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Abstract: Adenosine (ARs) and metabotropic glutamate receptors (mGluRs) are G-protein coupled
receptors (GPCRs) that are modulated in the brain of SAMP8 mice, an animal model of Alzheimer’s
disease (AD). In the present work, it is shown the presence of ARs and mGluRs in blood serum and
derived exosomes from SAMP8 mice as well as its possible modulation by aging and resveratrol (RSV)
consumption. In blood serum, adenosine A1 and A2A receptors remained unaltered from 5 to 7 months
of age. However, an age-related decrease in adenosine level was observed, while 5′-Nucleotidase
activity was not modulated. Regarding the glutamatergic system, it was observed a decrease
in mGluR5 density and glutamate levels in older mice. In addition, dietary RSV supplementation
caused an age-dependent modulation in both adenosinergic and glutamatergic systems. These GPCRs
were also found in blood serum-derived exosomes, which might suggest that these receptors could be
released into circulation via exosomes. Interestingly, changes elicited by age and RSV supplementation
on mGluR5 density, and adenosine and glutamate levels were similar to that detected in whole-brain.
Therefore, we might suggest that the quantification of these receptors, and their corresponding
endogenous ligands, in blood serum could have predictive value for early diagnosis in combination
with other distinctive hallmarks of AD.

Keywords: G-protein coupled receptors; adenosine receptors; metabotropic glutamate receptors;
exosomes; blood serum; resveratrol; Alzheimer’s disease; SAMP8 mice

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease, with around 50 million
people affected. It is expected that by 2050 the incidence of AD will triplicate worldwide [1].
Unfortunately, when AD is diagnosed it is too late to reverse the neuronal death and cognitive decline.
Therefore, it is necessary to find new biomarkers for early diagnosis to get preventive treatment.
In the last years, imaging techniques such as positron emission tomography (PET) have provided
useful information to aid in diagnosis [2], but this information alone appears to be inconclusive.
Extensive studies on biomarkers of AD in cerebrospinal fluid (CSF) have evidenced the presence of
amyloid-β (Aβ) peptide [3,4], Tau as well as phosphorylated Tau (p-Tau) [5,6], and even a potential
association with apolipoprotein E (APOE) ε4 allele [3,7]. However, CSF analysis of AD biomarkers is not
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very useful as a routine tool for early diagnosis of AD as it requires a highly invasive lumbar puncture,
and the results obtained seem to be also inconclusive [8]. In the last decade, the blood-based biomarkers
are getting the attention of researchers due to it is a far-less invasive method [9]. Likewise, it has been
reported the presence in blood of some potential biomarkers ranging from oxidative stress processes,
mitochondrial dysfunction, neuronal injury, and pro-inflammatory cytokines, even Aβ, all of them
distinctive hallmarks in AD [10,11]. However, the quantification of Aβ peptide density in peripheral
blood seems to be highly variable and not useful for blood-based AD diagnosis [12].

Adenosine is a nucleoside widespread in the body that mainly operates through four
adenosine receptors (ARs) and whose levels can be fine-tune regulated by its converting enzyme
5′-Nucleotidase [13]. ARs belong to G-protein coupled receptors (GPCRs) family and have been
classified into A1, A2A, A2B, and A3 [14,15]. In the brain, adenosine is widely known as a modulator of
neurotransmission, displaying a crucial role under physiological and pathological conditions [16,17].
Both A1 and A2A receptors are the most abundant ARs in the central nervous system (CNS), and its role
in neurodegenerative diseases, including AD, has been intensely investigated [17]. It has been reported
that A1 and A2A were altered in the frontal cortex [18], as well as adenosine level and 5′-nucleotidase
activity in several cortical areas from post-mortem human brain of AD patients [19].

