7.46. If v(H;) = v(Fi) forall1 <1< ¢, thenv(G\Tg(Cm)) = v(G).
Proof. Follows identically to [4, Lemma 3.5]. ]
Proposition 7.50. Adopt Setup 7.46. If v(G\ Tg(Cm)) < v(G) then regl(G) = v(G) + 1.

Proof. Once more, we shall only prove that regl(G) < v(G) + 1. Assume that v(G \ I'g(Cm)) <
v(G), then the contrapositive of Lemma 7.49 implies that there exists some 1 with v(H;) < v(Fy).

Fix i such that v(H;) < v(F;). From Remark 7.47(ii), let x be the vertex in F; N C;,,. Let us
use the notations G’ = G \ x and G” = G \ N[x]. Again, we have the inequality

regl(G) < max{regl(G’),regI(G") + 1}.

Note that both G’ and G” can be either unicyclic graphs with cycle C, (and n = 0,1 (mod 3)), or
forests. Hence, from [4, Theorem 1.2] and Theorem 7.15 we get that regl(G’) = v(G’) + 1 and
regl(G”) = v(G”) + 1.

In the case of G, we have that regl(G’) = v(G’) + 1 < v(G) + 1. Let H be the induced
subgraph of G obtained by deleting the vertices of F; U Ng[x]. Then we have G’ = H U H;. Let
My and M be maximal induced matchings in H and H;, respectively, then v(G”) = |M7]| + | M|
because d(H,H;) > 2. By the condition v(F;) > v(H;) then there exists a maximal induced
matching M3 in Fy, such that |[M3| > |M;|. From the fact that H U F; is an induced subgraph in G
and d(H, F;) > 2, then we get

v(G) = v(HUFy) = [My| 4 IM3] > [Mq] + [Ma] = v(G").
Hence regl(G”) = v(G”) + 1 < v(G), and so we get the statement of the proposition. O

Theorem 7.51. Let G be a bicyclic graph with dumbbell C, - Py - Ciy, such tharn = 0,1 (mod 3)
and m = 2 (mod 3). Then the following statements hold.

(i) v(G) +1 <regl(G) < v(G) + 2,
(ii) regl(G) =v(G) + 2 ifand only if v(G) = v(G \ T (Cin)).
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Proof. In Proposition 7.42 we proved (i). In order to prove (ii), we only need to show that v(G \
G (Cm)) = v(G) implies regl(G) > v(G) + 2, because the inverse implication follows from
Proposition 7.50.

From Remark 7.47(i), G\ T'g(Cm) = Cim U (U{_;H;) where each H; is either a forest or a
unicyclic graph with cycle C;, (and n = 0,1 (mod 3)). Then, from Corollary 7.14, [4, Theorem
1.2] and Theorem 7.15 we get

regl(G \ Tg(Cm)) =regl(C) +regl (U_{H;i) — 1
= (v(Cm) +2) + (v (Ui Hi) +1) =1
=v(G\Tg(Cm))+2
=v(G)+2.

Finally, since G \ I'g(Cy,) is an induced subgraph of G then we have regl(G) > v(G) + 2. d

Case 11

The object of study of this subsection is the case where n,m. = 2 (mod 3), 1 > 3, and in
particular when regl(G) = v(G) + 3. More specifically, we shall give necessary and sufficient
conditions for the equality regl(G) = v(G) + 3.

Setup 7.52. Let G be a bicyclic graph with dumbbell graph Cy - Py - Cyy, such thatn, m = 2 (mod 3)
and 1 > 3. As in Setup 7.46, let Fq,. .., Fc be the components of the graph S o(Cn ). We order the
Fi’s in such a way that ¥y is a unicyclic graph with cycle Cy, and for all i > 1 we have that F; is a
tree. The graph S 2(Cr) can be decomposed in components Hy, ..., Hc where

Hi=F\{ve Gldv,Cy) <1}
Remark 7.53. From the previous setup we get the following simple remarks.

(i) The graph G\ T'g(Cy) has a decomposition of the form

G\rG(cn>=cnu<UHi>,
i=1

and in particular

V(G\Tg(Cn)) =v(Cn)+ > v(Hy)
i=1

because d(Cn,Hy) = 2 forall 1 <i< cand d(Hi,H;) > 2 forall1 <i<j<c.
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(ii) Similarly, the graph G \ T (Cyn, U Cy) has a decomposition of the form

G\TG(CnUCm)=CnlJ (U Hi> J (Hi\ T, (Cm)).
i=2

and in particular

v(G\Tg(CrUCm +Zv )+ v(Hi \ Ty, (Co)).

(iii) Foreachi=1,...,c, we have that |F; N Cn| = 1.

