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    Abstract  
 

We apply the two-step machine-learning method proposed by 
Claveria et al. (2021) to generate country-specific sentiment 
indicators that provide estimates of year-on-year GDP growth 
rates. In the first step, by means of genetic programming, 
business and consumer expectations are evolved to derive 
sentiment indicators for 19 European economies. In the second 
step, the sentiment indicators are iteratively re-computed and 
combined each period to forecast yearly growth rates. To assess 
the performance of the proposed approach, we have designed 
two out-of-sample experiments: a nowcasting exercise in which 
we recursively generate estimates of GDP at the end of each 
quarter using the latest survey data available, and an iterative 
forecasting exercise for different forecast horizons We found that 
forecasts generated with the sentiment indicators outperform 
those obtained with time series models. These results show the 
potential of the methodology as a predictive tool. 
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1. Introduction 

 

The pandemic has caused a disruption in the evolution of macroeconomic aggregates. 

Consequently, the estimation of upcoming events becomes one of the fundamental 

objectives of economic analysis, especially in periods of high uncertainty such as the 

current one. Recent trade disputes and growing investor concerns about the global 

economic outlook have led the International Monetary Fund (IMF) to downgrade global 

growth projections for 2020, which have their lowest levels since the 2008 financial crisis 

(IMF, 2020). In this context, agents’ expectations about future economic conditions are a 

key feature in macroeconomic forecasting. 

Expectations are not directly observable. Consequently, agents’ expectations tend to 

be elicited via surveys. Survey expectations present several advantages over experimental 

expectations: (a) they are based on the knowledge of respondents operating in the market, 

(b) they provide detailed information about a wide range of economic variables, and (c) 

they are available ahead of the publication of official quantitative data. These features 

make them very useful for prediction. 

One of the main sources of expectation information are economic tendency surveys 

(ETS). In ETS respondents are asked whether they expect variables to rise, fall, or remain 

unchanged. Some of the most well-known ETS are collected by the University of 

Michigan, the Federal Reserve Bank of Philadelphia, the Organisation for Economic Co-

operation and Development (OECD), and the European Commission (EC). In 1961, the 

EC launched the Joint Harmonised Programme of Business and Consumer Surveys with 

the aim of unifying the survey methodologies in the member states of the European 

Economic Community – now the European Union (EU), allowing comparability between 

countries. 

Survey responses from ETS are commonly used to design composite confidence and 

sentiment indicators such as the ifo World Economic Climate Index, the University of 

Michigan Consumer Confidence Index or the Purchasing Managers’ Index calculated by 

the Markit Group. The EC constructs business and consumer confidence indicators as the 

arithmetic mean of a subset of predetermined survey expectations. 

The selection of variables for construction of confidence indicators is fundamentally 

determined by their fit to a reference series. As noted by Abberger et al. (2018), economic 

relationships between variables change over time and require periodic overhaul. 

Therefore, in this study we propose a machine-learning method for the generation of 
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economic sentiment indicators that allows both an automated variable selection procedure 

and an update of the relationships between the selected variables. 

The proposed approach allows determination of an optimal combination of 

expectations that minimises a set loss function. The obtained expressions differ from the 

confidence indicators constructed by the EC in that: (a) they are based on information 

coming from all the available variables of each survey, (b) they select expectations with 

the highest forecasting power and their optimal lag structure, (c) they capture the existing 

non-linear relationships between survey expectations, and (d) they generate direct 

estimates of economic growth. 

The objective of the paper is threefold. First, we aim to provide practitioners with 

easy-to-implement business and consumer confidence indicators. To this end, we have 

used all the variables contained in the industrial and consumer surveys conducted by the 

EC for 19 EU states and for the euro area (EA). With this information, we generated 

country-specific confidence indicators that estimate the GDP growth rate expected by 

firms and consumers. Secondly, because the algorithm selects the expectational variables 

with the highest predictive capacity, including the number of lags, we evaluate the relative 

importance of the variables in each survey as well as their lag structure. 

Finally, we assess the forecasting performance of the generated indicators. On the one 

hand, we compare them to the confidence indicators constructed by the EC in a 

nowcasting exercise. On the other hand, we design a recursive out-of-sample forecasting 

experiment in which we iteratively re-compute the indicators to predict economic growth. 

