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Abstract
Background  Only certain disseminated cells are able to 
grow in secondary organs to create a metastatic tumor. 
Under the hypothesis that the immune microenvironment 
of the host tissue may play an important role in this 
process, we have categorized metastatic samples based 
on their immune features.
Methods  Gene expression data of metastatic samples 
(n=374) from four secondary sites (brain, bone, liver and 
lung) were used to characterize samples based on their 
immune and stromal infiltration using gene signatures and 
cell quantification tools. A clustering analysis was done 
that separated metastatic samples into three different 
immune categories: high, medium and low.
Results  Significant differences were found between 
the immune profiles of samples metastasizing in distinct 
organs. Metastases in lung showed a higher immunogenic 
score than metastases in brain, liver or bone, regardless 
of their primary site of origin. Also, they preferentially 
clustered in the high immune group. Samples in this 
cluster exhibited a clear inflammatory phenotype, higher 
levels of immune infiltrate, overexpression of programmed 
death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) pathways and upregulation 
of genes predicting clinical response to programmed cell 
death protein 1 (PD-1) blockade (T-cell inflammatory 
signature). A decision tree algorithm was used to select 
CD74 as a biomarker that identify samples belonging 
to this high-immune subtype of metastases, having 
specificity of 0.96 and sensitivity of 1.
Conclusions  We have found a group of lung-enriched 
metastases showing an inflammatory phenotype 
susceptible to be treated with immunotherapy.

Background
Despite extraordinary advances in cancer 
research in the last decades, metastasis is the 
major cause of mortality in many cancer types 
and their complete understanding remains 
elusive.1 2 The metastatic process is very inef-
ficient since only few of the many cells that 
migrate from the primary tumors successfully 
colonize distant sites. This is likely explained 
by the fact that circulating cancer cells in 
the bloodstream are exposed to the innate 

immune system and probably the majority of 
them are destroyed.3 4

Furthermore, once in the secondary organ, 
cancer cells are challenged by a hostile 
microenvironment with a particular immune 
composition so they might be vulnerable to 
immune surveillance.5 As example, the liver’s 
lymphocyte population is selectively enriched 
in natural killer (NK) and T cells, which play 
critical roles in first-line immune defense 
against invading pathogens, modulation of 
liver injury and recruitment of circulating 
lymphocytes.6 In the brain, the blood–brain 
barrier and the brain-resident cell types (ie, 
microglia) make this organ an immune-
suppressive environment.7 Indeed, only 
certain tumor cells within the primary tumor 
bulk are compatible with the cellular and 
molecular environment of specific secondary 
organs. This is likely to be the reason why 
although cancer cells are able to escape 
from the primary tumor and travel randomly 
around the body, their invasive fingerprint 
differs among cancer types.8 For instance, 
breast cancer metastasizes preferentially in 
bone (more than 50%) whereas around 65% 
of kidney tumors metastasize in lung and 
almost 85% of prostate cancer metastasizes in 
bone.9 The “seed and soil” hypothesis postu-
lates that the organ-preference patterns of 
tumor metastasis are the product of favorable 
interactions between metastatic tumor cells 
(the “seed”) and their organ microenviron-
ment (the “soil”). In this regard, the focus 
of research is currently moving to study the 
role of immune system cells in the metastatic 
process. The generation of an immunosup-
pressive microenvironment and the engaging 
of prometastatic inflammatory processes has 
been described to play an important role 
in metastatic homing.10 Also, studies have 
proved that systemic signals from primary 
tumors can influence the microenvironment 
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of distant organs by creating pre-metastatic niches that 
recruit supportive stromal cells before the arrival of circu-
lating tumor cells. This pre-metastatic niche promotes 
metastasis by generation of inflammation and immuno-
suppression in the target organ.11

Thus, the success of the metastatic growth is determined 
by a complex crosstalk between metastatic cells and target 
organ microenvironments.12 In this work, we revisit the 
classic hypothesis of seed and soil through a pan-cancer 
study from an immune system perspective. Since meta-
static cells must evade target organ immune surveillance 
to grow,13 we hypothesize that the immune microenvi-
ronment of the host tissue may play an important role 
in the process of metastatic cells selection and homing. 
Therefore, metastatic tumors in the same location might 
share mechanisms of immune evasion and subsequently 
could respond to the same immune treatment. By using 
bioinformatics techniques such as cell quantification 
algorithms or gene expression profiles, a molecular 
characterization of the immune microenvironment of 
metastatic samples in four different locations has been 
done. Then, a clustering analysis identified a subgroup of 
metastases sharing inflammation and immune infiltration 
features that might be targeted by immunotherapy drugs.

Methods
Patients and samples
Gene expression and clinical data from 374 metastatic 
samples including brain, bone, liver and lung and 348 
normal samples from the same locations were collected. 
A total of 16 datasets for metastases (GSE100534, 
GSE101607, GSE10961, GSE44660, GSE11078, 
GSE12630, GSE14017, GSE14018, GSE43837, GSE46141, 
GSE14108.1, GSE14108.2, GSE40367, GSE41258, 
GSE50496.1, GSE85258) were downloaded from open 
repository Gene Expression Omnibus (GEO). The clin-
ical information and description of datasets is summarized 
in online supplementary table 1. Metastatic samples were 
originated from six different primary locations (breast, 
colon, non-small-cell lung cancer (NSCLC), kidney, pros-
tate and skin melanoma). Frequencies of location of 
metastases are in general in agreement with those previ-
ously reported,9 although a slight enrichment in brain 
metastatic samples existed due to over-representation in 
some of the datasets (online supplementary figure 1). 
In addition, a total of 348 samples from normal healthy 
tissue were collected from five GEO datasets (GSE7307, 
GSE45878, GSE803, GSE3526, GSE1133; online supple-
mentary table 2).

Normalized gene expression data from the 16 data-
sets comprising six different microarray platforms were 
joined and transformed to log-2 scale. An adjustment for 
reduction of the batch effect was performed with ComBat 
function from R package sva. Online supplementary 
figure 2 shows a principal component analysis of the 
samples based on gene expression data, showing the effi-
cacy of this method to generate a homogenized dataset. 

