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Abstract: In actuarial mathematics, the claims of an insurance portfolio are often modeled using
the collective risk model, which consists of a random number of claims of independent, identically
distributed (i.i.d.) random variables (r.v.s) that represent cost per claim. To facilitate computations,
there is a classical assumption of independence between the random number of such random
variables (i.e., the claims frequency) and the random variables themselves (i.e., the claim severities).
However, recent studies showed that, in practice, this assumption does not always hold, hence,
introducing dependence in the collective model becomes a necessity. In this sense, one trend consists
of assuming dependence between the number of claims and their average severity. Alternatively,
we can consider heterogeneity between the individual cost of claims associated with a given number
of claims. Using the Sarmanov distribution, in this paper we aim at introducing dependence
between the number of claims and the individual claim severities. As marginal models, we use the
Poisson and Negative Binomial (NB) distributions for the number of claims, and the Gamma and
Lognormal distributions for the cost of claims. The maximum likelihood estimation of the proposed
Sarmanov distribution is discussed. We present a numerical study using a real data set from a Spanish
insurance portfolio.
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1. Introduction

The collective risk model is a basic classical actuarial risk model consisting of the sum of a random
number of independent, identically distributed (i.i.d.) random variables (r.v.s) that represent costs.
To facilitate computations related to this model, there is a classical assumption of independence
between the random number of such random variables (i.e., the claim frequency) and the random
variables themselves (i.e., the claim severities). However, studies on real data emphasized in several
cases the existence of a certain dependence that should be taken into account because it can affect
important actuarial quantities like premiums and ruin probabilities. Therefore, alternative approaches
incorporate dependence between the number of claims and their average severity, see, for example,
Erhardt and Czado [1], Czado et al. [2], Krämer et al. [3], Lee and Shi [4], or Oh et al. [5]. In this paper,
we propose the bivariate Sarmanov distribution to analyze the joint behavior of the number of claims
and of each one of the individual claim amounts, instead of their average; i.e., we consider heterogeneity
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between the claim amounts associated with each number of claims. Therefore, we need to work with
all the individual claim amounts separately, and some analytical results become complex, like e.g.,
the distribution of the aggregated claims and its moments, which, in insurance, are fundamental to
calculate the premium.

Starting from an increasing need of flexible multivariate distributions, Sarmanov distribution
recently gained interest in the actuarial literature and, fitted to some real insurance data in its bivariate
and trivariate forms, provided better fits than other distributions, including Copula ones. In this
sense, we mention its applications in modeling continuous claim sizes see [6], modeling discrete claim
frequencies see [7,8], in the evaluation of ruin probabilities see [9,10] or in capital allocation see [11–13].

Therefore, in this work, we use the Sarmanov distribution to model the joint distribution of the
frequency and of the individual severity of claims, and we deduce the moments of the distribution
of the resulting aggregate claims in the collective model. In Section 2, we present general theoretical
results. In Section 3, we study some interesting particular distributions that are commonly used in
insurance, i.e., the Poisson and Negative Binomial (NB) distribution for frequency and the Gamma and
Lognormal for severity. A numerical example is presented in Section 4: on a real data set, we compare
the bivariate Sarmanov distribution relating the frequency and the individual severity with the simpler
case in which it is assumed that the claim amounts are all equal to the mean cost per policyholder;
this last assumption implies eliminating the heterogeneity within each insured, and has been used in
the alternative works cited in the first paragraph of this introduction. Finally, we conclude in Section 5.
All the proofs are given in the Appendix A.

2. Collective Model with Frequency Dependent on the Individual Claims

2.1. Introducing Sarmanov Dependence

If N denotes the r.v. number of claims from a certain portfolio and X1, X2, ..., XN the corresponding
claim amounts, then the resulting aggregate claims can be represented by the collective model as

S =
N

∑
j=1

Xj, (1)

where S = 0 when N = 0. The usual assumptions under which this model is considered
are X1, X2, ..., XN i.i.d. positive r.v.s, independent of the r.v. N. If, in particular, we assume
that X1 = X2 = ... = XN = X̄, where X̄ is the mean cost per policyholder, we obtain a simpler
representation of the collective risk model, for which S = NX̄.

Let X denote the generic r.v. claim amount whose distribution is assumed to be absolutely
continuous with probability density function (pdf) denoted by fX , let p denote the probability mass
function (pmf) of N and let fS be pdf of S. The cumulative distribution function (cdf) of an r.v. will be
denoted by F indexed with the r.v.’s name. It is well-known that for model (1),

fS (s) =
∞

∑
n=0

p (n) f ∗nX (x) ,

ES = ENEX, VarS = (EX)2 VarN +ENVarX,

where f ∗n is the n-fold convolution of the function f , iteratively defined by

f ∗0 (x) =

{
1, x = 0
0, otherwise

, f ∗1 = f , f ∗(n+1) = f ∗ f ∗n, with ( f ∗ f ) (x) =
∫
R

f (y) f (x− y) dy.

In order to relax the independence condition between the number of claims and the claim amounts,
we replace the above assumptions with the following ones:
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Hypothesis 1. Given N = n, the r.v.s X1, X2, ... are assumed to be i.i.d.