(iv) The statement of Lemma 7.49 also holds in this case, that is, if v(Hi) = v(F;) forall1 <i <,
then v(G\ Tg(Cpn)) = v(G).

(v) Due to the assumption 1 > 3, then we have that C., must be an induced subgraph of Hy.
During this subsection and the next one we shall fundamentally use this fact, and it will allow
us to inductively “separate” the two cycles Cy and Ci

Lemma 7.54. Adopt Setup 7.52. If v(Hi) = v(Fi) forall 1 < i < cand v(H7) = v(H1 \

T, (Cm)), then
v(G\Tg(ChUCm)) =v(G).

Proof. Since G\T'g(CyUCyy,) is an induced subgraph of G, we have v(G\T'g (CLUCn)) < v(G).
From Remark 7.53(i1) we get

V(G\TG(Cn UCm)) =v(Cn) + > v(Hi) +v(Hi \ Th, (Cm))

i=2
=v(Cn) + ZV(Fl)
i=1
> v(G),
andsov (G \Tg(ChLUCm)) =v(G). O

Proposition 7.55. Adopt Setup 7.52. If v(G \ Tg(Cnh U Cn)) < v(G), then

regl(G) < v(G) + 2.
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Proof. From the contrapositive of Lemma 7.54, it follows that there exists some i with v(H;) < v(F;)
or we have v(Hj \ 'y, (C)) < v(Hj). Then we divide the proof into two cases.

Case 1. In this case we assume that for some 1 < i < ¢ we have v(H;) < v(F;). This case
follows similarly to Proposition 7.50. Let x be the vertex in F; N Cy, let us use the notations
G’ = G\ xand G” = G \ N[x]. Once more, we have the inequality

regl(G) < max{regl(G’),regl(G”) + 1}.

Note that both G” and G” are unicyclic graphs, and so we have regl(G’) < v(G’)+2 and regl(G”) <
v(G”) + 2 (see Theorem 7.18). Since we have v(G’) < v(G) and v(G"”) + 1 < v(G) (see the
proof of Proposition 7.50), the inequality follows in this case.

Case 2. Now we suppose that v(Hj \ T, (Cm)) < v(Hj). Let x be the vertex in F; N Cy,, let
us use the notations G’ = G \ x and G” = G \ N[x]. We use the inequality

regl(G) < max{regl(G’),regl(G”) + 1}.

The graphs G’ and G” are unicyclic. For the graph G’, we have regl(G’) < v(G') +2 < v(G) + 2.

The graph G” can be given as the disjoint union of H; and another graph H defined by H =
G\ (FjUN|x]), thatis G’ = HUH; and d(H, Hy) > 2. Thus it follows that v(G”) = v(H)+v(H;)
and that regl(G”) = regl(H) + regl(H;) — 1 (see Corollary 7.14).

Since H is a forest, Theorem 7.15 gives regl(H) = v(H) + 1. From [4, Corollary 3.11], it
follows that regl(H;) = v(H7) + 1. By summing up, we obtain that regl(G”) < v(G”) + 1. So
we get the inequality regl(G”) + 1 < v(G”) + 2 < v(G) + 2, because G” is an induced subgraph
of G. ]

Now we are ready to completely describe the case where regl(G) = v(G) + 3.

Theorem 7.56. Let G be a bicyclic graph with dumbbell Cy, - Py - Ci. Then, regl(G) = v(G) + 3
if and only if the following conditions are satisfied:

(i) n =2 (mod 3);
(ii) m = 2 (mod 3);
(iii) 1> 3;
(iv) v(G\Tg(ChUCum)) =Vv(G).

Proof. In Proposition 7.42 we proved that the conditions (i), (ii) and (iii) are necessary, and from
Proposition 7.55 we have that the condition (iv) is also necessary. Hence, we only need to prove
that regl(G) = v(G) + 3 under these conditions.

Let W = G\ T'g(Cn U Cyy). From Remark 7.53(ii) and Corollary 7.14, we obtain the equality

reg(I(W)) = reg(I(Cn)) +reg(I( US_» Hi)) +reg(I(H1 \ TH, (Cm))) —2.
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Note that the graph Hy \ 'y, (Cryy) can be given as the disjoint union of the cycle C,, and the forest

H = (H1 \ T, (Cm)) \ Cn, such that d(H, C1,,) > 2. From Theorem 7.20 and Theorem 7.15 we

getregl(Cy,) = v(C)+2andregl(H) = v(H)+1, respectively, and so Corollary 7.14 implies that

regl(Hy \ T, (Cm)) =regl(Cim) +regl(H) — 1 =v(Cin) + v(H) +2 = v(H1 \ Tw, (Cm)) + 2.
Therefore, by also using Theorem 7.20 and Theorem 7.15, we obtain

Since W is an induced subgraph of G then we get
regl(G) > regl(W)) = v(G) + 3,

and so from Theorem 7.18 the equality is obtained. 0

Case 111

In this subsection we assume that G is a bicyclic graph with dumbbell C;, - Py - C;y, such that
n,m =2 (mod 3) and 1 > 3. Now that we have characterized when regl(G) = v(G) + 3, then we
want to distinguish between regl(G) = v(G) + 1 and regl(G) = v(G) + 2.

