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Isogenies of Jacobians
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Abstract

By studying the infinitesimal variations of the Hodge structure and a generalization
of the classical Babbage–Enriques–Petri theorem, we prove that the Jacobian variety
of a generic element of a codimension k subvariety of Mg is not isogenous to different
Jacobian if g > 3k + 4. We extend this result to k = 1, g > 5 by using degeneration
methods.

1. Introduction

Let Z be a subvariety of the moduli spaceMg of complex smooth curves of genus g of codimension
k > 0. We want to show that under certain numerical restrictions, the Jacobian of a generic
element of Z is not isogenous to a distinct Jacobian. In other words, for a given C, generic in Z,
all curves of genus g contained in the Jacobian JC of C are birationally equivalent. This is an
extension of the theorem proved by Bardelli and Pirola (see [BP89]) for the whole Mg and can
be seen as a Noether–Lefschetz locus problem for surfaces which are the product of two curves
of the same genus (see Corollary 6.2). More precisely, our result is as follows.

Theorem 1.1. Let Z ⊂ Mg be a codimension k subvariety, with k > 0. If g > 3k + 4 (in
particular g > 7), then the Jacobian of a generic curve C of Z is not isogenous to another
Jacobian. The same is true for k = 1 and g > 5.

Observe that the theorem fails for k = 1 and g = 4: in this case M4 is a divisor in A4.
Therefore, if in the Siegel upper space H4, we intersect the Jacobian locus J4 with its image
j(J4) by the action of a fixed isogeny j, we get a divisor in M4 where the Jacobian of a generic
element is isogenous to a different Jacobian.

For g > 3k+ 4, our strategy is as follows: After a base change we have two families of smooth
complex curves of genus g on a base variety W , say π : C −→W and π′ : C′ −→W , and a family
of isogenies of the associated family of Jacobians, that is,

χ : J(C′) −→ J(C).

This means that for t ∈ W , the map χt : J(C ′t) −→ J(Ct) is an isogeny, where C ′t = π′−1(t) and
Ct = π−1(t).

Received 06 September 2014, accepted in final form 13 December 2015.
2010 Mathematics Subject Classification 14H40, 14H10, 14K02
Keywords: isogenies, Jacobians, moduli of curves, moduli of abelian varieties
This journal is c© Foundation Compositio Mathematica 2016. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

Naranjo was partially supported by the Proyecto de Investigación MTM2012-38122-C03-02. Pirola was partially
supported by Gnsaga and by MIUR PRIN 2012: Moduli, strutture geometriche e loro applicazioni. Part of this
research was done during the visit of Pirola to the IMUB in the spring of 2013.

http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl


Isogenies of Jacobians

It follows that the associated rational Hodge structures are isomorphic. Consider the local
(polarized) systems ΛZ = R1π∗Z and Λ′Z = R1π′∗Z, and the systems ΛC = R1π∗C and Λ′C =
R1π′∗C obtained by tensoring by C.

In particular, the infinitesimal variations of the Hodge structure associated with the Hodge
filtrations of Λ1,0 ⊂ ΛC and Λ′1,0 ⊂ Λ′C are isomorphic. We borrowed this basic observation from
Claire Voisin (see [BP89, Remark 4.2.5]). It is well known that the infinitesimal invariant of the
Hodge structure of curves determines the quadrics that contain a canonical curve (see [CGGH83]).
This allows us to translate our problem to a geometric one. Let I(2) and J(2) be the spaces of
quadrics that contain the canonical curves associated with Ct and Dt, respectively. It follows
that under the choice of a suitable canonical embedding, I(2)∩ J(2) has codimension at least k,
where k is the codimension of m(W ) in Mg and m is the modular mapping m : W −→Mg. We
can bound the codimension k by using the Clifford index. For this we prove a result that gives
an interesting (at least in our opinion) reconstruction result of the curve from a partial system
of quadrics. It is a generalization of the Babbage–Enriques–Petri theorem (see, for example,
[ACGH85, Chapter 3, Section 3]).

Theorem 1.2. Let C be a curve of genus g and Clifford index c. Let I2 ⊂ Sym2H0(C,ωC) be the
vector space of the equations of the quadrics containing C, and let K ⊂ I2 be a linear subspace
of codimension k. If g > 2k + 5 and c > k + 1, then C is the only irreducible non-degenerate
curve contained in the intersection of the quadrics of K.

Corollary 1.3. Let C be a generic curve in a codimension k subvariety Z of Mg. Let I2 ⊂
Sym2H0(C,ωC) be the vector space of the equations of the quadrics containing C. Let K ⊂ I2 be
a linear subspace of codimension k. If g > 3k + 4, then C is the only irreducible non-degenerate
curve contained in the intersection of the quadrics of K.

The corollary is a consequence of Theorem 1.2. Indeed, let c be the Clifford index of a generic
element of Z. The locus of curves with given Clifford index can have several components and
the minimal codimension is attained when c is realized by a g1

d linear series, with c = d− 2. This
follows easily by a parameter count from a result in [CM91], where it is proved that a curve C
with Clifford index c either is (c+ 2)-gonal or has Brill–Noether locus W 1

c+3(C) of dimension at
least 1.

Then, by the Riemann–Hurwitz theorem, the codimension of the component of the curves
with a g1

c+2 linear series is 3g − 3− (2g − 2 + 2(c+ 2)− 3) = g − 2c− 2. Hence, since we assume
g > 3k + 4, we have

k > g − 2c− 2 > 3k + 4− 2c− 2 = 3k − 2c+ 2 .

Therefore c > k+ 1 and the result follows from Theorem 1.2 since g > 3k+ 4 implies g > 2k+ 5
for k > 0.