Hypothesis 2. Assume a Sarmanov type dependence between each Xi and N, i.e., (Xi, N)i≥1 are identically
distributed with the mixed Sarmanov pdf

fX,N (x, n) =

{
p (0) , n = x = 0
p (n) f (x) (1 + ωψ (n) φ (x)) , n ≥ 1, x > 0

, (2)

where ψ and φ are bounded non-constant kernel functions, ω ∈ R and f is a pdf; for simplicity, we denote by Y
an r.v. having pdf f and representing X > 0. Note that the pdf (2) is mixed because it joins the continuous pdf f
and the discrete pmf p. In order for (2) to define a proper pdf, we impose the conditions

∑
n≥1

ψ (n) p (n) =
∫
R

φ (x) f (x) dx = 0, and (3)

1 + ωψ (n) φ (x) ≥ 0, for all n ≥ 1, x > 0. (4)

With LY denoting the Laplace transform of the r.v. Y, we shall use the exponential kernels:
φ (y) = e−γy −LY (γ) and ψ (n) = e−δn − LN(δ)−p(0)

1−p(0) . Then, letting

m1 = inf
n≥1

ψ (n) = −LN (δ)− p (0)
1− p (0)

, M1 = sup
n≥1

ψ (n) = 1− LN (δ)− p (0)
1− p (0)

,

m2 = inf
x>0

φ (x) = −LY (γ) , M2 = sup
x>0

φ (x) = 1−LY (γ) ,

from condition (4), ω is restricted to the following interval

max
{
− 1

m1m2
,− 1

M1M2

}
≤ ω ≤ min

{
− 1

m1M2
,− 1

M1m2

}
. (5)

Note that under the assumption H2, the distribution of the r.v. X will have both an absolutely
continuous component (with pdf fX) and a probability mass at 0; hence, the distribution of S also has a
probability mass at 0 and the pdf fS.

For the mixed Sarmanov pdf (2), it can be easily deduced that:

Pr (X = 0) = p (0) , fX (x) = (1− p (0)) f (x) , x > 0; (6)

Pr (X = 0 |N = n ) =

{
1, n = 0
0, n ≥ 1

;

fX|N=n (x) = f (x) (1 + ωψ (n) φ (x)) , x > 0, n ≥ 1; (7)

Pr (N = n |X = x ) =

{
1, n = x = 0

p(n)
1−p(0) (1 + ωψ (n) φ (x)) , n ≥ 1, x > 0

.

In the following proposition, we present the distribution of S. Its proof is given in the Appendix A.

Proposition 1. Under the assumptions H1-H2, it holds that

FS (s) = p (0) +
∞

∑
n=1

p (n) F∗nX|N=n (x) ,

Pr (S = 0) = p (0) , fS (s) =
∞

∑
n=1

p (n) f ∗nX|N=n (x) , x > 0. (8)
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To evaluate the pdf of S based on formula (8), we shall need the following result, which gives a
formula for the conditional convolutions.

Proposition 2. Under the assumptions H1-H2, for x > 0 it holds that

f ∗mX|N=n (x) = f ∗m (x) +
m

∑
k=1

(
m
k

)
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m−k)

)
(x) .

Next, we present in terms of Y the first two moments of the aggregate claims S and the correlation
coefficient between X and N.

Proposition 3. Under the assumptions H1-H2, the expected value and variance of S are given by

ES = ENEY + ωE [Nψ (N)]E [Yφ (Y)] ,

VarS = (EY)2 VarN +ENVarY + ω2E2 [Yφ (Y)]
(

Var [Nψ (N)]−E
[

Nψ2 (N)
])

+2ωEY E [Yφ (Y)]
(
E
[

N2ψ (N)
]
−EN E [Nψ (N)]−E [Nψ (N)]

)
+ωE

[
Y2φ (Y)

]
E [Nψ (N)] ,

while the correlation coefficient between X and N is

corr (X, N) =
ωE [Nψ (N)]E [Yφ (Y)] + p (0)ENEY√
(1− p (0)) (VarY + p (0)E2 [Y]) VarN

.

Remark 1. Let m ≥ 1 and x = (x1, ..., xm). Then, based on H1 and (7), the conditional distribution of
(X1, X2, ..., Xm) given N = n is

f X1,X2,...,Xm |N=n (x, n) =
m

∏
j=1

f Xj|N=n (x) =
m

∏
j=1

f
(
xj
) (

1 + ωψ (n) φ
(

xj
))

,

therefore, the joint distribution of (X1, X2, ..., Xm, N) results as

fX1,X2,...,Xm ,N (x, n) = p (n)
m

∏
j=1

f
(

xj
) (

1 + ωψ (n) φ
(
xj
))

= p (n)

(
m

∏
j=1

f
(
xj
))(

1 +
m

∑
k=1

ωkψk (n) ∑
j1<...<jk

k

∏
l=1

φ
(

xjl
))

.

2.2. Simulation from the Collective Model

To simulate values from the distribution of S under the assumptions H1-H2, we use the inversion
method for the conditional cdf of X given N = n, i.e., we use

FX|N=0 (0) = 1,

FX|N=n (x) = FY (x) + ωψ (n)
∫ x

0
f (y) φ (y) dy, n ≥ 1, x > 0. (9)

Therefore, we first simulate the value n from the distribution of N. If n = 0 then s = 0; otherwise,
we generate n uniform U (0, 1) values (ui)

n
i=1 and, by solving the equation FX|N=n (xi) = ui for xi,

we obtain the vector (xi)
n
i=1. Then, s = ∑n

i=1 xi is a value generated from S according to model (1).
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2.3. Parameters Estimation

Let (ni; xi)
K
i=1 =

(
ni; xi1, ..., xini

)K
i=1 be a random sample of the number of claims and individual

claim amounts. Let 0 be the 0 vector, let θ and ν be, respectively, the parameters vectors of the marginal
distributions of N and Y, while ω is the dependence parameter of the Sarmanov distribution. From (2),
the corresponding log-likelihood function is

ln L
(
(ni; xi)