Data were analyzed separately for metastatic and normal 
samples.

Immune microenvironment characterization
Gene expression data were used to characterize the 
immune microenvironment of samples, using a variety 
of bioinformatics tools. The immunophenoscore (IPS) 
function was used to measure the immune state of the 
samples. IPS uses a number of markers of immune 
response or immune toleration to quantify and visualize 
four different immunophenotypes in a tumor sample 
(antigen presentation, effector cells, suppressor cells 
and checkpoint markers). It also generates a z-score 
summarizing these four categories. The higher the 
z-score of IPS, the more immunogenic the sample.14 To 
estimate the presence of immune cell populations in the 
metastatic tissues, two different tools were used. First, R 
package ESTIMATE was used.15 ESTIMATE (Estimation 
of STromal and Immune cells in MAlignant Tumor tissues 
using Expression data) is a tool that predicts the tumor 
purity from gene signatures and calculates three scores: 
(1) stromal score—predicts the presence of stromal cell 
types in tumor bulk, (2) immune score—infers the infil-
tration of immune cells in tumor tissue and (3) estimate 
score—estimation of the tumor purity. Then, to obtain 
a more detailed picture of immune cell type infiltration, 
R package MCPcounter was used.16 MCPcounter (Micro-
environment Cell Populations-counter) is a method for 
quantification of immune cell’s relative abundances in 
heterogeneous tissues using marker genes optimized for 
interrogating microarray data. Nine different cell types 
were interrogated (T cells, cytotoxic T cells, NK cells, 
B lineage, monocytic lineage, myeloid dendritic cells, 
neutrophils, endothelial cells and fibroblasts). Data were 
also interrogated with QuantiSeq (absolute method)17 
and xCell (relative method)18 tools that also estimate 
immune cell infiltration.

For all the obtained scores, assumptions of normality 
and homoscedasticity were interrogated through 
statistical tests Levene and Shapiro, respectively. All 
comparisons between variables were analyzed using non-
parametric tests (Kruskal-Wallis and Wilcoxon tests), for 
homogenization of methods, as variables were either 
not normally distributed, or variances were not equally 
distributed between groups. For all tests applied, differ-
ences were considered significant when p<0.05. To probe 
the lack of correlation of the scores between each meta-
static sample and its related primary site of origin, a 
comparison between the different primary sites of origin 
was performed, for each metastatic site.

Immune clustering
To make a cluster analysis separating samples on the basis 
of their immune status, a total of 25 immunity-related 
gene sets covering both innate and adaptive responses 
were manually selected from pathways’ databases and 
publications (detailed in online supplementary table 3). 
Gene Set Variation Analysis from R package GSVA was 
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Figure 1  Analysis overview. Gene expression data from a cohort of 374 samples from four different metastatic locations were 
collected from Gene Expression Omnibus (GEO) database. To eliminate the batch effect, data were adjusted using the ComBat 
function. For each metastatic sample, tumor purity, proportion of immune cell infiltration and immune status were estimated 
using the R packages ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data), 
MCPcounter (Microenvironment Cell Populations-counter) and the Immunophenoscore algorithm. Applying Gene Set Variation 
Analysis (GSVA) function, samples were scored according to the level of expression of a comprehensive set of gene signatures 
related to immune response. The resulting scores were used to cluster the metastatic samples on the basis of their immune 
profile.

performed to obtain the immune profile of the meta-
static samples. This function performs a non-parametric, 
unsupervised analysis for estimating variation of the given 
gene sets through the samples in the expression matrix, 
returning an enrichment score for each sample. GSVA 
function was performed with 1000 bootstraps and argu-
ments as default.

The resulting GSVA enrichment scores were then used 
to cluster the samples by agglomerative hierarchical clus-
tering. First, samples distances were computed via the R 
function dist, with Euclidean distance. Next, hclust func-
tion generated a clustering from the distances, with “Ward-
D2” linkage method, where dissimilarities are squared for 
obtaining more accurate clustering. The same process 
was performed for gene set distances. Three categories, 
characterized by different immune and inflammatory 
enrichments, were defined and named as “Low Immune-
Cluster (LIC),” “Medium ImmuneCluster (MIC)” and 
“High ImmuneCluster (HIC).” Function cutree (dendex-
tend package) was used to divide the dedrogram tree 
in the three groups. Finally, for visualization purposes, 

a heatmap was plotted with the representation of the 
374 samples and 25 gene sets scores, previously scaled 
and centered. A dendrogram was drawn to visualize the 
distance tree for samples and gene sets. Proportions of 
the different tumor metastases among the three Immune-
Clusters were tested by χ2 test of proportions and plotted 
as barplot of percentages. Figure 1 shows a summary of 
the analysis performed from sample collection to immune 
microenvironment characterization.

Gene expression data from samples in Liu et al19 were 
downloaded for validation purposes. Metastatic samples 
(n=111) were classified into the three ImmuneClusters. 
Overall survival (OS) after immunotherapy treatment was 
plotted using a Kaplan-Meier curve stratifying by HIC, 
MIC and LIC.

Healthy tissue gene signatures
To calculate the Normal Tissue Signatures, normalized 
and ComBat-adjusted expression data for the 348 healthy 
samples were used. A differential expression analysis 
among the four healthy tissues was performed with R 
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Figure 2  Immunophenoscore (IPS) scores across the four metastatic locations. (A) Boxplot showing the aggregated IPS 
z-score. (B) Boxplot showing the antigen presentation, effector cells, suppressor cells and checkpoint scores. Dot shapes 
represent the primary tumor origin of each metastatic sample. NSCLC, non-small-cell lung cancer.

package Limma to generate a gene profile exclusive for 
each tissue type (brain, bone, liver and lung). All meta-
static samples were scored with these signatures and used 
to explore the presence of healthy tissue contamination. 
Also, Normal Tissue Signatures were added as a contin-
uous covariate in the model matrix for the Combat func-
tion. The resulting adjusted expression matrix values 
were used to recalculate immune scores in all metastatic 
samples.