In Section 2 we start the proof of Theorem 1.1 under the hypothesis g > 3k + 4 by reducing
it to Corollary 1.3 following Voisin’s observation indicated above. Theorem 1.2 will be proved in
Section 3. The idea of the proof is as follows: Assuming the existence of a second non-degenerate
curve in the intersection of the quadrics, we select linearly independent points xi on this curve.
Then, by constructing a suitable rank 2 vector bundle on C, we are able to find points pj ∈ C
such that the linear span of the points xi is contained in the linear span of the points pj . From
this it is easy to obtain a contradiction by using a theorem of Ran [Ran86].

To prove the divisorial case of the main theorem, we use the original approach in [BP89],
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based on the analysis of the map

χZ : ΛZ −→ Λ′Z

(in fact we will work with the dual lattices, that is, with the homology groups). If we can prove
that χZ(ΛZ) = nΛ′Z for n ∈ Z, we will get that C′t is isomorphic to Ct and χt is given by the
multiplication by n. We use degeneration to ∆0 and study the monodromy action on ΛZ. The
basic geometric information is now encoded on the generalized Jacobians. Roughly speaking,
one has to prove that part of the limit map χ0 is the multiplication by n. This gives that the
map χt is the multiplication by n on part of the invariant cycles. Finally, we need to have
degenerations with independent monodromy to complete the proof. It is clear that to follow this
strategy one needs to control the degeneration type. Using the theory of divisors on Mg and
following a valuable suggestion of Gavril Farkas, we realize the above program when c = 1. The
degeneration procedure is performed in Sections 4, 5 and 6. We will prove the existence of a type
of degeneration (if c = 1) to the union of a curve of genus g−2 and two generic elliptic tails. The
independent degenerations to ∆0 are obtained by letting the elliptic tails become singular. To
extract more information from the degeneration, we analyze the type of monodromy involved,
that we classify in three cases (a, b, c of Section 5). Then we analyze the geometry of the
generalized Jacobians by comparing their extension classes. In Section 6 we complete the proof
by comparing the invariants of the two degenerations.

2. Reduction to a problem on quadrics through the canonical curve

The aim of this section is to prove that Corollary 1.3 implies Theorem 1.1 under the hypotheses
k > 0 and g > 3k + 4.

Remember that an isogeny χ : A′ −→ A between principally polarized Abelian varieties
(A′, LA′) and (A,LA) such that χ∗LA ∼= L⊗mA′ is determined by a subgroup H of the group
of m-torsion points A′m totally isotropic with respect to the Riemann bilinear form

em : A′m ×A′m −→ µm

(A = A′/H) and a level subgroup H̃ of the theta group G(L⊗mA′ ); see [Mum70, Chapter 23]. Then
the moduli space of those isogenies can be rewritten as

Ãg
m

=
{
χ : A′ −→ A, χ∗(LA) ∼= L⊗mA′

}/
∼= = {(A′, LA′ ;H, H̃)}

/
∼=

and the forgetful map is a finite covering ϕ : Ãg
m
−→ Ag. Moreover, the map ψ : Ãg

m
−→ Ag

sending χ : A′ −→ A to (A,LA) is another covering space.

Given a generic isogeny χ : A′ −→ A, we consider tangent spaces in the following diagram:

Ãg
m ψ //

ϕ

��

Ag

Ag
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and we get an isomorphism λ as follows:

TÃg
m
,χ

dψ

∼=
//

dϕ ∼=
��

TAg ,A Sym2H0(A, TA)

TAg ,A′

λ

66

Sym2H0(A′, TA′) .

Coming back to our problem, let us assume that the locus of curves in Mg with Jacobian
isogenous to the Jacobian of some curve in Z contains a codimension k component Z ′ ⊂Mg.
Our hypothesis on k implies that a generic element C ′ ∈ Z ′ satisfies End(JC) ∼= Z (see [CGT92]
or [Pir88]). Therefore an isogeny χ : JC ′ −→ JC must satisfy that the pull-back of the princi-
pal polarization in JC is a multiple of the principal polarization in JC ′. Hence there exist an
integer m and an irreducible variety R ⊂ Ãg

m
dominating Z ′ and Z through ϕ and ψ, respec-

tively. Set M := ϕ−1(Mg) and M′ := ψ−1(Mg). Then R ⊂ M ∩M′. Fix a generic element
χ : JC ′ −→ JC in R. In the following diagram we consider in the first row the natural inclusions
of tangent spaces at χ and we put in the second row the first row’s image by dϕ:

TR,χ
� � //

∼=
��

TM,χ
� � //

∼=
��

TM,χ + TM′,χ
� � // TÃm

g ,χ

∼=
��

TZ,JC
� � // TMg ,JC = H0(C,ω⊗2

C )∗ �
� // T̄ �

� // Sym2H0(C,ωC)∗ .

Observe that, by the Grassmann formula, the dimension of T̄ is at most 3g − 3 + k. Set
K(C) := Ker(Sym2H0(C,ωC) −→ T̄ ∗); this is a subspace of the vector space I2(C) of the
quadrics containing the image of C by the canonical map. The codimension of K(C) in I2(C) is
at most k. By using ψ instead of ϕ we get the corresponding vector space K(C ′) ⊂ I2(C ′) and
we obtain a canonical isomorphism K(C) ∼= K(C ′). Then Corollary 1.3 implies that C and C ′

are isomorphic and, since End(JC) = Z, the isogeny is a multiple of the identity.

