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Abstract: The inconclusive and non-replicated results of pharmacogenetic studies of antidepressant response could 
be related to the lack of acknowledgement of its mechanism of action. In this scenario, gene expression studies 
provide and interesting framework to reveal new candidate genes for pharmacogenetic studies or peripheral bio-
markers of fluoxetine response. We propose a system biology approach to analyse changes in gene expression 
induced by eight weeks of treatment with fluoxetine in peripheral blood. 21 naïve child and adolescents participated 
in the present study. Our analysis include the identification of gene co-expression modules, using Weighted Gene 
Co-expression Network Analysis (WGCNA), followed by protein-protein interaction (PPi) network construction coupled 
with functional annotation. Our results revealed two modules of co-expression genes related to fluoxetine treat-
ment. The constructed networks from these modules were enriched for biological processes related to cellular and 
metabolic processes, cell communication, immune system processes, cell death, response to stimulus and neuro-
genesis. Some of these processes, such as immune system, replicated previous findings in the literature, whereas, 
neurogenesis, a mechanism proposed to be involved in fluoxetine response, had been identified for first time using 
peripheral tissues. In conclusion, our study identifies several biological processes in relation to fluoxetine treatment 
in peripheral blood, offer new candidate genes for pharmacogenetic studies and valuable markers for peripheral 
moderator biomarkers discovery.

Keywords: Selective serotonin reuptake inhibitors, pharmacogenomics, convergent functional genomics, gene 
expression, neurogenesis, children

Introduction

Between 40 and 50% of patients taking antide-
pressants relapse or do not respond to treat-
ment [1]. Common genetic polymorphisms 
explain 42% of this variability in antidepressa- 
nt response [2]. With some exceptions that 
include CYP2D6 and CYP2C19, included in 
guidelines form the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) [3], phar-
macogenetic research has so far failed to iden-
tify specific associations through either candi-
date gene approaches or genome-wide associ-
ation studies (GWAs) [4]. 

Although some studies have detected signifi-
cant associations with antidepressant treat-
ment outcomes, very few of these results have 
been replicated in independent studies. The 
lack of replicated candidate gene studies has 
been attributed to a poor understanding of the 
biological mechanisms underlying treatment 
response, phenotypic variability and several 
limitations of pharmacogenetic studies: differ-
ences between studies in terms of design, sta-
tistical power, type and dosage of antidepres-
sant and outcome assessment. Pharmacoge- 
netic GWAs have provided tentative hits, but 
most associations have been inconclusive and 
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not replicated [5]. Unfortunately, despite the 
use of large cohorts from multicentric studies 
and consortia these studies are underpowered 
and have not revealed reliable predictors of 
treatment outcomes [2, 6, 7]. 

In this scenario, genome-wide gene expression 
studies may reveal the effects of both genetic 
background and environmental/epigenetic fac-
tors, thereby providing an interesting insight 
into this complex phenotype [8]. These studi- 
es make it possible to identify differentially 
expressed genes associated with antidepres-
sant response that could be used as biomark-
ers of the phenotype. Numerous studies using 
this approach have been published, most of 
which have focused on analyzing the identifica-
tion of predictor biomarkers by comparing gene 
expression between groups of responders and 
non-responders [9-12]. A few studies have also 
searched for moderator biomarkers by analyz-
ing gene expression changes before and af- 
ter antidepressant treatment [10, 11, 13-15]. 
Genome-wide expression analysis not only 
allows independent and isolated gene analysis 
to be carried out, but can also be used to 
explore the biological processes involved in the 
antidepressant response phenotype. In this 
regard, an interesting strategy for complex phe-
notypes involving numerous genes of small 
effect is the identification of gene co-expres-
sion networks (sets of genes that display cor-
related expressions). Only two studies have pro-
posed this approach in the field of antidepres-
sant response [14, 15].

In the present study, we propose a systems 
biology analytical approach, based on the iden-
tification of gene co-expression modules fol-
lowed by protein-protein interaction (PPi) net-
work construction and functional annotation 
analysis, of changes in gene expression in- 
duced by eight weeks of fluoxetine treatment in 
peripheral blood of drug-naïve child and adoles-
cence, to identify biological processes related 
to fluoxetine treatment. 

