
Parkinsonism and Related Disorders 82 (2021) 16–23

Available online 12 November 2020
1353-8020/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Hierarchical cluster analysis of multimodal imaging data identifies brain 
atrophy and cognitive patterns in Parkinson’s disease 

A. Inguanzo a,b,c, R. Sala-Llonch a,c,d,e, B. Segura a,b,c,f,*, H. Erostarbe a, A. Abos a,b,c, 
A. Campabadal a,b,c, C. Uribe a,b, H.C. Baggio a,b, Y. Compta a,c,f,g, M.J. Marti a,c,f,g, 
F. Valldeoriola a,c,f,g, N. Bargallo h,i, C. Junque a,b,c,f 

a Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain 
b Medical Psychology Unit, Department of Medicine, University of Barcelona, Barcelona, Catalonia, Spain 
c Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain 
d Department of Biomedicine, University of Barcelona, Barcelona, Catalonia, Spain 
e Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Catalonia, Spain 
f Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain 
g Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain 
h Centre de Diagnostic per la imatge, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain 
i Magnetic Resonance Core Facility, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain   

A R T I C L E  I N F O   

Keywords: 
Parkinson disease 
Cluster analysis 
Magnetic resonance imaging 
DTI 
Gray matter volume 

A B S T R A C T   

Background: Parkinson’s disease (PD) is a heterogeneous condition. Cluster analysis based on cortical thickness 
has been used to define distinct patterns of brain atrophy in PD. However, the potential of other neuroimaging 
modalities, such as white matter (WM) fractional anisotropy (FA), which has also been demonstrated to be 
altered in PD, has not been investigated. 
Objective: We aim to characterize PD subtypes using a multimodal clustering approach based on cortical and 
subcortical gray matter (GM) volumes and FA measures. 
Methods: We included T1-weighted and diffusion-weighted MRI data from 62 PD patients and 33 healthy con
trols. We extracted mean GM volumes from 48 cortical and 17 subcortical regions using FSL-VBM, and the mean 
FA from 20 WM tracts using Tract-Based Spatial Statistics (TBSS). Hierarchical cluster analysis was performed 
with the PD sample using Ward’s linkage method. Whole-brain voxel-wise intergroup comparisons of VBM and 
TBSS data were also performed using FSL. Neuropsychological and demographic statistical analyses were con
ducted using IBM SPSS Statistics 25.0. 
Results: We identified three PD subtypes, with prominent differences in GM patterns and little WM involvement. 
One group (n = 15) with widespread cortical and subcortical GM volume and WM FA reductions and pronounced 
cognitive deficits; a second group (n = 21) with only cortical atrophy limited to frontal and temporal regions and 
more specific neuropsychological impairment, and a third group (n = 26) without detectable atrophy or 
cognition impairment. 
Conclusion: Multimodal MRI data allows classifying PD patients into groups according to GM and WM patterns, 
which in turn are associated with the cognitive profile.   

1. Introduction 

Parkinson’s disease (PD) is characterized by its clinical 

heterogeneity, which includes not only motor symptoms but also a wide 
range of non-motor manifestations [1,2]. Objective neuroimaging data 
obtained from magnetic resonance imaging (MRI) has been 
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demonstrated to be able to classify PD patients through cluster analysis. 
Uribe et al. [3] used cortical thickness from MRI data to define distinct 
anatomical subtypes in a non-demented PD sample, and found one 
group with frontal and occipital atrophy, a second group with 
parieto-temporal atrophy and a third with undetectable atrophy. These 
three patterns were then found to be associated with different clin
ical/cognitive profiles. Moreover, a follow up of this study concluded 
that the three patterns progressed differently over time, the pattern with 
the youngest age at onset being the one associated with the least 
structural degeneration [4]. 

These studies have used cortical thickness to define the clusters 
representing atrophy profiles. However, previous studies have also 
shown volumetric differences in cortical and subcortical GM regions [5] 
as well as microstructural white matter (WM) alterations in PD [6]. In 
addition, GM and WM changes have been widely shown to be associated 
with cognitive impairment [5,7–9]. Recently, disruption of integration 
of structural brain networks was observed in PD subtypes identified 
through clinical data and was correlated with motor and cognitive 
deficits [10]. 