Functional analysis
To identify enrichment in specific cellular functions and 
pathways, a Gene Set Enrichment Analysis (GSEA) was 
performed comparing samples belonging to the extreme 
phenotypes HIC and LIC.20 Gene sets from MsigDB were 
interrogated (Hallmarks, Gene Ontologies, Oncogenic 

Pathways, Immunologic Pathways and Canonical Pathway 
that include the datasets KEGG, Reactome and Biocarta).

Also, to predict their putative response to anti PD-L1 
drug, metastatic samples were scored with the GSVA 
method using the T-cell inflammatory (TIS) signature. 
This is a genetic profile reported as a good predictor of 
clinical response to pembrolizumab across a wide variety 
of tumor types.21

Identification of genes to classify samples into 
ImmuneClusters
A classification algorithm was performed to find genes 
classifying samples into extreme phenotypes HIC and 
LIC. Data were divided into training (75% of samples, 
n=137) and test dataset (25% of samples, n=46). The 
Training dataset was used for predictor discovery and 
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Figure 3  Stromal and immune infiltration across the four metastatic locations. (A) Boxplot showing stromal, immune and 
ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores for each sample. 
(B) Boxplot showing stromal and immune cell infiltration using MCPcounter (MicroenvironmentCell Populations-counter) tool. 
Shaped dots represent the primary tumor origin of each metastatic sample. NK, natural killer; NSCLC, non-small-cell lung 
cancer.

supervised classification to generate a plausible model. 
This division was carried out randomly and respecting 
the LIC/HIC proportions. The training datasets was used 
to identify differentially expressed genes (DEGs) between 
LIC and HIC groups. For this, an empirical Bayes analysis 

with R package Limma was performed using Benjamini 
and Hochberg’s method for false discovery rate correc-
tion. DEGs between these two extreme phenotypes were 
selected as those with log2 fold change (log2FC)> abs(2) 
and adjusted p-value <0.01. The DEGs identified using 
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Figure 4  Clustering of metastatic samples using immune-related datasets. (A) Heatmap showing the metastatic samples 
grouped by hierarchical clustering using the GSVA enrichment scores for 25 innate and adaptive immunity-related gene sets. 
Samples are clustered in three major groups defined as Low ImmuneCluster (LIC), Medium ImmuneCluster (MIC) and High 
ImmuneCluster (HIC). Color bars at the top of the graph labels the samples by the metastatic site, their primary tumor of origin 
and the ImmuneCluster. (B) Barplot of metastatic location percentage in each ImmuneCluster. MHC, major histocompatibility 
complex; NSCLC, non-small-cell lung cancer.

the training set were used in a binary decision tree with 
cross-validation (k=5) to identify an optimal classifica-
tion model for LIC/HIC. The classification was made 
with the R package caret. The classification accuracy was 
evaluated by calculating the sensitivity, specificity, likeli-
hood ratio (LR) and area under the curve (AUC). Finally, 
the predictive power of the selected decision tree was 
validated in an independent dataset (GSE51244). This 
dataset is compressed by 94 metastatic samples (lung and 
liver) from colorectal cancer (CRC). First, samples were 
classified into the three ImmuneClusters by our algo-
rithm. Then, the samples were classified as CD74 high/
CD74 low, by the median value of expression. Finally, the 
agreement between the CD74 high and HIC category was 
evaluated.

Availability of data and code
All data and R code used for the analysis are freely avail-
able at GitHub repository https://​github.​com/​odap-​
ubs/​mets-​immunecluster.

Results
Immune characterization of metastatic samples
Gene expression data were used to categorize metastatic 
samples according to their immune status. First, IPS scores 
were used as a general indicator of immune system activa-
tion across samples. Metastases in lung showed a higher 
IPS z-score than those in bone, brain or liver (p=0.00006), 
suggesting a different immune microenvironment modu-
lation (figure  2A). Specifically, lung metastases showed 
higher scores for antigen presentation (p=0.00002) and 
effector cells (p=0.0002), whereas they showed the lower 
score for suppressor cells (p=0.002). Interestingly, no 
differences across metastatic locations were found in the 
immune checkpoint category (figure 2B).

Next, ESTIMATE software was used to interrogate 
samples about their stromal and immune cell infiltra-
tion. Metastasis in lung and bone showed more abun-
dance of stromal cells. In agreement with the IPS results, 
lung metastases scored better in the immune category 
(p=0.0002; figure  3A). To explore this issue in detail, 
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Figure 5  T-cell inflammatory signature (TIS) scores across 
ImmuneClusters. Barplot showing TIS measures for each 
metastatic sample. Red line indicates the median value. Color 
dots represent the metastatic site of the samples.

MCPcounter, a tool for the quantification of different 
immune cell populations was used. As a result, lung 
metastases scored high in B lineage (p=0.0001), cytotoxic 
lymphocytes (p=0.001), myeloid dendritic cells (p=0.004), 
endothelial cells (p=0.006) and T-cell categories (p=0.03). 
No differences were found in NK cells, monocytic lineage 
and neutrophil categories. Interestingly, both lung and 
bone metastases showed an enrichment in fibroblast in 
comparison with brain and liver samples (p=0.00001; 
figure 3B). To validate this results, other tools apart from 
MCPcounter were used. In agreement with our results, 
absolute method QuantiSeq validates B-cell and T-cell 
abundance (specifically CD8+ T cells) in lung metastases, 
whereas relative xCell algorithm validates lung metastases 
enrichment in dendritic and endothelial cells. Neither 
QuantiSeq nor xCell validates differences in cancer asso-
ciated fibroblasts (CAF) infiltration. QuantiSeq detected 
monocytes as higher infiltrated in lung versus liver metas-
tases (online supplementary table 4).

