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Abstract 

This study gives new insight into the impact of knowledge flows for renewable energy 

(RE) technologies. With patent data for the European regions in the 2000–2010 period, 

we observe that RE technologies have more analytical knowledge content than the rest 

of technologies. They also seem to benefit highly from scientific knowledge flows and 

from technological knowledge flows coming from distant places. This pattern is 

peculiar to the RE field and different from other cutting-edge technologies and even 

different from those technologies related to energy generation coming from traditional 

energy sectors. 
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1. Introduction 

This study explores the importance of knowledge flows for the generation of 

innovation1 in the field of renewable energies (RE) and identifies which sources of 

knowledge flows may be more important for innovation in this specific field. To this 

end, first we analyze the importance of knowledge flows coming from sources 

characterized by its high content of scientific knowledge. Second, we study the role of 

physical distance under the assumption that proximity would not be as important in the 

case of RE innovation given its high content in analytical knowledge, being easier to 

codify it, and allowing benefitting from knowledge sources located in distant places. 

The motivation behind this study is twofold. On the one hand, the current Climate 

Change scenario shows the energy sector as the principal source of greenhouse gas 

emissions (IEA 2018), calling for the awareness that RE technologies are of great 

importance for future sustainable growth and development. Some studies have shown 

that innovation in green technologies can exert a positive effect on the productivity 

levels of firms (Marin 2014; Colombelli et al. 2019) and regions (Aldieri et al. 

forthcoming), which could shift its relation with other regions or countries (Arundel and 

Kemp 2009). If we fail to enter a sustainable growth path we could be putting at risk 

future growth and development (Hayter 2008; OECD 2011).      

On the other hand, in this scenario, it is important to understand how regions diversify 

into RE. Green technologies (and RE in particular) challenge the existing energy 

system, providing new economic and technological opportunities with new ideas 

(Rennings 2000; Barbieri et al. 2018), and tend to be at an early stage of their life-cycle 

(Consoli et al. 2016). Even more, RE innovation provides new means to satisfy a new 

 
1 In this study, we use the term innovation to refer to technological innovation, although we acknowledge 

that the term innovation is broader.   



need2, which according to Arthur (2007), is the main characteristic of a radical 

innovation: to satisfy a need with new means because existing methods are not 

satisfactory. Literature about the production or emergence of green innovation and the 

sources that enhance it, is still scarce and has not considered the specific sources on 

which new knowledge and new solutions are based on. 

Most studies at the firm level have looked at the innovation strategies to acquire the 

necessary knowledge for firms to produce green innovation (De Marchi 2012; De 

Marchi and Grandinetti 2013; Horbach et al. 2013; Cainelli et al. 2015; Ghiseti et al. 

2015; Marzucchi and Montresor 2017). Other research has focused on the regional 

level, stressing the importance of regional knowledge and technological capabilities 

(Tanner 2014; Colombelli and Quatraro 2017; Quatraro and Scandura 2019), while less 

research has considered the national level, focusing on the relevance of national 

regulation (Garrone et al. 2014; Fabrizi et al. 2018). These studies provide valuable 

insight about the knowledge sources that are used to eco-innovate. In this paper, we 

build on them and claim that these sources respond to the nature of eco innovation 

itself. 

We try to contribute to the previous literature by bringing in the Knowledge-base theory 

of Asheim et al. (2011) and argue that the knowledge base of RE technology shapes the 

effect of its main knowledge sources. With this framework, we can explain that RE 

innovation need new ideas to cover new needs, and part of these new ideas may come 

from sources with a higher content of scientific knowledge. At the same time, we 

explore the significance of proximity, as both spatial and cognitive proximity are crucial 

 
2 The need for sustainable energy only emerged when the sustainable development concept came to the 

world´s political agenda (Du Pisani 2006; Grober 2007).  



for the emergence of new technologies in regions (Neffke et al. 2011), and we plan to 

explore whether this is also the case for RE technologies. 

We claim that RE innovation is an analytical knowledge-base type of innovation, which 

is characterised by its high content of scientific knowledge. Consequently, we 

hypothesise that it would benefit intensively from knowledge flows coming from more 

scientific sources. Also, the importance of proximity would be different to common 

findings. Given that RE presents a high analytical content, which in turn is easier to 

codify, less localised knowledge flows would be relevant, allowing benefitting from 

knowledge produced in distant places. To our knowledge, this is the first time the 

knowledge-base approach has been applied to a specific technological field to study the 

knowledge flow patterns using patent data. 

Indeed, a distinctive feature of green innovation concerns the nature of knowledge 

spillovers as it requires more heterogeneous sources of knowledge (Dechezleprêtre et al. 

2011; Horbach et al. 2013; Ghisetti et al. 2015 ). Dechezleprêtre et al. (2017) showed 

that green technologies are characterised by substantially larger knowledge spillovers in 

contrast to other comparable knowledge-intensive domains. In a similar vein, studying 

the creation of green start-ups, Colombelli and Quatraro (2017) provided evidence about 

the positive relationship between related technological variety and the creation of green 

new firms. Building on the above, we propose to focus on the forms of knowledge flows 

that enable innovation to deal with environmental sustainability. We expect that the 

specificities of this empirical domain of innovation will bring to the fore more 

interesting peculiarities of the general processes at hand. We do this by extending the 

traditional Knowledge Production Function—KPF—with some specificities of 

knowledge flows, and estimate it for the case of RE technologies across 254 European 

(NUTS2) regions in the period 2000–2010. 



The rest of the paper is organised as follows. In Section 2, we present the literature 

review and our theoretical framework and state the main hypotheses. Section 3 offers 

the formal model guiding our empirical approach and the data, and provides relevant 

issues about our main variables and their construction. Section 4 shows some stylised 

facts related to our hypotheses as well as our main econometric results, while Section 5 

concludes.    