To date, no previous studies have combined GM and WM information 
extracted from MRI to detect different disease subgroups in PD using a 
multimodal hypothesis-free data-driven approach. We hypothesized 
that multimodal clustering including FA measures would allow us to 
more accurately identify subgroups of patients characterized by 
different patterns of neurodegeneration, which at the same time would 
be associated with distinctive clinical and neuropsychological pheno
types. Accordingly, we aimed to combine measures of GM cortical and 
subcortical volumes, as well as measures of WM microstructure to 
determine (1) whether different anatomical profiles exist involving GM 
and WM patterns of brain atrophy; and (2) whether the different pat
terns are associated with distinct cognitive profiles. 

2. Methods 

2.1. Participants 

The sample included 69 PD patients recruited from the Parkinson’s 
Disease and Movement Disorders Unit, Hospital Clínic (Barcelona, 
Spain), and 36 healthy controls (HC) from the Aging Institute in 
Barcelona. Inclusion criteria for patients were (i) fulfilling UK PD 
Society Brain Bank diagnostic criteria for PD and (ii) no surgical 
treatment with deep-brain stimulation. Exclusion criteria for all par
ticipants were (i) dementia according to Movement Disorders Society 
criteria, (ii) Hoehn and Yahr (H&Y) scale score > 3, (iii) severe psy
chiatric or neurological comorbidity, (iv) low global intelligence 
quotient estimated by the Vocabulary subtest of the Wechsler Adult 
Intelligence Scale 3rd edition (scalar score ≤ 7), (v) Mini Mental State 
Examination (MMSE) score below 25, (vi) claustrophobia, (vii) path
ological MRI findings other than mild WM hyperintensities in the 
FLAIR sequence, and (viii) MRI artifacts. A total of 62 PD patients and 
33 HC were selected. The following participants were excluded from 
the study: five patients and two HC with MRI artifacts, two patients 
with claustrophobia and one HC with a cyst. The final sample 
included participants with and without mild cognitive impairment 
(MCI). Motor symptoms were assessed with the Unified Parkinson’s 
Disease Rating Scale, motor section (UPDRS-III). All PD patients were 
taking antiparkinsonian drugs that consisted of different combinations 
of L-dopa, catechol-O-methyltransferase inhibitors, monoamine oxi
dase inhibitors, dopamine agonists, and amantadine. To standardize 
the doses, the L-dopa equivalent daily dose (LEDD) [11] was calcu
lated. Written informed consent was obtained from all study partici
pants after a full explanation of the procedures. The study was 
approved by the institutional Ethics Committee from the University of 
Barcelona (IRB00003099). 

2.2. Neuropsychological tests 

All participants underwent a comprehensive neuropsychological 
assessment in the on state addressing cognitive domains frequently 
impaired in PD [12]. Attention and working memory were assessed with 
the Trail Making Test (parts A and B), Digit Span Forward and Back
ward, Stroop Color-word Test, Symbol Digits Modalities Test 
(SDMT)-Oral version. Executive functions were evaluated with phone
mic and semantic fluencies. Language was assessed using the Boston 
Naming Test (BNT). Memory was assessed using Rey’s Auditory Verbal 
Learning Test total learning recall, delayed recall and recognition abil
ities (RAVLT total, RAVLT recall, and RAVLT recognition, respectively). 
Visuospatial and visuoperceptual functions were assessed with Benton’s 
Judgement of Line Orientation (JLO), Visual Form Discrimination 
(VFD), and Facial Recognition (FRT) tests. Neuropsychiatric symptoms 
were evaluated with the Beck Depression Inventory-II, Starkstein’s 
Apathy Scale and Cumming’s Neuropsychiatric Inventory. Expected z 
scores adjusted for age, sex, and education were calculated for each test 
and subject based on a multiple regression analysis performed in the HC 
group [13]. The presence of MCI was defined using PD-MCI diagnostic 
criteria level I [12]. 

2.3. Neuroimaging data 

2.3.1. MRI acquisition 
MRI data were obtained with a 3T scanner (MAGNETOM Trio, 

Siemens, Germany). The scanning protocol included high-resolution 3- 
dimensional T1-weighted images acquired in the sagittal plane (TR: 
2300 ms, TE: 2.98 ms, TI: 900 ms, 240 slices, FOV: 256 mm; 1 mm 
isotropic voxel), and diffusion-weighted images (DTI): two sets of single 
band spin-echo diffusion weighted images in the axial plane with 
opposite (anterior-posterior and posterior-anterior) phase encoding di
rections (TR: 7700 ms, TE: 89 ms, FOV: 244 mm; 2 mm isotropic voxel; 
number of directions: 30, b-value: 1000 s/mm2, b0 value: 0 s/mm2). 