To exclude the possibility that normal tissue from 
surgical margins were biasing our results, profiles for 
healthy tissue gene expression in bone, brain, liver and 
lung using transcriptomic data were constructed. Strong 
differences were found when comparing metastatic 
and normal tissues suggesting that little contamination 
existed, if any (online supplementary figure 3). Only lung 
metastases showed some resemblance with lung normal 
tissue. However, no correlation was found between the 
IPS score and the normal tissue score in lung meta-
static samples thus excluding the possibility that samples 
showing higher immune scores had more normal tissue 
contamination (online supplementary figure 4A). More-
over, immune characterization was repeated adjusting all 
samples’ gene expression by their normal tissue score and 
almost the same results were obtained (online supple-
mentary figure 4B and C).

Finally, we wondered if differences between the seeding 
organs existed. Within metastatic samples in brain and 
liver, no differences existed in IPS scores neither in infil-
tration composition regardless of their primary site or 

origin (online supplementary figure 5A and B). This 
suggested that, to some extent, immune adaptation 
to the new environment is a mechanism shared across 
tumors metastasizing in brain and liver. However, differ-
ences existed in lung and bone metastases. In lung, only 
slight differences were found in B lineage infiltration 
score (p=0.02; online supplementary figure 5C). In bone 
metastases, significant and stronger differences existed 
since samples from colorectal and kidney primary tumors 
have higher levels of antigen presentation and effector 
cells score but lower suppressor cells score. Also, they 
have more lymphocytes and myeloid dendritic cell infil-
tration (online supplementary figure 5D). This result 
suggested that the primary origin of bone metastases is 
indeed affecting the immune phenotype of their subse-
quent metastases.

Clustering of metastatic samples based on their immune 
phenotype
To further explore the existence of metastases with a hot 
immune phenotype, manually curated gene sets related 
to both adaptive and innate immune responses were used 
to perform a hierarchical clustering for the 374 samples. 
Three groups emerged categorized as “HIC” (19%), 
“MIC” (51%) and “LIC” (30%) (figure  4A). Online 
supplementary figure 6A summarizes the GSVA scores for 
each metastatic site, lung being the most immunogenic 
one in agreement with previous results. Indeed, when 
proportion of metastases for each ImmuneCluster were 
represented, the HIC was enriched in lung metastases, 
whereas MIC was in brain and LIC in liver (figure 4B). 
When primary sites of origin were compared with the 
three clusters, kidney cancer type showed an enrichment 
of HIC samples (probably reflecting the enrichment of 
lung metastatic ones) whereas prostate was the one with 
the lower. Finally, normal tissues were also scored using 
this approach but pairs of normal-metastatic tissues did 
not cluster together (online supplementary figure 6B).

Functional characterization of metastases belonging to the 
HIC
One might expect metastases to be immune cold, as being 
very aggressive tumors. In agreement, the HIC was the 
one comprising the less number of samples. This was an 
interesting group of samples characterized by an elevated 
expression of the human leukocyte antigen class II (HLA-
II) complex and genes involved in antigen presentation 
pathway. Also, they showed high levels of the therapeutic 
targets PD-L1 and CTLA4, thus suggesting a hypothetic 
treatment with immune checkpoint inhibitors. Supporting 
this hypothesis, all samples belonging to HIC scored very 
high in the TIS signature reporting to be correlated with 
response to anti PD-L1 checkpoint inhibitor pembroli-
zumab (p<0.001; figure  5). Moreover, independent 
dataset comprising metastatic samples from patients with 
melanoma treated with immune checkpoint inhibitors 
were classified into the ImmuneClusters and interrogated 
about survival. Interestingly, samples classified as HIC 
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Figure 6  ImmuneCluster classification and response to immunotherapy. (A) Kaplan-Meier curve showing survival after 
immunotherapy treatment in metastatic melanoma. High ImmuneCluster and Medium ImmuneCluster samples exhibited a 
tendency toward better overall survival than Low ImmuneCluster samples (Log-rank test, p=0.084). (B) Frequency of metastases 
in each ImmuneCluster by location.

and MIC showed a tendency toward better OS than LIC 
samples (figure 6A). Half lung metastases were classified 
as HIC (figure 6B). Although number of samples was too 
small to reach a conclusion, it is worth that two out of 
the total four lung metastases experienced progressive 
disease, whereas one experienced stable disease and one 
achieved a complete response. On the contrary, six out 
of seven brain metastasis suffered progressive disease and 
only one exhibited a partial response. Although specula-
tive, these results pave the way to a hypothetic treatment 
of the highly inflammatory metastatic tumors (figure 7).

Samples in the three clusters were interrogated about 
their level of immune infiltration. As expected, the HIC 
scored better in all categories being these tumors highly 
infiltrated in all categories both activating and inhib-
iting the immune system. It is interesting to note that all 
bone metastasis in the HIC scored very high in the T-cell 
category (online supplementary figure 7A). However, 
when markers of exhaustion were examined, samples 
belonging to HIC showed the higher levels of expression 
(online supplementary figure 7B). This result suggested 
that although highly infiltrated by T cells, these are not 
functional but exhausted.

Then, a functional analysis comparing samples 
belonging to the extreme phenotypes HIC and LIC was 
done using GSEA. As expected, HIC samples were highly 
enriched in immunity-related pathways and in inflam-
mation ones such as interleukin (IL)-2–STAT5, IL-6-JAK-
STAT3, interferon, tumor necrosis factor (TNF)-α, TNF-γ 
and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB), among others. Also, HIC samples 
were enriched in antigen presentation, Toll like receptor 
4 (TLR4) signaling and CTLA4 pathways. Regarding 
cellular functions, inflammatory response and adaptive 
immune response emerged as the most significant ones 
(online supplementary table 5 and online supplementary 

figure 8). Since those samples were initially clustered 
on the basis of their immune phenotypes, these results 
were not surprising at all. However, the functional anal-
ysis also reported interesting results not directly related 
to the immune system. For example, apoptosis and KRAS 
signaling pathways were upregulated pathways in HIC 
samples.

