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Abstract. Logistic regression as a modelling technique of rare binary dependent variables with much fewer events (ones) than 
non-events (zeros) tends to underestimate their probability of occurrence. The vast literature devoted to the prediction of rare 
binary data identifies several ways to improve predictive performance by making modifications to the likelihood estimation. 
We propose two weighting mechanisms for incorporation in a pseudo-likelihood estimation that improve the predictive capacity 
of rare binary responses in data collected in complex surveys. We multiply sampling weights by specific correctors that lead to 
lower root mean square errors for event observations in almost all deciles. A case study is discussed where this method is 
implemented to predict the probability of suffering a workplace accident in a logistic regression model that is estimated with 
data from a survey conducted in Ecuador. 
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1. Introduction 

Models of binary dependent variables sometimes 
deal with much fewer events (ones) than non-events 
(zeros). We address the statistical problem of model-
ling survey data as in [7], who propose a method to 
correct the likelihood estimate in logistic regression 
that seeks to predict rare events. 

Examples of phenomena that do not occur very of-
ten can be found in all areas, where the percentage of 
cases of interest falls below 10 or even 5%. In socio-
economic surveys, model rare phenomena could in-
clude the estimation of the proportion of workers who 
changed their job in the week prior to the interview. In 
health surveys, responses to the use of certain drugs or 
diseases can also be quite infrequent. 

Our aim is to improve the predictive capacity of 
models for rare phenomena with data collected in a 
complex sample design. We propose a new method 
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and we also present a case study, in which we analyse 
survey data to model the occurrence of workplace ac-
cidents. 

Due to economic and time costs, surveys are usually 
conducted using complex sampling designs (e.g. strat-
ified, cluster or two-stage sampling) rather than simple 
random sampling (SRS). Sampling weights are de-
fined to make the sample representative of the popula-
tion and to avoid selection bias, even if the observa-
tions in some survey designs are dependent.  

The design effect, which measures the ratio be-
tween the variance estimation under a specific sample 
design and that of an SRS, varies from one survey to 
another and even varies for each estimator within a 
given survey. Deviations from SRS are expected to 
produce a loss of efficiency, but this loss should be 
kept as low as possible. Sampling errors should be 
carefully estimated, and inference in general must 
consider the data collection mechanism. 



Even when sampling weights are considered in the 
modelling process, randomness is still influenced by 
the sampling procedure. [10] demonstrates that the 
modelling process must take into account sampling 
weights as well as the random part of the model to ob-
tain the precision of the estimates, and to assess mod-
elling performance.  

Apart from the complexity in the way survey sam-
ples are obtained, the presence of rare events i.e. bi-
nary dependent variables that have few non-zero 
cases, is quite common in practice. This can represent 
a challenge for the performance of predictive models, 
which seek to determine the factors affecting the prob-
ability of the rare event. The reason for this is that the 
small number of observed cases leads to quite unstable 
model results. [7] prove that binary dependent models, 
in particular logistic regression, tend to underestimate 
the event probability for this type of rare event data, 
and they propose a correction procedure in the usual 
logistic regression maximum likelihood estimation to 
manage bias. However, they leave aside rare binary 
dependent variable modelling prediction as a design-
based analysis with sampling weights. Yet, ignoring 
sampling weights might affect the meaning and preci-
sion of the coefficients. 

Modifications of the maximum likelihood estima-
tion through weights are not new in the vast literature 
devoted to generalized linear models. For instance, 
[13] introduces the quasi-likelihood function, [12] 
modify the weighted exogenous sampling likelihood 
function estimator by weighting each observation’s 
contribution to the likelihood. [9] and [1] incorporate 
weighting mechanisms in the maximum likelihood es-
timation method. 

We propose a statistical procedure that incorporates 
both approaches. We consider rare events in samples 
that deviate from SRS and we modify the maximum 
likelihood estimation to improve the predictive accu-
racy of the model. Hence, we aim to contribute to the 
existing literature by proposing a weighting mecha-
nism that can be incorporated in the likelihood estima-
tion, which then naturally becomes a pseudo-likeli-
hood estimation, of a penalized logistic regression 
model. This mechanism is capable of performing two 
joint tasks: first, it controls the randomness of a sam-
pling procedure by considering the sampling 
weighting, stratification or clustering that originates 
from a complex survey design; and second, it provides 
the model with greater sensitivity, in order to obtain 
more accurate predictions of rare events than if only a 
weighted design-based logistic regression model had 
been used.  