2.3.2. Structural MRI preprocessing 
Structural data were analyzed with FSL-VBM [14]. First, structural 

images were brain-extracted and segmented into GM, WM and cere
brospinal fluid, then registered to the Montreal Neurological Institute 
(MNI) 152 standard space using non-linear registration. The resulting 
images were averaged to create a study-specific template, to which 
native GM images were nonlinearly re-registered. Second, native GM 
images were registered to this study specific template and modulated to 
correct for local expansion or contraction due to the nonlinear compo
nent of the spatial transformation. The modulated GM images were then 
smoothed with an isotropic Gaussian kernel with a sigma of 3 mm 
(FWHM = 6.9 mm) following the FSL guidelines [14]. 

2.3.3. Diffusion MRI preprocessing 
Diffusion MRI images were analyzed with FMRIB’s Diffusion 

Toolbox (FDT) software from FSL, (http://www.fmrib.ox.ac.uk/fsl). 
Individual fractional anisotropy (FA) maps were obtained using a 
Diffusion Tensor Model fit (DTIFIT) and introduced to group analysis 
using the Tract-Based Spatial Statistics (TBSS) protocol [15,16]. TBSS 
performs non-linear registration (FNIRT) of FA images to the MNI 
standard space and generates a mean FA skeleton that represents the 
center of all tracts common to the entire group. Then, the aligned FA 
image for each subject was projected onto the skeleton by filling the 
skeleton with FA values from the nearest relevant tract center. 

2.4. Hierarchical cluster analysis 

As described above, we obtained individual GM probability maps 
using a VBM approach and skeletonized FA maps from all subjects using 
a DTI approach with FSL. Using the FSL command-line fslmeants, we 
calculated the mean GM volume from 48 cortical regions and 17 
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subcortical regions of interest defined by the Harvard-Oxford atlases 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) in MNI standard space. 
Mean FA values were extracted from 20 tracts of interest defined in the 
JHU atlas [17], also in the MNI standard space. The 85 resulting features 
were then merged into a single vector for each of the 62 PD patients 
subject and used to perform a hierarchical cluster analysis with MATLAB 
(release 2014b, The MathWorks, Inc., Natick, Massachusetts) (Fig. 1). 
We used Ward’s clustering linkage method to combine pairs of clusters 
at each step while minimizing the sum of square errors from the cluster 
mean. Following the hierarchical structure of the analysis, each patient 
was first placed in his/her own cluster and then progressively clustered 
with others. Calinski-Harabasz criterion was used to evaluate the 
optimal number of clusters. Cluster analysis results are shown as a 
dendrogram with different levels of granularity. For each cluster, we 
defined a mean cluster vector of 85 features, calculated as the average of 
all features across the subjects included in the cluster. 

2.5. Other statistical analyses 

First, to quantify the differences between the groups identified 
through the clustering procedure, and to define their specific atrophy 
patterns compared with controls, we performed a set of t-tests using the 
GM and WM measures used as features. The results were corrected for 
multiple comparisons using false-discovery rate (FDR) correction across 
the 85 evaluated features, and the significance level was set at p < 0.05. 
To list the features according to their importance in forming the clusters, 
we used the F statistics obtained from ANOVAs. 

We then performed voxel-wise analyses to obtain maps of GM and 
WM. For that purpose, we used a permutation-based general linear 
model (GLM) using the whole-brain VBM and FA maps [18]. In these 
analyses, we tested for differences between PD groups as well as dif
ferences between each group and controls. Age was considered as a 
covariate in the model. Results were corrected for multiple comparisons 

across space using family-wise error rate (FWE) correction, with a sig
nificance level of p < 0.05. 

Demographic, neuropsychological, and clinical statistical analyses 
were conducted using IBM SPSS Statistics 25.0 (IBM Corp., Armonk, 
New York). To assess differences in demographic, clinical and neuro
psychological quantitative variables, Kruskal-Wallis or Mann-Whitney U 
tests were used. Pearson’s chi-squared test was used for categorical 
variables. 