3. A generalization of the Babbage–Enriques–Petri theorem

This section is devoted to the proof of Theorem 1.2. We fix the notation K ⊂ I2 of the statement.
We assume that the intersection of all the quadrics of K contains an irreducible non-degenerate
curve different from C. In particular, we can select k + 1 linearly independent points xi ∈⋂
Q∈K Q ⊂ PH0(C,ωC)∗ such that xi /∈ C. We choose a representative of xi in H0(C,ωC)∗ and

we denote it by the same symbol. Then xi ⊗ xi ∈ Sym2H0(C,ωC)∗. We denote by L the linear
variety spanned by these points.

Let R and R′ be the quotients I2/K and Sym2H0(C,ωC)/K, respectively. Then we have the
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diagram of vector spaces

0

��

0

��
0 // K

��

// I2

��

// R // 0

Sym2H0(C,ωC)

��

Sym2H0(C,ωC)

��
0 // R // R′ //

��

H0(C,ω⊗2
C ) //

��

0

0 0

and its dual

0 0

0 // R∗ // I∗2

OO

// K∗ //

OO

0

Sym2H0(C,ωC)∗

OO

Sym2H0(C,ωC)∗

OO

0 // H1(C, TC) = H0(C,ω⊗2
C )∗

OO

// R′∗ //

OO

R∗ // 0

0

OO

0 .

OO

Since all the quadrics of K vanish at xi, the image of L in K∗ is zero, hence L ⊂ R′∗. Since L
has dimension k+ 1 and dimR = k by the hypothesis on K, we have H1(C, TC)∩L 6= (0). Let α
be a non-trivial element in this intersection. Looking at H1(C, TC) = Ext1(ωC ,OC) as classes of
extensions, we associate with α a rank 2 vector bundle Eα and a short exact sequence:

0 −→ OC −→ Eα −→ ωC −→ 0 .

The coboundary map H0(C,ωC) −→ H1(C,OC) is the cup-product with α. Since α ∈ L, we have
α =

∑k+1
i=1 aixi ⊗ xi. Therefore, if we denote by Hi the kernel of the form xi : H

0(C,ωC) −→ C,
the intersection H1 ∩ · · · ∩Hk+1 is contained in Ker(· ∪ α); in fact,

Ker(· ∪ α) =
⋂

i with ai 6=0

Hi . (3.1)

We can assume that x1, . . . , xk′ for k′ 6 k + 1 are the points such that ai 6= 0. Then there are
g− k′ sections of H0(C,ωC) lifting to Eα. Let W ⊂ H0(C,Eα) be the vector space generated by
these sections. We consider the wedge product of sections

ψ : Λ2W ↪→ Λ2H0(C,Eα) −→ H0(C,detEα) = H0(C,ωC) .

The hypothesis g > 2k + 5 implies that the projectivization of the kernel of ψ (which has
codimension at most g) intersects, in P(Λ2W ), the Grassmannian of the decomposable elements.
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Hence there are two sections s1, s2 ∈ W ⊂ H0(C,Eα) such that s1 ∧ s2 = 0. This means
that they generate a rank 1 torsion-free sheaf Mα ⊂ Eα, hence a line bundle. By construction
h0(C,Mα) > 2. Let us consider the quotient of sheaves Qα = Eα/Mα, and let Q0

α be the quotient
of Qα by its torsion subsheaf. The kernel Lα of the natural map Eα 7−→ Q0

α is a line bundle that
by construction contains Mα. In particular, h0(C,Lα) > 2. Observe that Q0

α
∼= ωC ⊗ L−1

α . We
get a diagram

0

��
Lα

��
0 // OC

ρ

##

// Eα //

��

ωC // 0

ωC ⊗ L−1
α

��
0 .

(3.2)

Note that ρ 6= 0, otherwise the section of Eα represented by the horizontal arrow O −→ Eα
would belong to W , which contradicts the definition of W .

Observe that the existence of the map ρ implies that h0(C,ωC ⊗L−1
α ) is positive. We distin-

guish two cases.

Case 1: h0(C,ωC ⊗ L−1
α ) > 2. Then we can use Lα to compute the Clifford index of the

curve. We have

h0(C,Lα) + h0
(
C,ωC ⊗ L−1

α

)
> h0(C,Eα) > g − k′ + 1 ,

that combined with the Riemann–Roch theorem gives 2h0(C,Lα) > deg(Lα) + 2− k′. Therefore

deg(Lα)− 2h0(C,Lα) + 2 6 k′ 6 k + 1 ,

which gives a contradiction since k + 1 < c by hypothesis.

Case 2: h0(C,ωC ⊗ L−1
α ) = 1. Then h0(C,Lα) > g − k′. Let e be the degree of ωC ⊗ L−1

α
∼=

OC(p1 + · · ·+ pe). We claim that e 6 k′.

Indeed, as ρ induces an isomorphism H0(C,OC) ∼= H0(C,ωC⊗L−1
α ), the map H0(C,Eα) −→

H0(C,ωC ⊗ L−1
α ) is surjective and we get

g − k′ 6 h0(C,Lα) = h0
(
C,ωC ⊗ L−1

α

)
+ 2g − 2− e+ 1− g = g − e ;

the claim follows. Coming back to diagram (3.2), we obtain

H0(C,Lα) = H0(C,ωC(−p1 − · · · − pe)) ⊂ Ker(· ∪ α) =
⋂

i=1,...,k′

Hi .

By dualizing, we obtain the inclusion of linear spans

〈x1, . . . , xk′〉 ⊂ 〈p1, . . . , pe〉 .