Our motivation for proposing a weighting mecha-
nism is that it allows us to differentiate between the 
relevance of observations in the sample. In this way, 
we can avoid the under-representation or over-repre-
sentation of observations when it comes to estimating 
choice probabilities from choice-based samples as in-
troduced by [12]. But the mechanism extends this idea 
further, so that the importance of the observations var-
ies depending on the proximity to the mean value of 
the response. An adjustment parameter calibrates the 
impact of the weighting mechanism on the model es-
timation. In addition, a threshold value is chosen to 
provide the best predictive performance.  

Following on from this introduction, this paper is 
divided in four parts. Section 2 outlines the methodol-
ogy and the two weighting mechanisms are presented 
and justified in detail. Three criteria are proposed to 
find the best predictive model among all possible 
models by choosing an optimal weight adjustment and 
a classifying threshold. Section 3 describes the data 
used herein as an illustrative example. Specifically, we 
are interested in modelling the occurrence of work-
place accidents. Section 4 presents the results and the 
predictive performance obtained in the case study. 
Section 5 concludes.  

 
2. Methodology  

Let 𝑋𝑋𝑖𝑖𝑖𝑖  be the data matrix where i corresponds to 
observations (or instances) and j corresponds to the in-
dependent variables (attributes or features), with i = 1 
,…, n and j = 1,…, k. There are n observations and k 
independent variables. And let 𝑌𝑌𝑖𝑖  be the binary out-
come for observation i. 

Our goal is to classify observations between the bi-
nary outcome 𝑌𝑌𝑖𝑖, taking into consideration the covari-
ates 𝑋𝑋𝑗𝑗.  

2.1. Penalized logistic regression and pseudo-
likelihood estimation 

One supervised method of machine learning is the 
logistic regression model. [4] and [11] define logistic 
regression as a predictive method used for binary clas-
sification problems which, unlike a linear regression 
model, provides estimates about the probability of an 
outcome.  

To formally define the penalized logistic regression 
model, we first introduce the pseudo-likelihood esti-
mation (weighted maximum likelihood) with survey 
data.  



For every instance 𝑋𝑋𝑖𝑖 (row vector of 𝑋𝑋𝑖𝑖𝑖𝑖), the out-
come response is either 𝑌𝑌𝑖𝑖 = 1 if the observations be-
long to a positive class (event) or 𝑌𝑌𝑖𝑖 = 0 if they belong 
to a negative class (non-event). 

 
Binary variable 𝑌𝑌𝑖𝑖 is a Bernoulli trial:  
 

𝑌𝑌𝑖𝑖 ~ Bernoulli (𝑌𝑌𝑖𝑖| 𝑝𝑝𝑖𝑖), 
 

where 𝑝𝑝𝑖𝑖  is the probability that  𝑌𝑌𝑖𝑖  equals 1 and is 
specified as: 

 
𝑝𝑝𝑖𝑖  =  𝑃𝑃 (𝑌𝑌𝑖𝑖 =1 |  𝑋𝑋𝑖𝑖1,…, 𝑋𝑋𝑖𝑖𝑖𝑖 ) 

= 𝑒𝑒
𝛽𝛽𝑜𝑜+∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑘𝑘

𝑘𝑘
𝑗𝑗=1

1 + 𝑒𝑒
𝛽𝛽𝑜𝑜+∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑘𝑘

𝑘𝑘
𝑗𝑗=1

 .               (1) 

  
Conversely, the probability that  𝑌𝑌𝑖𝑖 equals 0 is 1 −

𝑝𝑝𝑖𝑖 . Unlike linear regression, logistic regression uses a 
logit function as the linear predictor, which is the log 
odds of the positive response, defined as: 

 
 𝜂𝜂𝑖𝑖 = log � 𝑝𝑝𝑖𝑖

1−𝑝𝑝𝑖𝑖
�  =  𝛽𝛽𝑜𝑜 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑘𝑘𝑘𝑘

𝑗𝑗=1   .                (2) 
 
Then, the classical likelihood function is the joint 

Bernoulli probability distribution of observed values 
of  𝑌𝑌𝑖𝑖 as follows: 

 
   𝑙𝑙 (𝛽𝛽𝑜𝑜 , . . ,𝛽𝛽𝑘𝑘;  𝑋𝑋𝑖𝑖) =  ∏ 𝑝𝑝𝑖𝑖𝑌𝑌𝑖𝑖𝑛𝑛

𝑖𝑖=1   (1 − 𝑝𝑝𝑖𝑖)1−𝑌𝑌𝑖𝑖 ,       (3) 
 
Parameter estimates of the classical logistic regres-

sion can be found by maximizing the likelihood or log-
likelihood function. 2  For reasons of computational 
convenience, we use the log-likelihood function, 
which we denote by L for simplicity: 

 
   𝐿𝐿 = ∑ 𝑙𝑙𝑙𝑙 𝑝𝑝 (𝑋𝑋𝑖𝑖)𝑌𝑌𝑖𝑖  + 𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1 (1 −  𝑝𝑝 (𝑋𝑋𝑖𝑖))1−𝑌𝑌𝑖𝑖 .     (4) 
 