Identification of HIC biomarkers
The more differentially expressed genes (DEG) among 
ImmuneClusters were selected (log2FC > abs(2), n=43; 
online supplementary table 6, online supplementary 
figure 9) and used to search for a biomarker or panel 
of biomarkers useful to identify samples belonging to 
the HIC. A decision tree algorithm with bootstrapping 
selected CD74 as the gene that best categorizes between 
the two groups (online supplementary figure 10A). The 
model was first validated on the test samples within our 
dataset, with good prediction values (sensitivity=1, spec-
ificity=0.96, LR(+)=9.8, LR(−)=0.2, AUC=0.98, receiver 
operating characteristic curve in online supplementary 
figure 10B). When tested in an external dataset, CD74 
showed high accuracy classifying samples into LIC and 
HIC (classification error=0.1).

Interestingly, when samples belonging to MIC were 
reclassified, 76 out of 191 samples belonging to the 
MIC were classified as HIC, whereas 113 were classified 
as LIC in our dataset. In the validation dataset, 14 out 
of 18 samples belonging to this cluster were classified 
as HIC, whereas 4 were classified as LIC. This suggested 
that a percentage of metastasis showing and intermediate 
phenotype could resemble to the highly infiltrated ones. 
Indeed, when interrogated using the TIS score, about half 
of metastases classified as MIC scored very high suggesting 
a putative response to immunotherapy (figure 5). Thus, 
CD74 might be marker of inflammatory metastases.

 on F
ebruary 18, 2021 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2019-000491 on 25 June 2020. D

ow
nloaded from

 

https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
https://dx.doi.org/10.1136/jitc-2019-000491
http://jitc.bmj.com/


9García-Mulero S, et al. J Immunother Cancer 2020;8:e000491. doi:10.1136/jitc-2019-000491

Open access

Figure 7  Hypothesis. Based on their immune status, metastatic samples could be clustered into three ImmuneClusters. Lung 
metastasis tend to be more immunogenic, while liver metastasis tends to be less immunogenic. Metastatic samples in the HIC 
cluster sharing an inflammatory phenotype might be immunotherapy responders, regardless of their primary site of origin.

Discussion
Disseminated cells must evade immune system response 
to complete the metastatic invasion. Many examples 
exist in the literature demonstrating the contribution of 
immune system cells and molecules in several steps of the 
metastatic cascade, apart from other players. Inflamma-
tory response and immune regulatory cells (both myeloid 
and lymphoid) have been reported to support spreading 
and metastasis.22

Although pan-cancer analyses interrogating immune 
cell infiltration in primary tumors have been reported,23 
to our knowledge none has tackled this issue in metastatic 
samples. We hypothesized that metastatic tumors in the 
same organ from different primary tumors might share 
similar immune features and/or mechanisms to escape 
immune surveillance. Recently, corroborating our hypoth-
esis, a study on bone metastases remarks the existence 
of tissue-specific checkpoint immunotherapy evasion.24 
Since brain, bone, liver and lungs are the secondary 
sites more prone to be invaded by disseminated cells, we 

selected almost 400 metastatic samples in those organs to 
work with. By using transcriptomic data, we found signif-
icant differences in markers of immune microenviron-
ment activation among the different metastatic locations. 
Lung metastases showed a tendency toward having a 
higher immunogenic environment compared with brain, 
bone and liver metastases. In agreement, cell lineage infil-
tration analysis revealed higher lymphocytic infiltration 
in lungs and also myeloid dendritic cells, whereas there 
are no differences for innate immunity components (NK, 
monocytic lineage, neutrophils). Interestingly, there is no 
association between the organ of origin of the lung metas-
tases and these immune markers, indicating that differ-
ences found are independent of the cancer primary site. 
In agreement, a work by Remark et al showed no differ-
ences in T-cell infiltration in lung metastases coming 
from CRC or renal primary tumors, although they found 
differences in NK infiltration.25

A cluster analysis identified a percentage of around 
20% of metastatic samples classified as high immunogenic 
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(HIC). In line with our previous results, there was enrich-
ment in lung metastatic samples in this subtype, mainly 
characterized by being highly inflammatory. It has been 
reported that immunosuppressive mechanisms that 
prevent massive immune reactions to pulmonary alve-
olar macrophages in the lungs are harnessed by tumors 
to facilitate metastasis. Therefore, the intrinsic properties 
of lung immune homeostasis could be, at least partially, 
responsible for the susceptibility of the lungs to metas-
tasis.26 Inquiringly, several reports suggested that in 
asthmatic people the use of anti-inflammatory inhaled 
corticosteroid is associated with a reduced risk of lung 
cancer but not of laryngeal cancer27 28 thus suggesting an 
inflammatory origin of tumors growing in this location. 
On the contrary, there is enrichment in liver metastases 
in the LIC pointing these metastases as the colder ones. 
An explanation could be that a high percentage of these 
secondary tumors show a vessel co-option pattern of meta-
static growth. This is a replacement growth in which the 
tumor do not generate new vessels or an inflammatory 
reaction. As cancer cells grow, substitutes normal liver 
cells.29 However, it is interesting to note that not all lung 
metastases were categorized in the HIC cluster. Further-
more, some metastases in bone, liver and brain also fell in 
this cluster thus sharing phenotypic and immune features. 
Although rare, 83% of bone metastases originating from 
CRC and kidney tumors belonged to HIC and showed 
an increase in immune markers. The osteolytic nature 
of these lesions (in contrast with other bone metastasis 
coming from other tumors like prostate) might explain, 
at least in part, the particular idiosyncrasy of these metas-
tases. Supporting this hypothesis, one of the genes shown 
to be significantly increased in HICs, granzyme A, has 
emerged as a key proinflammatory molecule regulating 
osteoclast differentiation and bone erosion during rheu-
matoid arthritis.30

