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Abstract 

Background: Chronic inflammation is a risk factor for colorectal cancer (CRC). Circulating C-reactive protein 

(CRP) is also moderately associated with CRC risk. However, observational studies are susceptible to 

unmeasured confounding or reverse causality. Using genetic risk variants as instrumental variables, we 

investigated the causal relationship between genetically elevated CRP concentration and CRC risk using a 

Mendelian randomization approach. 

Methods: Individual-level data from 30 480 CRC cases and 22 844 controls from 33 participating studies in three 

international consortia were used: the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), 

the Colorectal Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). As 

instrumental variables, we included 19 SNPs previously associated with CRP concentration. The SNP-CRC 

associations were estimated using a logistic regression model adjusted for age, sex, principal components and 

genotyping phases. An inverse-variance weighted method was applied to estimate the causal effect of CRP on 

CRC risk. 

Results: Among the 19 CRP-associated SNPs, rs1260326 and rs6734238 were significantly associated with 

CRC risk (p=7.5×10-4, and p=0.003, respectively). A genetically predicted one-unit increase in the log-

transformed CRP concentrations (mg/L) was not associated with increased risk of CRC (OR=1.04; 95% CI: 0.97-

1.12; p=0.256). No evidence of association was observed in subgroup analyses stratified by other risk factors. 

Conclusions: Albeit adequate statistical power to detect moderate association, we found genetically elevated 

CRP concentration was not associated with increased risk of CRC among individuals of European ancestry. Our 

findings suggested that circulating CRP is unlikely to be a causal factor in CRC development. 
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Key Messages: 

• Meta-analyses of observation studies reported a moderate association between elevated C-reactive 

protein (CRP) concentration and colorectal cancer (CRC) risk; however, whether the association is 

causal is unclear. 

• In this largest study up to date, we had adequate statistical power to assess the causal relationship 

between circulating CRP concentration and CRC risk, using Mendelian randomization analysis. 

• We found that genetically elevated CRP concentration was not associated with increased risk of CRC 

among individuals of European ancestry, suggesting CRP is unlikely to play a causal role in CRC 

development. 

• No evidence of genetically elevated CRP-CRC association was observed in subgroup analyses 

stratified by other risk factors. 

 

  



Introduction 

Chronic inflammation plays a role in the pathogenesis of colorectal cancer (CRC) (1). Meta-analyses of 

observational studies have shown that a one unit (mg/L) increase in log-transformed high-sensitivity C-reactive 

protein (CRP), a common biomarker for low-grade chronic inflammation, was associated with 12% higher risk of 

CRC (2, 3). The association was stronger among men than women, and was stronger in colon cancer than rectal 

cancer. Although observational studies support a role for CRP in CRC development, they are susceptible to 

potential bias by unmeasured confounders, such as older age (4), adiposity (5), tobacco smoking (6, 7), lower 

physical activity (8), and lower use of NSAIDs (9). Observational studies are also susceptible to reverse causality, 

in which elevated CRP concentrations are due to immune response and inflammation induced by premalignant 

or preclinical tumor growth (10-12). 

Mendelian randomization analysis, by taking advantage of the random assortment of genetic alleles during 

gamete formation, is less susceptible to confounding or reverse causality (13). Because genetic variants are 

distributed randomly at conception, they are generally unrelated to environmental risk factors, and temporally 

precede both risk factors and the disease process. The heritability of CRP was estimated to range between 25-

40%, suggesting a role of genetic factors in baseline CRP concentrations (14). Several studies have used CRP-

related genetic variants as a proxy of lifelong CRP concentrations on CRC risk but reported inconsistent findings. 