Glutamate is the main excitatory neurotransmitter in the CNS, whose action is mediated
through ionotropic and metabotropic receptors [20]. The physiological role of this neurotransmitter is
essential in synaptic transmission, neuronal plasticity, learning, and memory. Nevertheless, excessive
concentration of glutamate may trigger ionotropic receptors activation that leads to excitotoxicity,
neuronal dysfunction, and subsequent neuronal death. Indeed, glutamate-mediated excitotoxicity has
been related to several neurological and neurodegenerative diseases including AD [21]. Interestingly,
metabotropic glutamate 5 receptor (mGluR5), which belongs to the GPCR family, has been postulated
as a potential therapeutic target since it was reported that amyloid-β (Aβ) directly interacts with
mGluR5 [22]. In line with this, the group I mGluRs (mGluR1 and mGluR5) was found to be altered
in the frontal cortex from the post-mortem human brain of AD patients [23].

Resveratrol (RSV) has been considered as an anti-aging molecule with several beneficial properties
for health ranging from cardio- [24], and neuroprotection [25] as well as an antitumoral [26,27] and
immunoregulatory [28] action, among others. Recently, it has been described the modulatory effect of
RSV on adenosinergic [29] and glutamatergic systems [30] in the brain of SAMP8 mice from 5 and
7 months of age.

It is well established that receptors such as GPCRs or ionotropic receptors are mainly located
into the plasma membrane, except for some receptors that are present in intracellular compartments
(e.g., estrogen receptors in the nucleus). However, it has been recently reported the presence of receptors
in circulation. The biological significance of those results remains to be clarified but the authors
reported a potential correlation with some particular diseases [31,32], suggesting a predictive value
in diagnosis.

Now, we show for the first time the presence of ARs and mGluRs, as well as their
corresponding endogenous ligands, in blood serum and derived exosomes in SAMP8 mice.
Moreover, some components from both adenosinergic and glutamatergic systems seem to be strongly
affected by RSV supplementation. Intriguingly, changes in adenosine and glutamate levels, and
mGluR5 density associated with aging detected here mimics those previously reported by our group
in the brain from SAMP8 mice.

2. Materials and Methods

2.1. Animals and Resveratrol Diet

A total of 26 male SAMP8 mice from 5 and 7 months-old (mo) were used for this study.
Mice received a standard diet (2018 Teklad Global 18% Protein Rodent Maintenance Diet, ENVIGO,
Barcelona, Spain) or the same diet supplemented with trans-resveratrol (RSV) (1 g/kg, Mega Resveratrol,
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Candlewood Stars, Inc., Danbury, CT, USA), starting from the weaning or 4 mo for 5 and 7 mo mice,
respectively (Scheme 1). All the mice had food and water ad libitum and were kept in standard
conditions of temperature (22 ± 2 ◦C) and 12:12-h light-dark cycles (300 lux/0 lux). There were no
diet intake related differences (i.e., diet taste preference). There were not significant changes in food
intake between groups. Food intake was routinely controlled, and revealed that, by mean, each animal
eats 5 g of chow by day. Therefore, this RSV supplementation results in a daily dose of 160 mg/kg
(body weight). All experimental procedures involving animals were performed followed by standard
ethical guidelines European Communities Council Directive 86/609/EEC and by the Institutional
Animal Care and Use Committee of the University of Barcelona (670/14/8102, approved at 11/14/2014)
and by Generalitat de Catalunya (10291, approved 1/28/2018). All efforts were made to minimize the
number of mice used and their suffering.
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2.2. Blood Serum Collection

Whole blood serum samples from SAMP8 mice were collected by using 4.4 mL, 75 × 13 mm,
Z-Gel tubes, blood allowed to clot by leaving it undisturbed at room temperature, and finally clot was
removed by centrifugation at 2000× g for 10 min in a refrigerated centrifuge. The supernatant was
collected and stored at −80 ◦C.

2.3. Blood Serum-Derived Exosomes Isolation

Serum-derived exosomes were isolated by using ExoQuick (Ref: EXOQ5A-1, System Biosciences,
Palo Alto, CA, USA). The procedure was carried out by following the manufacturer’s indications.
Serum was centrifuged at 3000× g for 15 min to remove cells and debris and the supernatant was
collected. ExoQuick solution was then mixed with the supernatant and incubated at 4 ◦C for 30 min.
ExoQuick/Serum mixture was centrifuged at 1500× g for 30 min. Pellet was resuspended in saline
solution and stored at −80 ◦C for further experimentation.