 

2. Knowledge spillovers and innovation in renewable energies 

Knowledge production is a recombinatory process, in which pre-existing knowledge is 

used as input for the production of new knowledge (Weitzman 1998). It has been shown 

that knowledge flows are spatially bounded (Jaffe et al. 1993 and Murata et al. 2013), 

meaning that distance (or proximity) matters for the acquisition of knowledge. The 

capacity to absorb knowledge from other places becomes relevant along with the pool 

of available ideas in a location. This means that not only spatial distance matters, but 

also cognitive, organisational, institutional and social proximities are also relevant 

(Boschma 2005). Nevertheless, this way to understand proximity reflects the lack of a 

fundamental aspect: It treats knowledge as a homogenous concept, when actually it 

should be regarded as a heterogeneous entity (Mattes 2012). 

To help fill in this gap, Moodysson et al. (2008) and Asheim et al. (2011) argued that to 

understand the regional process of learning and knowledge creation and its relationship 

with the concept of distance, it is necessary to comprehend the particularities of the 

knowledge nature. Economic activities can have three distinct knowledge natures or 

bases. The first one is the analytical knowledge-base type, which encompasses the 

activities where knowledge is based on scientific laws and models, has high abstract 



content and is highly subject to codification. It is constructed on research and, 

consequently, is mostly developed in universities and research institutes. The second 

type are the synthetic knowledge-base activities, where knowledge is created by the 

application or new combination of existing knowledge; it is based on learning by doing 

and is shaped by the relation between customers and suppliers. Finally, the symbolic 

knowledge-base entails those activities where innovation consists of the creation of 

meaning, images and symbols with aesthetic and cultural attributes. The concept of 

distance goes along with the knowledge base, making some knowledges more place 

dependent than others.   

We argue that eco-innovation, and RE in particular, are by nature an analytical 

knowledge-base technology. As signalled by Marzucchi and Montresor (2017), ‘Eco-

innovators mainly rely on knowledge sourced by interacting with epistemic 

communities of actors (e.g., scholars and inventors) and/or institutions (e.g., universities 

and labs), organised around specific disciplines. This is mainly, though not exclusively, 

an analytical kind of knowledge’ (p. 209). Indeed, the development of new solutions 

based on reliable low-carbon energy implies a new paradigm competing against an 

established system which nurtures from analytical knowledge sourced from the ‘world 

of science’ and can be decisive in providing agents with an understanding of the 

complexity of their prospected innovations while at the same time contributing to create 

radical ideas (Trajtenberg et al. 1997; Verhoeven et al. 2016).  

Previous studies have pointed out the importance of scientific sources of knowledge for 

RE innovation. For example, Quatraro and Scandura (2019) found that the involvement 

of academic inventors fosters innovation in green technologies. De Marchi (2012) and 

De Marchi and Grandinetti (2013) showed that firms engaged in environmental 

innovation relied more on external knowledge by externalising research and 



development (R&D) and engaging in cooperation with universities, research centres, 

knowledge-intensive business services (KIBS) and other firms3. Tanner (2014) found 

support for the importance of actors, such as universities and research institutes, for this 

kind of innovation. Fabrizi et al. (2018) pointed to the fact that networks play a more 

key role for environmental innovations than for standard innovations, with 

environmental networks being more qualified, with a larger presence of members 

outside the business world, such as universities and research centres. These actors can 

reinforce firms in innovating in environmental fields by transferring complex 

knowledge, as is needed in the case of eco-innovations. With this in mind, we state the 

first hypothesis: 

H1: Knowledge coming from science might have a positive and relatively more 

important role for innovation in RE than it does for other technologies, or innovation in 

general, as this would be a reflex of it belonging to the analytical knowledge-base type 

of activities. 

We now put to the forefront the widely accepted assumption from the years in the 

geography of innovation literature that agents usually source their innovations from 

their immediate vicinity. Recent empirical works have extensively documented the 

influence of extra-local knowledge sources on firms’ innovative performance and 

knowledge acquisition (Rosenkopf and Almedia 2003;Gertler and Levitte 2005). In 

addition, Boschma (2005) highlighted the increasing importance of agents’ needs to 

access extra-local knowledge pools to overcome potential situations of regional ‘lock-

in’. In the same line, ‘distant contexts can be a source of novel ideas and expert insights 

useful for innovation processes…’ (Maskell et al. 2006, p. 998).  

 
3 We acknowledge that the literature used as background looks mostly at the firm level and refers to the 

firms’ innovation strategies, which entail aspects like adoption, adaptation, commercialization, etc., and 

not just the knowledge development stage of innovation used in this paper. We thank a referee for 

highlighting this point. 



We argue that, depending on the knowledge base, spatial diffusion patterns of 

knowledge flows can be different. If RE innovation tends to have stronger foundations 

on analytical knowledge, then the ideas needed for its development are more codifiable 

and easier to travel across space. Geographical proximity would be less important for 

the diffusion of relevant knowledge for RE. What matters more would be technological 

and cognitive proximity, in part enabled by the higher degree of codification and 

abstract content of relevant knowledge. Consequently, innovation could benefit from 

geographically distant knowledge. For example, it could be the case that the specific 

pieces of necessary knowledge for a technology are not available in the vicinity 

(Asheim and Isaksen 1997); hence, it would be necessary to look for them further away. 

According to previous literature, environmental innovation benefits more from 

heterogenous knowledge sources than other technologies (Dechezleprêtre et al. 2011; 

Horbach et al. 2013; Ghisetti et al. 2015), needs a broader variety of knowledge 

(Barbieri et al. 2018; Fabrizi et al. 2018) and, even more, RE innovations spill over 

more than other technologies, reaching more technology fields and further distances 

(Dechezleprêtre et al. 2011). It could be the case that if the necessary knowledge from 

which RE feeds is not available in the region, then RE innovation would feed from 

further places. For example, Garrone et al. (2014) found positive international R&D 

externalities at the national level for RE innovation, whereas Tanner (2014) found that 

fuel cell technology emerged where there were not related technologies and extra-

regional sources.  

Nevertheless, there is also evidence that states the opposite. Keller and Yeaple (2013) 

stated that the more knowledge intensive a process, the less likely its knowledge will 

diffuse in space. Braun et al. (2010) maintained that knowledge spillovers for RE 

technologies are important at the country level but not between countries because the 



domestic pool of knowledge is still large enough, and acquiring knowledge from abroad 

is more costly. Bjørner and Mackenhauer (2013) found evidence that research in energy 

spills over less than other kinds of research, so that spillovers in energy are strongly 

geographically bounded.   