Lemma 7.57. Adopt Setup 7.52. If v(G) — v (G \ Tg(Crh UCw)) = 1 then
regl(G) = v(G) + 2.

Proof. From Theorem 7.56 we have that reg(I(G)) < v(G) + 2. Using the same method as in
Theorem 7.56, we can obtain a lower bound

regl(G) > regl(G\ Tg(Crh UCwm)) =v(G\TGg(ChUCn))+3=v(G) +2,
and so the equality follows. O
Lemma 7.58. Adopt Setup 7.52. If v(G) = v(G \ Tg(Cy)) then
regl(G) > v(G) + 2.
Symmetrically, the same argument holds for C,.

Proof. The proof follows similarly to Theorem 7.51. From Remark 7.53(i), Corollary 7.14, Theo-
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rem 7.20 and Theorem 7.16 we get

regl(G\ Tg(Cn)) =regl(Cn) +regl(Uf_;H;i) — 1

> (V(Cn) +2) + (v(Ui H) + 1) =1
2 v(G\Tg(Cn)) +2
> v(G) + 2.
So the inequality follows from the fact that G \ I'g (Cy,) is an induced subgraph of G. O

The following simple logical argument will be used several times in the next theorem.

Observation 7.59. Let P, P2, P3 be boolean values, (i.e. true or false). Assume that Py is true if
and only if P> and P3 are true, that is

Py & (P, A P3).
Suppose that if Py is true then P3 is false, that is
P, = —P;3.
Then, Py is false.

Notation 7.60. Let X be a mathematical expression. Then, P[X] represents a boolean value, which
is true if X is satisfied and false otherwise.

Taking into account the induced matching numbers v(G), v(G\T'g(CrLUCm)), v(G\T'g(Cn))
and v(G \ I'g(Cy)), we can give necessary and sufficient conditions for the equality

regl(G) =v(G) + 1.

Theorem 7.61. Let G be a bicyclic graph with dumbbell C,, - Py - Cyy, such that n, m = 2 (mod 3)
and 1 > 3. Then regl(G) = v(G) + 1 if and only if the following conditions are satisfied:

(i) v(G) = v(G\Tg(CrUCp)) > 1,
(ii) v(G) > v(G\Tg(Cn));
(iii) v(G) > v(G\Tg(Cwm)).

Proof. From Theorem 7.56, Lemma 7.57 and Lemma 7.58, we have that the conditions (1), (ii) and
(ii1) are necessary. Hence, it is enough to prove regl(G) < v(G) + 1 under these conditions.
For any x € G we denote G’ = G \ x and G” = G \ N[x]. Then, we have the upper bound

regl(G) < max{regl(G’),regl(G") + 1}.
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We shall prove that under the conditions (1), (ii) and (iii) there exists a vertex x € Cy, such that
regl(G’) < v(G) + 1 and regl(G”) + 1 < v(G) + 1. We divide the proof into three steps.
Step 1. In this step we prove that for any x € C,, we have regl(G’) < v(G) + 1. First we note
the following two observations:
e It follows from Theorem 7.18 that regl(G’) < v(G’) + 2. Hence, v(G’) < v(G) implies that
regl(G’) < v(G')+2 < v(G) + 1.
e Since G’ is a unicyclic graph, [4, Theorem 1.2] implies that regl(G’) = v(G’) + 2 if and only
if v(G') = v(G'\ Ta/(Cin)).
Thus, it follows that

regl(G') = v(G) + 2 &= <V(G) — v(G') and v(G') = v(G'\ rG/(cm)))

In Observation 7.59, let Py = P[regl(G') = v(G) + 2], P, = P[v(G) = v(G’)] and P3 =
[V(G’ ) =v(G'\Tg (Cm))]. From the logical argument of Observation 7.59, if we prove that
v(G') = v(G) implies v(G’) > v(G’ \ T'g/(Cyn)) then we get the desired inequality regl(G’) <
v(G) + 1. Assume that v(G) = v(G’). From the hypothesis v(G) > v(G \ I'g(Cyn)) and the fact
that G’ \ T'g/(Cyy) is an induced subgraph of G \ T'g (C, ), we get

v(G') =v(G) > v(G\Tg(Cm)) = v(G"\ T/ (Cim)).

Therefore, we have regl(G’) < v(G) + 1.