3. Results 

The dendrogram resulting from the cluster analysis can be seen in the 
Supplementary material 1. Both two-cluster and three-cluster solutions 
had a high variance ratio of the Calinski-Harabasz values. The two- 
cluster solution (variance ratio: 11.58) identified one group without 
detectable brain atrophy; and a second group with widespread reduction 
of cortical and subcortical GM volume, decreased FA, late disease onset 
and higher prevalence of MCI. Detailed information about the two- 
cluster solution is shown in Supplementary material 2. The three- 
cluster solution (variance ratio: 8.59) divided the non-specific atrophy 
group from the two-cluster solution into two subgroups (Supplementary 
material 2 and 3). The sample size was too small for higher group so
lution, and the result would be considered too exploratory. 

Ordering the features according to their importance for forming the 
clusters showed GM features were more relevant than the WM features 
(Supplementary material 4). 

3.1. Whole-brain atrophy patterns in the three-cluster solution 

Exploratory whole-brain analyses were first performed without 
covariates (Supplementary material 5, 6 and 7). Whole-brain analysis of 
VBM maps considering age in the model showed group 1 (PD1, N: 15) 
had lower GM volumes than HC mainly in occipital and medial temporal 

Fig. 1. Schematic representation of the pipeline followed to extract the features used in the classification procedure. Abbreviations: FA – fractional anisotropy, GM – 
gray matter, ROI – region of interest, VBM – Voxel-based morphometry analysis. 
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regions including the parahippocampal gyrus, temporal pole, cuneus, 
lingual gyrus, occipital fusiform gyrus and occipital pole. The atrophy 
pattern of PD1 also included the bilateral orbital and medial frontal 
cortex, paracingulate gyrus, superior parietal lobe, precuneus, and 
insula. Moreover, PD1 showed volume reductions in subcortical gray 
matter compared to HC in bilateral putamen, caudate, thalamus, and 
nucleus accumbens as well as the hippocampus (FWE-corrected, p <
0.05) (Fig. 2A and Supplementary material 8). Group 2 (PD2, N: 21) had 
GM atrophy compared with HC mainly in bilateral orbital and prefrontal 
cortical regions including the bilateral anterior cingulate gyrus, orbito
frontal cortex, medial prefrontal cortex, paracingulate gyri, frontal poles 
and the inferior and middle temporal gyri, as well as the right superior 

temporal gyrus (FWE-corrected, p < 0.05) (Fig. 2B and Supplementary 
material 8). Group 3 (PD3, N:26) did not show significant GM volume 
differences compared with HC (Fig. 2C). 

Comparisons between patient groups showed that PD1 had reduced 
subcortical GM volume compared with PD2 in the thalamus, amygdala 
and right putamen bilaterally as well as in the hippocampus. PD1 also 
showed a characteristic posterior cortical atrophy including bilateral 
occipital poles, lingual gyri and cuneus, together with parahippocampal 
and fusiform gyri, as well as reductions in insular and cerebellar regions 
(Supplementary material 8 and 9). PD1 showed reduced cortical GM 
when compared with PD3 bilaterally in superior and middle temporal 
gyri, medial temporal lobe, occipital pole, the insular cortex, the 

Fig. 2. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analyses of the three-cluster solution. VBM: (A) regions in which PD1 showed less 
gray matter volume than HC are shown in red; (B) regions in which PD2 showed less gray matter volume than HC are shown in green; (C) absence of differences 
between PD3 and HC (p < 0.05, FWE-corrected). Results were adjusted by age. TBSS: FA skeleton (yellow) and white matter tracts in which PD1 showed lower FA 
than HC (red). Radiological convention is used. Abbreviations: HC – healthy controls; PD1 – Parkinson’s disease patient subgroup 1; PD2 – Parkinson’s disease patient 
subgroup 2; PD3 – Parkinson’s disease patient subgroup 3. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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intracalcarine cortex, and the hippocampus and significant reductions of 
the amygdala, thalamus, putamen, caudate and nucleus accumbens 
bilaterally (Supplementary material 8 and 9). 

PD2 had less GM volume than PD3 in the right middle temporal 
gyrus. PD3 had less GM volume than PD2 in the cerebellum and the 
brainstem. HC had less GM than PD2 in the cerebellum (Supplementary 
material 8). 

Whole-brain analyses of FA maps showed lower FA values in PD1 
compared with HC in the corpus callosum and the following bilateral 
tracts: the inferior and superior longitudinal fasciculus, inferior fronto- 
occipital fasciculus, anterior thalamic radiation, uncinate fasciculus, 
corticospinal tract, and forceps major and minor (FWE-corrected, p <
0.05) (Fig. 2 and Supplementary material 10). There were no other 
significant differences between groups. 