A nested case-control study found genetically elevated CRP concentration, based on seven SNPs in the CRP 

gene, was associated with higher CRC risk (15). Another case-control study found a tagSNP in the CRP gene 

to be associated with higher risk of colon cancer, and another SNP associated with lower risk of rectal cancer 

(16). Other studies using SNPs within the CRP gene did not find associations between CRP and CRC risk (17-

19). In a prospective cohort study, Prizment et al (20) reported an association between a weighted CRP genetic 

risk score, based on 20 CRP-associated SNPs identified in a meta-analysis of GWAS studies (14), and CRC 

risk, corroborating a causal role for CRP in colorectal carcinogenesis. However, the cohort had limited statistical 

power due to relatively small sample size (7,603 participants with 205 CRC cases). In addition, most previous 

studies assumed population homogeneity and did not adjust for population stratification, which could bias the 

results. Furthermore, other SNPs recently found to be associated with CRP concentration were not included (21). 

Findings from previous human genetic studies have been inconsistent and have had insufficient power to assess 

a moderate causal relationship between CRP and CRC risk. In this study, we aimed to investigate whether CRP 



plays a causal role in CRC risk using genetic variants that were previously reported to be significantly associated 

with circulating CRP concentration as instrumental variables (IVs), using the largest study for such analysis to 

date. 

Methods 

Study Participants 

We used epidemiological and genetic data from 30 480 CRC cases and 22 844 controls from 33 participating 

studies in three international CRC consortia: the Genetics and Epidemiology of Colorectal Cancer Consortium 

(GECCO), the Colorectal Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). 

Full details have been published previously (22, 23), and the demographic characteristics of study participants 

are summarized in Supplemental Table 1. In brief, 10 644 cases and 10 729 controls were included from GECCO 

from nested case-control studies in 8 cohorts and 6 case-control studies. Further, 19 836 cases and 12 115 

controls were included from CORECT from nested case-control studies in 7 cohorts, 9 case-control studies and 

3 case-series studies. Nested case-control studies from CCFR participated as individual studies in GECCO 

and/or CORECT. There was no overlap of participants between studies. 

Participants with non-European ancestry were excluded. Informed consent was given by all participants, and 

studies were approved by their respective Institutional Review Boards. 

Assessment of Outcomes and Environmental Variables 

Invasive CRC cases (International Classification of Disease for Oncology Code 18.0-18.9, 19.9 and 20.9) were 

identified by medical record, pathology report, death certificate or record linkage. Age at diagnosis, cancer 

subsites and stages were obtained from medical records and cancer registries. Patients with Lynch Syndrome 

and other syndromic causes were excluded. Controls were selected based on study-specific eligibility and 

matching criteria. Case-series studies only contributed cases to this study. 

Demographic and environmental factors were self-reported at either in-person interview or via structured self-

administered questionnaires, based on each study. A multistep, iterative data harmonization procedure was 

applied, and was described previously (22). Age was defined as age at CRC diagnosis for cases, or age at 

selection for controls. Body mass index (BMI; kg/m2) was categorized as normal (18.5-24.9), overweight (25-

29.9), and obese (≥30). Participants with BMI<18.5 were excluded. Smoking status was defined as never and 



ever smokers. Regular use of any NSAIDs, aspirin, or non-aspirin NSAIDs was defined as binary (yes/no). Family 

history of CRC was defined as CRC occurring in any first degree relative. History of endoscopy included both 

sigmoidoscopy and colonoscopy. 

Genotyping  

Details on genotyping and imputation have been reported previously (24). In brief, DNA was mostly obtained 

from blood samples, with some from buccal swabs. Several platforms (the Illumina HumanHap 300k, 240k, 550k 

and OncoArray 610k BeadChip Array system, or Affymetrix platform) were used for genotyping (25, 26). Samples 

were excluded on the basis of sample call rate ≤97%, heterozygosity, unexpected duplicates or relative pairs, 

gender discrepancy and principal component analysis (PCA) outlier of HapMap2 CEU cluster. SNPs were 

excluded on the basis of inconsistency across platforms, call rate <98%, and out of Hardy-Weinberg equilibrium 

(HWE) in controls (p<0.0001) (25). SNPs were imputed from the 1000 Genome Project reference panel if not 

directly genotyped, and restricted by imputation accuracy (R2>0.3). 