The question continuing from the two contradictory arguments in the previous 

paragraphs is whether the knowledge flows from the technical sector have the same 

spatial diffusion pattern for RE than for the rest of technological innovation in general, 

which tends to come from short distances. In this sense, we state our second competing 

hypotheses:  

H2A: Less localised knowledge flows would be relevant for RE innovation because its 

high content in analytical knowledge would allow benefitting from knowledge produced 

and codified in places that are distant. 

H2B: Localised knowledge flows would be important for RE innovation because the 

more knowledge intensive a process is, the less likely its knowledge will diffuse in 

space. 

 

3. Empirical framework 

3.1 The Knowledge Production Function augmented with knowledge flows 

To test our hypotheses, we specified a Knowledge Production Function (KPF) to 

evaluate the relevance of knowledge flows from scientific sources and their 

geographical range contributing to innovate in RE. In the KPF, we considered that new 

ideas (Yit as the innovative output of region i in time period t) are generated using two 

main inputs: R&D investments (R&Dit) and existing ideas (Ait). Also, human capital 



(HKit) is a driver of innovation, and to capture the local characteristics that would 

influence innovation, a variety of local variables were included in vector Zit. 

𝑌𝑖𝑡 = 𝑓(𝑅&𝐷𝑖𝑡 , 𝐻𝐾𝑖𝑡, 𝑍𝑖𝑡 , 𝐴𝑖𝑡) (1) 

Assuming f(.) takes the form of a Cobb-Douglass function, we get the following 

multiplicative functional form:  

𝑌𝑖𝑡 = 𝑒𝛼 . 𝑅&𝐷𝑖𝑡
𝛽

. 𝐻𝐾𝑖𝑡
𝜌

. 𝑍𝑖𝑡
𝜃 . 𝐴𝑖𝑡 . 𝑒𝜇𝑖 (2) 

where eα is a constant term capturing the impact of all common factors affecting 

innovation and eµi is a region-specific term that captures time invariant unobservable 

regional characteristics that affect innovation (regional time-invariant fixed-effects). 

R&D resources are particular for each region, while ideas can spill over the borders of 

the regions. To account for this, the term Ait, the ideas available in region i in time 

period t, were formalised as a function of knowledge flows. We assumed that 

knowledge flows based on scientific knowledge (Sit) are a driver of innovation and can 

be distinguished from those from technical sources, irrespective of their geographical 

distance. Additionally, to provide evidence on our second hypothesis, we introduced 

both local and extra-local technological knowledge flows, according to the distance 

between the region receiving the flow (i) and the region from which the flow departs (j):   

𝐴𝑖𝑡 = 𝑆𝑖𝑡
𝛾0 ∏ 𝐾𝐹

𝑗𝑡

𝑔(𝑑𝑖𝑠𝑡𝑖𝑗)

𝑗

 

(3) 

g(.) is a step function taking the value of ɸk, which will measure the elasticity of Ait to 

knowledge flows, if the distance between regions  i and j, distij, belongs to one of the 

distance intervals k = {[dist0, dist1), [dist1, dist2), … [K, ∞) } and zero otherwise: 

𝑔(𝑑𝑖𝑠𝑡𝑖𝑗) = {
0,   𝑖𝑓 𝑑𝑖𝑠𝑡𝑖𝑗 ∉ 𝑘

𝜙𝑘, 𝑖𝑓 𝑑𝑖𝑠𝑡𝑖𝑗 ∈ 𝑘
 

(4) 



The index k captures a sequence of distance intervals within which the step function is 

constant. Replacing equation (3) in (2) yields the following expression: 

𝑌𝑖𝑡 = 𝑒𝛼 . 𝑅&𝐷𝑖𝑡
𝛽

. 𝐻𝐾𝑖𝑡
𝜌

. 𝑍𝑖𝑡
𝜃 . 𝑆𝑖𝑡

𝛾0 . ∏ 𝐾𝐹
𝑗𝑡

𝑔(𝑑𝑖𝑠𝑡𝑖𝑗)

𝑗

. 𝑒𝜇𝑖 

(5) 

 Taking natural logarithms and adding an error term, ɛit, we obtain: 

𝑙𝑛(𝑌𝑖𝑡)  =  𝛼 + 𝛽𝑙𝑛(𝑅&𝐷𝑖𝑡) + 𝜌𝐻𝐾𝑖𝑡 + 𝜃𝑙𝑛(𝑍𝑖𝑡) + 𝛾0 ln(𝑆𝑖𝑡)

+ ∑ 𝜙𝑘𝑙𝑛(𝐾𝐹𝑗𝑡)

𝑗

+ 𝜇𝑖 + 𝜀𝑖𝑡 

(6) 

when distij ϵ k. With the estimation of this equation, the parameter γ0 will show the value 

of the elasticity of the innovative output to scientific knowledge so as to be able to test 

our second hypothesis. Additionally, the value of the elasticities of technological 

knowledge flows coming from different distances, ɸk, will provide evidence in relation 

to our third hypothesis.   

 

3.2 Data and variables 

Our dependent variable (Yit) was proxied with the number of patents per 100,000 

inhabitants in a region (identified by the inventor’s region4) in renewable energy 

technologies in generation, transmission or distribution (RE) as identified by the Haščič 

 
4 As we are using patents as ideas or pieces of knowledge and not for aggregation purposes to count and 

compare among regions, we used full counting of patents to assign them to regions instead of the 

fractional counting.  The use of fractional count raises the issue of the extent to which a fraction of a 

patent with multiple inventors might be less valuable for a given unit of analysis (country, region, etc.) 

than a patent with a single inventor. When a patent is assigned to more than one region, the knowledge is 

shared during the production process as well as the final outcome among all the participants. In this sense, 

the knowledge belongs to the all regions involved in creation of a new patent and it would be difficult to 

attribute how much of that new idea is embraced by each region. As single ideas, a new patent cannot be 

attributed by shares. Nevertheless, this does not mean that one region, when engaged in the production of 

a patent, does not develop new knowledge of its own or apply the specialized knowledge it possess.  See 

section 4.3, page 64, and the corresponding footnote number 4 of the OECD Patent Statistic Manual 

(OECD 2009).  



and Migotto (2015)5. Using patent data has some caveats. For example, not all 

inventions are patented, nor do they all have the same economic impact (Griliches 

1990). Moreover, patented inventions inherently differ in their market value (Giuri et al. 