3.2. Demographic and clinical characteristics of PD subtypes 

There were no differences in sex or years of education between 
groups. However, we did find significant differences in age between 
groups. PD3 was significantly younger than HC and the other PD groups, 
while PD1 tended to be older than HC (p = 0.054). PD groups did not 
differ in disease duration, motor disease severity as measured by the 
UPDRS-III, H&Y and LEDD, global cognition (MMSE), olfactory perfor
mance, or presence of neuropsychiatric symptoms. PD1 had a later 
disease onset compared with PD3 (Table 1). 

3.3. Cognitive profiles of PD subtypes 

Fig. 3 summarizes the cognitive profiles of patients in the three 
groups (see also Supplementary Table 11). PD1 and PD2 performed 
significantly worse than HC in the following tests: FRT, TMT Part A and 
Part B, and Stroop Color Test. Whereas PD3 did not show significant 
differences in cognitive performance in comparison with HC. 

Moreover, PD1 performed significantly worse than HC and PD3 in 
RAVLT total and recognition scores, and in the semantic fluency test. 
PD1 also performed worse than HC in RAVLT recall. PD2 performed 

worse than HC in Stroop Words and SDMT. 
PD1 showed a higher percentage of MCI (67%) when compared with 

PD3 (27%) and HC (Table 1). 

4. Discussion 

The main finding of this study is that a data-driven analysis based on 
multimodal MRI data can identify PD patient subtypes according to GM 
and WM degeneration patterns. Despite similar disease duration, our 
results distinguished (1) a group of patients with bilateral tempo- 
parieto-occipital loss of cortical GM as well as subcortical GM volume 
degeneration and widespread FA reductions mainly affecting fronto- 
occipital WM tracts; (2) a second group with reduction of GM volumes 
in bilateral orbital and medial prefrontal, but also in temporal cortical 
regions, and (3) a third group without detectable GM or WM alterations. 

Patients grouped in PD1, which interestingly was the group with a 
higher percentage of MCI (67%), showed extensive atrophy similar to 
that previously reported using cortical thickness [3], as well as evident 
atrophy in bilateral hippocampus and subcortical structures, including 
the amygdala, thalamus, putamen and caudate. Similarly, the PD2 
subgroup showed bilateral atrophy in orbitofrontal and temporal 
cortices, which partially overlapped with PD1. In this context, and 
without longitudinal evidence, these results could be indicative of 
different stages of evolution in our group. However, PD groups did not 
differ in the years of evolution of the disease, and although those in PD1 
were older than in PD2, age of onset was also older. In addition, there 
were no differences in UPDRS part III or H&Y scores, or medication. 
Thus, our results reinforce the classical findings that late onset of the 
disease is associated with greater degree of atrophy and rapid disease 
progression [19]. 

Although most of the published results regarding loss of WM integ
rity in PD are based on analyses of regions of interest, whole-brain 
studies evidenced the involvement of the corpus callosum, cingulum 
and major association tracts in PD-MCI patients [7,9,20], but not in PD 
without MCI [9]. Nonetheless, these results are still scarce and less 
consistent than those reporting GM atrophy. In this regard, the existence 

Table 1 
Demographic and clinical characteristics of the three-cluster solution PD subtypes. Abbreviations: HC – healthy controls; IQ – interquartile range; LEDD – L-dopa 
equivalent daily dose; MCI – mild cognitive impairment; NA – not applicable; PD1 – Parkinson’s disease group 1 patients; PD2 – Parkinson’s disease group 2 patients; 
PD3 – Parkinson’s disease group 3 patients; UPDRS – Unified Parkinson’s Disease Rating Scale; UPSIT – University of Pennsylvania Smell Identification Test.a The chi- 
squared test was used;b The Kruskal-Wallis test was used.   