Step 2. Since v(G) > v(G \ I'g(Cy)), it follows from Remark 7.53(iv) that there exists some
1 < 1 < ¢ such that v(F;) > v(H;). Following Setup 7.52, we have that Fy is a unicyclic graph
containing the cycle Cy,, and that F; is a tree for all i > 1. In this step, fix i > 1 where F; is a tree
and v(Fy) > v(Hy).

Let x be the vertex in F; N C,, and H be the induced subgraph H = G \ (F; U N[x]). Note that
G” =HUH;, d(H,H;) > 2and d(H, F;) > 2. Then

v(G”) =v(H) +v(H;) < v(H) +v(F;) < v(G)

follows from the condition v(H;) < v(Fi). So we have that v(G”) < v(G).
As in Step 1, we note the following two observations:
e It follows from Theorem 7.18 that regl(G”) < v(G”')+2. Hence, v(G”)+1 < v(G) implies
that regl(G”) +1 < v(G") +3 < v(G) + 1.
e Since G” is a unicyclic graph, [4, Theorem 1.2] implies that regl(G”) = v(G”) + 2 if and
only if v(G”) = v(G” \ Tg»(Cm)).
So, we have that

regl(G”) +1=v(G) +2 &= (V(G) —v(G") + 1 and v(G") = v(G" \ rGN(cm))).

Let K be the induced subgraph defined by K = (G \ I'g(Cm)) \ (F; UNIx]). Since 1 > 1 then
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Fi N Fy =0, and so we get the following statements:
e G"\Tgr(Cm) =KUHy;, because G = HUH; where H = G \ (F{ UNIx]), C;n C H and
d(Cm, Hi) > 2.
e KU F; is an induced subgraph of G \ I'g(C).
e Since d(K,F;) > 2 and d(K, H;) > 2, we have the following inequalities

V(G"\Tgr(Cm)) = v(K) + v(Hi) < v(K) +v(F;) < v(G\TG(Cm)).

In Observation 7.59, let P = P[regI(G”) +1=v(G)+ 2}, Py = P[V(G) =v(G") + 1] and
P3 = [v(G”) = v(G” \ Tg/(Cm))]. So, it is enough to prove that v(G) = v(G”) + 1 implies
v(G”) > v(G"” \ Tgr(Cm)). Assuming v(G) = v(G”) + 1, we get

v(G") =v(G) =1 >v(G\Tg(Cim)) =T = v(G" \Tr(Crm)).

Therefore, in this case we have regl(G”) +1 < v(G) + 1.

Step 3. In this last step we assume that v(Fy) > v(H;) and that v(F;) = v(H;) foralli > 1.
Let x be the vertex in F; N C;,, then as in Step 2 we have that:

e v(G") < v(G).

o regl(G”) +1=v(G) +2 (V(G) —v(G") + 1 and v(G") = v(G" \ rG,,(cm))).
Once more, if we prove that v(G) = v(G”) + 1 implies v(G”) > v(G” \T'g»(Cyn)) then we obtain
that regl(G”) + 1 < v(G) + 1.

We denote by L the induced subgraph of G” \ I'g/(Cy,,) given by

L= (G"\Tgr(Cm)) \ TG (Cn).

Due to Remark 7.53(ii), the graph L has the decomposition

C

L=(Ca\Nc,)J (U Hi) J (Hi \ T, (Cr)),s

i=1

with all the disjoint components at distance at least two between each other, and so we have
V(L) = v (Cn \N¢, [¥] +Zv )+ v(Hy \ Th, (Cm)).

By proceeding as in the proofs of Lemma 7.49 or Lemma 7.54, from the conditions v(F;) = v(H;)
for all i > 1, we obtain

v(L) = v ((Cn \ N, [x] +Zv )+ v(Hi \ Th, (Crm))

v (G"\Tgr(Cm)).
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Thus, v(L) = v(G” \ Tg#(Cm)) because L is an induced subgraph of G” \ Tg»(Cy,). We also
have that L is an induced subgraph of G \ I'g (Cy, U Cy1) because we have the equality

L= (G \ rG(Cn U Cm)) \N[X]-
Finally, from the hypothesis v(G) — v(G \ I'g(Cn U Cn)) > 1 we obtain
V(G") =v(G) =1 > Vv(G\ T (Cn UCm)) = v(L) = v(G”" \ Tgr(Cm)).

Therefore, in this case we also have regI(G”) + 1 < v(G) + 1, and so the proof follows. O

Case IV

In this short subsection we deal with the remaining case, we assume that G is a bicyclic graph
with dumbbell C,, - Py - Cy;y such thatn, m = 2 (mod 3) and 1 < 2.

When | < 2, the two cycles are too close to each other, and it is difficult to make a direct analysis
(with our methods). Fortunately, using the complete characterization of the case 1 > 3, the problem
can be solved with the Lozin transformation (Definition 7.23).