2007); firms patent to a large extent for strategic motives, such as building up a patent 

portfolio in order to improve their position in negotiations or their technological 

reputation (Verspagen and Schoenmakers 2004). Despite these arguments, the related 

literature widely uses this variable to proxy innovation outcomes. Indeed, patent data 

have proved useful for proxying inventiveness as they present minimal standards of 

novelty, originality and potential profits—and they constitute good proxies for 

economically profitable ideas (Bottazzi and Peri 2003). One of the advantages is that 

patents contain the references to prior knowledge as citations, indicating the knowledge 

they were built upon (Collins and Wyatt 1988). We took advantage of this property of 

patent information and used citations to test our hypotheses. From our data, the regions 

that innovated more in RE were mostly located in Germany and northern Europe, while 

the regions that innovated less were mostly located towards the East (Figures A1 and 

A2 of the appendix online). The importance of analytical knowledge for RE was 

captured through the effect that scientific knowledge might have on it. If it is the case 

that RE has higher analytical content, then it should be more susceptible to scientific 

knowledge. To proxy for scientific knowledge (S), used non-patent literature (NPL) 

citations, which are the citations made to scientific documents. These citations refer to 

peer-reviewed scientific papers, databases, conference proceedings and other relevant 

literature and not to other patent documents. NPL citations can be used to measure the 

contribution of scientific knowledge to industrial technologies (Narin et al. 1997; Meyer 

 
5 See Table A1 for the whole list of technology codes identified as renewable energies 



2000; Tijssen 2001; Verbeek et al. 2003) and help to depict the proximity of 

technological and scientific developments (Callaert et al. 2006).  

It is important to say that when using NPL citations to capture knowledge flows from 

science, we did not intend to depict a network structure or imply specific localisation 

effects. We employed NPL citations to point to a body of knowledge that the inventors 

(or the examiner) considered relevant for the invention (Brusoni et al. 2005) because 

they tended to refer to the scientific general background rather than a specific 

contribution (Meyer 2000). It should also be noted that, while patent citations refer to 

prior art, they do so also to show the novelty of the invention and its scope for 

protection, not necessarily because the knowledge embedded in such citations was 

relevant for the invention itself. On the contrary, NPL citations are more likely to refer 

to more relevant knowledge for the invention (Collins and Wyatt 1988). 

To test the second hypothesis, the focus was on knowledge flows measured by the 

backward citations in all fields in patent applications. Even though the use of patent 

citations does not come without limitations (Alcácer and Gittelman 2006)6, they have 

been widely used in innovation economics as a proxy for knowledge flows. Patent 

citations were distinguished in three distance categories (in kilometers): first, citations 

coming from a range between 0 and 300 km (300Km); second, citations from the range 

300 to 1200 (1200Km); and third, citations from a distance bigger than 1200 km 

(over1200Km)7. The number of patent citations between each pair of regions, say 

region’s i citations of region’s j patents, were normalised by the total number of patents 

 
6 An important issue regarding the use of citations to proxy for knowledge flows is the difference between 

the citations introduced by the applicant and those by the examiner. It has been suggested that EPO 

applicants have the incentive to cite the entire prior art to avoid future patent opposition (Akers 2000).          
7 The distance ranges were constructed taking the average distance in kilometers from the centroid of any 

NUTS2 region to all the other regions from which the citations come. These distances were classified in 

three categories:  Same country, Within Europe and Outside Europe. The average of all the distances in 

the category Same country was 300 kilometers; for the Within Europe category it was 1200 kilometers, 

and more than 1200 kilometers for the Outside Europe category.  



produced in region j. This approach is similar to the one used by Bottazzi and Peri 

(2003) and Moreno et al. (2005) to measure the reach of knowledge spillovers. In our 

case, distinguishing the source of the cited patent allowed us to observe how far the 

knowledge externalities can reach. Previous literature has found strong evidence 

supporting the hypothesis that knowledge spillovers are localised; but taking into 

account that innovation in RE is more based on analytical knowledge, it could be the 

case that flows coming from extra-regional sources can be more relevant than in the 

case of other technologies.8  

As controls, the R&D investment of each region was considered (per 100,000 

inhabitants). As a proxy of human capital (HK), we used the proportion of population 

with tertiary education. To control for the effect of the technological composition of the 

region, we used a specialisation index (SPI), which was built using the IPC 

technological classification of patents grouped in 30 broad technological sectors 

contained in the patent applications, with the following formula: 

𝑆𝑃𝐼𝑖𝑡 =
1

2
∑ |

𝑃𝑖𝑗𝑡

𝑃𝑖𝑡
−

𝑃𝐶𝑗𝑡

𝑃𝐶𝑡
|

𝑗
 

(7) 

 

where P is the number of patents in region i for sector j, and C represents the whole 

sample of regions. 

To account for the fact that the industrial composition of the regional economies could 

affect the innovation production, the share of the employment in the industrial sector 

(Ind_Share) was also included in the model. Finally, population density and its squared 

 
8 This approximation does not go into more detail of the reasons why RE innovation might look further 

for knowledge, either because the specialisation within the region does not incentivise RE technologies or 

because it needs from a combination of diverse technologies which are not present in the region. This 

would imply a deeper analysis on the impact of relatedness for the generation of RE patents that goes 

beyond the scope of this paper. 

 



term (Density and Density^2) were considered to account for the urbanisation and 

agglomeration economies as in Gossling and Rutten (2007) and Miguélez and Moreno 

(2013) (see Table A2 in Appendix online for a detailed definition of the variables). 

For the construction of the variables based on patents, we used the OECD REGPAT 

September 2015 Database, while for the citation variables, we employed the OECD 

Citation Database September 2015 edition. Only the patents in the European Patent 

Office, EPO, from a European country were considered. To construct the explanatory 

variables, we used data from the Eurostat Office available on its website. Particularly, 

the data for R&D investment came from the CRENOS institute. Our data covered the 

period 2000–2010 for 254 NUTS2 regions in Europe9. 