HC (N:33) PD1 (N:15) PD2 (N:21) PD3 (N:26) test-stats p-value Significant contrasts 

sex (m/f) 18/15 13/2 14/7 19/7 5.4 0.145a – 
age, median (IQ) 66(15) 75(14) 68(9) 58.5(11) 29.273 <0.001b PD3 vs HC 

PD3 vs PD2 
PD3 vs PD1 

Education, years, median (IQ) 12(8) 11(12) 13(9) 13(9) 1.171 0.768b – 
Disease duration, median (IQ) NA 7(7.5) 9(9) 7(5.5) 1.302 0.521b – 
Age of onset, median (IQ) NA 67(10) 57(11) 50(12.25) 20.097 <0.001b PD1 vs PD3 
LEDD, mg, median (IQ) NA 650(415) 469(515) 593.75(324) 0.651 0.722b – 
UPDRS part III, median (IQ) NA 30(1) 29(2) 30(2) 2.258 0.521b – 
Hoen & Yahr, n, 1/2/2.5/3 NA 1/6/1/4 1/10/0/9 6/14/0/6 14.754 0.064a – 
MMSE, median (IQ) 0.102(3.32) − 0.96(4.32) 0.074(5.58) − 0.51(4.02) 1.908 0.592b – 
Total MCI, n (%) 3 (10%) 10 (67%) 10 (48%) 7(27%) 17.431 0.001a PD1 vs HC 

PD1 vs PD3 
PD2 vs HC 

UPSIT (normosmia/hyposmia/anosmia) 5/26/0 0/2/12 1/11/8 1/13/11 34.998 <0.001a PD1 vs HC 
PD2 vs HC 
PD3 vs HC 

Sniffin (normosmia/hyposmia/anosmia) 20/9/0 0/4/7 1/14/3 3/13/6 53.56 <0.001a PD1 vs HC 
PD2 vs HC 
PD3 vs HC 

BDI, median (IQ) 5(8) 7(10) 9(12) 7(6) 4.5 0.212b – 
Apathy scale (apathy/normal) 5/25 (17%) 7/8 (47%) 10/9 (48%) 8/15 (31%) 9.757 0.135a – 
NPI, median (IQ) 1(4) 9(8) 7.5(19) 6(11) 19.047 <0.001b PD1 vs HC 

PD2 vs HC 
PD3 vs HC 

Visual hallucinations (no/yes), n (%) 29/0 11/4 (27%) 18/3 (14%) 21/5 (19%) 7.414 0.06a –  
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of different PD subtypes could help to elucidate previous controversial 
results on the study of WM abnormalities. 

Our results suggest that only a subgroup with widespread GM atro
phy showed WM alterations compared to HC, in line with the recent 
results of Abassi et al. [10] showing structural connectivity differences 
in PD subtypes. Unfortunately, in that study the authors did not report 
whole-brain FA differences in PD subtypes since the analyses were 
limited to the basal ganglia. Our results suggest that DTI abnormalities 
in PD patients could be understood as secondary to axonal degeneration 
after cortical and subcortical neuronal body damage, which conse
quently would be expected to be found alongside GM atrophy. 

Our findings also revealed the existence of a third subgroup (PD3), 
which was the youngest group with earlier disease onset. Despite the 
similarity in other clinical variables between groups, PD3 patients did 
not show significant structural differences with HC neither in GM nor in 
WM, after controlling for age. Similarly, previous studies reported 
negative results when comparing PD patients without cognitive 
impairment and HC in cortical and subcortical GM using whole-brain 
VBM or WM methods [7,9]. Previous cortical thickness analyses also 
showed negative results when comparing PD and HC [21,22] or 
described differences that did not survive correction for multiple com
parisons [23]. 

Regarding the neuropsychological performance of the PD subgroups, 
both PD1 and PD2 subtypes performed worse than HC in the Facial 
Recognition Test, TMT Part A and Part B, and Stroop Color Test; whereas 
PD3 performed similarly to HC. Moreover, PD1 also performed signifi
cantly worse than HC and PD3 in RAVLT and the semantic fluency test. It 
is noteworthy that the impairment in total learning and delayed recall 
verbal tasks characteristic of the PD1 subtype has been associated with 
future cognitive impairment in PD [24], the hippocampus being a key 
structure to understanding the memory changes in PD without dementia 
[25]. Additionally, PD1 had semantic memory impairment that agrees 
with the involvement of posterior cortical regions [4,26]. Specifically, 
posterior based cortical deficits, and semantic fluency in particular, have 
been shown to be a predictor of dementia in PD [27]. More precisely, the 
PD1 atrophy pattern also included the primary occipital cortex, just as it 
has been found before in early PD patients [28], and might be related to 
color perception deficits described in PD [29]. 