Instrumental Variables 

All the selected SNPs came from two resources: 18 SNPs that had been previously used as IVs (14) and 9 SNPs 

from more recent findings among participants of European ancestry (21) (summarized in Table 1). SNPs in 

association with CRP concentration at the genome-wide significance threshold of p<5×10-8 were selected. We 

checked independence between the 27 selected SNPs using linkage disequilibrium (LD) analysis. If two SNPs 

were in LD (R2>0.2), the SNP with the smaller p-value was included in the final SNP set, and the other excluded. 

We also conducted a GWAS-catalog search for SNPs that were associated with CRP (p<5×10-8) among 

participants of European ancestry, had reported the estimated effect sizes and standard errors, and were not in 

LD with the selected SNPs. No additional SNPs were identified. Altogether, 19 SNPs were included in the final 

IV set. The allele associated with higher CRP level was coded as risk allele, and the other allele was coded as 

baseline allele for all SNPs. 

Three basic assumptions are made in Mendelian randomization: (i) the genetic marker is robustly associated 

with the exposure, (ii) the genetic marker is independent of the outcome, given the exposure and confounders 

of the exposure-outcome association (i.e. the genetic marker has no pleiotropic effect through pathways other 

than the exposure), and (iii) the genetic marker is independent of factors that confound the exposure-outcome 



relation (27). The first assumption was met since we only included SNPs that were significantly associated with 

CRP concentrations in GWAS. The second assumption could not be tested directly because CRP measures 

were not available in our study, but sensitivity analyses were performed for global pleiotropic effects. The third 

assumption was tested by evaluating the association between SNPs and each potential confounder of the CRP-

CRC association among controls. No evidence of violation of this assumption was observed. In addition, if 

multiple IVs are combined into a single estimate by the inverse-variance weighted (IVW) method, a further 

assumption is made that the variants provide independent information (i.e. not in LD) (28). Furthermore, the 

statistical association between the risk factor and a valid IV should be strong enough to provide unbiased and 

precise estimates in finite samples (29). The estimated CRP variance explained by the selected SNPs (R2) was 

~5%. Given the sample size of 53 325 subjects and 19 instruments in our study, the estimated F-statistics was 

147.66 (29-31), suggesting strong instruments for the Mendelian randomization analysis.  

Statistical Analysis 

We performed the Mendelian randomization analysis to estimate the causal effect of CRP on CRC risk using 

inverse-variance weighted (IVW) method, by summarizing SNP-CRP associations from literature and estimating 

SNP-CRC associations in our study population. Assuming all the prior assumptions previously stated are met, 

genetic variant 𝑘, (𝑘 = 1…𝐾) is associated with an observed 𝑋𝑘 mean change in the risk factor per additional 

variant allele with standard error 𝜎𝑋𝑘 and an observed 𝑌𝑘 log-odds change in the outcome per allele with standard 

error 𝜎𝑌𝑘. Assuming additive effects of SNPs on CRP concentrations, an IVW estimate of the causal effect 

combining the ratio estimates and standard errors of single SNPs can be computed as (28): 

𝛽̂𝐼𝑉𝑊 =
∑ 𝑋𝑘𝑌𝑘𝑘 𝜎𝑌𝑘

−2

∑ 𝑋𝑘
2

𝑘 𝜎𝑌𝑘
−2  

and the approximate standard error will be 𝑠𝑒(𝛽̂𝐼𝑉𝑊) = √
1

∑ 𝑋𝑘
2

𝑘 𝜎𝑌𝑘
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The mean change in log-transformed CRP concentration (mg/L) per variant allele and its standard error (𝑋𝑘 and 

𝜎𝑋𝑘) were obtained from prior studies (14, 21), and the effect size of genetic variants on CRC risk were estimated 

within our study populations. We used logistic regression models to estimate the association between each 

genetic variant and CRC risk in GECCO and CORECT separately, adjusting for age, sex, genotyping phase, 

and principle components. The estimates from GECCO and CORECT were then combined into a summary 



causal estimate using fixed-effect meta-analysis if there is no heterogeneity. Random-effect meta-analysis would 

be used otherwise. 

Exploratory stratified analyses were carried out using an a priori list of CRC risk factors and the same regression 

models, including sex, BMI, smoking, NSAID use, aspirin use, family history of CRC and history of endoscopy. 