It is worth to note that metastases belonging to HIC 
scored very high when interrogated with the TIS signa-
ture, whereas metastases in LIC scored very low. This is a 
gene expression level measuring the level of microenvi-
ronment inflammation. In a clinical trial encompassing 
20 cohorts of patients with advanced solid tumors, TIS 
was able to predict pembrolizumab response (an anti-
PD-L1 drug).31 Recently, the utility of such signature as an 
accurate and independent predictive biomarker has been 
validated in a pan-cancer study analyzing anti-PD-1 treat-
ment benefit in primary tumors.32 Thus, we propose to 
treat HIC metastases with immune checkpoint inhibitors, 
irrespective of their primary site of origin. In agreement, 
and close to be statistically significant, melanoma meta-
static samples classified into HIC and MIC showed better 
OS than LIC after treatment with anti-PD1 inhibitors 
pembrolizumab or nivolumab. Although promising, this 
hypothesis needs further study. In the same line, a study 
in melanoma and lung tumors reported poor response to 
pembrolizumab in liver metastases than in extrahepatic 
ones.33 In agreement, most liver metastases belong to LIC 
cluster. In breast cancer, triple negative tumors have been 

reported to be more susceptible to immune therapeu-
tics.34 We classified breast cancer metastatic samples into 
the intrinsic molecular subtypes and interestingly, almost 
50% of lung metastases were classified as basal (mostly 
corresponding with triple negative tumors). However, no 
differences in the TIS score across molecular subtypes 
were observed (data not shown).

To classify metastatic samples into the inflammatory 
cluster HIC, a decision tree algorithm selected CD74 
as a good biomarker. CD74 is a gene coding for a chap-
erone that associates with class II major histocompatibility 
complex (MHC-II) and regulates antigen presentation 
for immune response.35 Interestingly, MHC-II has been 
proposed as a good predictor of response to immune 
checkpoint inhibitors in melanoma metastases.19 CD74 
also serves as cell surface receptor for the cytokine macro-
phage migration inhibitory factor (MIF) which, when 
bound to the encoded protein, initiates survival pathways 
and cell proliferation. MIF and CD74 have been shown 
to regulate peripheral B-cell survival and were associated 
with tumor progression and metastasis.35

It is worth to mention that among the different markers 
of cytotoxic T lymphocytes activation, GZMA was the only 
one that reached significance to be included in the HIC 
metastases group (online supplementary figure 9). A 
priori the appearance of markers of cytotoxic T lympho-
cytes activation in the inflammatory tumors susceptible 
to be treated with immunotherapy is not surprising 
and might pass unnoticed. However, several indepen-
dent reports have recently identified GZMA as a key 
regulator of inflammation in different pathologies,36 
including carcinogenesis, which tempts us to speculate 
on the potential significance of this finding. Specifically, 
after our recent results indicating that inflammation 
induced by GZMA is key for the development of CRC in 
vivo and therapeutic inhibition of GZMA reduced gut 
inflammation and CRC development in mice (Santiago 
et al accepted for publication). Other interesting gene 
is C-C Motif Chemokine Ligand 5 (CCL5), a proinflam-
matory chemokine that has been reported to favor the 
formation of an immunosuppressive microenvironment 
in tumors like gastric or breast, among others.37 CCL5 
shifts the balance between different leukocyte cell types 
by increasing the presence of deleterious TAMs and by 
inhibiting the antitumor T-cell activation.38

Metastatic samples in HIC showed KRAS activation 
suggesting a crosstalk between this pathway in the tumorous 
cell and the immune microenvironment. Indeed, a rela-
tionship between KRAS pathway and inflammation has 
been described in a mouse lung model harboring KRAS 
G12D mutation.39 Kitajima et al demonstrates that KRAS 
signaling activates carcinogenesis through upregulation 
of IL-6 and CCL5 cytokines.40 Also in agreement, patients 
with KRAS-mutant CRC develop lung metastases more 
frequently than KRAS wild-type (WT) counterpart.41 A 
recent study found KRAS WT tumors resistant to anti-
epidermal growth factor receptor (EGFR) drugs having 
cytotoxic T-cell infiltration and overexpression of PD-L1 
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thus susceptible to be treated with immune checkpoint 
inhibitors.42

This study has limitations mainly derived to the fact 
that results were inferred from public datasets. We had 
to normalize data generated by diverse laboratories and, 
though we used strategies to reduce batch effects, these 
methods may not be fully efficient and may also reduce 
biological variability. We have used gene expression signa-
tures to try to control the contamination of tumor tissues 
with normal tissues. However, we cannot totally exclude 
this possibility and this issue would be considered in 
future studies. Also, clinical information was scarce. Asso-
ciation between samples in HIC cluster and prognosis 
and/or treatment response in other tumors apart from 
melanoma deserves further study.

In conclusion, our results suggest that tumor cells need 
to share similar molecular profiles to evade the immune 
surveillance and growth in a specific secondary niche, 
regardless of their origin. Furthermore, we have found 
a cluster of approximately 20% of metastatic tumors 
showing an inflammatory phenotype that mainly includes 
lung metastatic lesions. These tumors scored very high 
when interrogated with TIS signature suggesting a puta-
tive treatment with immune checkpoint inhibitors.

Author affiliations
1Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), 
Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical 
Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, 
Spain
2Department of Clinical Sciences, Faculty of Medicine and Health Sciences, 
University of Barcelona, Barcelona, Spain
3Immunotherapy, Inflammation and Cancer Group, Aragón Health Research Institute 
(IIS Aragón), Aragón i + D Foundation (ARAID), Zaragoza, Spain
4Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell 
Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet 
de Llobregat, Barcelona, Spain
5Department of Pathology, University Hospital Bellvitge (HUB-IDIBELL), L'Hospitalet 
de Llobregat, Barcelona, Spain

Acknowledgements  We thank Spanish Association Against Cancer (AECC) 
Scientific Foundation. We also thank CERCA Program, Generalitat de Catalunya for 
institutional support and Josipa Bilic for critical reading of the manuscript.

Contributors  RS-P and JMP conceived the presented idea. SG-M parsed data and 
performed the computations. MHA performed classification methods and helped 
with statistics. XS supervised biomarker identification. VM verified the analytical 
methods. JP investigated the role of inflammatory genes and supervised the 
findings of this work. CS and RS interpreted results from a clinical point of view. 
RS-P took the lead in writing the manuscript. All authors provided critical feedback 
and helped shape the research, analysis and manuscript.

Funding  Agency for Management of University and Research Grants (AGAUR) of 
the Catalan Government (grant no 2017SGR723).