Construction 7.62. Let G be a bicyclic graph with dumbbell C, - Py - C,. Suppose that x is a
vertex on the bridge Py, then we apply the Lozin transformation of G with respect to x as follows:

(i) let G1 and G be the two connected components of (Cr, - Py - Cin) \ x;

(ii) partition the neighborhood N g (x) of the vertex x into two subsets Y and Z in a way such that
YN (Cn . P[ . Cm) - G] and Z N (Cn . P]_ . Cm) C Gz,’

(iii) delete vertex x from the graph together with its incident edges;

(iv) add a path P4 = (y, a,b, z) to the rest of the graph;

(v) connect the vertexy of the P4 to each vertex in Y, and connect z to each vertex in Z.
Then, we obtain a bicyclic graph, denoted by L (G), with dumbbell C,, - P13 - Cyy.

From [107, Lemma 1] and [11, Theorem 1.1] we get the equality
reg(I(£x(G))) — v (£x(G)) =reg(I(G)) — v (G). (74)
Therefore we obtain a characterization in the following corollary.

Corollary 7.63. Let G be a bicyclic graph with dumbbell Cy, - Py - Ciy such that n, m = 2 (mod 3)
and 1 < 2. Let x be a point on the bridge Py and let L (G) be the Lozin transformation of G with
respect to x given as in Construction 7.62. Then we have that v(G) + 1 < regl(G) < v(G) + 2,
and that regl(G) = v(G) + 1 if and only if the following conditions are satisfied:
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(i) V(Lx(G)) = Vv(£Lx(G)\ Tz, (6)(CrnUCm)) > 1,

(ii) v(Lx(G)) > v(Lx(G)\ T (6)(Cn));
(iii) v(Lx(G)) > v(£Lx(G)\ Tz, () (Cm)).
Proof. From Proposition 7.42, it follows that v(G) + 1 < regl(G) < v(G) + 2. Due to (7.4), we
can apply the Lozin transformation and reduce the problem to the case where the bridge has more
than three vertices. Finally, Theorem 7.61 gives us the result. U

The characterization

Finally, the theorem below contains the characterization that we have found.
Theorem 7.64. Let G be a bicyclic graph with dumbbell Cy, - Py - C,.
(I) Ifn,m=0,1 (mod 3), thenregl(G) = v(G) + 1.
(1) Ifn=0,1 (mod 3) and m = 2 (mod 3), then
v(G) + 1 <regl(G) < v(G) + 2,
and regl(G) = v(G) + 2 ifand only if v(G) = v(G\ Tg(Cm)).
(i) Ifn,m =2 (mod 3) and 1 > 3, then v(G) + 1 < regl(G) < v(G) + 3. Moreover:

(i) regl(G) = v(G) + 3 ifand only if v(G\ Tg(Cn U C)) = v(G).

v(
(ii) regl(G) = v(G) + 1 if and only if the following conditions hold:
(@) v(G) = v(G\Tg(CrhUCyp)) > 1;

v(
(b) v(G) > v(G\Tg(Cn));
(c) ¥v(G) > v(G\Tg(Cm)).

(IV) If n,m = 2 (mod 3) and 1 < 2, then v(G) + 1 < regl(G) < v(G) + 2. Let x be a point
on the bridge Py and let L+ (G) be the Lozin transformation of G with respect to x given as
in Construction 7.62. Then, regl(G) = v(G) + 1 if and only if the following conditions are
satisfied:

\./\_/

(a) v(£x(G)) = Vv(Lx(G)\ T, (6)(Crn UCw)) > 1;
(b) v(£x(G)) > v(Lx(G)\ T, (6)(Cn));
(c) V(Lx(G)) > Vv(Lx(G)\ Tz, (G)(Cm)).

Proof. Statement (1) follows from Proposition 7.42. In Theorem 7.51, (1I) is proved. By Theo-
rem 7.56 and Theorem 7.61, we get (11I). Finally, from Corollary 7.63, we obtain (V). ]
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Examples

In this last subsection we give examples for each one of the statements in the characterization of
Theorem 7.64.

Example 7.65 (Statement (/) of Theorem 7.64). Let G be the graph:

X2 Y2 z2 Z3

X3 X1 z1 Y1

Usz
X4 Y3

Then, we have regl(G) =4 and v(G) = 3.
Example 7.66 (Statement (/1) of Theorem 7.64). Let G be the graph:

X2 Y2 Y3
EL

Ys

Then, we have regl(G) =5 and v(G) = 3.
If G is the graph given below, then we have regl(G) =5 and v(G) = 4.