Materials and methods 

Subjects

Twenty-one children and adolescents receiving 
fluoxetine treatment for the first time partici-
pated in the present study. Patients were diag-
nosed with major depressive disorder (MDD), 

obsessive compulsive disorder (OCD) or gener-
alized anxiety disorder (GAD) according to the 
Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (DSM-IV) [16]. The 
study was carried out at the Child and Ado- 
lescent Psychiatry and Psychology Department 
of the Institute of Neuroscience at Hospital 
Clínic, Barcelona. Exclusion criteria were com- 
orbidity of the principal disorder with other psy-
chiatric disorders, Tourette syndrome, autism, 
somatic disorders and neurological diseases, 
an intelligence quotient of <70 and non-white 
ethnicity. All procedures were approved by the 
hospital’s ethics committee. Written informed 
consent was obtained from all parents and ver-
bal informed consent was given by all subjects 
following an explanation of the procedures 
involved.

Information on illness severity was obtained 
during the initial phase of the study through  
the assessment of several scales: the Global 
Assessment of Functioning (GAF) scale [17]; 
the Children’s Global Assessment Scale (CGAS) 
[18]; the Clinical Global Impression Severity 
scale (CGI-S) [19]; the Children’s Depression 
Inventory (CDI) [20]; the Obsessive Compulsory 
Inventory, children’s version (OCI-CV) [21]: and 
the Screen for Child Anxiety-Related Emotional 
Disorders (SCARED), children’s version and par-
ents’ version [22]. To assess clinical improve-
ment, these same scales were administered 
after eight weeks of fluoxetine treatment. 

Expression study

RNA isolation and microarray hybridization

For each patient, two blood samples were col-
lected in PAX gene Blood RNA Tubes (Qiagen, 
Valencia, CA, USA), one prior to the start of 
fluoxetine treatment and the second after ei- 
ght weeks of continuous fluoxetine treatment. 
Plasma concentrations of fluoxetine (FLX) and 
its metabolite, norfluoxetine (NORFLX), were 
determined after eight weeks of fluoxetine 
treatment using a high-performance liquid chro- 
matography method described previously [23]. 
Patients with concentrations of the active moi-
ety (FLUOX+NORFLUOX) outside the therapeu-
tic range (120-500 ng/mL) [24] were discar- 
ded.

Total RNA was isolated with the PAXgene Blood 
RNA Kit and purified using RNeasy MinElute 
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Cleanup Kit (both from Qiagen, Valencia, CA, 
USA). The quantity and quality of RNA was 
determined with a spectrophotometer (ND10- 
00, NanoDrop, Wilmington, OF, USA) and a 
Bioanalyzer (Agilent Bioanalyzer, Agilent, Santa 
Clara, CA, USA). A total of 1 μg of purified RNA 
from each of the samples was submitted to 
Kompetenzzentrum für Fluoreszente Bioana- 
lytik Microarray Technology (KFB, BioPark 
Regensburg GmbH, Regensburg, Germany) for 
labelling and hybridization to Human Gene 2.1 
ST Array (Affymetrix, Santa Clara, CA, USA), in 
accordance with the manufacturer’s protocols.

Microarray data analysis

Full details of the extraction, labelling and 
hybridization protocols, raw array data (.cel 
files) and the pre-processed data matrix  
are available in Gene Expression Omnibus  
database (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE128387).

The microarray data pre-processing analysis 
was performed using the Babelomics 5.0 suite 
(http://www.babelomics.org/) [25]. The data 
were standardized using robust multichip anal-
ysis. Multiple probes mapping to the same 
gene were merged using the average as the 
summary of the hybridization values. The sam-
ple size was not predetermined using a formal 
power analysis; instead it was determined 
based on previous estimations to identify 
greater than two-fold changes in gene expres-
sion levels at P=0.01 [26]. No data points were 
excluded as outliers.