2.4. Western Blotting Analysis

For western blotting assays, blood serum samples or isolated exosomes (30 µg of protein) were
mixed with loading buffer containing 0.125 M Tris (pH 6.8), 20% glycerol, 10% β-mercaptoethanol,
4% SDS and 0.002% bromophenol blue, and heated at 65 ◦C for 5 min. Protein was electrophoresed
on a 10% SDS-PAGE gel using a mini-protean system (Bio-Rad, Madrid, Spain) with molecular
weight standards (Bio-Rad). Protein transfer to nitrocellulose membranes was carried out in iBlot
TM Dry Blotting System (Invitrogen, Madrid, Spain). Membranes were washed with PBS-Tween 20,
blocked with PBS containing 5% skimmed milk, and then incubated with the primary antibodies
at 4 ◦C overnight at 1:1000 dilution for anti-A2AR (Abcam, ab79714), anti-A1R (Abcam, ab124780,
Cambridge, UK), anti-mGluR5 (GeneTex, GTX133288, Taiwan, R.O.C.), and anti-CD9 (Santa Cruz
Biotechnology, sc-13118, Dallas, TX, USA). Albumin stained with Ponceau Red was used as a loading
control. After rinsing, the membranes were incubated with the corresponding secondary antibody
(Bio-Rad, GAMPO 170-6516, GARPO 172-1019, Madrid, Spain) at a dilution of 1:5000 in PBS containing
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5% skimmed milk for 1 h. Antigen was visualized using the ECL chemiluminescence detection kit
(Amersham, Madrid, Spain) in a G: Box chamber, and specific bands were quantified by densitometry
using GeneTools software (Syngene, Cambridge, UK).

2.5. 5′-Nucleotidase Activity Assay

5′-Nucleotidase activity was measured as previously reported [33]. Briefly, 30 µg of protein from
blood serum were pre-incubated at 37 ◦C for 10 min in the reaction medium (50 mM Tris-HCl, 5 mM
MgCl2 pH 9). Then, the reaction was initiated by adding AMP at the final concentration 500 µM and
stopped 20 min later by adding 10% trichloroacetic acid. The samples were chilled on ice for 10 min
and then centrifuged at 12,000× g for 4 min at 4 ◦C. The supernatants were used to measure inorganic
phosphate released using KH2PO4 as Pi standard. The nonenzymatic hydrolysis of AMP was corrected
by adding samples after trichloroacetic acid. Incubation times and protein concentration were selected
in order to ensure the linearity of the reactions. All samples were run in duplicate. Enzymatic activity
is expressed as nmol Pi released/min ·mg protein.

2.6. Adenosine Level Quantification by HPLC

Chromatographic analysis was performed with Ultimate 3000 U-HPLC and data peaks were
processed with Chromaleon 7 (ThermoFisher, Madrid, Spain) as previously described [17]. HPLC diode
array was used working at 254 nm wavelength. Purine standards and samples (40 µL) were injected
in C18 column of 4.6 mm × 250 mm, 5 µm particle size. Two solvents were used for gradient elution:
solvent A 20 mM phosphate buffer solution (pH 5.7), and solvent B 100% methanol. The gradient was
95% (11 min), 80% (9 min), and 95% (2 min) in solvent A. The total run time was 22 min with a constant
flow rate of 0.8 mL/min at 25 ◦C. The retention time for adenosine was 15.5 min. Adenosine level
was obtained by interpolation from the standard curve. The standard curves were obtained by using
five concentrations of adenosine ranging from 0.1–500 µM. Data were then normalized to the protein
concentration of each analyzed blood serum sample.

2.7. Glutamate Level Quantification

The total glutamate level was quantified as indicated in the manufacturer’s protocol
(Molecular Probes Ref. A12221). Briefly, 50 µL of the diluted samples were mixed into 96-black
well plate with 50 µL of reaction mix containing Amplex Red, horseradish peroxidase, L-alanine and
L-glutamate-pyruvate transaminase and L-glutamate oxidase. Fluorescence was measured in kinetic
mode for 30 min. Data were then interpolated to a standard curve and normalized to the amount of
protein. Excitation/emission was detected at Ex/Em = 530/590 nm.