X2 Y2 Y3

Example 7.67 (Statement (111) of Theorem 7.64). Let G be the graph given in Example 7.40. Then,
we have regl(G) = 6 and v(G) = 3.
Let G be the graph:
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X3 X2 Y2 U3

Then, we have regl(G) =5 and v(G) = 3.
Let G be the graph given below and obtained by moving the whisker to the left.

z2

Then, we have regl(G) =5 and v(G) = 4.

Example 7.68 (Statement (/V) of Theorem 7.64). Let G be the graph:

X3 X2 Y2 Y3

Then, we have regl(G) =4 and v(G) = 2.
Let G be the graph given below and obtained by adding a whisker to the above graph at the join
vertex Xq.
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Then, we have regl(G) = 4 and v(G) = 3.

7.4 Castelnuovo-Mumford regularity of powers

In this section, we study the regularity of the powers of I(C, - Py - Cyn) when 1 < 2. Our strategy
to compute regl(Cy, - Py - C;)9 for g > 1 relies on finding an upper bound and a lower bound on
regl(Cy, - Py - Cyn)9 where these bounds coincide and are equal to

2q +regl(Cy, - Py - C) — 2.

In order to obtain an upper bound, we follow the even-connection argument given in [8, Theorem
5.2]. Then, we proceed by looking at “nice” induced subgraphs of C,, - Py - Cy and we find a lower
bound on regl(Cy, - Py - Cyy )9 which is equal to the found upper bound.

Let I be an arbitrary ideal generated in degree d and let by := reg(I9) —dq forq > 1. An
interesting question is to study of the sequence {b;};>1. In [48] Eisenbud and Harris proved that
if dim(R/I) = 0, then {b;}i>1 is a weakly decreasing sequence of non-negative integers. In [9]
Banerjee, Beyarslan and Ha conjectured that for any edge ideal, {b;i}i>1 is a weakly decreasing
sequence (see [9, Conjecture 7.11]). For the edge ideal of any dumbbell graph with 1 < 2, we prove
bi = by forall i > 1. However, we expect b; < by for all i > 1 for any graph.

Remark 7.69. From Theorem 7.27 and Theorem 7.39, for any 1 < 2 we have that

n—l—m+1+1J

regI(Cn ' Pl ' Cm) P L 3

The previous inequality is not satisfied when 1 > 3, because regl(C4 - P3 - C4) = 3 and
L4+4§3+]J — 4.

As recalled earlier, we use the notation of even-connection from Banerjee [8, Theorem 5.2]. The
following lemma is important in our treatment of the even-connected vertices, and its proof is similar
to [8, Lemma 6.13].

Lemma 7.70. Let G be a graph. As in Remark 7.10, let G’ be the graph associated to
(I(G)a+T: ¢4 ---eq)pd. Suppose W = Po,P1,...,P2s+1 = V is a path that even-connects u
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and v with respect to the q-fold ey - - - eq. Then, we have

2s+1
U Nelpil © Na/ulUNg/ V.
i=0

Proof. Let U be the set of vertices U = {po,p1,...,p2s+1}. Foreach 1 < k < s we have that
P2k—1P2k = €j, for some T < ji < g, i.e. wand v are even connected with respect to the s-fold

e;.e; cee @
i1€52 js

Let w be a vertex even-connected to some vertex z € U with respect to the g-fold e - - - eq.

Then, there exists a path z = 19, 11,...,T2¢4+1 = W that even-connects z and w with respect to the

g-fold e - - - eq. Let 1 be the largest integer such that vy € U. From the fact that ro =z € U, we
have that the integer i is well defined and 1 > 0. Let k be an integer such that py = 7.

The proof is now divided into four different cases depending on i mod 2 and k mod 2. When i
and k are both odd integers, we have that ri1i 1 is equal to some edge of {e1, ez, ..., eq} and that
Pk—1Pk is not equal to any edge of {ej,, €j,,...e;, }. By the definition of 1, we have

{rig1,Tig2, -T2 N U= 0.
So, in this case, it follows that
U=po,---»Pk—1,Pk = Ti,Tit1,...,T2t41 =W

is a path that even-connects u and w with respect to the ¢-fold e - - - eq.

The other three cases follow in a similar way. Therefore, we have that if w is even-connected to
some z € U, then w is even-connected to either u or v.

Now, we only need to prove that any w € Ng[z] for some z € U is even-connected to either u

or v. This part is simple, if z = p3;j then uw = po, ..., p2j = z, W is a path that even-connects u and
w. Otherwise, if z = p2; 1 thenw,z = p2;j_1,...,p2s+1 = v is a path that even-connects w and
v. So, the proof follows. O

The next lemma is similar to [10, Lemma 5.1], but adapted to the current setting of a dumbbell.

Lemma 7.71. Let G = Cp, - Py - Con. IF(1(G)9H T2 g - - eq) is not a square-free monomial ideal
and G’ is the associated graph, then there exists a vertex z which is even-connected to itself. Then,
G’ has a leaf and N g [z] contains one of the two cycles. In particular, if we denote the corresponding
leaf by e, then G, is an induced subgraph of a unicyclic graph.