Furthermore, if weights are incorporated in the log-
likelihood function (4) then a weighted log-likelihood 
is obtained:  

 
𝐿𝐿 = ∑ 𝑊𝑊𝑖𝑖  𝑛𝑛

𝑖𝑖=1 (𝑙𝑙𝑙𝑙 𝑝𝑝 (𝑋𝑋𝑖𝑖)𝑌𝑌𝑖𝑖 + 𝑙𝑙𝑙𝑙 (1 −  𝑝𝑝 (𝑋𝑋𝑖𝑖))1−𝑌𝑌𝑖𝑖),  
                                                                                (5) 

 
where 𝑊𝑊𝑖𝑖  represents the weight of the i-th observa-
tion. Therefore, estimating the parameter vector be-
comes a maximization problem whose objective func-
tion is the pseudo-likelihood function defined in (5). 
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maximizing a likelihood function.  

Maximization in (5) can be computed with the  
survey() package in R: Partial derivate equations are 
solved by an iteratively reweighted least squares algo-
rithm, which is a Fisher scoring algorithm (further de-
tails can be found in [3]). The survey() package created 
by [10] not only allows the weighting procedure to be 
incorporated, but it also adapts the penalized logistic 
regression to complex survey designs in order to pro-
vide design-based standard errors. So, if survey data 
include a stratified and/or a clustered design, the max-
imization includes the corresponding formulas to find 
correct sample-based standard errors.  

[14] note the importance of weighting the observa-
tions from complex samples in order to derive unbi-
ased estimates of population features. Weighting can 
be used to both guarantee sample representativeness in 
a modelling process (as noted by [12]) and to control 
the relevance of observations. Thus, our approach pro-
poses weighting observations not only to correct a sur-
vey sample design but also to improve its predictions. 
This is of particular interest for low frequency events, 
which are more difficult to predict than high frequency 
occurrences. Our corrections are introduced in a pe-
nalized logistic regression model with a pseudo-likeli-
hood estimation method.  

Sample correction and weighting aimed at improv-
ing predictive capacity have both been widely dis-
cussed in the literature but, to the best of our 
knowledge, in these discussions they have typically 
been addressed separately. We aim to study these 
weighting procedures jointly and define 𝑊𝑊𝑖𝑖 in (5) in 
accordance with these objectives.  

2.2. Weighting mechanisms  

Let 𝑆𝑆𝑆𝑆𝑖𝑖 be a vector of sampling weights and 𝑃𝑃𝑃𝑃𝑖𝑖  a 
vector of predictive weights. These two weighting 
mechanisms are introduced in (5), where 𝑊𝑊𝑖𝑖 is the re-
sult of the product between 𝑃𝑃𝑃𝑃𝑖𝑖  and 𝑆𝑆𝑆𝑆𝑖𝑖.  

The basis for the sampling weights lies in the prob-
ability of choosing a respondent. This means that each 
observation in the sample is given a weight to account 
for the probability of that observation being selected 
from the population. For this reason, sampling weights 
incorporate an expansion factor that is equal to the 
number of population units represented by each obser-
vation in the sample. Sampling weights are defined as 
follows: 

 



                        𝑆𝑆𝑆𝑆𝑖𝑖 =
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖∗ 𝑛𝑛

∑ 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖
𝑛𝑛
𝑖𝑖=1

,         (6) 

 
where 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖  is the vector of expansion factors 

defined as the inverse of the probability of choosing 
each observation in the sample.  

For the predictive weighting, 𝑃𝑃𝑃𝑃𝑖𝑖 , we propose two 
alternatives, which we call a and b: 

 
a) 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =  � Y�𝑖𝑖  −  Y� �ε 

 
b) 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  =  � Y�𝑖𝑖 −  Y�  ε � 

 
where  Y�𝑖𝑖 is the vector of estimated probabilities of a 
simple initial weighted, design-based logistic regres-
sion (accounting for 𝑆𝑆𝑆𝑆𝑖𝑖  only, where other sample-
design features such as stratification and/or clustering 
would only affect standard errors) and 𝑌𝑌�  is the esti-
mated weighted mean response of the dependent vari-
able. Let 𝜀𝜀 be the adjustment parameter that calibrates 
the distance between  Y�𝑖𝑖  and 𝑌𝑌�  in both alternatives a 
and b.  

Note that the estimated probabilities  Y�𝑖𝑖   lie be-
tween 0 and 1. 

 
- 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  differentiates the weight of observa-

tions that are located far from the mean. The 
possible scenarios for selecting the adjust-
ment parameter are: 

 
ε =  0; 

The maximum pseudo-likelihood 
estimation remains the same as the 
weighted design-based model. 