K
i=1

)
= ∑
{i:ni=0,xi=0}

ln p (0; θ) + ∑
{i:ni≥1,xij>0}

[ln p (ni; θ)

+
ni

∑
j=1

ln f
(

xij; ν
)
+

ni

∑
j=1

ln
(
1 + ωψ (ni) φ

(
xij
))]

= ln L
(
(ni)

K
i=1 ; θ

)
+ ln L

({
xi
∣∣xij > 0, i = 1, ..., K, j = 1, ..., ni

}
; ν
)

+
K

∑
i=1

ni

∑
j=1

ln
(
1 + ωψ (ni) φ

(
xij
))

, (10)

where L
(
(ni)

K
i=1 ; θ

)
is the likelihood function corresponding to the marginal r.v. N and

L
({

xi
∣∣xij > 0, i = 1, ..., K, j = 1, ..., ni

}
; ν
)

the one corresponding to Y.
Since maximizing the log-likelihood expressed in (10) is very difficult, specifically due to the close

relationship that exists between the dependency parameter and the parameters associated with the
marginal distributions, we define l

(ni ,xi)
K
i=1

(θ; ν|ω) to be the log-likelihood function corresponding to

the marginal parameters given ω, and l
(ni ,xi)

K
i=1

(ω|θ; ν) the log-likelihood function of the dependence
parameter given the marginal parameters θ, ν, and we determine the Maximum Likelihood Estimation
(MLE) of the parameters in two phases:

Phase 1 By MLE, find initial values for the parameters of the marginal distributions. Then, iterate the
following two steps:

Step 1 (iteration j) Given the parameters for the marginal distributions, find ω̂ j within the
interval defined in (5) for this dependence parameter by maximizing the log-likelihood
l
(ni ,xi)

K
i=1

(ω|θ; ν) ;
Step 2 Given ω̂ j, obtain new values for the parameters of the marginals by maximizing the

log-likelihood function l
(ni ,xi)

K
i=1

(θ; ν|ω) .

Repeat steps 1 and 2 until convergence. If the dependence parameter is located at an extreme of
the interval, recalculate these intervals using the parameters for marginals obtained in Step 2.

Phase 2 Starting with the initial parameters estimated in Phase 1, perform full MLE.

As a result that our parametric space is bounded, we used the optim() function of R with the
method L-BFGS-B to perform the optimizations.

The method proposed in Phase 1 is known as the Inference From Margin (IFM) method, and has
been widely used in the estimation of Copulas, see [14] for a review. Regarding the estimation of the
Sarmanov distribution, the method in two phases, IFM and full MLE, has already been used with
excellent results by Bolancé and Vernic [8] for the case of NB marginals.

3. Particular Cases

3.1. Particular Severity Distributions

For our particular dataset, we considered two severity distributions: Lognormal and Gamma.
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Under the Gamma severity distribution assumption, Y ∼ Ga (α, β) , α, β > 0, with β the rate
parameter, we recall that

EY =
α

β
,E
[
Y2
]
=

α (α + 1)
β2 , VarY =

α

β2 ,LY (γ) =

(
β

β + γ

)α

.

Furthermore, given that

E
[
Ye−γY

]
=

βα

Γ (α)

∫ ∞

0
yα+1−1e−(β+γ)ydy =

αβα

(β + γ)α+1 ,

and

E
[
Y2e−γY

]
=

βα

Γ (α)

∫ ∞

0
yα+2−1e−(β+γ)ydy =

α (α + 1) βα

(β + γ)α+2 ,

for the exponential kernel φ (y) = e−γy −LY (γ), we easily obtain

E [Yφ (Y)] = − αγβα−1

(β + γ)α+1 ,E
[
Y2φ (Y)

]
= −α (α + 1) γβα−2 (2β + γ)

(β + γ)α+2 .

We approach the Lognormal severity distribution in a different way. We recall that if Y follows
a Lognormal distribution LN

(
µ, σ2) , σ > 0, then Z = ln Y follows a normal distribution N

(
µ, σ2).

Therefore, it is easier to estimate the model having the same counting distribution, but normal
severity distribution, using logarithmized claim amounts. So, we first consider the bivariate Sarmanov
distribution fZ,N with Z ∼ N

(
µ, σ2) and exponential kernel φ. However, since the domain of the

normal distribution is the entire real line and the kernel function φ must be bounded, we shall work
with a left truncated normal distribution with left truncation point a, i.e., Z ∼ LTN

(
µ, σ2, a

)
, and we

select this truncation point such that Pr(Z <= a) is almost zero; note that a good choice is a = −3σ + µ

(another simple choice for a would be the minimum of the log-data). Hence,

fZ,N (z, n) = p (n) f
(

z; µ, σ2, a
)
(1 + ωψ (n) φ (z)) , n ≥ 1, z > a, (11)

where

f
(

z; µ, σ2, a
)

=
1

Kσ
√

2π
e−

(z−µ)2
2σ =

1
Kσ

ϕ

(
z− µ

σ

)
,

φ (z) = e−γz −LZ (γ) = e−γz − e−γµ+ γ2σ2
2

1−Φ
(

a−µ+γσ2

σ

)
K

.

Here K = 1− Φ
(

a−µ
σ

)
, while ϕ and Φ denote the pdf and, respectively, cdf of the standard

normal distribution. Then, the limits for the interval (5) of ω are

m2 = inf
z>a

φ (z) = −LZ (γ) , M2 = sup
z>a

φ (z) = e−γa −LZ (γ) .