The obtained forecasts are then compared to univariate time series models used as a 

benchmark. 

The proposed methodology is based on genetic programming (GP), which is a soft 

computing search technique based on the application of evolutionary algorithms. GP 

simultaneously evolves the structure and the parameters of expressions, allowing 

formalisation of the interactions between the variables that best fit a reference series. This 

approach is especially useful in situations where the exact functional form of the solution 

is not known in advance – such as the present one, where there is no a priori combination 

of survey expectations that best tracks economic growth. 

GP has been successfully used as a machine learning tool for automatic problem-

solving in many areas such as image processing (Harding et al., 2013), but very seldom 

for macroeconomic modelling and forecasting (Álvarez-Díaz, 2019, Claveria et al., 2019, 

2020). 
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In this study, we fill this gap by applying GP to the estimation of symbolic regressions 

that link economic growth with survey expectations. We designed an independent 

experiment for each country and for each type of survey, generating confidence indicators 

that allowed us to independently monitor economic growth dynamics from both the 

demand and the supply sides of the economy. 

The rest of the paper proceeds as follows: the next section describes the 

methodological approach and the experimental setup. In Section 3 we present the obtained 

sentiment indicators. In Section 4, we assess the performance of the indicators in a 

nowcasting exercise. In Section 5, we perform an iterative forecasting experiment. Finally, 

Section 6 concludes. 

 

 

2. Methodology 

 

GP is a heuristic search technique based on the evolution of programs. This optimisation 

approach represents programs in tree structures that learn and adapt by changing their 

size, shape, and composition of the models. As opposed to conventional regression 

analysis, which is based on a certain ex-ante model specification, GP searches for 

relationships between a given set of variables and evolves the functions until it reaches a 

solution that can be described by the algebraic expression that best fits the data. 

GP simultaneously evolves the structure and the parameters of the expressions. This 

feature provides a quick overview of the most relevant interactions between variables and 

can help to identify new unknown links. As a result, due to its suitability for finding 

patterns in large datasets and handling complex modelling tasks, this empirical modelling 

approach is attracting researchers from different areas. Although GP was first used as a 

means to assess the non-linear interactions between price level, gross national product, 

money supply, and the velocity of money (Koza, 1992), applications of GP in 

macroeconomics have been very limited since then. See Claveria et al. (2017a) for a 

recent review of the application of GP to economic modelling. 

Evolutionary computation is based on the application of the principles of the theory 

of natural selection to an iterative optimisation problem. The implementation of GP starts 

by the creation of an initial random population of M individuals (functions or programs), 

from which the algorithm selects the fittest ones (parents). In order to guarantee diversity 

in the population, we used size three tournament method as the strategy for the selection 
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of parents for replacement, meaning that the best two out of three individuals randomly 

selected are finally mated. 

Genetic operators (reproduction, crossover and mutation) are applied to the selected 

parents (N). Reproduction results in the copying of the function; crossover consists of 

exchanging random parts of selected pairs; and mutation involves substitution of some 

random part of a function with some other. 

In each successive simulation (generation), a new and fitter offspring is generated. 

The fitness of each member of the population is evaluated by a loss function. Operations 

are recursively applied to the new generations until a stopping criterion is reached. The 

recursion stops when some individual program reaches a predefined fitness level or when 

the process reaches a given number of generations (Ng). The output of this process 

consists of the best individual function from all generations. 

In our case, we generated a first random population of 70000 functions, and selected 

the best 10000 individuals according to the obtained mean square error. We set a 

maximum number of 100 generations as the termination criterion. 

In this study, we implemented GP to generate composite indicators that capture 

optimal combinations of survey variables that best track the actual evolution of economic 

growth. Formally, the objective of the algorithm is to infer a functional relationship from 

a set of observations, such that the inferred function 𝑓(𝑥𝑖) is as near as possible to the 

reference series in the Euclidean distance sense, where index 𝑖 = 1, … , 𝑀 denotes the 

sample size. The search process is characterised by a trade-off between accuracy and 

simplicity. To limit the complexity of the resulting expressions, the set of functions is 

restricted to the four elementary mathematical operations (addition, subtraction, product, 

and division). See Nicolau and Agapitos (2020) for a detailed study on the effect of the 

choice of function sets on the generalisation performance of symbolic regression models. 