We denote by C̃0 a non-degenerate irreducible curve, C̃0 6= C, contained in all the quadrics
parametrized by K. Let C̃ be the normalization of C̃0, and let γ be the normalization map. By
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choosing generically the k + 1 points xi ∈ C̃, we can assume that k′ and e are constant, so the
correspondence

Γ = {(x1 + · · ·+ xk′ , p1 + · · ·+ pe) | 〈γ(x1), . . . , γ(xk′)〉 ⊂ 〈p1, . . . , pe〉} ⊂ C̃ (k′) × C(e)

dominates C̃ (k′). Moreover, since C̃ is non-degenerate, the fibers of π2 : Γ −→ C(e) must be finite.
Since e 6 k′ 6 dim Γ = dimπ2(Γ) 6 e, we obtain e = k′. On the other hand, the natural rational
maps

C(e) 99K Sece(C) ⊂ Grass
(
e− 1,Pg−1

)
,

C̃(e) 99K Sece(C̃0) ⊂ Grass
(
e− 1,Pg−1

)
are generically injective by the uniform position theorem (remember that e = k′ 6 k + 1 and
2k + 5 < g), hence the correspondence Γ is of bidegree (1, 1) and therefore C̃(e) and C(e) are
birational. In particular, g(C̃) = g(C) = g (the induced map on Jacobians JC̃ −→ JC has to
be dominant since the image generates and the same holds in the opposite direction). By Ran’s
theorem on symmetric products, see [Ran86], we get C ∼= C̃. Observe that both curves have to
be canonical, hence C̃0 is smooth and there is a linear projective transformation ϕ : C̃ 7−→ C.
Coming back to our argument and choosing k generic points xi ∈ C̃, we have 〈x1, . . . , xk〉 =
〈ϕ(x1), . . . , ϕ(xk)〉, hence ϕ leaves Seck(C) invariant and must be the identity, so C̃ = C, which
gives a contradiction.

4. Divisor case, intersection with the boundary

Now we start the proof of the codimension 1 case of the main theorem assuming g > 5. We write
D instead of Z. The initial step of our degeneration procedure is to show that the intersection of
D with the boundary contains appropriate stable curves. These curves have to contain enough
information to deduce from them the main result for the general smooth curve. The goal of this
section is to define a family of convenient reducible curves and to prove that they appear in the
closure of D.

We start by recalling the following well-known facts on the rational Picard group of the
compactified moduli space Mg of stable curves (see for instance [ACG11]):

PicQMg = λQ ,

where λ is the Hodge class. Moreover,

Mg\Mg =

[ g−1
2

]⋃
i=0

∆i

and

PicQ
(
Mg

)
= 〈λ, δ0, δ1, . . . , δ[ g−1

2
]〉Q ,

where δi for i > 0 is the class of the divisor ∆i whose general point represents a nodal curve
C1∪C2, where C1 and C2 are integral, smooth curves of genus i and g−i, respectively, intersecting
in one point. And δ0 is the class of ∆0 whose general point represents an irreducible curve with
exactly one node.

We denote by d the class of D in the rational Picard group. Then we can write

d = aλ+ Σi>0aiδi . (4.1)
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Remark 4.1. We note that a must be different from zero. Otherwise the class of D in the rational
Picard group ofMg would be zero. Since the Satake compactificationMs

g ofMg is a projective

variety and the boundary Ms
g −Mg has codimension 2, for a smooth point p of D, there exists

a complete curve C inMg going through p and cutting D transversally. Hence C · D 6= 0, which
gives a contradiction.

Now we consider a complete integral curve B in Mg−2 (it exists because g − 2 > 3), and we
fix two elliptic curves E1, E2 with arbitrary j-invariants j1, j2 ∈ M1. Denote by Γb the smooth
curve of genus g − 2 corresponding to b. We consider the set of the stable curves obtained by
glueing the two elliptic curves to Γb at two distinct points p1 and p2 of Γb. This does not depend
on the choice of the points on the elliptic curves. This family is parametrized by the symmetric

product Γ
(2)
b \∆Γb

minus the diagonal.

So we have a well-defined map

Γ
(2)
b \∆Γb

−→ ∆1 ⊂Mg

p1 + p2 7−→ E1 ∪p1 Γ ∪p2 E2

that extends to the whole symmetric product by sending 2p to the following curve: glue the
infinity point of a P1 to the point p and then glue E1 and E2 to two other points on the line. We
note that these curves also belong to ∆2.

Finally, by moving b in the curve B, we obtain a complete threefold T ⊂ ∆1. In other words,
this threefold can be seen as the image in Mg of the relative symmetric product over B:

T =
⋃
b∈B

Γ
(2)
b .

Our aim is to study the restriction of the divisor D to T . To do this we do a computation in
PicQ(T ). Denote by S the surface in T obtained as the union of all the diagonals:

S =
⋃
b∈B

∆Γb
.

We will need the following vanishing results.
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Lemma 4.2. The restriction of the class δ1 to S is zero: δ1|S = 0.

Proof. We fix a smooth curve C of genus 2 with a marked point x. We glue C to Γb, identifying x
with p ∈ Γb. Then, by moving p in Γb and b in B, we construct an algebraic surface SC such that
∆1 ∩ SC = ∅. Therefore δ1 · SC = 0. Now we degenerate C to a genus 2 curve with a marked
point consisting of the two elliptic curves E1 and E2 glued to a P1 at 0 and 1, respectively, with
∞ being the marked point. Therefore, by adding the curve Γb identifying ∞ with p, we get our
surface S as a limit of a family of algebraic surfaces SC as above. We obtain δ1 · S = 0.

Lemma 4.3. For each b ∈ B, we have λ|∆Γb
= 0.

Proof. The Hodge structure is constant along the diagonal.

We will also use the following basic observation.