 
 

ε >  0; 
The weighting attaches greater im-
portance to the observations whose 
original predictive value is located 
far from the mean response. 
 

 
ε <   0; 

The weighting gives greater im-
portance to the observations whose 
original predictive value is located 
near the mean response. 

 
- 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  isolates the estimated probabilities 

from the mean. The choice of the threshold is 
usually located near the mean response. Ob-
servations whose predicted probability is lo-
cated near the mean are more likely to be in-
fluenced by the choice of the threshold, than 
those that have a predictive probability that is 

located far from the mean. This weighting 
mechanism allows three possible scenarios 
for selecting the adjustment parameter: 
 

 
ε =  0; 

Then  Y�  ε  =1 and the predictive 
weights equal the estimated proba-
bility of the non-event, (1 −  Y�𝑖𝑖).  

 
 
 

ε >  0; 

More weight to the observations 
which are much greater than the 
mean and less weight to the obser-
vations which are much smaller than 
the mean. 

 
 

ε <   0; 
Less weight to the observations 
which are located far from the mean 
and more weight to the observations 
which are located near the mean. 

 
So far, 𝑃𝑃𝑃𝑃𝑖𝑖  and 𝑆𝑆𝑆𝑆𝑖𝑖  may have a different scale. 

While the sampling weights in (6) sum up to n, this is 
not necessarily true of the predictive weights. There-
fore, we propose rescaling them and obtaining the new 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖′ and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖′ as follows:  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  ′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖∗ 𝑛𝑛

∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑛𝑛
𝑖𝑖=1

  ;                         (7) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  ′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖∗ 𝑛𝑛
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 .           (8) 

 
Then, the two final weights  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 
combining the sampling and predictive weights can be 
defined as: 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  =  𝑆𝑆𝑆𝑆𝑖𝑖  ∗   𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  ′ ,          (9) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  =  𝑆𝑆𝑆𝑆𝑖𝑖  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  ′ .         (10) 
 

2.3. Choosing the adjustment parameter  

Three criteria are established for choosing the adjust-
ment parameter to test the predictive performance of 
each model.  

- Receiver operating characteristic (ROC) 
optimal criterion 

[5] propose the ROC curve as a graphical plot that 
seeks to determine the relationship between sensitivity 
– i.e. the percentage of true positive values (on the y-
axis) – and 1-specificity – i.e. the percentage of false 



positive values (on the x-axis). Sensitivity and speci-
ficity are measures of the performance of a binary 
classification method. Sensitivity is a measure of the 
proportion of actual positives (events) that are cor-
rectly identified as such, while specificity is a measure 
of the proportion of actual negatives (non-events). The 
ROC curve illustrates the capacity of the logistic re-
gression model, as a particular case of a binary classi-
fier method given a threshold Ψ. The threshold is a 
fixed value in [0,1], which determines when an esti-
mated probability is large enough for the binary pre-
diction to take the value of 1. The desired model 
should have a high true positive rate as well as a small 
false negative rate Therefore, the best prediction 
model would yield a point on the ROC curve that is as 
close as possible to the coordinate (0,1). 

The ROC optimal criterion is based on setting all 
possible adjustment parameters ε in the domain of the 
penalized logistic regression, considering that for each 
ε, there is a choice of possible thresholds [0.01, 0.02, 
…, 0.99]. The best model coordinates in the ROC plot 
are those with the shortest distance to the point (0,1). 
All ROC distances to the coordinate (0,1) are com-
puted. Therefore, the ROC optimal criterion is a min-
imization problem where ε and Ψ have to be found.  
 

- Constrained receiver operating characteristic 
(C-ROC) criterion  

The C-ROC criterion is motivated by a discussion 
of desirable statistical performance measures of a 
good predictive model. A good predictive model 
would be expected to accomplish maximum levels of 
sensitivity, minimum type I and type II errors or, at 
least, a minimum type II error.  

First, a predictive model with maximum sensitivity 
is especially important for identifying the true positive 
rate (𝑌𝑌𝑖𝑖 =1), which is the main point of interest for our 
study. However, finding such a model might imply 
very low levels of specificity, which might be a disad-
vantage. Second, a good predictive model can also be 
expected to have the smallest possible false positive 
and false negative rates. However, it is far from 
straightforward to minimize both false positive and 
false negative rates, because when one is low the other 
is high. Thus, finding a suitable cut-off threshold for 
deciding the best predictive model in line with this 

                                                           
3 Let m be a positive number. The intuitive idea for m is 

just how many better models, in terms of the ROC criterion, 
the analyst is willing to sacrifice in order to opt for a model 
with a higher sensitivity among those m models. However, 
m should be small enough to maintain the models’ ROC 

criterion requires making a compromise. Third, reduc-
ing type II errors might be considered dangerous in 
prediction implementations because, in some cases, 
the reason for predicting rare events is to prevent them.  