Weighted correlation network analysis 
(WGCNA) procedure

Co-expression modules were identified using 
the WGCNA R software package (https://cran.r-
project.org/web/packages/WGCNA/index.ht- 
ml) [27]. Co-expression analysis commences 
with the construction of a matrix of pairwise 
correlations between all pairs of genes across 
all selected samples. Next, the matrix is raised 
to a soft-thresholding power (β=8 in this study) 
to obtain an adjacency matrix. In order to iden-
tify modules of co-expressed genes, we con-
structed the topological overlap-based dissimi-
larity, which was then used as the input for 
average linkage hierarchical clustering. This 
step results in a clustering tree (dendrogram) 
whose branches are identified for cutting, 

depending on their shape, using the dynamic 
tree-cutting algorithm. The above steps were 
performed using the automatic network con-
struction and module detection function (block-
wiseModules in WGCNA), with the following 
major parameters: minModuleSize of 30; reas-
sign Threshold of 0; and merge CutHeight of 
0.25. The modules were then tested for their 
associations with fluoxetine treatment by cor-
relating module eigengenes (MEs, the first prin-
cipal component of each module) with treat-
ment status (pre- vs. post-treatment). Modules 
with significant (P<0.05) correlation were 
selected for further analysis. For each signifi-
cant module, the correlation between the gene 
significance (GS, the absolute value of the 
Pearson correlation between each gene ex- 
pression and treatment status) and its module 
membership (MM, the correlation between 
gene expression and the module eigengene at 
baseline) was calculated.

PPi network construction and evaluation

The SNOW program [28], implemented in the 
Babelomics 5.0 suite, was used to create PPi 
networks. If a module exceeded 500 genes 
(the maximum number allowed by SNOW to 
construct a network), to ensure higher connec-
tivity, we selected the 500 top hub genes 
according to gene significance (more likely to 
be associated to fluoxetine treatment) and 
module membership (higher connectivity) val-
ues. The minimum connected network (MCN), 
defined as the shortest network that connects 
all the interacting nodes within a gene list, was 
obtained. Briefly, we used the curated interac-
tome (validated by at least two independent 
methods) and allowed the inclusion of extra 
nodes that connected two or more nodes in the 
list. Network parameters for each gene were 
computed: connection degree (which accounts 
for the number of direct interaction partners  
a particular node has), clustering coefficient 
(which accounts for the connectivity of a given 
node and also for the connectivity of the neigh-
bourhood to which this node is connected), and 
betweenness centrality (which is related to the 
existence of hubs connecting different parts of 
the network). Moreover, the results of the glob-
al topological values were compared with the 
same values of networks with the same size 
but made up of randomly chosen genes, and a 
significance value was obtained.
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Gene set enrichment analysis and visualiza-
tion

The MCN constructed was uploaded into Cy- 
toscape 3.5.0 (http://www.cytoscape.org) [29]. 
We then used ClueGO v2.3.3 [30], a Cytoscape 
plug-in, to perform a gene set enrichment an- 
alysis (GSEA), as described previously [31]. 
Briefly, we selected the unstructured terms of 
biological processes from Gene Ontology (GO) 
(http://geneontology.org/). Genes involved in 
each MCN were mapped to their enriched term 
based on the two-sided hypergeometric test, 
with the Bonferroni-corrected P-value. ClueGO 
created a functional module network in which 
the different GO terms were clustered accord-
ing to the association strength between terms 
calculated using chance-corrected kappa sta- 
tistics.

Quantitative real-time polymerase chain reac-
tion (Q-RT-PCR)

A Q-RT-PCR was used to verify the microarray 
results for two selected genes (NAP1L2 and 
ANXA1) on a 7500 Real-Time PCR System 
(Applied Biosystems, Warrington, UK). GADPH 
and ACTB were used as endogenous controls. 
First, a reverse transcriptase-PCR was con-
ducted using the “High-capacity cDNA Reverse 
Transcriptase” kit of Applied Biosystems, fol-
lowing manufacturer’s protocol. After this, the 
real-time RT-PCR was completed using TaqMan 
Gene Expression Master Mix and a TaqMan 
Gene Expression Assays for selected genes, 
following also the Applied Biosystems protocol. 
The genes analyzed in this study were exam-
ined for their relative expression by means of 
the ΔΔCT method. The 32 samples analyzed by 
means of the microarray were validated, and 
each assay was performed in duplicate. 