Now, to obtain the bivariate Sarmanov distribution with a truncated Lognormal marginal,
we change variable Y = eZ in (11) and have

fY,N (y, n) =
1
y

p (n) f
(

ln y; µ, σ2, a
)
(1 + ωψ (n) φ (ln y))

= p (n) fLTLN(µ,σ2,a) (y)
(

1 + ωψ (n)
(

1
yγ
−Lln Y (γ)

))
, n ≥ 1, y > ea,
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where fLTLN(µ,σ2,a) (y) = 1
Kσy ϕ

(
ln y−µ

σ

)
is the pdf of the left truncated Lognormal distribution

LTLN
(
µ, σ2, a

)
. It follows that the bivariate Sarmanov distribution with a Lognormal marginal

is given by

fX,N (x, n) =

{
p (0) , n = x = 0
p (n) fLTLN(µ,σ2,a) (x) (1 + ωψ (n) φ̃ (x)) , n ≥ 1, x > ea ,

where the kernel function φ̃ (x) = x−γ −LLTN(µ,σ2,a) (γ) is not of exponential type.
The following proposition gives the needed ingredients to calculate the expected value and

variance of S under the simplifying assumption γ = 1.

Proposition 4. For Y ∼ LTLN
(
µ, σ2; a

)
and γ = 1, it holds that

EY = eµ+ σ2
2

K2

K
,

E
[
Y2
]

= e2µ+2σ2 K3

K
,

E [Yφ̃ (Y)] = 1− eσ2 K1K2

K2

E
[
Y2φ̃ (Y)

]
= EY− eµ+ 5σ2

2
K1K3

K2 =
1
K

eµ+ σ2
2

(
K2 − e2σ2 K1K3

K

)
,

where K1 = 1−Φ
(

a−µ+σ2

σ

)
, K2 = 1−Φ

(
a−µ−σ2

σ

)
, K3 = 1−Φ

(
a−µ−2σ2

σ

)
.

3.2. Particular Counting Distributions

As counting distributions, we consider the Poisson and Negative Binomial distributions.
The following result holds.

Lemma 1. Let N follow a certain discrete distribution with support N and let ψ (n) = e−δn − L̂N (δ) be the
corresponding exponential kernel with L̂N (δ) =

LN(δ)−p(0)
1−p(0) . Then,

E [Nψ (N)] = E
[

Ne−δN
]
− L̂N (δ)E [N] , (12)

E
[

N2ψ (N)
]

= E
[

N2e−δN
]
− L̂N (δ)E

[
N2
]

, (13)

E
[

Nψ2 (N)
]

= E
[

Ne−2δN
]
− 2L̂N (δ)E

[
Ne−δN

]
+ L̂2

N (δ)E [N] , (14)

E
[

N2ψ2 (N)
]

= E
[

N2e−2δN
]
− 2L̂N (δ)E

[
N2e−δN

]
+ L̂2

N (δ)E
[

N2
]

. (15)

In the following result, we present formulas needed to evaluate the expected value and variance
of S given in Proposition 3, for our particular distributions.

Proposition 5. Let ψ (n) = e−δn − LN(δ)−p(0)
1−p(0) be the exponential kernel.
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(i) If N ∼ Po (λ), then

E [Nψ (N)] = λe−λ

(
eλe−δ−δ − eλe−δ − 1

1− e−λ

)
,

E
[

N2ψ (N)
]

= λe−λ

[
eλe−δ−δ

(
λe−δ + 1

)
− (λ + 1)

eλe−δ − 1
1− e−λ

]
,

E
[

Nψ2 (N)
]

= λ

[
eλ(e−2δ−1)−2δ +

eλe−δ − 1(
eλ − 1

)2

(
eλe−δ

(
1− 2e−δ + 2e−λ−δ

)
− 1
)]

,

E
[

N2ψ2 (N)
]

= λ

[
eλ(e−2δ−1)−2δ

(
λe−2δ + 1

)
+

eλe−δ − 1(
eλ − 1

)2

×
(

eλe−δ
(

λ + 1− 2e−δ
(

λe−δ + 1
) (

1− e−λ
))
− λ− 1

)]
.

(ii) If N ∼ NB (r, p), then

E [Nψ (N)] =
rqpr(

1− qe−δ
)r

 1
eδ − q

−
1−

(
1− qe−δ

)r

p (1− pr)

 ,

E
[

N2ψ (N)
]

=
rqpr(

1− qe−δ
)r

 rq + eδ(
eδ − q

)2 − (1 + qr)
1−

(
1− qe−δ

)r

p2 (1− pr)

 ,

E
[

Nψ2 (N)
]

= rqpr

 e−2δ(
1− qe−2δ

)r+1 +
1−

(
1− qe−δ

)r

(p−r − 1)
(
1− qe−δ

)2r

1−
(

1− qe−δ
)r

p (1− pr)
− 2e−δ

1− qe−δ




E
[

N2ψ2 (N)
]

= rqpr

 e−2δ
(

rqe−2δ + 1
)

(
1− qe−2δ

)r+2 +
1−

(
1− qe−δ

)r

(p−r − 1)
(
1− qe−δ

)2r

×

1−
(

1− qe−δ
)r

1− pr
1 + qr

p2 −
2e−δ

(
rqe−δ + 1

)
(
1− qe−δ

)2


 .

In the numerical study that we present below, we combine the two discussed counting
distributions with the two severity distributions and obtain the following particular compound
distributions: compound Poisson–Gamma, compound Negative Binomial–Gamma, compound
Poisson–Lognormal, and compound Negative Binomial–Lognormal.