To avoid lumpiness along years in the case of the endogenous variable, a three-year 

moving average was used (using the values of t, t+1 and t+2). Because the citation (to 

patents and non-patent literature) variables might show the same lumpiness, we also 

took a three-year moving average, but from the three previous years (the values in t-1, t-

2 and t-3). The use of lagged explanatory variables contributes to dealing with a 

possible endogeneity problem and the possible fact that when new knowledge comes 

into a region, it takes some time to be assimilated. Both the endogenous variable and the 

citation variables were introduced in the estimation in logarithms. The rest of the 

control variables were introduced in t-1 and, in the case of the R&D investment and 

population density, they are also in logarithms. Table 1 offers a descriptive analysis of 

the variables in the models.  

[TABLE 1 AROUND HERE] 

 
9 The countries covered are Austria, Belgium, Bulgaria, Switzerland, Cyprus, Czech Republic, Germany, 
Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Italy, Luxemburg, Latvia, Malta, The 
Netherlands, Norway, Poland, Portugal, Romania, Sweden, Slovakia and the United Kingdom.  



4. Results 

This section is divided in into two parts. First, we present some stylized facts about the 

pattern shown by patents and citations looking for evidence in relation to our 

hypotheses. Second, we show a regression analysis with the econometric estimation of 

our KPF model.  

 

4.1 Stylized facts 

If patents in RE belong to the analytical knowledge base, as argued in section 2, they 

should comply with some of the characteristics signalled by Asheim et al. (2011);  that 

is, the use of more basic knowledge and the use of knowledge coming from further 

locations than the rest of technological fields. With these figures we do not intent to 

make an in-depth comparison of RE innovation and Non-RE innovation as it is done in 

Barbieri et al (2018). We just try to point out some characteristics of RE patents  which 

we argue tend to be related with an analytical knowledge base technology. 

These two characteristics can be analysed with the information contained in patent 

documents. Identifying patent applications that cite non-patent literature, we can have 

an idea of how important scientific references are for patents in RE and for the rest of 

technological fields (we refer to the latter as ‘rest of patents’). As shown in Table 2, in 

our sample, 31.1% of RE patents cited at least one scientific reference, while in the case 

of the rest of patents this figure is 26.2%. This implies that innovation in RE is more 

prone to cite scientific literature than innovation in the rest of technological fields. Also, 

we would expect that NPL citations represent a higher share of the total number of 

citations in the case of RE patents. Indeed, an average of 18.2% of the total number of 



citations in RE patents are to NPL, while for applications in the rest of technologies, the 

average is 15.3%.  

We also claim that the cooperation for the development of eco-innovation, in general, 

and in RE, in particular, can come from longer distances. Taking as a simple proxy of 

this fact the percentage of patents assigned to at least two different regions (NUTS3), 

43.6% of RE patents were assigned to more than one region, while the share decreased 

to 39.1% for the rest of patents. Even more, the average distance between the inventors 

that collaborate in generating a new idea in RE—co-patenting—is 127 kilometers 

whereas in the rest of fields it is of 113 kilometers.  

Finally, as argued in section 2, RE innovation relates to technologies that are at an early 

stage of their life-cycle (Consoli et al., 2016), trying to provide new ideas to cover new 

needs, which may imply that its knowledge base is thus quite complex. Using the 

methodology of Squicciarini et al. (2013) we construct a radicalness index whose 

underlying idea is to count for the number of technological classes (IPC) the cited 

patents belongs to, that are different from the classes in which the citing patent has been 

classified. RE patents score on average 0.36 and patents in the rest of technologies score 

0.34, providing evidence that would support that the degree of radicalness of RE 

innovation is higher than for the rest of innovation.  

[TABLE 2 AROUND HERE] 

As stated in the second section, as a consequence of  RE innovation being more based 

on analytical knowledge than other kinds of innovation, we expect that knowledge 

flows that feed innovation in this field come from more distant places than the ones rest 

of technological fields. However, it could also be the case that localised knowledge 

flows are more important for RE innovation because the more knowledge intensive a 



process is (as in the case of RE), the less likely its knowledge will diffuse in space. In 

order to give some descriptive in favour of one argument or the other, we proxy 

knowledge flows with the (backward) citations patents they have and consider the 

distance between each pair of citing and cited patents. The distance is taken in 

kilometers from the home region of a patent and the region to which the cited patent 

belongs to (taking into consideration their centroids). Table 3 shows that, on average, 

the citations made by RE patents come from 10 kilometers farther away than the 

citations made by the rest of technological fields. Although this difference is small, it is 

statistically significant.  

When inspecting the distribution of citations in the different ranges of distances from 

where they came, we first observe that RE has 2.2% more citations made to patents in 

regions more than 1200 km away (the biggest difference). Second, the share of citations 

made to patents from regions within the closest range is 1.6% lower for patents in RE. 

In both cases, the differences are small but statistically significant. All in all, these 

figures show a behaviour that seems to indicate that for RE, probably due to its higher 

content in analytical knowledge, the ideas coming from longer distances are more 

important than local ones.    

[TABLE 3 AROUND HERE] 

 

4.2. Econometric estimation 

The previous statistics provide evidence that point in the same direction as that of H1 

and H2A. To more exhaustively test both, we estimate equation (6) through a fixed 

effects (FE) unbalanced panel model for the KPF with data for 254 NUTS2 regions in 

Europe along 11 time periods (2000–2010). Using longitudinal data, controlling for FE 



allows us to account for a number of time-invariant unobservable characteristics of the 

regions that might bias the results if not included (if it is the case that these are 

correlated with regressors). The panel structure lets us control for these unobserved 

effects while some degree of correlation between the exogenous regressors and the 

unobserved effects could exist. Nevertheless, we assume strict exogeneity of the 

explanatory variables conditional on the unobserved effects; that is, the explanatory 

variables in each time period are not correlated with the idiosyncratic error in each time 

period. Particularly, we pursue to ensure this assumption by using the lag values of our 

explanatory variables. In all the models, fixed effects are preferred over the random 

effects estimation procedure according to the Hansen’s J statistic, which is equivalent to 

the traditional Hausman fixed-vs-random effects test when using robust to 

heteroskedastic errors, as in our case. The results of the estimations are presented in 

Table 4, having as the endogenous variable the natural logarithm of the number of 

patents in RE per 100,000 inhabitants. We start with a basic KPF and then add the 

scientific knowledge variable, S, and the knowledge flows variables (columns 1 to 4).  