Thus, so far, it would seem that the three require-
ments are all necessary, but that they are not all feasi-
ble at the same time. For this reason, taking as our base 
criterion the ROC analysis described above, we pro-
pose using the C-ROC, which comprises the following 
two steps: 

1.- Finding the first adjustment parameters based on 
the ROC optimal criterion.3 In order words, this re-
quires ranking the models from best to worst in terms 
of how well they meet the ROC criterion and selecting 
the first m ones.   

2.- Maintaining the subset based on this previous 
order and finding the adjustment parameter whose cor-
responding model has the highest sensitivity value. If 
values are equal then, once fixed, select the one with 
the highest specificity.  
The goal is to retain the model with the highest levels 
of sensitivity, reducing a minimum specificity. This is 
feasible if the adjustment parameters of each predic-
tive model are first sorted according to the ROC crite-
rion.  
 

- Assessing performance with the root mean 
square error (RMSE)  

This is a statistical measure that rates the difference 
between observed and predictive values: the smaller 
the RMSE, the better the model’s predictive perfor-
mance. The RMSE is calculated as follows: 

 

       RMSE =   �∑ �𝑌𝑌𝑖𝑖  −  𝑌𝑌�𝑖𝑖�
2 / 𝑛𝑛 𝑛𝑛

𝑖𝑖=1 �
1
2�  ,          (11) 

 
where 𝑌𝑌�𝑖𝑖  is the predicted values from the estimated 
model. In our application, we have used this criterion 
only for the subsample of events and (11) was used to 
analyse predictive performance rather than as a crite-
rion to select the adjustment parameters. 

distance as small as possible. Thus, m should be selected 
from between 2 and 10; nevertheless, the choice depends on 
the quantity and characteristics of the sample data. In the ap-
plication shown in this article, m is fixed equal to 6.  



3. Data of the illustrative example 

We use a workplace accident data set taken from the 
Ecuadorian National Survey of Employment, Under-
employment and Unemployment (ENEMDU) con-
ducted in December 2017 by the Instituto Nacional de 
Estadísticas y Censos (INEC). The data were collected 
in personal interviews to gather information about the 
labour market in Ecuador. The survey employs a two-
stage sampling design: the first step involves the strat-
ification of 2,586 primary sample units (PSUs) repre-
sented as sectors, and the second step involves choos-
ing 12 secondary sample units (SSUs) per every PSU 
represented as dwellings by a simple probabilistic 

sampling. The final observation unit is the household 
(for further details see [6]). 

 
The dataset has 110,283 observations (individuals) 

and 313 variables. Only the subset of individuals that 
were employed at the time of the survey was selected. 
This is a subsample of 31,057 observations.  

In the ENEMDU, all members of a dwelling are in-
terviewed and so all the members of a dwelling form 
a cluster. This means a potentially positive correlation 
in their answers to the questionnaire. This would im-
ply greater standard errors in the estimated coeffi-
cients than if the clustered sampling design was not 
taken into consideration.  
 

Table 1. Definition of the variables in the dataset 

  
Table 1 records the definitions of the variables in 

the data set, and Table 2 shows the descriptive statis-
tics of this data set. Overall, employees who declared 
that they had suffered a workplace accident represent 
3.11% of the total, which means the occurrence of 
such events is quite rare. The mean age of workers 
who had suffered a workplace accident is 3 years more 
than that of those who had not suffered an accident. 
Among male employees, 4.09% had suffered a work-
place accident, while only 1.80% of women had. Rural 
workers present a slightly higher rate of workplace ac-
cidents (3.28%) than urban workers (2.98%). Married 
employees had a higher workplace accident rate with 
respect to single workers and those of other marital 
status. Finally, the number of weekly working hours 
under Ecuadorian law is fixed at 40 (Art. 47 of the Ec-
uadorian labor code). Workers who exceed this limit 
by 2 hours are more likely to suffer a workplace 

accident than workers whose average weekly working 
hours are 38.  

Additionally, employees who had received work-
place safety training presented a higher rate of acci-
dents (5.21%) than employees who had not received 
such training (2.49%). This result may be due to the 
fact that workers in dangerous work places tend to re-
ceive more workplace safety training than others. Fi-
nally, the mean number of years of seniority is higher 
among workers who had suffered workplace accidents 
than those who had not.  

4. Results 

This section presents the results of the logistic re-
gression with sampling weights and two estimated pe-
nalized logistic regression models based on weighting 

Type Variable Description 
Depend-
ent 

Workplace  
accident   

Binary variable which takes the value of 1 if the employee had a workplace 
accident and 0 otherwise.  