Lemma 4.4. Let N be a complete curve in M̄g. Then ρ|N 6= 0 for at least one class ρ ∈
{λ, δ0, . . . , δ[ g−1

2
]}.

The main result of this section is the following.

Proposition 4.5. The restriction d|T is not a multiple of the class of S in PicQ(T ); that is,
d|T 6= mS for all m ∈ Q. In particular, D ∩ T 6= ∅ and this intersection contains elements
outside S.

Proof. We use the notation introduced in (4.1). For a contradiction, assume d|T = mS. Notice
that ∆i does not intersect T for i = 0 and i > 3 and that ∆2 ∩ T = S, so we get

d|T = mS = aλ|T + a1δ1|T + a2kS

for some k. Therefore

(m− a2k)S = aλ|T + a1δ1|T .
Restricting to one diagonal ∆Γb

and using Lemmas 4.2 and 4.3, we deduce that m − a2k = 0.
Restricting now to S, we get aλ|T = 0. Since λ is not trivial on T , we obtain a = 0, which
contradicts Remark 4.1.

Remark 4.6. Observe that the isomorphism classes of E1 and E2 are arbitrary, hence they could
represent the infinity class. Then the limit curves we were looking for are

L =
{
E1 ∪p1 Γ ∪p2 E2 ∈ D |Γ ∈Mg−2, p1 6= p2, E1, E2 ∈M1

}
⊂ D .

We recall that a generic point of Mg, for g > 3, is contained in a complete curve (see
Remark 4.1). Then the following result is a consequence of Proposition 4.5.

Corollary 4.7. There is a subvariety R ⊂ Mg−2 of codimension at most 1 such that for any
Γ ∈ R and any E1, E2 ∈M1, there are curves E1 ∪p1 Γ ∪p2 E2 in L.

Observe that all these elements belong to ∆1, and that they belong to ∆0 if and only if at
least one of the elliptic curves represents the infinity class.

Remark 4.8. With the same techniques one can prove that the divisor D contains irreducible
curves with only one node. Moreover, by considering a surface in ∆i, for i > 0, given by fixed
smooth curves of genus g − i and i, and moving the intersection point, one also shows with the
same procedure that the divisor contains “generic” elements of ∆i. We do not use these facts in
the rest of the paper.
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5. Limits of isogenies

As in Section 2, we assume the existence of isogenies JC ′ −→ JC for generic elements C ∈ D.
In order to glue all these maps together to provide a family χ : J ′ −→ J , we need to pull back
to a suitable branched cover of our divisor. Since our calculations will be mainly of local nature,
we still denote this space of parameters by D. Our goal is to get as much information as possible
from the specialization of the family of isogenies to the curves of L.

Let L = E1 ∪p1 Γ ∪p2 E2 ∈ L ⊂ D be a fixed limit curve (see Remark 4.6 and Corollary 4.7).
We assume that one of the elliptic curves has a node.

Observe that L ∈ ∆0 ∩ ∆1. Let D0 be a component of D ∩ ∆0 containing L. Since we can
assume that the generic element of this component does not belong to ∆i for i > 2, we obtain
the following five cases:

(a) The generic element of D0 is an irreducible curve with only one node.

(b) The generic element of D0 consists of an irreducible curve with only one node with an elliptic
curve attached at a smooth point.

(c) The generic element of D0 consists of a smooth irreducible curve with an elliptic nodal curve
attached at a smooth point.

(d) The generic element of D0 consists of two irreducible smooth curves glued at two different
points.

(e) The generic element of D0 is an irreducible curve with two nodes.

For topological reasons the cases (d) and (e) cannot occur. Indeed, the number of nodal
points in a stable curve such that the curve remains connected when we remove the point cannot
decrease under specialization. Since there are two such a points in a generic element of type (d)
and (e) and only one in our limit curve L, we can ignore these cases.

In this section we will specialize the isogeny χ to a generic curve of the component D0 that
contains our limit curve L.

Remark 5.1. We will use several times that the limit of a family of isogenies of Jacobians is also
an isogeny, that is, an étale surjective map between the generalized Jacobians. We give a brief
argument to justify this. Consider two semistable flat families of curves parametrized by disks
π′ : C′ −→ D and π : C −→ D such that the curves are smooth away from the central fibers C′0
and C0. For a family of isogenies ϕ : J C′ −→ JC over the punctured disk, the existence of a map
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ϕ0 : J C′0 −→ JC0 of semiabelian varieties is given in [BP89, (1.2.6) and (1.3.1)]. We want to
prove that this map is also an isogeny. Recall that the family of Jacobians is given by

J C′ = R1π∗O/R1π∗Z

and analogously for J C. The fact that ϕt is an isogeny for t 6= 0 implies that there is a sequence
over the punctured disk,

0 −→ R1π′∗Z −→ R1π∗Z −→ τ −→ 0 ,

where τ is a torsion local system. Hence, tensoring with Q, we obtain an isomorphism

R1π′∗Q ∼= R1π∗Q .

Since the rational cohomology of the central fiber can be identified with the invariant subspace
by the action of the monodromy, we have

H1(C′0,Q) ∼= H1(C′|D∗ ,Q)inv ∼= H0(C′|D∗ , R
1π′∗Q) ,

and therefore we conclude that H1(C′0,Q) ∼= H1(C0,Q). So the map ϕ0 is an isogeny between the
generalized Jacobians.

When we go to the limit, the information we obtain is different according to the three cases
given above.

Case (a). We consider the normalization map p : ∆0 99KMg−1 restricted to D0. There are
two possibilities according to the dimension of the generic fiber of p0 := p|D0

.