Regarding the control variables, in all the columns of Table 4, the elasticity of patents 

with respect to R&D expenditures presents significant and positive values. The 

elasticity of patents in RE with respect to R&D investment ranges from 32% to 39%. 

The role of human capital (HK) is consistently positive and significant in all 

specifications as expected. The share of industrial employment (Ind_Share), meant to 

capture the economic structure of European regions, has a negative and significant 

impact on the innovation in RE10. The reason behind this coefficient may be the fact that 

the manufacturing sector still relies heavily on traditional sources of energy. De Marchi 

 
10 We also included the share of the service sector instead and in combination of the share of industrial 

employment and, as expected, it has a positive and significant coefficient. The rest of the results remain in 

line with the ones presented here. See Table A3 in the Appendix online for the regression results.  



(2012) argued that the development of new and green products calls for competences 

that are far from the traditional industrial knowledge base. According to the 

International Energy agency, 73% of the energy used in the industrial sector of the 

world in 2010 still came from fossil fuels, and this declined to 70% in 2017. In fact, RE 

are not capable to produce intense heat efficiently while fossil fuels are a better option 

for this purpose (IRENA, 2015)11. The coefficient of the technological specialisation 

index (SPI) is negative and statistically significant for RE innovation. This can be 

interpreted under the Jacobs theory, in which diversity rather than specialisation would 

boost innovation and productivity growth to the expense of specialisation economies—

MAR externalities. Finally, the evidence suggests that RE innovation is influenced by 

agglomeration externalities as pointed out by the positive coefficient for the density of 

population.  

In order to test our first hypothesis, we introduce the scientific knowledge variable (S), 

proxied by the number of non-patent literature citations. This variable has a positive and 

significant coefficient, confirming that scientific knowledge influences RE innovation. 

An increase of 10% in S implies an increase of innovation in RE of around 1.2%. Next, 

in column 3 we introduced in the basic KPF model, the technical knowledge citation 

variables. We observe that for RE technologies, distant knowledge is more relevant than 

knowledge coming from the closest distance ring. In fact, the elasticity of RE patents to 

a 10% change in the knowledge flows coming from the middle-distance ring is about 

0.8% and the elasticity to knowledge coming from the furthest distance band is about 

0.53%, the latter being highly significant. Finally, when S is also included, its 

 
11 Industries like iron and steel, chemicals and textile require high temperatures that cannot be reached 

with RE technologies (IRENA, 2015). Even more, there are programs which intend to expand the RE 

technology into the service sector. The Energy Performance Contracts, EPCs, are a mechanism to finance 

the improvement of energy efficiency and savings in energy in the tertiary sector (health, accommodation, 

tourism, services, etc.). For example, in the case of energy savings in buildings, countries like Germany, 

Austria or Sweden have mature markets to externalize to an Energy Service Company—ESCO, projects 

to manage and save energy to comply with the regulations (Frangou et al. 2018). 



coefficient is significant, and the knowledge flows coming from the furthest distance 

remain with a significant coefficient12. This last finding would support hypothesis 2A, 

under which RE innovation would benefit from less localised knowledge flows.13,14 

[TABLE 4 AROUND HERE] 

 

4.3. Robustness analysis 

We check whether the knowledge flows coming from the scientific domain as well as 

the technological knowledge flows coming from very distant places are only or mainly 

relevant in the case of the RE field if compared to their relevance in other technological 

areas. Initially, we check whether the generation of innovation in the rest of 

technologies which are not within the RE field (rest of patents, P) follows a similar 

recipe to that of RE. Table 5 shows that the elasticity of patents to non-patent literature 

is around 5% and significant, lower than it was for RE (around 12%). In addition, we 

observe that the only significant technological knowledge flows are the ones that come 

from the middle-distance range (300-1200Km), whereas the elasticity that was 

significant in the case of RE is the one referred to knowledge flows from more than 

1200Km. Another difference lies in the lower elasticities found for R&D expenditures 

 
12 As a robustness check, we re-ran the regressions with 100 km rings and we also tried removing the 

largest countries (France, Spain and Sweden). In both cases, the results were in the same line as the ones 

presented here. We thank one referee for suggesting such robustness exercises. See Table A4 in Appendix 

online.  
13 As a robustness check of our main results, instead of using three-year moving averages for the main 

variables computed with patent data, we re-ran our main regressions considering one-year lagged 

regressors. Our main conclusions were maintained. Results are available upon request.  
14 We are aware of the fact that regulation plays an important role for RE innovation. In Table A5 in the 

Appendix online, we provide the estimation of equation 6 adding a variable meant to capture the regional 

political attitude towards environmental issues, approaching the willingness to regulate in this area. The 

key results of the paper are maintained. We do not include this variable in the base estimation of the 

present paper due to the lack of reliability of the data used to construct it.  



and human capital. This suggests that the technologies in the RE domain might have 

some characteristics that distinguish them as a technological field on their own15.  

[TABLE 5 AROUND HERE] 

It could be the case that the specific pattern observed for RE compared to the rest of 

patents is common to other cutting-edge technologies that are novel, as in the case of 

RE. In Table 5 (columns 2 to 4), we re-estimate the KPF specification in the case of 

three new technologies: Information Technology (IT), Biotechnology (BIO) and 

Nanotechnology (NANO), identified following the IPC code identification as in 

Dechezlepretre et al. (2017). We observe that the elasticities of patenting activity to 

scientific knowledge flows in the IT and NANO sectors are much lower than in the case 

of RE, and more similar to the ones obtained for the rest of patents, whereas in the case 

of the BIO technology, it does not turn out to be significant. On the other hand, for these 

technologies, the role of knowledge flows coming from other patents (the technical 

sector) is not significant, irrespective of the distance range considered. Consequently, 

the pattern observed for the influence of knowledge flows in the patenting activity in 

these cutting-edge technologies diverges from the one found for RE technologies.  