Independ-
ent 

Age Continuous numerical variable that represents the employee’s age.  

Seniority Continuous numerical variable that represents the seniority (years) in the 
current job.  

Men Binary variable that takes the value of 1 if the employee is a man and 0 if 
a woman.  

Urban Binary variable that takes the value of 1 if the employee lives in an urban 
area, and 0 in a rural area. 

Marital  Categorical variable for marital status: single, married and other.  
Workplace safety 
training 

Binary variable that takes the value of 1 if the employee has received a 
workplace safety training and 0 otherwise. 

Working hours Continuous numerical variable that represents the number of working 
hours per week.  



mechanisms 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖   and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  for each of the cri-
terion proposed in Section 3. 

 

 
 

Table 2. Descriptive statistics of the workplace accident data set 

Note: Unweighted estimates are presented for continuous variable means, while for categorical variables the 
frequencies are presented. Row percentages are shown in parentheses. 

 
Table 3. Statistical predictive performance measures 

 Statistical predictive performance measures of the weighted design-based logistic  
regression model 

 Sensitivity (%) Specificity (%) Accuracy (%) ROC criterion 
distance Ψ 

 56.522 66.458 66.114 0.549 0.03 
 Statistical predictive performance measures obtained using PSWa  

Order Sensitivity (%) Specificity (%) Accuracy (%) ROC criterion 
(distance) ε Ψ 

   1º     59.731 63.743 63.619    0.542  0.05 0.03 
2 º 59.524 63.966 63.828 0.542 0 0.03 
3 º 60.870 62.354 62.308 0.543 0.4 0.03 
4 º 60.663 62.471 62.414 0.544 0.35 0.03 
5 º 59.110 64.145 63.989 0.544 -0.1 0.03 
6 º 59.938 63.215 63.113 0.544 0.15 0.03 
 Statistical predictive performance measures obtained using PSWb  

Order Sensitivity (%) Specificity (%) Accuracy (%) ROC criterion 
(distance) ε Ψ 

   1º     59.834 63.923 63.796     0.540 0.6 0.03 
2 º 59.524 63.999 63.860 0.542   -0.3 0.03 
3 º 59.524 63.999 63.860 0.542 -0.25 0.03 
4 º 59.524 63.993 63.854 0.542 -0.75 0.03 
5 º 59.524 63.993 63.854 0.542   -0.7 0.03 
6 º 59.524 63.993 63.854 0.542 -0.65 0.03 

Note:  Models that meet the C-ROC criterion are bold character when only the first six models are considered.  
 
Table 3 shows the predictive performance measures of 
three types of model: the first is a simple weighted 

design-based logistic regression model where only the 
𝑆𝑆𝑆𝑆𝑖𝑖,  sampling weight mechanism is used, as well the 

Variables  No Workplace          
Accident (Y=0) 

Workplace Accident 
(Y=1) Total 

Age (years)      36.78 39.57 36.87 
Seniority in establishment (years) 8.08 9.23 8.11 

Sex Woman 13,145   (98.20%) 241  (1.80%) 13,361 
Man 17,021   (95.91%) 726  (4.09%) 17,696 

Area Rural 12,252   (96.72%) 416  (3.28%) 12,634 
Urban 17,914  (97,02%) 551  (2.98%) 18,423 

Marital Status 
Single  9,617    (97.91%) 205  (2.09%) 9,801 
Married 17,761  (96.35%) 672  (3.65%) 18,389 
Other  2,788     (96.87%) 90    (3.13%) 2,867 

Workplace  
safety training 

Yes      6,696    (94.79%)      368  (5.21%)     7,064 
No     23,396  (97.51%)     598  (2.49%)     23,993 

Working hours      38.17    42.02     38.29 
Total      30.091   (96.89%)    966  (3.11%)     31,057 



sampling design. The second is the model estimated 
using 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖, and the third is the model estimated us-
ing 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖. For the second and third model types, we 
present the first six models that best meet the ROC op-
timal criterion. 

The results in Table 3 for the ROC criterion show 
that the adjustment parameter with the lowest ROC 
distance is  𝜀𝜀 = 0.05, a threshold Ψ = 0.03 and a sensi-
tivity that equals 59.731%, when the weighting mech-
anism 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is used in the predictive modelling. The 
lowest ROC distance when 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is used is obtained 
for the adjustment parameter  𝜀𝜀 = 0.6, a threshold Ψ = 
0.03 and a sensitivity that equals 59.834%. 

Figures 1 and 2 show the ROC representation of all 
possible models based on weighting alternatives a and 
b respectively; thus, every dot represents a model.   