Statistical analysis 

Statistical analyses were performed in SPSS 
version 17 (SPSS inc, Chicago, Ill). Normal dis-
tributions of the data were confirmed using 
Shapiro-Wilk test, and equality of the variance 
between groups was assessed by means of 
Levene’s test. For comparing two groups, a two-
tailed Student’s t test or U-Mann Whitney was 
used. Significance was set at P<0.05.

Results

Table 1 shows the demographic and clinical 
characteristics of the twenty-one study partici-

pants. In order to obtain a more homogeneous 
sample, we selected sixteen female samples 
with a diagnosis of MDD that were not taking 
antipsychotics and whose RNA samples had 
enough quality for microarray hybridization. No 
significant differences in clinical characteris-
tics were detected between the whole sample 
and the 16 samples selected. None of the 
patients showed active moiety plasma levels 
outside the therapeutic range.

Figure 1 shows the analysis pipeline followed  
in the present study. Firstly, 46 modules of co-
expressed genes were obtained in the WGCNA 
(Figure S1). Three modules were found to sig-
nificantly correlate with fluoxetine treatment: 
black module (1081 genes) (r2=0.396, P= 
0.02), light cyan module (383 genes) (r2=0.389, 
P=0.03) and medium purple3 module (60 
genes) (r2=-0.391, P=0.03, respectively) (Figure 
S2). Black and light cyan modules were select-
ed for further analysis, as the genes included in 
these modules showed a significant correlation 
between gene significance (GS) and module 
membership (MM) (black module r2=0.36, P= 
2×10-34; light cyan module r2=0.48, P=1.83× 
10-23; and medium purple3 r2=0.2, P=0.13) 
(Figure S3). Lack of GS-MM correlation could 
indicate that only a submodule relates to the 
trait or suggests considering the association 
more tentative, needing further validation or 
evidence.

Secondly, genes included in the black and light 
cyan modules were used to construct a PPi net-
work for each module. The MCN obtained from 
the black module contained 443 proteins, 193 
(43.6%) of which came from the black module 
and 250 (56.4%) of which were added exter-
nally. The nodes of the network obtained 
showed more connections (connectivity degree 
p-value <1×10-3), greater connectivity (cluster-
ing coefficient p-value <1×10-3) and more hub 
nodes (betweenness centrality p-value =4× 
10-4) compared to random expectations. The 
MCN from the light cyan module also presented 
significant values (betweenness P<0.001; con-
nectivity P<0.001; and clustering coefficient 
<0.001) and contained 329 genes, 138 
(41.94%) of which came from the light cyan 
module and 191 (58.06%) that were added 
externally.

Finally, GSEA was performed with MCNs con-
structed with the black module and light cyan 
genes. MCNs from the black module were 
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enriched with 336 GO biological process terms 
merged in a network that included 51 clusters 
(Figure 2A) (Table S1). These clusters were 
involved in cellular processes (12 clusters, 
23.53%), metabolic processes (10 clusters, 
19.60%), cell communication (8 clusters, 
15.68%), immune system processes (6 clus-
ters, 11.76%), protein localization and trans-
port (6 clusters, 11.76%), cell death (6 clusters, 
11.76%), response to stimulus (5 clusters, 
9.80%) and neurogenesis (2 clusters, 3.92%). 
MCN from light cyan was enriched with a net-
work of 192 terms in 32 clusters (Figure 2B) 
(Table S2). Regarding the light cyan module, the 
clusters related mainly to immune system pro-
cesses (8 clusters, 25% of the genes), meta-
bolic processes (7 clusters, 21.87%), response 
to stimulus (6 clusters, 18.75%), cellular meta-
bolic processes (5 clusters, 15.62%), cell com-
munication (5 clusters, 15.62%), neurogenesis 
(4 clusters, 12.5%), protein localization and 
transport (2 clusters, 6.25%) and cell death (2 
clusters, 6.25%). These biological GO process-

es were similar across the two networks, since 
they had 117 in common (35% black and 41% 
light cyan). These 117 processes belonged to 
33 clusters in the black module (64.7%) and 26 
clusters in the light cyan module (81.25%). Out 
of these 117 processes, most were involved  
in the same functions as clusters of indivi- 
dual networks: cellular metabolic processes 
(29.91%), metabolic processes (16.24%), cell 
communication (11.96%), localization (11.11%), 
immune system processes (7.69%), cell death 
(5.98%), neurogenesis (5.13%) and response to 
stimulus (4%). We compared the lists of the two 
modules and analysed the over-representation 
of GO biological processes, but no significant 
processes were observed.