4. Numerical Study

We analyzed a dataset containing a sample of K = 99,972 Spanish insureds with a total of
8872 claims. We assumed that they have a homogeneous risk profile. For each individual, we obtained
information on the number of claims and on the individual cost of each claim notified by each insured.
Our aim was to fit the bivariate Sarmanov distribution and to check the effect of dependence between
frequency and severity on the risk premium. We compared the results obtained when considering that
S = NX̄, where X̄ represents the cost per policyholder (calculated as the mean of individual claim
amounts, see comment after model (1)), and when considering that S = ∑N

j=1 Xj, where Xj represents
the j-th claim amount of the policyholder or cost per claim; i.e., we compared the results obtained by
taking into account the heterogeneity of the claim costs for each insured and by considering that this
heterogeneity does not exist.

In Table 1, we display the results of the initial analysis of the number of claims, consisting in the
basic descriptives and initially estimated parameters (by MLE) for the marginal distribution associated
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with this variable. From the values of the Chi-square statistic, we can see that the best fit is obtained
with the NB distribution.

In Table 2, we show the basic descriptive statistics for the cost per policyholder and for the
cost per claim, together with the MLE parameters of the Gamma and Lognormal distributions for
these variables. The main difference between the two variables is in the scale and shape parameters.
As expected, the cost per claim r.v. has larger variance and more pronounced right skewness than
the cost per policyholder. We compared the goodness of fit Akaike Information Criterion (AIC)
for the Gamma and Lognormal distributions, and obtained that the best fit is provided by the
Lognormal distribution.

Table 1. Number of claims: true, Poisson and Negative Binomial (NB) fitted frequencies, and Chi-square
statistic. At the bottom: Maximum Likelihood Estimation (MLE) parameters included.

Number of Cases 99,972 Policyholders

Frequency TRUE Poisson NB

0 92,538.00 91,482.28 92,524.63
1 6166.00 8118.58 6285.65
2 1122.00 360.24 950.48
3 125.00 10.66 170.11
4 18.00 0.24 32.81
5 3.00 0.00 1.73

Chi-Square 6761.20 52.81

Initial Parameters λ = 0.0887 r = 0.2897
p = 0.7655

Table 2. Descriptive statistics of cost variables. At the bottom: MLE parameters of Gamma and
Lognormal distributions included.

Number of Cases Mean Median STD Skewness Pearson’s
Correlation

Cost per claim 8872 Claims 859.92 513.50 2448.27 24.01 0.31
Cost per policyholder 7434 Policyholders 758.13 513.50 1580.81 15.72 0.38

Gamma Lognormal

Cost per claim Initial Parameter α = 0.6631 β = 0.0008 µ = 5.8384 σ = 1.3554
AIC 136,470 134,172

Cost per policyholder Initial Parameter α = 0.7148 β = 0.0009 µ = 5.7882 σ = 1.3441
AIC 112,829 111,557

The results of the estimated bivariate Sarmanov distributions using the procedure described in
Section 2.3 are shown in Table 3. In both cases, i.e., cost per claim and cost per policyholder, the best fit
was obtained with the NB–Lognormal model. The correlations ρ calculated for this type of model are
consistent with the empirical correlations given in Table 2.

In Table 4, we present the values of the estimated mean and variance of S obtained when using
each estimated model presented in Table 3. These values are the ones used to calculate the risk
premium. If we compare the results obtained using the estimated dependence parameter ω > 0
with the results obtained by assuming ω = 0 (i.e., independence), we observe that, as we expected,
the positive values estimated for the dependence case increase the mean and the variance. Furthermore,
the largest values are obtained with the NB–Lognormal Sarmanov distribution.

To see the effect on risk premiums, in Table 5 we calculated the risk premium according to the
standard deviation principle, i.e., πR = ES + δ

√
VarS, where δ is the loading constant. We display the

pure (δ = 0) and risk (δ > 0) premiums, assuming that δ = 1; we also considered the case when N
and X are independent (i.e., ω = 0), and when N and X are Sarmanov distributed for both estimated
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NB–Lognormal models, with cost per claim and cost per policyholder. We can see that, by using
the NB–Lognormal distribution, the risk premiums are larger for the cost per policyholder model.
Specifically, in the dependent case, using the individual claim cost information allows the company to
reduce its risk premium with approximately 55 Euros.

Table 3. Estimation results of bivariate Sarmanov distributions using Poisson–Gamma,
Poisson–Lognormal, NB–Gamma, and NB–Lognormal marginals.

Cost Per Claim

Gamma Lognormal

Poisson NB Poisson NB

λ 0.0877 r 0.5998 λ 0.0875 r 1.2693
p 0.8727 p 0.9355

α 0.6650 α 0.5892 µ 5.8384 µ 5.8384
β 0.0008 β 0.0006 σ 1.3553 σ 1.3552
ω 2.8197 ω 2.9530 ω 17.1549 ω 17.5107
ρ 0.6020 ρ 0.5625 ρ 0.3769 ρ 0.3717
AIC 199,566 AIC 199,109 AIC 197,249 AIC 195,744
BIC 199,583 BIC 199,126 BIC 197,264 BIC 195,759

Cost Per Policyholder

Gamma Lognormal

Poisson NB Poisson NB

λ 0.0887 r 0.2897 λ 0.0887 r 0.2897
p 0.7655 p 0.7655

α 0.7152 α 0.6951 µ 5.7882 µ 5.7882
β 0.0009 β 0.0009 σ 1.3441 σ 1.3441
ω 2.8157 ω 3.0631 ω 16.8899 ω 18.3588
ρ 0.6152 ρ 0.5753 ρ 0.3824 ρ 0.3621
AIC 175,690 AIC 173,754 AIC 174,402 AIC 172,374
BIC 175,707 BIC 173,769 BIC 174,417 BIC 172,389

Table 4. Expectation and variance of S obtained from the estimated Sarmanov models, and by assuming
independence (ω = 0).