Case (a.1). Assume that p0 is dominant, therefore the generic fiber has dimension dimD0−
dimMg−1 = 3g−5−3g+6 = 1. For a generic element t0 ∈ D0, the limit map χt0 : JC ′t0 −→ JCt0
gives a diagram of extensions

0 // C∗ r //

γ

��

JC ′t0
//

χt0

��

JC̃ ′t0
//

χ̃t0
��

0

0 // C∗ // JCt0
// JC̃t0

// 0 ,

where C̃ ′t0 and C̃t0 stand for the normalizations of C ′t0 and Ct0 , respectively. Since χt0 has finite
kernel, r must be 1 and γ(z) = zm for some non-zero integer m. Since g − 1 > 4, we can apply
the main result in [BP89], and we get C̃ ′t0 = C̃t0 and that the isogeny χ̃t0 is n times the identity.

Assume that Ct0 (respectively, C ′t0) is obtained from C̃t0 by pinching two distinct points p, q
(respectively, p′, q′). As in [BP89, Section 2], to compare the extension classes of each horizontal
short exact sequence, we decompose the last diagram into

0 // C∗ //

γ

��

JC ′t0
//

χt0

��

JC̃t0
// 0

0 // C∗ // E //

��

JC̃t0

χ̃t0
��

// 0

0 // C∗ // JCt0
// JC̃t0

// 0 .
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We identify (up to a sign) the extension class

[JC ′t0 ] ∈ Ext(JC̃t0 ,C∗) ∼= Pic0(JC̃t0) ∼= JC̃t0

with p′ − q′ and analogously [JCt0 ] with p− q. Then the equality [E] = γ∗([JC
′
t0 ]) = χ̃∗t0([JCt0 ])

provides the following relation in JC̃t0 :

n(p− q) = ±m(p′ − q′) .

Hence we can assume that np + mq′ = mp′ + nq in Pic(C̃t0). We also assume that the points
are different. Since the dimension of the generic fiber of p0 is 1, we have a 1-dimensional family
of maps C̃t0 −→ P1 of degree n + m with two fibers as above. The Riemann–Hurwitz theorem
implies that

2g(C̃t0)− 2 = 2g − 4 = (n+m)(2g(P1)− 2) + 2(n− 1) + 2(m− 1) + r = −4 + r ,

so the number r of ramification points out of the special fibers np+mq′ and mp′+ nq is r = 2g.
Then the Hurwitz scheme of maps of degree n + m into P1 with r + 2 = 2g + 2 discriminant
points must cover Mg−1 with generic fibers of dimension 1. Comparing dimensions, we obtain

2g + 2− dim Aut
(
P1
)
− dim generic fiber = 2g + 2− 4 = 2g − 2 > dimMg−1 = 3g − 6 ,

which contradicts the hypothesis g > 5. Hence the extension is the same and n = m.

Case (a.2). Assume that the generic fiber of p0 has dimension 2. As before we get a diagram

0 // C∗ //

m

��

JC ′t0
//

χt0

��

JC̃ ′t0
//

χ̃t0
��

0

0 // C∗ // JCt0
// JC̃t0

// 0 ,

but now we do not have the genericity of C̃t0 , so we cannot directly apply the main result
in [BP89]. The relation between extension classes is in this case

m(p′ − q′) = χ̃∗t0(p− q) ,

in JC̃ ′t0 . In other words, the isogeny χ̃t0 induces a map between the surfaces C̃t0 − C̃t0 and
m(C̃ ′t0 − C̃

′
t0). By using the arguments of [BP89, Section 3], one easily checks that, as before,

the curves are the same and the map is the multiplication by an integer. So we have proved the
following result.

Proposition 5.2. Let χ : J ′ −→ J be a family of isogenies parametrized by D, and let
χt0 : JC ′t0 −→ JCt0 be a specialization to a generic point t0 of a component of the bound-
ary D∩∆0, where the curve Ct0 is an irreducible curve with only one node. Then C ′t0

∼= Ct0 and
χt0 is the multiplication by a non-zero integer.

Case (b). We now assume that the limit curve L belongs to an irreducible component D0

of D∩∆0 whose generic element consists of a smooth curve Γ of genus g− 1 and a nodal elliptic
curve E∞ (that is, a P1 with the points 0 and 1 identified) glued to Γ at a point p ∈ Γ. As above,
we denote by Ct0 = Γ∪p E∞ a generic curve in D0. Observe that the natural map D0 99KMg−1

must be dominant by a count of dimensions (the fiber has dimension at most 1); therefore we
can assume that Γ is generic in Mg−1.

We consider the specialization of the family of isogenies to our curve χt0 : JC ′t0 −→ JCt0 =
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JΓ× C∗ which fits in a diagram of extensions

0 // C∗ r //

γ

��

JC ′t0
//

χt0

��

JC̃ ′t0
//

χ̃t0

��

0

0 // C∗ // JΓ× C∗ // JΓ // 0 ,

where C̃ ′t0 stands for the normalization of C ′t0 . Since χt0 has finite kernel, r must be 1 and
γ(z) = zm for some non-zero integer m. Since g− 1 > 4, we can apply the main result in [BP89],
and we get C̃ ′t0 = Γ and that the isogeny χ̃t0 is n times the identity. So the diagram above
becomes

0 // C∗ //

m
��

JC ′t0
//

χt0

��

JΓ //

n
��

0

0 // C∗ // JΓ× C∗ // JΓ // 0 .

Since the extension class of the first row corresponds to a generalized Jacobian, there exist points
q1, q2 ∈ Γ such that this class corresponds (up to a sign) to q1 − q2 ∈ JΓ. Therefore, since the
class of the second row is zero, we get m(q1 − q2) = 0.