Two genes (NAP1L2 and ANXA1) were selected 
for further validation using quantitative RT-PCR 
evaluation. These genes were chosen based on 
the following criteria: 1) each of them belong- 
ed to a different GO category (Neurogenesis  
and Immune system); 2) their expression was 

Table 1. Demographic and clinical data of the study population
Recruited sample Microarray Sample  Statistical Test p-value

Patients, N 21 16
Gender, male, N (%) 2 (10.5%) 0 (0%) _ _
Age, years (mean ± SD)  14.9 ± 1.5 14.9 ± 1.5 U=165.5 0.952
Diagnosis, N (%)   _ _
    MDD 19 (90.5%) 16 (100%) _ _
    OCD 1 (4.8%) 0 (0%) _ _
    GAD 1 (4.8%) 0 (0%) _ _
Comedication, N (%)    
    Antipsychotics 3 (14.29%) 0 (0%) _ _
    Benzodiazepines 5 (23.8%) 5 (31.25%) _ _
Baseline, score (mean ± SD)   
    GAF/CGAS  44.8 ± 9.2 45.38 ± 8.14 U=162.0 0.865
    CGI-S  4.5 ± 0.8 4.38 ± 0.62 U=162.5 0.881
    CDI 27.1 ± 11 29.2 ± 8.6 t=-0.613 0.272
    OCI-CV 15.0 ± 8.2 15.75 ± 7.9 t=-0.295 0.384
    SCARED 34.2 ± 14.8 38 ± 12.7 t=-0.823 0.208
8 weeks, score (mean ± SD)     
    GAF/CGAS 55.7 ± 12.6 56.6 ± 13.6 U=141.5 0.741
    CGI-S 3.7 ± 0.9 3.6 ± 11.8 U=144.5 0.818
    CDI 23.6 ± 13.2 24.7 ± 11.8 t=-0.794 0.219
    OCI-CV 16.3 ± 9.8 16.8 ± 10.2 t=-0.146 0.442
    SCARED 34.1 ± 15.7 35.8 ± 15.3 t=-0.324 0.756
Fluoxetine 8 weeks, ng/mL (mean ± SD) 123.68 ± 71.3 121.81 ± 71.92 t=0.078 0.469
Norfluoxetine 8 weeks, ng/mL (mean ± SD) 154.63 ± 74.02 159.88 ± 73.32 t=-0.207 0.418
FLU+NORFLU 8 weeks, ng/mL (mean ± SD) 278.31 ± 113.997 281.69 ± 110.62 t=-0.086 0.466

http://www.ajtr.org/files/ajtr0102905suppltab1.pdf
http://www.ajtr.org/files/ajtr0102905suppltab2.pdf
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altered significantly after fluoxetine treatment 
(P<0.05); and 3) each of them had central role 
in PPi network. As can be seen in Figure 3, the 
genes analyzed where clearly validated, as they 
exhibited an identical pattern of expression, 
without significant differences between both 
methodologies according to ANOVA test.

Discussion 

We propose a systems biology analytical app- 
roach, based on the identification of gene co-

mental illnesses, and sometimes even defines 
subgroups of patients with different clinical 
traits and outcomes [32-35]. Moreover, our 
patients were debuting or in the initial phases 
of the illness, and confounders relating to dis-
ease progression or chronicity were avoided. 
Lastly, they were naive patients, and therefore 
there were no confounders related to previous 
drug treatment. Studies by Hodgson et al. 
(2016) [14] and Belzeaux et al. (2016) [15] 
used larger samples, but these were more het-
erogeneous in terms of age of onset. We also 

expression modules followed 
by protein-protein interaction 
network construction and fun- 
ctional annotation analysis, of 
changes in gene expression 
induced by eight weeks of tr- 
eatment with fluoxetine in pe- 
ripheral blood of drug-naïve 
children and adolescents. The 
main objective of the present 
study was to identify key bio-
logical processes involved in 
fluoxetine response. These pro- 
cesses could be a possible 
source of peripheral biomark-
ers of fluoxetine treatment or 
candidate genes for pharma-
cogenetic studies of the fluox-
etine response. Our findings 
replicate previous results that 
support the role of the inflam-
matory system in the antide-
pressant response. And, for 
the first time in the literature, 
we identified processes relat-
ed to neurogenesis in the pe- 
ripheral blood of children and 
adolescents as possible bio-
markers of antidepressant tr- 
eatment. 