Cost Per Claim

Gamma Lognormal

Poisson NB Poisson NB

ω > 0 E(S) 74.64 85.96 75.40 75.46
V(S) 158,977.20 240,279.00 407,210.20 412,289.50

ω = 0 E(S) 74.62 85.89 75.33 75.33
V(S) 158,880.50 239,745.70 406,504.30 411,029.60

Cost Per Policyholder

Gamma Lognormal

Poisson NB Poisson NB

ω > 0 E(S) 67.27 68.26 71.66 71.87
V(S) 128,654.30 174,034.60 378,528.60 490,725.00

ω = 0 E(S) 67.26 68.20 71.59 71.59
V(S) 128,584.80 173,651.10 377,286.30 484,877.30
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Table 5. Premiums obtained with NB–Lognormal models (δ = 1 for risk premiums).

Pure Premium, δ = 0 Risk Premium, δ = 1

Indep. ω = 0 Depend. ω > 0 Indep. ω = 0 Depend. ω > 0

Cost per policyholder 71.59 71.87 767.92 772.39
Cost per claim 75.33 75.46 716.45 717.56

5. Conclusions

In this paper, we have shown how the flexibility of the Sarmanov model allows us to introduce
dependence between different types of variables, discrete and continuous. We have used the Sarmanov
distribution to model the bivariate distribution joining the number of claims and the individual claim
amounts, which is needed to estimate, e.g., the moments of the aggregate claims in the collective risk
model considering dependence between its variables. We numerically compared the results obtained
using the cost per claim and also using the cost per policyholder; in both cases, the NB–Lognormal
Sarmanov model proved to provide the best fit to our real dataset.

We have also analyzed the differences between the expectations and the variances of the aggregate
claims in the collective models obtained using alternative estimated distributions. We note that,
as expected, these values are larger for the models in which a Lognormal marginal distribution is
considered for the cost.
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Appendix A

Proof of Proposition 1. Since S = 0 when N = 0, we clearly obtain that Pr (S = 0) = p (0). Then,
for x > 0, we have

FS (x) = Pr (S ≤ s) = Pr (S = 0) +
∞

∑
n=1

Pr

(
n

∑
j=1

Xj ≤ x

∣∣∣∣∣N = n

)
p (n) = p (0) +

∞

∑
n=1

p (n) F∗nX|N=n (x) .

Differentiating with respect to x easily yields the formula of fS.

Proof of Proposition 2. Let x > 0. We prove the result by induction: when m = 1, based on the
definition of f ∗0, we have

f ∗1X|N=n (x) = f X|N=n (x) = f (x) + ωψ (n) ( f φ) (x) = f (x) + ωψ (n)
(
( f φ) ∗ f ∗0

)
(x) .
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Assuming that the result holds for m ≥ 1 and taking m + 1, we obtain

f ∗(m+1)
X|N=n (x) =

∫
D

f ∗mX|N=n (y) f X|N=n (x− y) dy

=
∫

D

[
f ∗m (y) +

m

∑
k=1

(
m
k

)
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m−k)

)
(y)

]
f (x− y) (1 + ωψ (n) φ (x− y)) dy

=
∫

D
f ∗m (y) f (x− y) (1 + ωψ (n) φ (x− y)) dy

+
m

∑
k=1

(
m
k

)
ωkψk (n)

∫
D

(
( f φ)∗k ∗ f ∗(m−k)

)
(y) f (x− y) (1 + ωψ (n) φ (x− y)) dy

= f ∗(m+1) (x) + ωψ (n) (( f φ) ∗ f ∗m) (x) +
m

∑
k=1

(
m
k

)
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m+1−k)

)
(x)

+
m

∑
k=1

(
m
k

)
ωk+1ψk+1 (n)

(
( f φ)∗(k+1) ∗ f ∗(m−k)

)
(x) ,

where D is the integration domain. Changing the index in the last sum, we have

m

∑
k=1

(
m
k

)
ωk+1ψk+1 (n)

(
( f φ)∗(k+1) ∗ f ∗(m−k)

)
(x) =

m+1

∑
k=2

(
m

k− 1

)
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m+1−k)

)
(x) .

Inserting this into the above formula of f ∗(m+1)
X|N=n and rearranging gives

f ∗(m+1)
X|N=n (x) = f ∗(m+1) (x) +

m

∑
k=1

[(
m
k

)
+

(
m

k− 1

)]
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m+1−k)

)
(x)

+ωm+1ψm+1 (n)
(
( f φ)∗(m+1) ∗ f ∗0

)
(x)

= f ∗(m+1) (x) +
m

∑
k=1

(
m + 1

k

)
ωkψk (n)

(
( f φ)∗k ∗ f ∗(m+1−k)

)
(x)

+ωm+1ψm+1 (n)
(
( f φ)∗(m+1) ∗ f ∗0

)
(x) ,

which immediately yields the result. This completes the proof.