Moving the point p in Γ, we have a positive-dimensional family of pairs of points (q1, q2) ∈
C × C with this property. This family has to be the diagonal since the map Γ × Γ −→ JΓ has
degree 1 and finite fibers out of the diagonal. Hence we obtain q1 = q2.

Hence the extension given by the first row is also trivial: JC ′t0
∼= JΓ × C∗ and χt0 = ( n 0

0 m ).
We get the following result.

Proposition 5.3. Let χ : J ′ −→ J be a family of isogenies parametrized by D, and let
χt0 : JC ′t0 −→ JCt0 be a specialization to a generic point t0 of a component of the bound-
ary D∩∆0, where the curve Ct0 is a reducible curve consisting of a smooth curve of genus g− 1
with a nodal elliptic curve E∞ attached at one point. Then C ′t0

∼= Ct0 and the isogeny in the
compact part is the multiplication by a non-zero integer.

Case (c). Finally, we assume that the limit curve L belongs to an irreducible component D0

of D∩∆0 whose generic element consists of a nodal curve Γ0 of genus g−1 and an elliptic curve E
glued to Γ0 at a smooth point p ∈ Γ0. As above, we denote by Ct0 = Γ0∪pE a generic curve in D0.
Observe that the natural map D0 99K ∆0(Mg−1) must be dominant (here ∆0(Mg−1) denotes
the ∆0 divisor in the moduli space Mg−1). Indeed, the generic fiber of this map has dimension
at most 2 and is parametrized by the smooth point p in Γ0 and the moduli of the elliptic curves.
Since dimD0 = 3g − 5 and dim ∆0(Mg−1) = 3g − 7, the dominance follows. Therefore we can
assume that Γ0 is generic in ∆0(Mg−1), and also that its normalization Γ̃0 is generic in Mg−2.
Moreover, all the curves Γ0 ∪p E are contained in D0 for a generic Γ0.

As in the other cases, we consider the specialization of the family of isogenies to our curve
χt0 : JC ′t0 −→ JCt0 = JΓ0 × E which fits in a diagram of extensions

0 // C∗ r //

γ

��

JC ′t0
//

χt0

��

JC̃ ′t0
//

χ̃t0
��

0

0 // C∗ // JΓ0 × E // J Γ̃0 × E // 0 ,

where C̃ ′t0 stands for the normalization of C ′t0 . Since χt0 has finite kernel, r must be 1 and
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γ(z) = zm for some non-zero integer m.

We claim that JC̃ ′t0 must be a product of Jacobians (in other words, the smooth curve C̃ ′t0
is reducible). We prove this by contradiction. Assume that C̃ ′t0 is irreducible and compare the

extension classes. This gives (up to a sign) a relation m(p′ − q′) = χ̃t0(p − q) in JC̃ ′t0 . Moving
the points p and q in the fixed curve Γ̃0, we get that the image of Γ̃0 − Γ̃0 by the isogeny is
the surface C̃ ′t0 − C̃ ′t0 , which is impossible since it is contained in the proper abelian subvariety
χ̃∗t0(J Γ̃0).

By the genericity of Γ̃0, we can assume that J Γ̃0 is simple. Then JC̃ ′t0
∼= JC̃ ′′t0×E

′, where C̃ ′′t0
is an irreducible curve of genus g− 2 and E′ stands for a smooth elliptic curve. So C ′t0 is a nodal
curve C ′′t0 with the elliptic curve attached at a smooth point. The extension class is the difference

of two points p′′, q′′ ∈ C̃ ′′t0 . The diagram above becomes

0 // C∗ //

m

��

JC ′′t0 × E
′ //

χt0

��

JC̃ ′′t0 × E
′ //

χ̃t0=χ̃′′t0
×ϕ

��

0

0 // C∗ // JΓ0 × E // J Γ̃0 × E // 0 ,

where ϕ : E′ −→ E is a non-constant map of elliptic curves. The relation between extension
classes is in this case (up to a sign)

m(p′′ − q′′) = (χ̃′′t0)∗(p− q) ,

in JC̃ ′′t0 . In other words, the isogeny χ̃′′t0 induces a map between the surfaces Γ̃0 − Γ̃0 and

m(C̃ ′′t0 − C̃
′′
t0). By using the arguments of [BP89, Section 3] one easily checks the following facts:

the curves C ′′t0 and Γ0 are isomorphic, the isogeny χ̃′′t0 is a non-zero multiple n of the identity,
n = m, and then χt0 = n× ϕ.

Proposition 5.4. Let χ : J ′ −→ J be a family of isogenies parametrized by D, and let
χt0 : JC ′t0 −→ JCt0 be a specialization to a generic point t0 of a component of the bound-
ary D∩∆0, where the curve Ct0 is a reducible curve consisting of a nodal curve Γ0 of genus g−1
with an elliptic curve E attached at one smooth point. Then C ′t0 also is of the form Γ0 ∪p E′ for
some elliptic curve E′, and the isogeny induces the multiplication by n on JΓ0.

6. End of the proof

Let us go back to our family of isogenies χ : J ′ −→ J parametrized by (some covering of) the
divisor D.

Consider a generic point t ∈ D corresponding to smooth curves C ′t and Ct. Observe that for
all t, the isogeny is determined by the map at the level of homology groups,

χt,Z : H1(C ′t,Z) −→ H1(Ct,Z) ,

which we still denote by χt. We set Λt ⊂ H1(Ct,Z) for the image of χt. This is a sublattice of
maximal rank 2g. We first note that the proof of [BP89, Proposition 4.2.1] applies verbatim to
obtain the following result.