Competing interests  VM is consultant to Bioiberica S.A.U. and Grupo Ferrer S.A., 
received research funds from Universal DX and is coinvestigator in grants with 
Aniling. JMP is consultant for Roche-Genentech, Bristol-Myers Squibb, Merck Sharp 
& Dohme, Merck Serono, Janssen, Astellas, VCN-Biotech and BeiGene; JMP has 
received research grants from Bristol-Myers Squibb, Merck Sharp & Dohme, Merck 
Serono, Janssen and AstraZeneca.

Patient consent for publication  Not required.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available in a public, open access repository. 
All used data have been downloaded from GEO database.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See http://​creativecommons.​org/​licenses/​by-​nc/​4.​0/.

ORCID iDs
Julián Pardo http://​orcid.​org/​0000-​0003-​0154-​0730
Rebeca Sanz-Pamplona http://​orcid.​org/​0000-​0002-​2187-​3527

References
	 1	 Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends 

in colorectal cancer incidence and mortality. Gut 2017;66:683–91.
	 2	 Massagué J, Obenauf AC. Metastatic colonization by circulating 

tumour cells. Nature 2016;529:298–306.
	 3	 Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological 

principles of metastasis. Cell 2017;168:670–91.
	 4	 Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and 

evolving paradigms. Cell 2011;147:275–92.
	 5	 Mohme M, Riethdorf S, Pantel K. Circulating and disseminated 

tumour cells - mechanisms of immune surveillance and escape. Nat 
Rev Clin Oncol 2017;14:155–67.

	 6	 Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role 
in inflammation and homeostasis. Cell Mol Immunol 2016;13:267–76.

	 7	 Quail DF, Joyce JA. The microenvironmental landscape of brain 
tumors. Cancer Cell 2017;31:326–41.

	 8	 Obenauf AC, Massagué J. Surviving at a distance: organ-specific 
metastasis. Trends Cancer 2015;1:76–91.

	 9	 Budczies J, von Winterfeld M, Klauschen F, et al. The landscape 
of metastatic progression patterns across major human cancers. 
Oncotarget 2015;6:570–83.

	10	 Syn N, Wang L, Sethi G, et al. Exosome-Mediated metastasis: 
from epithelial-mesenchymal transition to escape from 
immunosurveillance. Trends Pharmacol Sci 2016;37:606–17.

	11	 Liu Y, Cao X. Characteristics and significance of the pre-metastatic 
niche. Cancer Cell 2016;30:668–81.

	12	 Stresing V, Baltziskueta E, Rubio N, et al. Peroxiredoxin 2 specifically 
regulates the oxidative and metabolic stress response of human 
metastatic breast cancer cells in lungs. Oncogene 2013;32:724–35.

	13	 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. 
Cell 2011;144:646–74.

	14	 Charoentong P, Finotello F, Angelova M, et al. Pan-Cancer 
Immunogenomic analyses reveal Genotype-Immunophenotype 
relationships and predictors of response to checkpoint blockade. 
Cell Rep 2017;18:248–62.

	15	 Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour 
purity and stromal and immune cell admixture from expression data. 
Nat Commun 2013;4:2612.

	16	 Becht E, Giraldo NA, Lacroix L, et al. Estimating the population 
abundance of tissue-infiltrating immune and stromal cell populations 
using gene expression. Genome Biol 2016;17:218.

	17	 Plattner C, Finotello F, Rieder D. Deconvoluting tumor-infiltrating 
immune cells from RNA-Seq data using quanTIseq. Methods 
Enzymol 2020;636:261–85.

	18	 Aran D. Cell-Type enrichment analysis of bulk transcriptomes using 
xCell. Methods Mol Biol 2020;2120:263–76.

	19	 Liu D, Schilling B, Liu D, et al. Integrative molecular and clinical 
modeling of clinical outcomes to PD1 blockade in patients with 
metastatic melanoma. Nat Med 2019;25:1916–27.

	20	 Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment 
analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–50.

	21	 Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA 
profile predicts clinical response to PD-1 blockade. J Clin Invest 
2017;127:2930–40.

	22	 Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading 
and metastasis. Immunobiology 2015;220:236–42.

	23	 Tamborero D, Rubio-Perez C, Muiños F, et al. A pan-cancer 
landscape of interactions between solid tumors and infiltrating 
immune cell populations. Clin Cancer Res 2018;24:3717–28.

	24	 Jiao S, Subudhi SK, Aparicio A, et al. Differences in tumor 
microenvironment dictate T helper lineage polarization and response 
to immune checkpoint therapy. Cell 2019;179:e13:1177–90.

	25	 Remark R, Alifano M, Cremer I, et al. Characteristics and clinical 
impacts of the immune environments in colorectal and renal cell 
carcinoma lung metastases: influence of tumor origin. Clin Cancer 
Res 2013;19:4079–91.

 on F
ebruary 18, 2021 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2019-000491 on 25 June 2020. D

ow
nloaded from

 

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0003-0154-0730
http://orcid.org/0000-0002-2187-3527
http://dx.doi.org/10.1136/gutjnl-2015-310912
http://dx.doi.org/10.1038/nature17038
http://dx.doi.org/10.1016/j.cell.2016.11.037
http://dx.doi.org/10.1016/j.cell.2011.09.024
http://dx.doi.org/10.1038/nrclinonc.2016.144
http://dx.doi.org/10.1038/nrclinonc.2016.144
http://dx.doi.org/10.1038/cmi.2016.3
http://dx.doi.org/10.1016/j.ccell.2017.02.009
http://dx.doi.org/10.1016/j.trecan.2015.07.009
http://dx.doi.org/10.18632/oncotarget.2677
http://dx.doi.org/10.1016/j.tips.2016.04.006
http://dx.doi.org/10.1016/j.ccell.2016.09.011
http://dx.doi.org/10.1038/onc.2012.93
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/j.celrep.2016.12.019
http://dx.doi.org/10.1038/ncomms3612
http://dx.doi.org/10.1186/s13059-016-1070-5
http://dx.doi.org/10.1016/bs.mie.2019.05.056
http://dx.doi.org/10.1016/bs.mie.2019.05.056
http://dx.doi.org/10.1007/978-1-0716-0327-7_19
http://dx.doi.org/10.1038/s41591-019-0654-5
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1172/JCI91190
http://dx.doi.org/10.1016/j.imbio.2014.07.017
http://dx.doi.org/10.1158/1078-0432.CCR-17-3509
http://dx.doi.org/10.1016/j.cell.2019.10.029
http://dx.doi.org/10.1158/1078-0432.CCR-12-3847
http://dx.doi.org/10.1158/1078-0432.CCR-12-3847
http://jitc.bmj.com/