2.8. Protein Quantification

Total protein was quantified by using the Lowry method.

2.9. Statistical and Data Analysis

Data are means ± SEM. Statistical analysis was according to Student’s t-test. Differences between
mean values were considered statistically significant at p < 0.05. GraphPad Prism 6.0 program was
used for statistical and data analysis (GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Adenosine A1 and A2A Receptors Modulation in Blood Serum

Adenosine A1 and A2A receptors were detected in serum from SAMP8 mice. As shown in Figure 1,
there is not a significant difference in the A1 receptor level between 5 and 7 mo mice (Figure 1a).
However, RSV treatment caused a significant decrease in the density of this receptor in 5 mo mice
(Figure 1b), whereas no changes were detected in RSV-treated 7 mo mice when compared with their
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corresponding untreated mice (Figure 1c). Concerning A2A receptors, no changes on the level of these
receptors were observed either associated with age (Figure 2a) or in 5 mo RSV-treated mice (Figure 2b),
but a higher level of A2A receptors was detected in RSV-treated 7 mo mice when compared with their
corresponding control (Figure 2c).
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3.2. Adenosine Level and Its Converting Enzyme in Blood Serum 

Figure 1. Adenosine A1 receptors presence and modulation in serum from SAMP8 mice. Isolated serum
from SAMP8 mice was used to detect and quantify the adenosine A1 receptor (A1R) by Western blotting.
(a) Level of A1R in control mice of different ages (5 and 7 months). (b) Effect on A1R levels after RSV
treatment in 5 months-old mice. (c) Effect on A1R levels after RSV treatment in 7 months-old mice.
Data are the mean ± SEM of five to six different samples. Albumin was used as a loading control and
visualized by Ponceau red staining. * p < 0.05 significantly different from the corresponding control,
according to the Student’s t-test.
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Figure 2. Adenosine A2A receptors presence and modulation in serum from SAMP8 mice. Isolated serum
from SAMP8 mice was used to detect and quantify the adenosine A2A receptor (A2AR) by Western
blotting. (a) Level of A2AR in control mice of different ages (5 and 7 months). (b) Effect on A2AR levels
after RSV treatment in 5 month-old mice. (c) Effect on A2AR levels after RSV treatment in 7 month-old
mice. Data are mean ± SEM of five different samples. Albumin was used as a loading control and
visualized by Ponceau red staining. * p < 0.05 significantly different from the corresponding control,
according to the Student’s t-test.

3.2. Adenosine Level and Its Converting Enzyme in Blood Serum

We next analyzed adenosine level and the activity of its converting enzyme, 5′-nucleotidase.
Adenosine levels were found to be strongly decreased by age, as shown in Figure 3a.
However, an age-dependent change on this nucleoside level was observed after RSV treatment.
Accordingly, a significant decrease and increase in adenosine levels were detected in 5 and 7 mo
RSV-treated mice, respectively, when compared to their age-matched controls. 5′-Nucleotidase activity
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(Figure 3b) did not change between 5 and 7 mo control mice, but it was significantly reduced in 5 mo
mice when treated with RSV. However, this reduction was not detected in 7 mo RSV-treated mice.
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Figure 3. Adenosine levels and 5′-nucleotidase activity in serum from SAMP8 mice. Isolated serum
from SAMP8 mice was used to measure adenosine level and its converting enzyme. (a) Adenosine
levels and (b) 5′-Nucleotidase activity were quantified as described in Methods. Data are mean ± SEM of
five-eight different samples. ** p < 0.01 and *** p < 0.001 significantly different from their corresponding
controls, and +++ p < 0.001 significantly different from 5 months old untreated mice, according to
Student’s t-test.