Proposition 6.1. Assume that Λt = nH1(Ct,Z) for some positive integer n. Then C ′t
∼= Ct

and χt is the multiplication by n.

Therefore to finish the proof of the theorem, we have to show the equality Λt = nH1(Ct,Z). To
do this, the main idea is to get information on Λt from the homology groups of some convenient
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limits C0. In the previous sections we have shown the existence of certain limits and we have
seen in Propositions 5.2, 5.3 and 5.4 what the image of the limit of χt is when t goes to one of
these degenerations.

In order to get information on the lattice Λt of the generic smooth curve Ct from the geometry
of some limit curve C0, we use the following principle: We can assume that there exists a disk
D ⊂ D ⊂Mg centered at the class of the curve C0 such that the curves Ct, C

′
t corresponding to

D\{0} are smooth. After performing a base change (that we skip to simplify the notation), we
can assume that there is a family of isogenies χD : J ′D −→ JD that coincides with the original
isogeny χt for a generic t. We denote by χ0 : JC ′0 −→ JC0 the limit isogeny. We call C′D and CD
the corresponding families of curves. Since the central fibers C ′0 and C0 are retracts of C′D and
CD, respectively, we have a diagram as follows:

H1(C ′t,Z)

χt

��

// H1(C′D,Z) H1(C ′0,Z)

χ0

��
H1(Ct,Z) // H1(CD,Z) H1(C0,Z) .

Let us first consider the simplest case. Assume that we are in case (a) and that C0 is a generic
element of D ∩∆0, so it is an irreducible curve with only one node. Remember that C0 can be
degenerated in this component to a curve L consisting of a curve of genus g−2 with two attached
curves, one elliptic (called E2) and the other nodal and rational (E∞). By Proposition 5.2,
we have C ′0

∼= C0 and χ0 = n · Id. The kernels of the horizontal maps are generated by the
vanishing cycles a′1 and a1, respectively; therefore χt(a

′
1) = la1 for some l. On the other hand,

we can lift a basis in H1(C0,Z) and construct simplectic bases a′1, b
′
1, . . . , a

′
g, b
′
g in H1(C ′t,Z) and

a1, b1, . . . , ag, bg in H1(Ct,Z) in such a way that

χs(a
′
i) = nai + sia1 , χt(b

′
1) = nb1 + t1a1 , χt(b

′
i) = nbi + tia1

for some integers si and ti and i > 2. We can also assume that ag, bg correspond to cycles which
become a basis of the homology of E2 ⊂ L.

By the genericity of the curve Ct in a divisor of the moduli space, the pull-back of the theta
divisor is a multiple of the theta divisor in JC ′t. This translates into the existence of a non-zero
integer m such that the cup-product satisfies

χt(x) ∪ χt(y) = mx ∪ y .

Then we obtain

m = χt(a
′
1) ∪ χt(b′1) = la1 ∪ (nb1 + t1a1) = ln ,

m = χt(a
′
2) ∪ χt(b′2) = n2 ,

so n = l. With similar computations it is easy to prove that si = ti = 0 for i > 2, hence

χt(a
′
1) = na1 , χt(a

′
i) = nai , χt(b

′
i) = nbi for i > 2 . (6.1)

To get the piece of information which is still unknown, we need to consider a second limit. We
saw in Corollary 4.7 that by fixing Γ, we can move the two elliptic curves E1 and E2 freely; that
is, E1 ∪Γ∪E2 ∈ D for all E1, E2. We select a second limit curve L̂ = E1 ∪Γ∪E∞ in such a way
that the corresponding vanishing cycle is now ag. Again, to simplify, we assume that L̂ belongs
to case (a) of Section 5. Then, with the same argument, we get that χt satisfies (for the same
simplectic basis)

χt(a
′
i) = n̂ai, χt(b

′
i) = n̂bi for i 6 g − 1

438



Isogenies of Jacobians

and χt(a
′
g) = n̂ag. Therefore n̂ = n and Λt = nH1(Ct,Z) for all s 6= 0. Hence we have finished

(under the assumption that L and L̂ are limit curves of nodal curves). The rest of the proof
consists of the description of the small modifications that have to be done to take care of the rest
of the cases. Observe that the information on the limit given in case (b) (see Proposition 5.3) is
the same as that given in case (a); that is, we again have the relations (6.1). So we only have
to take care of the situation when at least one of the limit curves L and L̂ belongs to case (c).
Assume, for example, that L does. Using the first limit as above, we know that

χt(a
′
1) = na1 , χt(a

′
i) = nai , χt(b

′
i) = nbi for 2 6 i 6 g − 1 .

The difference with the previous cases is that we have no control over χt(b
′
1). Remember that L

is the limit of a curve Γ0 ∪ E, where Γ0 is a nodal curve intersecting the elliptic curve E in
a smooth point. Denoting by Γ̃0 the normalization of Γ0, we note that all nodal curves with this
normalization belong to the divisor D0. So we freely change the node in such a way that the
vanishing cycle of the node becomes a2 (instead of a1). By using the two vanishing cycles we get
χt(b

′
1) = nb′1, so we again recover the relations (6.1). This finishes the proof of the theorem.

Our theorem can be interpreted as a type of Noether–Lefschetz problem in the following way:
Consider in Mg ×Mg the set

NLg =
{

(C ′, C) | rankNS(C × C ′) > 3
}
.

A consequence of what we have proved is the following result.

Corollary 6.2. For g > 5, all components of NLg outside the diagonal have dimension less
than or equal to 3g − 5.

The first natural problem one could face in this context is to investigate the existence of
dimension 10 components in NL5. Similar problems on isogenies can be considered for other
families of abelian varieties (see for example [NP94]).
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