As previously mentioned, some 
genome-wide gene expression 
studies of SSRI have used 
WGCNA [8, 14]. However, our 
study presents some differ-
ences with respect to those 
studies. Firstly, our study was 
performed in a sample of chil-
dren and adolescents. This re- 
presents a homogeneous sam-
ple because the onset of the 
illness was in childhood. Age at 
onset is an important trait in 

Figure 1. Analysis workflow followed in the present study. Briefly, 21 child 
and adolescences were recruited, and blood samples were collected be-
fore treatment initiation and after eight weeks of fluoxetine treatment. 16 
patients participated in the gene expression study. WGCNA identified 46 
modules of co-expressed genes, two significantly associated with fluoxetine 
treatment. PPi were constructed from the significant modules, and GSEA 
was performed to provide functional interpretation.
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analysed fluoxetine and non-fluoxetine plasma 
levels to ensure that they were within therapeu-
tic levels and that the results were not biased 
due to a lack of adherence in some patients. 
Secondly, our study focused on fluoxetine. Be- 
lzeaux’s study [15] analyzed the effect of citalo-

pram, and Hodgson’s study [14] examined the 
effects of the SSRI escitalopram and the tricy-
clic antidepressant nortriptyline. Another as- 
pect to consider is that, in our study and the 
study by Hodgson et al. (2016) [14] the follow-
up period was eight weeks of treatment, where-

Figure 2. Functional network of Gene Ontology (GO) biological processes obtained from each PPI network, according 
to ClueGO: black module (A) and light cyan module (B). Each node represents a GO biological process. The node 
size represents the enriched p-value corrected with the Benjamini-Hochberg method. Edge between nodes based 
on their kappa score level. Nodes were grouped in clusters represented by different colors. Clusters were related 
to common processes represented by circles. Legends listed all clusters and grouped related clusters according to 
common biological process. 
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as in the study by Belzeaux et al. (2016) [15], it 
was 12 weeks. Finally, although the three stud-
ies used WGCNA, the functional genomic analy-
sis of the significant modules in each study  
was slightly different. Moreover, Hodgson et al. 
(2016) [14] focused on molecular knowledge, 
and used molecular functions and cellular com-
ponent categories of GO instead of biological 
processes. By contrast, Belzeaux et al. (2016) 
[15] focused on GO categories of biological pro-
cesses and regulation by mi-RNAs. We per-
formed an analysis of GO biological processes, 
not directly in the genes belonging to significant 
modules, but in the MCNs created from these 
significant modules.

The study by Belzeaux et al. (2016) [15] identi-
fied 59 modules, nine of which were associated 
with the citalopram response. Interestingly, 
four of these significant modules were related 
to the immune system. In our study, the two sig-
nificant modules showed enrichment of biologi-
cal processes related to the immune system, 
thus supporting the hypothesis that the inflam-
matory state plays a role in the antidepressant 
response [36]. Immune system is highly implied 
in mental illness [37]: in mood and anxiety dis-
orders [38], bipolar disorder [39], obsessive 
compulsive disorder [40], autism spectrum dis-
orders [41], even in psychosis spectrum disor-

(i.e. IL-6, TNF-α, and IL-1β), may return to nor-
mal in MDD patients after treatment with SSRIs 
and with other antidepressants [48, 55].