12 García-Mulero S, et al. J Immunother Cancer 2020;8:e000491. doi:10.1136/jitc-2019-000491

Open access�

	26	 Sharma SK, Chintala NK, Vadrevu SK, et al. Pulmonary 
alveolar macrophages contribute to the premetastatic niche by 
suppressing antitumor T cell responses in the lungs. J Immunol 
2015;194:5529–38.

	27	 Lee C-H, Hyun MK, Jang EJ, et al. Inhaled corticosteroid use 
and risks of lung cancer and laryngeal cancer. Respir Med 
2013;107:1222–33.

	28	 Lee YM, Kim SJ, Lee JH, et al. Inhaled corticosteroids in COPD and 
the risk of lung cancer. Int J Cancer 2018;143:2311–8.

	29	 Kuczynski EA, Vermeulen PB, Pezzella F, et al. Vessel co-option in 
cancer. Nat Rev Clin Oncol 2019;16:469–93.

	30	 Santiago L, Menaa C, Arias M, et al. Granzyme a contributes 
to inflammatory arthritis in mice through stimulation of 
osteoclastogenesis. Arthritis Rheumatol 2017;69:320–34.

	31	 Ott PA, Bang Y-J, Piha-Paul SA, et al. T-Cell-Inflamed gene-
expression profile, programmed death ligand 1 expression, and 
tumor mutational burden predict efficacy in patients treated with 
pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 
2019;37:318–27.

	32	 Damotte D, Warren S, Arrondeau J, et al. The tumor inflammation 
signature (TIS) is associated with anti-PD-1 treatment benefit in the 
CERTIM pan-cancer cohort. J Transl Med 2019;17:357.

	33	 Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces 
responses by inhibiting adaptive immune resistance. Nature 
2014;515:568–71.

	34	 Katz H, Alsharedi M. Immunotherapy in triple-negative breast cancer. 
Med Oncol 2018;35:13.

	35	 Shachar I, Haran M. The secret second life of an innocent chaperone: 
the story of CD74 and B cell/chronic lymphocytic leukemia cell 
survival. Leuk Lymphoma 2011;52:1446–54.

	36	 Arias M, Martínez-Lostao L, Santiago L, et al. The untold story 
of granzymes in oncoimmunology: novel opportunities with old 
acquaintances. Trends Cancer 2017;3:407–22.

	37	 Aldinucci D, Colombatti A. The inflammatory chemokine CCL5 and 
cancer progression. Mediators Inflamm 2014;2014:292376

	38	 Cook J, Hagemann T. Tumour-Associated macrophages and cancer. 
Curr Opin Pharmacol 2013;13:595–601.

	39	 Kortlever RM, Sodir NM, Wilson CH, et al. Myc cooperates with 
Ras by programming inflammation and immune suppression. Cell 
2017;171:e14:1301–15.

	40	 Kitajima S, Thummalapalli R, Barbie DA. Inflammation as a driver and 
vulnerability of KRAS mediated oncogenesis. Semin Cell Dev Biol 
2016;58:127–35.

	41	 Ghidini M, Personeni N, Bozzarelli S, et al. Kras mutation in lung 
metastases from colorectal cancer: prognostic implications. Cancer 
Med 2016;5:256–64.

	42	 Woolston A, Khan K, Spain G, et al. Genomic and transcriptomic 
determinants of therapy resistance and immune landscape evolution 
during anti-EGFR treatment in colorectal cancer. Cancer Cell 
2019;36:35–50.

 on F
ebruary 18, 2021 by guest. P

rotected by copyright.
http://jitc.bm

j.com
/

J Im
m

unother C
ancer: first published as 10.1136/jitc-2019-000491 on 25 June 2020. D

ow
nloaded from

 

http://dx.doi.org/10.4049/jimmunol.1403215
http://dx.doi.org/10.1016/j.rmed.2012.12.002
http://dx.doi.org/10.1002/ijc.31632
http://dx.doi.org/10.1038/s41571-019-0181-9
http://dx.doi.org/10.1002/art.39857
http://dx.doi.org/10.1200/JCO.2018.78.2276
http://dx.doi.org/10.1186/s12967-019-2100-3
http://dx.doi.org/10.1038/nature13954
http://dx.doi.org/10.1007/s12032-017-1071-6
http://dx.doi.org/10.3109/10428194.2011.565437
http://dx.doi.org/10.1016/j.trecan.2017.04.001
http://dx.doi.org/10.1155/2014/292376
http://dx.doi.org/10.1016/j.coph.2013.05.017
http://dx.doi.org/10.1016/j.cell.2017.11.013
http://dx.doi.org/10.1016/j.semcdb.2016.06.009
http://dx.doi.org/10.1002/cam4.592
http://dx.doi.org/10.1002/cam4.592
http://dx.doi.org/10.1016/j.ccell.2019.05.013
http://jitc.bmj.com/

	Lung metastases share common immune features regardless of primary tumor origin
	Abstract
	Background
	Methods
	Patients and samples
	Immune microenvironment characterization
	Immune clustering
	Healthy tissue gene signatures
	Functional analysis
	Identification of genes to classify samples into ImmuneClusters
	Availability of data and code

	Results
	Immune characterization of metastatic samples
	Clustering of metastatic samples based on their immune phenotype
	Functional characterization of metastases belonging to the HIC
	Identification of HIC biomarkers

	Discussion
	References