3.3. mGlu5 Receptors and Glutamate Level Modulation in Blood Serum

Similarly to ARs, some components of the metabotropic glutamatergic system were detected
in blood serum. Regarding mGluR5, a significant reduction associated with aging was observed
(Figure 4a). Nevertheless, RSV treatment did not cause any effect on mGluR5 receptor density either
5 mo (Figure 4b) or 7 mo mice (Figure 4c). On the other hand, the glutamate level was strongly decreased
by age. Yet, RSV treatment induced an age-dependent effect. A lower glutamate level was detected
in 5 mo RSV-treated mice, while higher levels were found in 7 mo RSV-treated mice when compared to
their corresponding controls (Figure 5). Albumin level, which has been used as a gel loading control,
was quantified in the different conditions studied. The level of this protein was unchanged by age or
RSV-treatment (Figure S1).
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Figure 4. Metabotropic glutamate 5 receptors presence and modulation by RSV in serum from SAMP8
mice. Isolated serum from SAMP8 mice was used to detect and quantify the metabotropic glutamate
5 receptors (mGluR5) by Western blotting. (a) Level of mGluR5 in control mice of different ages (5 and
7 months). (b) Effect on mGluR5 levels after RSV treatment in 5 month-old mice. (c) Effect on mGluR5

levels after RSV treatment in 7 month-old mice. Data are mean ± SEM of four to six different samples.
Albumin was used as a loading control and visualized by Ponceau red staining. * p < 0.05 significantly
different from the corresponding control, according to the Student’s t-test.
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SAMP8 mice. Serum-derived exosomes from SAMP8 mice were isolated following the manufacturer’s
indications, and different proteins were detected by Western-blotting as described in “Methods”.
(a) Representative gel bands of mGluR5, A2AR, A1R, and CD9 presence in exosomes. (b) Level of
mGluR5, A2AR, A1R, in control (C) and resveratrol supplemented (RSV) mice of different ages (5 and
7 months). Data are mean ± SEM of five to eight different samples. CD9 was used as a loading control.
* p < 0.05, and ** p < 0.01 significantly different from the corresponding control, according to the
Student’s t-test.
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4. Discussion

Results presented herein show, for the first time, the presence of ARs and mGluRs in blood serum
and exosomes, as well as their modulation by aging and RSV supplementation. Furthermore, adenosine
and glutamate levels were also modulated by age and RSV supplementation.

SAMP8 mice have been considered an aging and an AD model. Accordingly, it has been reported
similarities to the pathophysiology of aging in the human brain and the early cognitive decline [34]
together with other distinctive hallmarks of AD such as Aβ overexpression, upregulation of Presenilin-2
and high levels of p-Tau in the hippocampus, but lower expression of Apolipoprotein-E as compared to
their respective control mice [35]. The lifespan for SAMP8 is around 10 months of age [36]. According to
the half lifespan of a common mice strain and the maturational rates mouse vs. human, 2 mo represents
a young human, and 4 mo a middle-aged individual, when our RSV treatment starts. We evaluated
SAMP8 mice at 5 (middle aged, 38–47 years) and 7 months (old individual, 56–69 years) [37].

The modulation of ARs and mGluRs has been reported in different brain areas of AD patients [18,23].
In the whole-brain from SAMP8 mice, we have reported an age-related downregulation and desensitization
of the A1 receptor whereas A2A was found to be fully functional [29,38]. Also mGluR5 significantly
decreased with aging [30]. These previous data suggest SAMP8 mice as a suitable model for ARs and
mGluRs related research on neurodegenerative diseases.

Now, our results indicate that A1, A2A, and mGlu5 receptors are present in blood serum
from SAMP8 mice. These receptors could be released into circulation likely via exosomes since
they were detected in blood serum-derived exosome as well as CD9, a tetraspanin widely used as
exosome marker [39–41]. The presence of different GPCRs in blood serum has been evidenced before.
Corticotropin releasing-factor receptors I/II (CRF receptor I/II) were reported as circulating receptors
in extracellular vesicles (EVs) from blood serum [32]. Additionally, the purinergic receptor P2 × 7 was
found as EVs cargo in human blood serum. Although P2 × 7 receptors were identified as a full-length
molecule, some bands with lower molecular weight were also detected. In fact, the authors suggested
that proteolytic cleavage could not be excluded from shedding into the circulation of this receptor [31].
We detected circulating A1R at 35 kDa when in brain tissue it was detected at 37 kDa. This discrete but
lower molecular weight of circulating receptors found in serum when compared to the brain receptors
could be related to a proteolytic cleavage during the releasing process. However, brain A2AR can
be detected at 45 kDa, but circulating A2AR was detected at 50 kDa. The higher molecular weight
observed in this receptor could be due to glycosylation or related-mechanism likely to facilitate their
transport in blood serum. In accordance, circulating CRF receptor I/II were also detected at a discrete
but higher molecular weight in human blood serum [32]. Regarding mGluR5, it was found a band at
125–130 kDa, which is in line with the predicted weight estimated by the manufacturer’s indications,
suggesting that this receptor might be released as a full-length molecule.