Proof of Proposition 3. We prove the expected value and variance formulas in the usual way.
Using (7), we have

ES = E
[
E
[

N

∑
j=1

Xj

∣∣∣∣∣N

]]
= E [NE [X|N]] = E [N (EY + ωψ (N)E [Yφ (Y)])] ,

which easily yields the formula of ES. In what concerns the variance, we use

VarS = Var [E [S|N]] +E [Var [S|N]] . (A1)

We shall need the following formulas. From (7), we have

Var [X|N] = E
[

X2
∣∣∣N
]
−E2 [X|N]

= E
[
Y2
]
+ ωψ (N)E

[
Y2φ (Y)

]
− (EY + ωψ (N)E [Yφ (Y)])2 ,
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formula that we insert into

E [Var [S|N]] = E
[

Var

[
N

∑
j=1

Xj

∣∣∣∣∣N

]]
= E [NVar [X|N]]

= E [N]VarY + ωE [Nψ (N)]E
[
Y2φ (Y)

]
− 2ωE [Nψ (N)]E [Yφ (Y)]EY

−ω2E
[

Nψ2 (N)
]
E2 [Yφ (Y)] .

On the other hand,

Var [E [S|N]] = Var [N (EY + ωψ (N)E [Yφ (Y)])]

= E
[

N2 (EY + ωψ (N)E [Yφ (Y)])2
]
−E2 [N (EY + ωψ (N)E [Yφ (Y)])]

= E
[

N2
]
E2 [Y] + 2ωE

[
N2ψ (N)

]
E [Yφ (Y)]EY + ω2E

[
N2ψ2 (N)

]
E2 [Yφ (Y)]

−E2 [N]E2 [Y]− 2ωE [Nψ (N)]E [Yφ (Y)]ENEY−ω2E2 [Nψ (N)]E2 [Yφ (Y)]

= E2 [Y]VarN + 2ωEY E [Yφ (Y)]
(
E
[

N2ψ (N)
]
−EN E [Nψ (N)]

)
+ω2E2 [Yφ (Y)]

(
E
[

N2ψ2 (N)
]
−E2 [Nψ (N)]

)
,

and after inserting all these into (A1), we obtain the variance formula.
From formula (6) it is easy to check that

EX = (1− p (0))EY, E
[

X2
]
= (1− p (0))E

[
Y2
]

,

VarX = (1− p (0))
(

VarY + p (0) (EY)2
)

.

On the other hand, we have that

E [XN] =
∞

∑
n=1

np (n)
∫ ∞

0
x f (x) (1 + ωψ (n) φ (x)) dx

=
∞

∑
n=1

np (n)
∫ ∞

0
x f (x) dx + ω

∞

∑
n=1

np (n)ψ (n)
∫ ∞

0
x f (x) φ (x) dx

= ENEY + ωE [Nψ (N)]E [Yφ (Y)] ,

hence

cov (X, N) = E [XN]−EXEN = ENEY + ωE [Nψ (N)]E [Yφ (Y)]− (1− p (0))EYEN

= ωE [Nψ (N)]E [Yφ (Y)] + p (0)EYEN,

which, together with the above formula of VarX, immediately yields the stated formula of corr (X, N).
This completes the proof.

Proof of Proposition 4. We note that

EY = E
[
eZ
]
= LZ (−1) = eµ+ σ2

2
1−Φ

(
a−µ−σ2

σ

)
K

,

E
[
Y2
]

= E
[
e2Z
]
= LZ (−2) = e2µ+ 4σ2

2
1−Φ

(
a−µ−2σ2

σ

)
K

,
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yielding the first two formulas. The other two formulas result from

E [Yφ̃ (Y)] = E
[
Y
(

Y−1 −LZ (1)
)]

= 1− e−µ+ σ2
2

1−Φ
(

a−µ+σ2

σ

)
K

EY

= 1− e−µ+ σ2
2 eµ+ σ2

2
K1

K
K2

K
,

E
[
Y2φ̃ (Y)

]
= E

[
Y2
(

Y−1 −LZ (1)
)]

= EY− e−µ+ σ2
2

K1

K
E
[
Y2
]

= eµ+ σ2
2

K2

K
− e−µ+ σ2

2
K1

K
e2µ+2σ2 K3

K
,

and the result is immediate.

Proof of Lemma 1. The formulas (12) and (13) can be obtained directly. Formula (14) easily
results from

E
[

Nψ2 (N)
]
= E

[
N
(

e−2δN − 2L̂N (δ) e−δN + L̂2
N (δ)

)]
,

which is also the case with formula (15).

Proof of Proposition 5. (i) Let N ∼ Po (λ). Tamraz and Vernic [15] proved in Lemma 4.1 that

E
[
Ne−δN] = λeλ(e−δ−1)−δ, hence, applying also formula (12),

E [Nψ (N)] = λeλ(e−δ−1)−δ − λ
eλ(e−δ−1) − e−λ

1− e−λ
= λe−λ

(
eλe−δ−δ − eλe−δ − 1

1− e−λ

)
.

For the second formula, we use

E
[

N2e−δN
]

= e−λ
∞

∑
n=0

n2λn

n!
e−δn = e−λ

∞

∑
n=1

(n− 1 + 1)
(
λe−δ

)n

(n− 1)!

= e−λ

[(
λe−δ

)2 ∞

∑
n=2

(
λe−δ

)n−2

(n− 2)!
+ λe−δ

∞

∑
n=1

(
λe−δ

)n−1

(n− 1)!