Proof. Suppose z = po,P1,-.-.,P21+1 = Z is an even-connection of z with itself. Let

0<a<b<2l+1
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be integers such that pg,pa+1,--->,Pb = Pa i an even-connection and b — a is minimal. Then,
Pa>Pa+1s---»Pb = Pa is a simple closed path lying on C;, - Py - Cyy, and so it is necessarily equal
to either C,, or Cyp,

Finally, Lemma 7.70 implies that N g-[z] contains either C;, or Cyy,. O

Lemma 7.72. Let G = Cy, - Py - Cy with 1 < 2 and H be a graph such that G is a subgraph of H
with the same set of vertices (i.e., V(H) = V(G) and E(H) D E(G)). For any two vertices u,v € H
such that {u,v} & E(G), we have that

regl (H\ (Ny[uW UNyxW])) <regl(G) —1.

Proof. Let K = Ng[u] N Ng[v]. We divide the proof according to the cardinality |K| of K. Notice
that for the dumbbell G we always have 0 < [K| < 2.

Since H \ (Ny[u] UNg[v]) is an induced subgraph of H \ (Ng[u] UNg[v]), from Theo-
rem 7.7(1), it is enough to prove that regl (H \ (Ng[u] UNg[V])) < regl(G) — 1.

Step 1. Suppose that |[K| = 0. Then, the graph H \ (Ng[u] U Ng[v]) is obtained by deleting at
least 6 vertices, and so [H\ (Ng[u] UNgM)| < |G| —6 < n+ m+ 1 — 8. Note that we can add
two vertices to H \ (Ng[u] U Ng[v]) and connect them in such a way that we obtain a Hamiltonian
path. Let L be a graph obtained by adding two vertices and certain edges connecting these two new
vertices, in such a way that L has a Hamiltonian path. Since |[L| < n 4+ m + | — 6, Theorem 7.22
yields

regl(L) < [n+m+l—5J . Ln+m+l+1J Y
3 3

and by applying Remark 7.69, we get regl(L) < regl(G) — 1. Slnce H\ (Ng[u]UNg[]) is an

induced subgraph of L, Theorem 7.7(1) implies that regl (H \ (Ng[u] UNgM)) < regl(G) — 1.

Step 2. Suppose that |K| = 1. Here the proof follows along the same lines of Step 1. In this case
the graph H \ (Ng[u] U Ng[v]) is obtained by deleting at least 5 vertices. Now, note that we can
add one vertex to H \ (Ng[u] UNg[v]) and connect it in such a way that we obtain a Hamiltonian
path. Let L be a graph obtained by adding one vertex and certain edges connecting this new vertex,
such that L has a Hamiltonian path. Since [L| < (n+m+1—2)—54+1=n+m+1—6, then
the rest of the proof follows as in Step 1.

Step 3. Suppose that [K| = 2. In this case, note that one of the cycles is necessarily equal to Cy,
say C, = Cy4, and that u,v € C4 with {u, v} & E(G). Hence, it follows that H \ (Ng[u] U NgV])
has a Hamiltonian path with < m vertices if L = 2 and < m—1 vertices if L = 1. From Theorem 7.22
and Remark 7.69, then we have regl(H \ (Ng[u] UNg[V])) <regl(G) — 1.

So, the proof follows. 0

Theorem 7.73. Let G = C, - Py - Cru with 1 < 2 and 1 = 1(G) be its edge ideal, then
reg(1971: ¢4 ~-eq) <regl

forany 1 < q and any edges eq, ..., eq € E(G).
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Proof. We split the proof into two cases.

Case 1. First, suppose (I977: ¢4 ---eq) is a square-free monomial ideal. In this case
(19+7: ¢4 ---eq) = I(G’) where G’ is a graph with V(G) = V(G’) and E(G) C E(G’). Let
E(G') = E(G) U{ay,...,a;}, then each edge a; is induced from even-connecting two different
vertices (i.e., each a; is not a whisker). By Theorem 7.7, we have

regl(G’) < max{regl(G’'\ ay),regl(G/ )+ 1}

aj

Since a; ¢ E(G), Lemma 7.72 implies that regI(Gy, ) + 1 < regI(G).
In the same way, for any subgraph H = G’\{aq,..., a;i},since V(H) = V(G)and E(H) D E(G),
Lemma 7.72 also gives us that

reg(I(Ha,,,)) + 1 < reg(I(G)).