When 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is used under the C-ROC criterion 
the best adjustment parameter is  𝜀𝜀 = 0.4 and a thresh-
old Ψ = 0.03, being among the six best models 

according to the ROC criterion. In this case, the high-
est sensitivity value is 60.87%. Note we ignore the 
first two models with a better ranking under the ROC 
criterion because of their lower sensitivity values 
(59.731 and 59.524%, respectively). When 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is 
used, the best sensitivity of the six models corresponds 
to an adjustment parameter 𝜀𝜀 = 0.6 and a threshold Ψ 
= 0.03. Here the ROC criterion leads to a highest sen-
sitivity value of 59.834%.  

Note that the adjustment parameter 𝜀𝜀 is jointly cho-
sen with Ψ (among all the possible values for Ψ). All 
the optimal combinations have a threshold Ψ = 0.03 in 
the subset of models obtained when using 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  and 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 , even when all other possibilities were consid-
ered. In the weighted design-based logistic regression 
model (first row of Table 3), a threshold Ψ = 0.03 was 
set because this value is the mean of the dependent 
variable.  

 
Table 4. RMSE results of the estimated models when 𝑌𝑌𝑖𝑖 = 1  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1. The classification performance (sensibility 

and 1-specificity) of the estimated weighted logistic 
regressions with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖   when ε varies. 

 

 
Fig. 2. The classification performance (sensibility 

and 1-specificity) of the estimated weighted logistic 
regressions with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖   when ε varies. 

 

 
Intervals 

Weighted 
design-based 

model 

 PSWa 
(𝜺𝜺 =0.4 and  
Ψ = 0.03) 

PSWb 
(𝜺𝜺 =0.6 and  
Ψ = 0.03) 

RMSE 1 [0.005;0.012]    0.99039 0.99008 0.99046 
RMSE 2 (0.012;0.015] 0.98674 0.98643 0.98674 
RMSE 3 (0.015;0.018] 0.98372 0.98341 0.98370 
RMSE 4 (0.018;0.021] 0.98080 0.98006 0.98099 
RMSE 5 (0.021;0.025] 0.97698 0.97386 0.97707 
RMSE 6 (0.025;0.029] 0.97255 0.97152 0.97269 
RMSE 7 (0.029;0.034] 0.96890 0.96908 0.96909 
RMSE 8 (0.034;0.041] 0.96260 0.95959 0.96226 
RMSE 9 (0.041;0.057] 0.95190 0.94667 0.95105 
RMSE 10 (0.057;0.163] 0.92421 0.91959 0.92285 



Thus, having selected the best adjustment parame-
ters and thresholds that fulfil the proposed C-ROC cri-
terion when using 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 , we can con-
clude that the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  with 𝜀𝜀 =0.1 and Ψ = 0.03 has 
the highest sensitivity and, thus, gives the best predic-
tive performance in terms of the ROC criterion. 

In Table 4, the RMSE was calculated for the lowest 
(RMSE1) to the highest (RMSE10) decile of predic-
tions based on the best adjustment parameters under 
the C-ROC criterion solely for employees that had suf-
fered a workplace accident (𝑌𝑌𝑖𝑖 = 1).  

Under RMSE criterion, the model estimated using 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 , has smaller RMSE values than those of the 
other two models in Table 4. Although the improve-
ment appears quite small, it is important to note that in 
this example only 3.11% of employees suffered an ac-
cident, which means this event is extremely rare. 
When we improve the sensitivity by only a few per-
centage points we obtain a significant impact on the 
global prediction performance, as events classed as 
workplace accidents might be hard to predict.  

Taking all the results from the previous criteria, the 
weighting mechanism 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the best in terms of 
improving a model’s predictive performance. This 
does not mean that 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is not a suitable weighting 
mechanism; but, due to the type of exogenous varia-
bles in the model and the frequency of the dependent 
variable, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is more effective. 

Figures 3, 4 and 5 show the predictions of the work-
place accident and no workplace accident observa-
tions for each model (weighted design-based model, 
alternative a and alternative b with their optimal 𝜀𝜀 and 
Ψ). The proposed weighting mechanisms improve the 
predictive performance without producing abrupt or 
incoherent results. This outcome is also supported in 
Appendix 1, where the model parameter estimates are 
presented. In fact, all three figures seem to have a sim-
ilar density distribution.  

Figure 6 presents the histogram of predictions for 
observations that are equal to 1 for all three methods. 
Alternatives a (pink) and b (green) are located to the 
right of the histogram of predictions for the weighted 
design-based model (blue). It seems that alternatives a 
and b have a greater frequency of predictions equal to 
1 for the observations that lie closer to the mean 
(0.031) and to the right of the figure. This seems to 
indicate that the predictive performance is improved, 
in the sense that it is more likely to detect cases Yi = 1 
under alternative a than it is in the other cases. 