Hodgson et al. (2016) [14] identified 10 mod-
ules of co-expression genes, one of which was 
significantly correlated with fluoxetine treat-
ment. This module was enriched with five GO 
molecular categories linked to Mrna-UTR bind-
ing and with the cellular component of the corti-
cal cytoskeleton [14]. Cytoskeletal reorganiza-
tion is an important event during neurogenesis, 
a process identified in our significant modu- 
les. During development, neural progenitor 
cells begin a series of morphological changes 
to adapt their form, migrate to their destination 
and create synapses [56, 57]. Neurogenesis is 
a mechanism that has previously been related 
to mental illness [58-60], including MDD [61], 
OCD [62] and anxiety [63]. Several studies have 
demonstrated that neurogenesis processes 
are involved in the SSRI response using both 
cell cultures [64, 65] and animal models [66-
68]. In humans, it has been demonstrated that 
the hippocampal volume is decreased in pa- 
tients with MDD when compared to controls 
[69, 70]. Patients treated with antidepressants 
have shown an increased hippocampal volume, 
and this increase correlates with a better clini-
cal outcome [71, 72].

ders [42, 43] and in alzheimer 
and dementia [44-46]. Sp- 
ecifically, inflammatory resp- 
onse are involved in the neuro-
progression of MDD. Moreover, 
these inflammatory mediators 
have been investigated as 
putative biomarkers and ther-
apeutic targets for MDD [47, 
48]. Concerning SSRI respo- 
nse, the main SSRI target, the 
serotonin transporter, is regu-
lated by proinflammatory cyto-
kines [49, 50]. Studies in both, 
cell cultures [51] and animal 
models [52-54], showed mod-
ulation of inflammatory media-
tors and immune responses by 
antidepressants. In humans, 
many studies have demon-
strated that immune altera-
tions related with MDD, such 
as levels of some interleu-
kines, cytokines or interferons 

Figure 3. Results of the quantitative real-time PCR (using GADPH or ATCB 
as endogenous controls) and microarray analysis for validation of selected 
genes (NAP1L2 and ANXA1). Each value is the mean ± SD of 32 values; 
duplicate measurements of 16 biological replicates for each condition (pre- 
and post-treatment). The Y-axis shows the fold-change (treated vs. untreat-
ed) from both Q-RT-PCR and microarray.
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Limitations

It is important to treat the results of this study 
with caution, because it presents some una- 
voidable limitations. First, blood was used as a 
proxy for the key tissue of interest in antide-
pressant research, i.e. the brain. Studies that 
explore the degree of gene co-expression in 
blood and brain in humans suggest that there 
is a moderate correlation [73-76]. Nevertheless, 
other sample types, such as post-mortem brain 
tissue, prevent biological measurements from 
being taken before and after treatment [77]. 
Second, no placebo or control group was used. 
Both of these groups would have allowed us 
distinguish the response to antidepressants, 
the response to placebo, and the spontaneous 
improvement of symptoms [78]. Third, the bio-
logical validity of gene co-expression modules 
was not fully explored. Co-expressed genes are 
supposed to be correlated because of common 
biological functions and master regulators, not 
random ones [79]. Four, the sample size did not 
allow us to stratify the sample by different psy-
chiatric illnesses, thereby making it impossible 
to capture differences. Moreover, it meant that 
we had to indicate that these results were 
exploratory. 

Conclusions

Expression changes detected in peripheral 
blood after treatment with fluoxetine in a sam-
ple of naive children and adolescents were 
found to be related to several biological pro-
cesses. The processes related to immune sys-
tem replicated previous findings in the litera-
ture using similar approaches. We identified 
neurogenesis for the first time by measuring 
expression changes in peripheral blood. This 
makes sense from a biological point of view, as 
this is a mechanism proposed to be involved in 
fluoxetine response. Our results identifying sev-
eral biological processes in relation to fluox-
etine treatment in peripheral blood, offering 
new candidate genes for pharmacogenetic 
studies and valuable markers for peripheral 
moderator biomarkers discovery.
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Figure S1. Gene co-expression networks obtained in the WGCNA. Branches in the hierarchical clustering dendro-
grams correspond to modules. Modules of co-expressed genes were assigned colours corresponding to the branch-
es.
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Figure S2. Correlation and significance of module eigengenes (MEs, the first principal component of each module) 
identified in the WGCNA with treatment status (pre- vs. post-treatment).
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Figure S3. Representation of correlation between the gene significance for treatment status and its membership in 
the module. Only significant WGCNA modules are shown.