By continuing this process, we get regl(G’) < regI(G).
Case 2. Suppose (I9F7: e ---eq) is not square-free and G’ is the graph associated to

(19+7: e, '--eq)pOI. Let {by,b2,...,bs} be the subset of edges of E(G’) \ E(G) that are gen-
erated by square monomials (i.e., each b; is a whisker).
From Theorem 7.7 we have the inequality

regl(G’) < max{regl(G’'\ by),1 —i—regI(G{jl)}.

Lemma 7.71 implies that one of the cycles is deleted from G ,» then there exists an edge e € G
such that d(e, G’b1 ) = 2. So, for such an edge e we get that the disjoint union G’b1 U e is an induced
subgraph of G’ \ by. Thus, Theorem 7.7 and Corollary 7.14 yield that

reg(I(Gy,)) + 1 =reg(1(Gy, Ue)) < reg(I(G'\ b))

Therefore, we obtain that regl(G’) < regI(G’ \ bq).
By applying the same argument, it follows that

regl(G’) < regl(G'\ by) < regl(G"\{by,b2}) < -~ <regl(G'\{b1,...,bs}).
Since the graph G’ \ {b1,..., b} has no whiskers, then Step 1 implies that
regl(G’) < regl(G’\ {by,...,bs}) <regl(G).
So, the proof follows. 0

Remark 7.74. The previous theorem is a generalization of a work done by Gu in [61] for the case
=1

210



7.4. Castelnuovo-Mumford regularity of powers

Theorem 7.75. For the dumbbell graph Cy, - Py - Cy with 1 < 2 and any q > 1, we have
regl(Cp - Py - Cn)9 > 2q +1egl(Cpy - Py - Cr) — 2.

Proof. Using the inequality regl(Cr, - P2 - Cyn)9 > 29 +v(Cpy - P2 - Cy) — 1 of Theorem 7.21,

for the cases where regl(Cy, - Py - Ciy) = v(Cpy - Py - Cin) + 1 we get the expected inequality. We

divide the proof in two halves, the cases l =1 and | = 2.

Case 1. Let 1 = 1. We only need to focus on the case where n,m = 2 (mod 3). Let H be the
induced subgraph of Cy, - P1 - C;, mentioned in the proof of Theorem 7.30, i.e.

H=(Cpn -P1-C)\{Xn}=Pn1-Cn.
Using Theorem 7.27, Proposition 7.26 and the modularity n, m = 2 (mod 3), we can check that
v(H) =v(Cy - P1 - Cin)

and that
V(H) = v(H\ T (Cm)).

From Theorem 7.30 and [4, Theorem 1.2] we get
regl(Cp, - P1-Cin) =v(Cyy - P1 - Ci) +2 =v(H) + 2 = regl(H).

Since H is an induced subgraph of C;, - Py - Cyy, then from [4, Theorem 1.1] and [10, Corollay 4.3]
we get the inequality

regl(Cy - Py - Cin)9 > regl(H)9 = 2q +regl(H) — 2 = 2q + regl(Cy - P71 - C) — 2.

Case 2. Let 1 = 2. We only need to focus on the cases where n = 0,1 (mod 3) and m =
2 (mod 3). We take the same induced subgraph H as in Lemma 7.35. The induced subgraph
H=(Cy P2 Cqn) \{x1}0f Cy, - P2 - Cyy, is given as the union of a path of length n — 1 and the
cycle Cpy,ie., H=P_1 UCyy.

By Theorem 7.36, for the cases n = 0,1 (mod 3) and m = 2 (mod 3), we have

regl(Cp P2 Cin) =v(Cp - P2 C) +2 =[5 |+ |5 ]+ 2,
and from Corollary 7.14, Theorem 7.15 and Theorem 7.20 we obtain
regl(H) = reg(I(Pn—1)) +reg(I(Cm)) =1 =v(Pn_1) +v(Crm) + 2 =[]+ [ ]+ 2

Hence, we get regl(C, - P2 - Cyy) = regl(H). Finally, using [4, Theorem 1.1] and [10, Corollary
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4.3], we get the inequality
regl(Cp - P2 - C)9 > regl(H)9 = 2q +regl(H) — 2 = 2q 4+ regI(Cy, - P2 - Cipy) — 2.
So, the proof follows. O
Theorem 7.76. For the dumbbell graph Cy, - Py - Ci, with 1 < 2, we have
regl(Cp - Py - Ci )9 =2q +regl(Cp - Py - Cipy) — 2
forallq > 1.
Proof. It follows by Theorem 7.73, Theorem 7.11 and Theorem 7.75. O
Remark 7.77. One may ask whether
regl(Cp - Py - Cn)9 =2q +regl(Cry - P - Cin) — 2

always holds for given 1, m, l and q. Unfortunately, it is no longer true for any n, m, L and q as it
can be seen from the following example:

6 =regl(Cs - P3 - C5)% <4 +regl(Cs-P3-C5) —2 =7.
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