]

= e−λ

((
λe−δ

)2
eλe−δ

+ λe−δeλe−δ
)
= λeλe−δ−λ−δ

(
λe−δ + 1

)
,

that we insert into (13) and obtain

E
[

N2ψ (N)
]

= λeλe−δ−λ−δ
(

λe−δ + 1
)
− λ (λ + 1)

eλ(e−δ−1) − e−λ

1− e−λ

= λe−λ

[
eλe−δ−δ

(
λe−δ + 1

)
− (λ + 1)

eλe−δ − 1
1− e−λ

]
.

Note that E
[
Ne−2δN] = λeλ(e−2δ−1)−2δ. Inserting into (14), we have

E
[

Nψ2 (N)
]

= λeλ(e−2δ−1)−2δ +
eλ(e−δ−1) − e−λ

1− e−λ

(
eλ(e−δ−1) − e−λ

1− e−λ
λ− 2λeλ(e−δ−1)−δ

)

= λ

[
eλ(e−2δ−1)−2δ +

eλe−δ − 1(
eλ − 1

)2

(
eλe−δ − 1− 2eλ(e−δ−1)−δ

(
eλ − 1

))]

= λ

[
eλ(e−2δ−1)−2δ +

eλe−δ − 1(
eλ − 1

)2

(
eλe−δ − 1− 2eλe−δ−δ + 2eλ(e−δ−1)−δ

)]
,
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which easily gives the third formula of (i). For the fourth formula of this case, using
E
[
N2e−δN] = λeλe−δ−λ−δ

(
λe−δ + 1

)
and (15), we write

E
[

N2ψ2 (N)
]

= λeλ(e−2δ−1)−2δ
(

λe−2δ + 1
)
+

eλ(e−δ−1) − e−λ

1− e−λ

×
(

eλ(e−δ−1) − e−λ

1− e−λ
λ (λ + 1)− 2λeλ(e−δ−1)−δ

(
λe−δ + 1

))

= λ

[
eλ(e−2δ−1)−2δ

(
λe−2δ + 1

)
+

eλe−δ − 1(
eλ − 1

)2

×
((

eλe−δ − 1
)
(λ + 1)− 2eλ(e−δ−1)−δ

(
λe−δ + 1

) (
eλ − 1

))]
,

from where the stated result.
(ii) Let N ∼ NB (r, p). From Tamraz and Vernic [15] we have that E

[
Ne−δN] = rqpre−δ

(1−qe−δ)
r+1 ,

so that using (12), we obtain

E [Nψ (N)] =
rqpre−δ(

1− qe−δ
)r+1 −

rq
p

(
p

1−qe−δ

)r
− pr

1− pr

=
rqpr(

1− qe−δ
)r

(
e−δ

1− qe−δ
−

1−
(
1− qe−δ

)r

p (1− pr)

)
,

yielding the first formula. To obtain the second stated formula, we first evaluate

E
[

N2e−δN
]

=
∞

∑
n=0

Γ (r + n)
n!Γ (r)

n2 pr
(

qe−δ
)n

=
∞

∑
n=1

Γ (r + n) (n− 1 + 1)
(n− 1)!Γ (r)

pr
(

qe−δ
)n

=
pr(

1− qe−δ
)r

[
∞

∑
n=2

Γ (r + n)
(n− 2)!Γ (r)

(
1− qe−δ

)r (
qe−δ

)n

+
∞

∑
n=1

Γ (r + n)
(n− 1)!Γ (r)

(
1− qe−δ

)r (
qe−δ

)n
]

=
pr(

1− qe−δ
)r

[
r (r + 1)

(
qe−δ

)2(
1− qe−δ

)2 +
rqe−δ

1− qe−δ

]

=
rqpre−δ

(
rqe−δ + 1

)(
1− qe−δ

)r+2 .

Therefore, based on (13), we have

E
[

N2ψ (N)
]

=
rqpre−δ

(
rqe−δ + 1

)(
1− qe−δ

)r+2 − rq (1 + qr)
p2

(
p

1−qe−δ

)r
− pr

1− pr

=
rqpr(

1− qe−δ
)r

[
e−δ

(
rqe−δ + 1

)(
1− qe−δ

)2 − 1 + qr
p2

1−
(
1− qe−δ

)r

1− pr

]
,

which easily yields the stated formula.



Mathematics 2020, 8, 1400 16 of 17

Now, using (14), we obtain

E
[

Nψ2 (N)
]

=
rqpre−2δ(

1− qe−2δ
)r+1 +

(
p

1−qe−δ

)r
− pr

1− pr

 rq
p

(
p

1−qe−δ

)r
− pr

1− pr − 2rqpre−δ(
1− qe−δ

)r+1


= rqpr

[
e−2δ(

1− qe−2δ
)r+1 + pr 1−

(
1− qe−δ

)r

(1− pr)
(
1− qe−δ

)r

×
(

1−
(
1− qe−δ

)r

p (1− pr)
(
1− qe−δ

)r −
2e−δ(

1− qe−δ
)r+1

)]
,

yielding the third formula of (ii). Inserting now E
[
N2e−δN] = rqpre−δ(rqe−δ+1)

(1−qe−δ)
r+2 into (15) gives

E
[

N2ψ2 (N)
]

=
rqpre−2δ

(
rqe−2δ + 1

)(
1− qe−2δ

)r+2 +
pr
(

1−
(
1− qe−δ

)r
)

(1− pr)
(
1− qe−δ

)r

×

 pr
(

1−
(
1− qe−δ

)r
)

(1− pr)
(
1− qe−δ

)r
rq (1 + qr)

p2 − 2
rqpre−δ

(
rqe−δ + 1

)(
1− qe−δ

)r+2

 ,

and the result is immediate. This completes the proof.
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