Some authors found β-actin in plasma and not significant changes in its density were observed
in major depressive disorder (MDD), thus allowing their use as a loading control for plasma-based
Western blotting [42]. However, we found some density changes associated with age in SAMP8 serum,
as previously reported in human skeletal muscle cells [43]. Therefore, we instead used albumin,
the most abundant protein in serum, as a loading control. It has been postulated a connection between
dementia and blood-brain barrier (BBB) dysfunction [44], which could lead to altered CSF/serum
albumin index due to the BBB disruption [45]. Here, we did not found changes in albumin density
either associated with age or RSV supplementation (Supplemental Figure S1).

It is widely known that both adenosine A1 and A2A receptors [46] and their endogenous ligand [47]
are unevenly distributed throughout the healthy human brain. Adenosine A1 receptor is the most
abundant subtype within the CNS except for the striatum, putamen, and basal ganglia, where the A2A

receptor is highly abundant [48]. This uneven expression of ARs within the CNS is accompanied by
differential ARs modulation in each brain area of AD patients. A widespread lower level of A1 receptors
in AD patients as compared to healthy individuals was observed by PET [49]. Similarly, an age-related
loss of this receptor in the whole-brain of SAMP8 mice was also described [29,38]. In contrast,
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an increased density of A1 receptors was detected in the frontal cortex from the post-mortem human
brain of AD patients [18]. On the other hand, it was not found a clear alteration on the A2A receptors
density detected by PET during aging in the human brain [50]. These results are in line with a previous
work where no changes were found on the A2A receptors density in plasma membrane from the
whole-brain in SAMP8 mice during aging [29]. However, it has been reported a significantly increased
density of A2A receptors in the limbic cortex but not in the striatum in aged rats [51], as well as
an up-regulation of A2A receptors in the frontal cortex from post-mortem brain of AD patients [18].

Regarding adenosine levels, it has been described a different pattern of distribution and modulation
of this nucleoside together with the activity of its converting enzymes in several areas from the human
brain cortex of AD, even at the early stages of the disease, as compared to healthy controls [19]. Due to
area, age, and gender dependence of the nucleoside system in the brain [52,53], it is difficult to conclude
how adenosine level is modulated in the whole-brain from AD patients. The lack of data about a global
change in adenosine level in the whole brain in AD avoids its possible correlation with the increased
adenosine levels reported in serum [54]. However, we found an age-related decrease of adenosine
in SAMP8 serum, associated with a reduced level in the whole-brain of these mice [29]. In humans,
the quantification of plasma adenosine concentration in 1141 patients revealed that advancing age may
be associated with lower adenosine levels [55]. The reported gradual increase in the activity of serum
adenosine deaminase could be a contributing factor [56].

An interesting but less investigated enzyme in AD is the 5′-Nucleotidase activity. A previous
study demonstrated a significant decrease in this enzymatic activity in the frontal cortex of AD patients
as compared to age-matched healthy controls [19]. This activity was also decreased in the whole-brain
of aged SAMP8 mice [29]. However, the absence of changes related to age on the 5′-Nucleotidase
activity in blood serum, besides a dramatically lower activity in serum than in the brain [29], makes it
difficult to establish an association between serum and brain enzymatic activities.