In addition, we wanted to check whether the pattern of the influence of knowledge 

flows on the patenting activity in the RE field is not due to specificities of the energy 

generation sector to which it also belongs. With this idea in mind, column 5 in Table 5 

offers the estimation of the KPF in the dirty energy generation technologies, which we 

have identified by again following the IPC code identification proposed by 

 
15 As the main goal of the paper is showing the analytical nature of RE innovation, its comparison with 

other technologies or with innovation in general is not the main point of the paper, although we use such 

comparison to strengthen our point. We just intend to make a claim about the relative importance of each 

explanatory variable (especially knowledge flows) for the respective knowledge production. As we state 

in the text, this is just a comparison of different weights each input has in the ‘recipe’ for producing RE 

innovation or other technologies. As the coefficients represent the elasticities of the outcome variable, and 

given that the variables are expressed in the same units, the comparison would still be feasible just for 

argumentative purposes. We thank the referee for pointing out this issue. 



Dechezleprêtre et al. (2017). We observe that the elasticity of patenting activity in the 

dirty energy technologies with respect to non-patent literature is about the same size as 

the one obtained for the rest of patents (provided in Table 5) and is lower than for RE 

technologies. The same happens when distinguishing among the different distance 

ranges from which patent citations come, since the results for the dirty energy sector 

have a very similar pattern to the ones obtained for the rest of technologies: Patent 

citations coming from the middle band are the relevant ones and not the ones from the 

longest distance, as it was for RE innovation.  

All in all, our results suggest that when analysing the influence of scientific knowledge 

flows as well as technological knowledge flows in the case of the RE technologies, we 

observe a pattern which is peculiar to this technological field and different from the rest 

of technologies, different from other cutting edge technologies and even different from 

those related to energy generation coming from traditional energy sectors. 

Finally, we analyse if the results hold when only patents that present high quality are 

considered. Following Barbieri et al (2020), we focus on triadic patent families, which 

are those patents filed at the three most important patent offices for the same invention, 

by the same applicant or inventor: the EPO, the USPTO and the Japan Patent Office. 

Triadic patents represent higher value inventions as the patentees are willing to pay the 

cost to protect it in different areas, that is, family size is considered a good proxy for 

high value inventions (OECD 2009). We use as dependent variable the count of triadic 

patent families of RE innovation generated in a region. As there are few triadic patents 

in RE per region, we use a Poisson fixed effect estimation method to deal with this 

count variable. The results (presented in Table A6 of the online Appendix) show that 

scientific knowledge is an important driver of the production of high value RE 

innovation, as the coefficient of S is positive and significant, very much in line with the 

https://en.wikipedia.org/wiki/Invention
https://en.wikipedia.org/wiki/Inventor_(patent)


previous results. Then, and in contrast to our previous findings, the knowledge flows 

coming from close distance are the only ones that seem to matter for this kind of. 

Although this last result is different from the results provided before, we have to keep in 

mind that there are reasons and previous evidence stating that localised knowledge 

flows would be important for RE innovation because the more knowledge intensive a 

process is, the less likely its knowledge will diffuse in space (as stated in our hypothesis 

H2B).  

  

5. Conclusions 

The research conducted in this paper tried to contribute to the knowledge flows 

literature by introducing the knowledge-base theory to explain the role of knowledge 

flows in the generation of innovation in renewable energies. First, we argued that 

renewable energy technologies belong to the analytical knowledge base and, therefore, 

knowledge flows coming from science would be of high relevance. Second, we posited 

that the spatial behaviour of technological knowledge flows would not be so localised 

for renewable energy innovation, but that it could feed from knowledge produced far 

away. Indeed, the evidence for European regions in the period 2000–2010 showed that 

innovation in renewables have these two characteristics. In addition, this behaviour does 

not seem to be due either to the fact that RE technologies belong to the group of ‘new 

technologies’ or to the fact they belong to the energy generation sector. 

Eco-innovation, in general, and RE, in particular, suffer from the double externality 

problem, meaning that from on the one hand, they suffer from the negative externality 

of technological innovation, and on the other, from the externalities of eco-innovation. 

For both reasons, agents could be reluctant to engage in this field of innovation. There is 



also the fact that RE is a novel field, making it more subject to uncertainty. As a 

consequence, there is a place for policy intervention to accomplish the climate goals. 

The nature of RE innovation is more of the analytical knowledge type, meaning that it 

would benefit more from the synergies between universities and research institutions, 

benefiting both sides as uncertainty would be shared (Gander 2017). Already Carraro 

and Siniscalco (1994) and Popp et al. (2009) stated the need for addressing climate 

change through both emission taxes and R&D subsidies: taxing the polluters to fund the 

innovation. In this sense, any policy would have to seek to encourage and strengthen the 

collaboration of research institutions and universities with companies in the RE field, 

prioritising the development of new RE technologies.    

Nevertheless, our results should not be interpreted as a recipe to foster RE innovation at 

the regional level in the ‘picking the winner’ fashion. Asheim et al. (2011) already 

warned about the issues of such a policy and recommended an approach where the 

regional advantages and characteristics have to be considered when designing any 

policy. This means that not all regions may have the appropriate conditions to develop 

RE technologies. Simply by targeting more R&D resources to basic research or towards 

the RE industry would not necessarily trigger the necessary synergies to innovate in this 

field. For example, literature has found evidence on the importance of the local 

characteristics, such as business environment, policies and even the existence of related 

industries for the success of university spin-offs. In this sense, it is crucial to design 

policies that allow the close interaction of RE innovators with the academic sector and 

with the business sector (Marzucchi and Montresor 2017).      

Some issues remain in the research agenda. First, it would be interesting to study the 

nature of the knowledge in the renewable energy technology from the perspective of the 

complexity it embeds. This would allow giving a step forward in understanding how 



innovation in renewable energy takes place from a theoretical point of view. Second, in 

this study, we did not have more detailed information on the source of the non-patent 

literature citations. The availability of information about the location and institutional 

nature of the source of these citations would provide us with a deeper understanding 

about the relation between this type of knowledge flows and innovation in renewable 

energies. 
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TABLES 

Table 1. Variable summary statistics 

Variable Obs. Mean Std. Min. Max. 