 

 
 
Fig. 3. Predictions obtained by the weighted model 

colored by Yi = 1 and Yi = 0.       
 

 
 
Fig. 4. Predictions obtained by the weighted model 

with PSWa (ε = 0.4) colored by Yi = 1 and Yi = 0. 
 

 
 
Fig. 5. Predictions obtained by the weighted model 

with PSWb (ε = 0.6) colored by Yi = 1 and Yi = 0.  
 



 
 
Fig. 6. Predictions for the observations that are 

equal to 1 of the unweighted model, alternatives a and 
b. 

5. Conclusions  

Our main conclusion is that the methods proposed 
can improve the predictive performance of logistic re-
gression classifiers in survey data and that this is spe-
cially so for most deciles of the predictive distribution. 
We have compared two weighted procedures with the 
baseline model and shown that the choice of a specific 
weighting parameter, together with that of the thresh-
old, leads to better accuracy than that obtained with 
the weighted design-based logistic regression model.  

Moreover, we have proposed the ROC optimal cri-
terion and the C-ROC optimal criterion as alternatives 
for measuring the predictive performance of a 
weighted estimation. Their standard procedures can be 
replicated in similar cases that seek to predict rare bi-
nary events.  

We have found evidence that predicting the out-
come response for respondents of a survey asked 
whether or not they had suffered a workplace accident 
can be improved for these individuals in all deciles of 
the prediction. This means that PSWa is able to predict 
individuals whose characteristics lie farther from the 
mean values. This result shows that the discrimination 
capacity can be improved by underweighting or over-
weighting observations, even if they already carry a 
sample weight.  

Our analysis has a number of limitations. First, we 
might have implemented a cross-validation exercise 
by leaving part of the sample out of the estimation pro-
cess. In this way, we could then have tested the model 
performance on a test sample; however, the proportion 
of ones in the dependent variable is so small that the 
test sample presents a serious lack of events (employ-
ees with accidents). Second, we deal here with a phe-
nomenon that has a very low frequency because only 

a small fraction of the respondents suffered a work-
place accident. We wonder if the results might differ 
when analyzing phenomena that are more frequent. 
However, the method described shows that the score 
(probability of a response equal to 1) obtained under 
alternative a or b provides an index of risk which gives 
more accurate predictions for workers and that it can 
serve as a measure of workplace safety. In short, our 
method can be used to identify those workers at great-
est risk of suffering an accident in the workplace. 

Further research needs to be dedicated to the defi-
nition of combined weights. Here, we have proposed 
multiplying sampling weights with predictive weights 
with a previous rescaling. Other alternatives, such as 
standardization or geometrical averaging, could also 
be explored.  
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Appendix  

Table A1 shows the results of the parameter and 
standard error estimates from the three logistic regres-
sion models (weighted design-based standard errors, 
weighted with PSWa and weighted with PSWb).  

The results show that the coefficients of the 
weighted a and b models only change slightly with  

 
 
 
 

 
 
 
 
 
 
 
 
respect to the base weighted model. Standard errors, 

which are all design-based, are also similar.  
Only the conclusion regarding the significant influ-

ence of the number of working days would differ if the 
PSWa weight were implemented.  

In this case, we would conclude, therefore, that 
working hours do not have a significant effect on the 
probability of suffering a workplace accident. 

 

Table A1. Final results of the estimates from the unweighted model, the model weighted 
with PSWa  (ε = 0.4 and Ψ =0.03) and the model weighted with PSWb (ε = -0.25 and Ψ =0.03)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
    The standard errors are shown in parentheses, and the significance of coefficients is given as follows: . ,*, **, *** correspond  
    respectively, to the 0.05, 0.01, 0.001, 0 levels of significance.  

 
 

Variables Weighted  PSWa PSWb 
Intercept -3.422 *** -2.880 *** -3.409 *** 

(0.291)   (0.390)  (0.282)  
Urban -0.338 *** -0.496 *** -0.371 *** 

(0.095)   (0.123)  (0.100)  
Man 0.678 ** 0.772 *** 0.696 *** 

(0.203)   (0.168)  (0.193)  
Marital (married) 0.428 * 0.525 *** 0.457 ** 

(0.165)   (0.137)  (0.153)  
Marital (others) 0.256   0.310  0.311  

(0.251)   (0.278)  (0.290)  
Working hours 0.014 ** 0.002  0.014 *** 

(0.005)   (0.003)  (0.004)  
Workplace safety    
training 

-0.741 *** -0.780 *** -0.748 *** 
 (0.114)   (0.163)  (0.115)  

Seniority 0.008   0.010  0.007  
(0.006)   (0.007)  (0.005)  
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