The pathological role of mGluR5 in the CNS has been the focus of intense research since a direct
interaction of Aβ and mGluR5 was reported [22,57]. mGluR5 plays a crucial role in the cognitive decline,
and it could be involved in the pathogenesis and progression of AD [58,59]. However, little is known
about the modulation of this receptor in the brain from AD patients. Previous work reported an absence
of changes in the mGlu5 density in the frontal cortex from post-mortem samples of AD patients, despite
an impaired functionality of group I mGluRs observed even at early stages [23]. However, an in vivo
study by PET revealed a downregulation of mGluR5 caused by Aβ in the limbic system in the 5xFAD
mouse model as compared to wild type [60]. We have recently described a significant age–associated
decrease in mGluR5 density in the whole-brain of SAMP8 mice [30]. Interestingly, in the present work,
a significant and robust reduction in mGluR5 density was also detected in blood serum and exosomal
fraction from 5 to 7-month-old.

It has been reported that synaptic glutamate level shows a tendency to increase in AD [20,61],
which can lead to excitotoxicity and neuronal death [21]. Other authors revealed a decreased level of
glutamine in serum from AD patients, suggesting that glutamate metabolism could be altered [54].

An age-related reduction in glutamate levels in the whole-brain of SAMP8 mice from 5 to 7 mo
mice was reported [30], which is in agreement with the decrease in glutamate content in the cerebral
cortex and hippocampus from SAMP8 mice monitored from 2 to 14 mo animals [62]. Interestingly,
a similar and significant reduction of glutamate levels is now reported in serum from 5 to 7 mo
mice. In healthy humans, serum glutamate level was not significantly different between 38–47 and
56–69 years old [63], which is equivalent to 5 and 7 mo SAMP8 mice. Interestingly, serum levels of
glutamate progressively decreased from healthy subjects over mild cognitive impairment to AD [64].
Therefore, the decrease in serum glutamate reported here could represent the progression of the
disease from 5 to 7 mo mice in this model of AD. Brain-to-blood efflux of glutamate occurs through the
blood-brain-barrier [65]. Thus, serum glutamate levels is the result of glutamate originated in blood
cells and peripheral organs, and its efflux from the brain [66].
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Additionally, RSV supplementation caused an age-dependent modulation in serum glutamate
levels, which is in line with the neuroprotective effect exhibited by this polyphenol. In C57BL/6J
mice, oral administration of RSV results in a maximal plasma concentration (Cmax) of ~12 µM for
100 mg/kg b.w. [67], and ~32 µM for 240 mg/kg b.w. [68]. In 5-month-old SAMP8 mice, we have
detected a serum RSV concentration of 0.044 µM after oral administration of 120 mg/kg b.w. for 8 weeks.
This RSV level is not a Cmax value but the concentration found in serum when mice were sacrificed [69].
Taking into account that RSV acts as a non-selective ARs agonist [70], and these receptors can fine-tune
the physiological activity of mGluRs [71], it is conceivable that the in vivo modulation of ARs in
the brain from SAMP8 mice [29] might be responsible, at least in part, for the modulation of the
glutamatergic system [30].

One interesting finding is the similarity of changes on the levels of ARs and mGluRs and their
endogenous ligands (i.e., adenosine and glutamate) when comparing brain and serum derived results.
Table 1 summarizes data obtained in the present work (i.e., blood serum) with that previously reported
by our group concerning the adenosinergic [29] and the glutamatergic [30] signaling in the whole-brain
of SAMP8 mice. Thus, adenosine, glutamate, and mGluR5 are significantly and similarly decreased
in serum and whole-brain during aging and in RSV treated mice of 5 months of age. A2AR levels
seem to be preserved in both serum and whole brain during aging or RSV supplementation. However,
changes in adenosine A1 receptors are more erratic, and it cannot be established a clear correlation
between serum and whole brain values. This correspondence between serum and whole brain obtained
values could be a promising discovery in the development of new and feasible biomarkers in AD.

Table 1. Summary of changes detected in blood serum and whole-brain of SAMP8 mice.