On the other hand, the PD2 subgroup did not show a detectable 
cognitive profile to distinguish it from other PD subgroups; however, the 
brain atrophy pattern in this group was clearly different. Despite a 
discreet overlap between PD1 and PD2, there is a dissociation between 
these groups: while the PD2 pattern consisted of a more prominent 

orbitofrontal atrophy including bilateral frontal medial regions, but also 
anterior areas, PD1 was characterized by extensive atrophic changes in 
bilateral temporo-parieto-occipital regions. This dissociation may have 
not only important cognitive but also behavioral and mood conse
quences. In this context, depression in PD has been related to decreased 
GM volume in orbitofrontal and temporal regions [30]. In the same way, 
apathy and recognition of emotions have been seen to correlate with GM 
volumes in the orbitofrontal cortex [31,32], the amygdala [31] and the 
temporal cortex [32]. Although we did not find significant differences 
between groups in BDI or the apathy scale, PD1 and PD2 yielded the 
highest percentage of subjects with apathy (close to 50%), while PD3 
and HC showed lower percentages. In this regard, the inclusion of tests 
sensitive to orbitofrontal and posterior deficits in the neuropsychologi
cal batteries used to assess PD patients is of crucial interest as previously 
stated [3]. 

The need to better understand the heterogeneity seen in other 
neurodegenerative disorders, such as Alzheimer’s disease (AD), has 
similarly led to the use of neuroimaging data and cluster analysis to 
assess the presence of potential subgroups [33]. Taking one step further, 
Jeon and colleagues recently used a multimodal cluster analysis based 
on cortical thickness, tau and amyloid depositions, which led to the 
characterization of three AD subgroups [34], mainly driven by the tau 
deposition and cortical atrophic pattern. However, multidimensionality 
remains a limitation of these studies, as well as of our work, despite our 
having managed to improve the high dimensionality problem compared 
with previous cluster analyses [3,34] through the use of only 85 fea
tures. Further progress in this issue will allow, for example, combining 
different diffusion measures in an optimal model in order to better 
characterize WM differences between PD subtypes. Another limitation 
would be that PD patients with a Hoehn and Yahr scale score above 3 
were excluded from the study, which could have reduced the variability 
of the PD sample and, consequently, the probability of finding other PD 
groups. Finally, the wide confidence intervals of the neuropsychological 
data suggest that a larger sample would be required in order to more 
precisely identify cognitive differences between groups. 

In conclusion, the use of unsupervised machine learning methods 
based on multimodal MRI data allows the classification of PD patients 
into the following subtypes: one group with cortical and subcortical GM 
atrophy, widespread WM abnormalities and worse cognition; a second 
group with mainly orbitofrontal and temporal cortical atrophy; and a 
third group without detectable GM or WM abnormalities, earlier disease 
onset and normal cognition. It is also worth noting that even though 
both WM and GM contributed to defining the different groups, GM 

Fig. 3. Three-cluster solution – neuropsycho
logical profiles. Neuropsychological profiles for 
healthy controls (blue), PD1 (red), PD2 (green) 
and PD3 (purple). Data are presented as z scores. 
The signs of TMTA, TMTB and TMTAB scores are 
flipped. In all cases, lower z scores indicate worse 
performance. Abbreviations: BNT – Boston 
Naming Test; FRT – Facial Recognition Test; HC – 
healthy controls; PD1 – Parkinson’s disease pa
tient subgroup 1; PD2 – Parkinson’s disease pa
tient subgroup 2; PD3 – Parkinson’s disease 
patient group 3; RAVLT – Rey Auditory Verbal 
Learning Test; SDMT – Symbol Digits Modalities 
Test; Stroop color – Stroop color test; Stroop 
word – Stroop word test; Stroop word-color – 
Stroop word-color interference; TMTA – Trail 
Making Test Part A; TMTB – Trail Making Test 
Part B; TMTAB – Trail Making Test A minus B. 
Tests displayed are the ones showing significant 
differences between groups. (For interpretation 
of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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degeneration patterns were more relevant in the characterization of PD 
groups than WM alterations. Nevertheless, incorporating FA measures to 
the clustering algorithm implies moving one step closer to multimodal 
approaches. Moreover, these results add to recent evidence regarding 
different phenotypes in PD, which not only differ in cognitive perfor
mance but also in patterns of brain degeneration, thus lending further 
support to the hypothesis of distinct disease courses. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.parkreldis.2020.11.010. 
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