In addition, we evaluated differences by cancer subsites and stages. We also performed sensitivity analysis 

using Egger regression (32) for global pleiotropic effect. 

Power Calculation 

Based on the methods described by Burgess (33), our sample size of 30 480 CRC cases and 22 844 controls 

has an estimated 99.4% power to detect the previously estimated causal effect size of CRP (OR=1.19) (20) at a 

significance level of 0.05, assuming the SNPs explain a total of 5% variance of CRP based on previous estimates 

(14). Alternatively, we have 82.5% power to detect a minimal odds ratio of 1.12 (2, 3) at a significance level of 

0.05, given our sample size.  

Results 

The mean age of participants was 63.4 years (SD=10), and 50.7% were male (Supplemental Table 1). A total of 

27 SNPs were identified and their associations with CRP concentration are summarized in Table 1. The 

imputation accuracy (R2) ranged between 0.84 and 1.0. The estimated associations between the 19 SNPs and 

CRC risk are shown in Figure 1. In pooled analysis combining GECCO and CORECT estimates, rs1260326 (T/C) 

was associated with higher risk of CRC (p=7.5×10-4), and rs6734238 (G/A) was associated with lower CRC risk 

(p=0.003). No other SNP was statistically significantly associated with CRC. 

Using the 19 SNPs as IVs, we found that one unit increase in the log-transformed genetically elevated CRP 

concentration (mg/L) was associated with a 4% higher risk of CRC (OR=1.04; 95% CI: 0.97, 1.12; Table 2); 

however, the association was not statistically significant (p=0.256). No heterogeneity was observed between the 

two consortia (p-heterogeneity=0.509). 

Genetically elevated CRP concentration was not associated with CRC risk in any of the subgroups defined by 

sex, BMI, smoking, NSAID use, aspirin use, family history of CRC or history of endoscopy (Table 3). The strength 

of associations between genetically elevated CRP concentration and CRC risk was similar between subgroups. 



We also stratified by CRC subsites and stages. Genetically elevated CRP concentration was not associated with 

any subsite of CRC. There was a association between genetically elevated CRP concentration (mg/L) and distant 

CRC (OR=1.19; 95% CI: 1.00, 1.42; p=0.049), but not for local or regional CRC. 

In sensitivity analysis, we observed no association between genetically elevated CRP and CRC risk using the 

two SNPs from the CRP gene only. Our results persisted using other Mendelian randomization methods 

(Supplemental Figure 1 and Supplemental Table 2). We also tested for global pleiotropic effect using Egger 

regression (Figure 2). None of the intercepts was significant (p>0.05), suggesting no global violation of pleiotropic 

assumptions. 

Discussion 

In this large multi-consortium study, we did not find evidence for an association between genetically elevated 

CRP concentrations and CRC risk among participants of European ancestry. No association was found in 

subgroups stratified by CRC risk factors. Our results suggest that circulating CRP does not play a causal role in 

colorectal carcinogenesis. 

Our estimate of the CRP-CRC association is smaller than the 12% found in meta-analyses of prospective 

observational studies that used measured CRP concentrations (2, 3), suggesting that the association between 

measured CRP concentrations and CRC risk may be partially due to confounding. Our findings are different from 

the only previous study that used GWAS-identified SNPs as IVs for assessing the relationship between CRP 

and CRC risk (20). Prizment et al found a statistically significant 19% higher risk in CRC with a one unit (mg/L) 

increment of the log-transformed CRP concentration, while our analysis suggested only a modest non-significant 

effect size of 4%. The sample size of the previous study was small, with 205 CRC cases diagnosed in 7,603 

participants. We used a much larger sample size of 30 480 CRC cases and 22 844 controls for adequate 

statistical power to test for moderate causal association. In addition, two SNPs that were not statistically 

significantly associated with CRP concentrations in GWAS (p-value > 5×10-8) (14) were included in previous 

analysis (20). In comparison, we did not include these two SNPs, but rather included one additional SNP that 

was recently found to be associated with CRP concentration in a large consortium (p-value < 5×10-8) (21) and 

was independent of the previous 18 SNPs. Lastly, there is possibility that the SNPs associated with CRP were 



also associated with other inflammation-related traits, and led to a spurious positive association between CRP 

and CRC in the previous analyses.  