AGING RSV Supplementation

(from 5 to 7 Month-Old) 5 Month-Old 7 Month-Old

Parameter Serum Brain Serum Brain Serum Brain

A1R ↓ 22%, ns ↓ 64%, ** ↓ 26%, # ↑ 46%, ## = ↑ 309%, ###
A2AR = = = = ↑ 41%, # =

mGluR5 ↓ 58%, * ↓ 44%, *** = = = =
Adenosine ↓ 57%, *** ↓ 59%, ** ↓ 52%, ## ↓ 39%, # ↑ 38%, ## =
Glutamate ↓ 29%, *** ↓ 23%, * ↓ 29%, # ↓ 27%, # ↑ 31%, ## ↓ 14%, #

The percentage of increase (↑) or decrease (↓) detected on each parameter when comparing 7- versus 5-month-old
control animals (Aging) or RSV treated versus corresponding control animals (RSV supplementation) on blood
serum and whole-brain of SAMP8 mice. Similar changes are indicated in bold. ns, not significant. * p < 0.05,
** p < 0.01, *** p < 0.001 significantly different from 5 months-old control animals. # p < 0.05, ## p < 0.01, ### p < 0.001
significantly different from corresponding control animals.

To date, many studies have aimed to decipher whether distinctive hallmarks of AD present
in serum such as oxidative stress, mitochondrial dysfunction, high expression of pro-inflammatory
cytokines [10], Aβ deposition [11] and p-Tau [72,73] have a predictive value in early diagnosis of
AD [9]. Unfortunately, the weak correlation between CSF and plasma Tau together with the wide
variability of Aβ levels reported in blood confer to these main hallmarks of AD a poor predictive
and diagnosis value, suggesting the need for more accurate AD biomarkers. Fortunately, some other
molecules present in peripheral blood such as neurotransmitter (e.g., glutamate, adenosine) [54] and
related-receptors, cholesterol [74] or iron [75] that have been reported to be altered in AD could be used
in combination with classical markers as potential blood-based biomarkers to aid in early diagnosis of
AD in the future. In addition, the analysis of ARs and mGluRs in blood serum could be the basis of
new biomarkers development in the context of AD.

Western blotting quantification of circulating receptors could be impractical for future clinical
applications since this technique does not provide an absolute but relative quantification. Methodologies
such as radioligand binding assay could be the ideal candidate to quantify circulating receptors in blood
serum due to its high sensibility and absolute quantification. Nevertheless, we unsuccessfully tried to
quantify A1R, A2AR, and mGluR5 by using this method. Probably, the high abundance of albumin,
which represents about 50% of the total protein content in blood serum samples, was interfering in
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our assays. Transport of molecules is one of the main biological functions of albumin. In agreement,
we observed a radioligand uptake by albumin alone, which interfered with the radioligand binding
assay leading to not reliable results.

The biological significance of the presence of plasma membrane-receptors as extracellular vesicle
cargo in blood serum has not been elucidated yet. This phenomenon could be involved in cell-to-cell
communication and the regulation of GPCRs [76]. In fact, it has been reported in vitro that A1R, A2AR,
and A2BR participate in modulating exosome production by cells expressing these receptors [77].
Despite the well-known molecular mechanisms by which GPCRs are desensitized and internalized
in a cell, there is a lack of knowledge on how these receptors can be released into circulation or what
types of stimuli may trigger their secretion. Our study opens new possibilities on how GPCRs might
be modulated not only through desensitization and internalization but also by secreting receptors into
circulation and later uptake by other cells, in a process where exosomes or extracellular vesicles seem
to have a role. Future studies are required to delve into the biological significance of these findings.

5. Conclusions

Our data show: (i) evidence of the presence in serum and exosomes of some GPCRs such as
A1R, A2AR, and mGluR5, (ii) its modulation by aging and resveratrol, and (iii) a potential association
between brain and serum receptors levels. Even though further investigations are required to find
out whether this association can also be found in humans, or to assess the origin of these receptors
(e.g., are they brain-derived?), we suggest that the detection of these receptors in blood serum and
exosomes would merit attention in the research of early diagnosis of AD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1628/s1,
Scheme S1: Resveratrol treatment schedule. Figure S1: Ponceau red staining of electrophoresed proteins.
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