RE 3037 0.7 1.3 0.0 18.7 

R&D 2739 40.0 46.5 0.0 358.4 

HK 2934 22.4 8.6 3.7 54.5 

Ind_Share 2876 0.2 0.1 0.0 0.4 

SPI 3102 0.5 0.2 0.0 1.0 

Density 2926 305.9 620.2 3.3 6902.0 

S 3037 29.3 59.4 0.0 1113.0 

KF[0-300) 2893 0.3 0.4 0.0 4.4 

KF[300-1200) 2959 0.4 0.7 0.0 8.2 

KF[1200-) 3080 0.8 1.7 0.0 24.1 

 

 

 

 

 

  



Table 2: Analytical knowledge characteristics of patents in EU regions, 2000-2010.  

  NPL Inventors network Radicalness 

  

% of patents 

citing NPL  

% of 

NPL 

citations  

% of patents 

with more 

than 1 

location 

Average distance 

between inventors 

(Km.) 

Average index 

of radicalness 

RE patents 31.1 18.2 43.6 127 0.359 

Rest of patents 26.2 15.3 39.1 113 0.335 

t-statistic 10.46a*** -9.80*** 11.64a*** -9.94*** -11.1*** 

*** p<0.01, ** p<0.05, * p<0.1. a Z-statistics for the difference in sample proportions. Source: Own calculations  

 

  



Table 3: Patent citations distance and distance distribution of patent citations for 

EU regions, 2000-2010 

  

Citation distance 

(Km) 
KF[0-300) KF[300-1200) KF[1200-) 

RE patents 366.8 35.7% 23.5% 40.8% 

Rest of patents 356.2 37.3% 24.1% 38.6% 

t-statistic -5.43*** 8.73a*** 3.51a*** -11.54a*** 

*** p<0.01, ** p<0.05, * p<0.1. a Z-statistics for the difference in sample proportions. Source: 

Own calculations 

 
  



Table 4. Knowledge production function for RE technologies 

  (1) (2) (3) (4) 

 Fixed Effects Estimator 

          

R&D 0.390*** 0.335*** 0.359*** 0.317*** 

 (0.0617) (0.0579) (0.0607) (0.0574) 

HK 0.0586*** 0.0463*** 0.0531*** 0.0432*** 

 (0.00822) (0.00833) (0.00852) (0.00857) 

Ind_Share -3.763*** -3.310*** -3.718*** -3.316*** 

 (0.858) (0.867) (0.844) (0.851) 

SPI -0.132** -0.113** -0.107** -0.0901* 

 (0.0511) (0.0479) (0.0505) (0.0478) 

Density 7.507** 6.311* 7.707** 6.515* 

 (3.487) (3.497) (3.397) (3.357) 

Density^2 -0.312 -0.193 -0.317 -0.202 

 (0.345) (0.345) (0.335) (0.331) 

S  0.120***  0.113*** 

  (0.0238)  (0.0234) 

KF[0-300)   0.000855 -0.0223 

   (0.0259) (0.0247) 

KF[300-1200)   0.0818* 0.0650 

   (0.0466) (0.0458) 

KF[1200-)   0.0536** 0.0444* 

   (0.0236) (0.0231) 

Constant -31.76*** -28.81*** -32.17*** -29.30*** 

 (9.117) (9.127) (8.860) (8.747) 

     
Obs. 1,979 1,970 1,979 1,970 

R-squared 0.367 0.383 0.376 0.389 

N. of regions 260 255 260 255 

Hansen's J Chi2. 186.2 165.8 199.7 191.0 

AIC 1250.2 1190.0 1228.6 1177.1 

BIC 1283.8 1229.1 1279.0 1232.9 

Dependent variable: Ln(patents per 100000 inhabitants). Robust 

standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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 Table 5: Knowledge production function for Non-RE technologies 

  

All non-RE 
technologies, 

P IT 

 
 

BIOTECH NANOTECH 

Dirty Energy 
Generation 

technologies 

           

R&D 0.135** 0.0733** 0.0992** 0.0270* 0.117** 

 (0.0569) (0.0357) (0.0405) (0.0138) (0.0464) 

HK 0.0266*** 0.0149** 0.0101 0.00570** 0.0150** 

 (0.00576) (0.00639) (0.00708) (0.00234) (0.00672) 

Ind_Share 0.821* 2.092*** 2.008*** -0.775*** -1.872** 

 (0.456) (0.556) (0.609) (0.288) (0.792) 

SPI -0.0371 -0.0991** -0.0423 0.0103 -0.0739** 

 (0.0654) (0.0413) (0.0543) (0.0110) (0.0344) 

Density 0.0496 3.238 8.742*** 1.410 2.307 

 (2.639) (2.929) (2.575) (1.588) (2.628) 

Density^2 -0.245 -0.465 -0.942*** -0.108 -0.170 

 (0.240) (0.317) (0.256) (0.165) (0.277) 

S 0.0524* 0.0408* -0.0186 0.0154** 0.0546*** 

 (0.0311) (0.0224) (0.0253) (0.00650) (0.0189) 

KF[0-300) -0.00761 -0.0312 -0.0425** -0.000146 0.00200 

 (0.0195) (0.0204) (0.0191) (0.00530) (0.0171) 

KF[300-1200) 0.0483** 0.0366 -0.0265 -0.00958 0.0946*** 

 (0.0221) (0.0285) (0.0303) (0.0137) (0.0273) 

KF[1200-) 0.0223 -0.0156 0.0276 0.0118 -0.00996 

 (0.0168) (0.0189) (0.0222) (0.00757) (0.0190) 

Constant 7.022 -5.771 -20.66*** -6.448* -8.375 

 (7.279) (6.771) (6.653) (3.724) (6.749) 

      

Obs. 1,970 1,970 1,970 1,970 1,970 

R-squared 0.167 0.052 0.051 0.056 0.155 

N. of regions 255 255 255 255 255 

Hansen's J Chi2. 0.897 167.28 286.88 44.49 60.59 

AIC 3178.5 -55.22 82.04 -2395.52 -36.73 

BIC 3240.0 0.64 137.90 -2339.66 19.13 

Dependent variable: Ln(patents per 100000 inhabitants). Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 