Our findings are consistent with most prospective cohort studies that reported no causality using multiple SNPs 

as IVs (17-19). However, a nested case-control study found a two-fold higher genetically determined CRP 

concentration (mg/L), based on seven SNPs in the CRP gene, was associated with higher CRC risk (15). But 

the effect of genetically elevated CRP was not significantly attenuated after adjusting for measured CRP 

concentrations, indicating a potentially pleiotropic effect of selected SNPs which could lead to biased estimates 

of the SNP-CRP relationship in the first stage. 

Chronic inflammation is a key predisposing factor in colorectal neoplasia (1). It has been suggested that chronic 

inflammation creates a microenvironment that promotes inflammatory cells to release reactive oxygen and 

nitrogen species which could lead to malignant DNA alteration (34), and increase the production of inflammatory 

cytokines that promote tumor growth (35). As a biomarker of low-grade inflammation, CRP has been proposed 

to play a role in colorectal carcinogenesis. CRP was found to be a major serum leptin-interacting protein that 

directly inhibited the binding of leptin to its receptors and its ability to signal in vitro, which resulted in leptin 

resistance and obesity in vivo (36). Lower concentrations of leptin and circulating adiponectin were also found 

in patients with CRC and adenomas as compared to controls (37), suggesting the possibility of interaction 

between CRP and leptin in colorectal carcinogenesis. However, a case-control study reported no association 

between circulating CRP concentration and pathologic measures of colonic inflammation (38). Mendelian 

randomization analysis also found that CRP concentration itself was unlikely to be a causal factor in coronary 

heart disease (39), although persistent inflammation was found to be a contributor (40). Similar to coronary heart 

disease, it is possible that chronic inflammation promotes colorectal carcinogenesis through other inflammatory 

mediators than CRP. 

Our study has several strengths. It is the largest study to investigate causality between CRP and CRC risk using 

genetic variants, and has adequate statistical power to detect a moderate association. It is also the first to explore 

whether effects differed between subgroups stratified by other CRC risk factors, and cancer subsites and stages. 

Since we have environmental factors measured in most of the participating studies, we were able to test the 

assumption that the genetic variants were not associated with confounders of CRP and CRC. In addition, we 

used a comprehensive set of GWAS-identified genetic variants. Taking advantage of the random assortment of 



alleles, our results from Mendelian randomization should be less susceptible to confounding and reverse 

causality compared with observational studies. Therefore, our results provide stronger evidence of non-causality 

on this topic. Furthermore, we adjusted for principal components, which accounted for potential confounding by 

population stratification. 

There are some limitations. First, two Mendelian randomization assumptions could not be fully tested. Therefore, 

potential violations of the assumptions cannot be ruled out. Although we tested the assumption of no association 

between genetic variants and confounders, there are possible unmeasured confounders. We also performed 

diagnostic tests for the assumption of no pleiotropic effects. Second, we only investigated genetically elevated 

CRP in relation to CRC risk. Since we included studies from multiple countries, the association between genetic 

variants and CRP concentrations may be influenced by various environmental factors. Furthermore, there is 

possibility of selection bias. Compared to the average ages in the GWAS of CRP (range: 31-76) (14), our study 

participants were slightly older, but remained within the range of the GWAS samples. In Mendelian randomization 

studies, there is also possibility of survivor bias (41) where cases survived long enough and controls remained 

cancer-free until study recruitment in population-based case-control studies. However, most of our studies were 

cohorts, and we only included incident cases whose date of diagnosis were relatively close to the recruitment in 

case-control studies. Lastly, our results may not be generalizable to race/ethnicity groups other than European, 

in which the associations between genetic variants and CRP concentrations and CRC risk may be different. 

In summary, we found that genetically elevated CRP concentration was not associated with increased risk of 

CRC among participants of European ancestry. Our findings do not support a causal role of CRP in CRC risk. 

(Word count: 2 998) 
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