With the aim of further restricting the complexity of the resulting functional forms, 

we additionally introduced regularisation terms in the slope and curvature of the inferred 

functions. See Hastie et al. (2009) for a justification of the need to regularise. We used 

the Distributed Evolutionary Algorithms in Python (DEAP) developed by Fortin et al. 

(2012) 
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3. Sentiment indicators 

 

This study matches two sources of information: official quantitative GDP data and firms’ 

and consumers’ qualitative expectations about a wide array of variables. Regarding the 

quantitative information, we used seasonally adjusted year-on-year growth rates of GDP 

provided by Eurostat. With respect to agents’ expectations, we used all monthly and 

quarterly data from the Joint Harmonised EU Industry and Consumer surveys conducted 

by the EC (see Table A1 in the Appendix). Monthly survey indicators were aggregated 

on a quarterly basis and can be freely downloaded at the website of the EC. 

The sample period goes from 2003.Q1 to 2020.Q1. The last seventeen quarters were 

used as the out-of-sample period to evaluate forecast accuracy. We focused on 19 

European countries – Austria (AT), Belgium (BE), Bulgaria (BG), the Czech Republic 

(CZ), Denmark (DK), Finland (FI), France (FR), Germany (DE), Greece (EL), Hungary 

(HU), Italy (IT), the Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO), 

Slovenia (SI), Spain (ES), Sweden (SE) and the United Kingdom (UK) – and the EA. 

In both surveys, respondents are asked about their expectations regarding future 

developments and their perceptions about past and present changes. In either case, results 

are presented as balance series, which are obtained from the percentage of positive replies 

minus the percentage of negative replies. The EC publishes one composite indicator for 

each survey: the Industry Confidence Indicator (ICI) for the industry survey and the 

Consumer Confidence Indicator (CCI) for the consumer survey. Both indicators are 

obtained from the arithmetic mean of the balance series of a subset of questions. 

In this section, we present the industry and consumer confidence indicators obtained 

for each country and for the EA after the evolutionary process. We ran two independent 

experiments for each country. In the first one, we linked GDP growth to the industry 

survey indicators. In the second one, we linked GDP growth to consumer survey 

indicators. The output of the first set of experiments are country-specific evolved 

industrial confidence indicators that generate estimations of firms’ expectations of 

economic growth (Exp.IND), while the output of the second set of experiments are 

evolved consumer confidence indicators for each country that yield estimations of 

households’ expectations of the evolution of economic activity (Exp.CONS). The 

obtained industrial and consumer confidence indicators are respectively presented in 

Table 1 and Table 2.  
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Table 1 Evolved industrial confidence indicators 

Austria 0.10 ∗ 𝐵1𝑡  +  0.02 ∗ 𝐵10𝑡−2 +  0.01 ∗ 𝐵1𝑡−2 +  0.01 ∗ 𝐵2𝑡  −  0.01 ∗ 𝐵4𝑡−4 

Belgium 
𝐵11𝑡−1 +  𝐵11𝑡−2 − 𝐵14𝑡 ∗ 𝐵5𝑡−1 + 𝐵8𝑡−3

𝐵11𝑡−3 + 𝐵8𝑡
 

Bulgaria 10.01 ∗
𝐵1𝑡  +  𝐵5𝑡−2

𝐵11𝑡 
 

Czech Republic 0.10 ∗
−𝐵1𝑡−2 ∗ (𝐵8𝑡−2) +  (𝐵2𝑡−2 +  (𝐵5𝑡  −  10.01) ∗ 𝐵8𝑡−2) ∗ (𝐵5𝑡  + 𝐵5𝑡−2)

𝐵2𝑡−2 + (𝐵5𝑡  −  10.01) ∗ (𝐵8𝑡−2)
 

Denmark 0.10 ∗
−𝐵1𝑡  +  (𝐵1𝑡  +  20.01) ∗ (𝐵1𝑡  +  𝐵10𝑡−3)

𝐵1𝑡  +  20.01
 

Finland 0.05 ∗ 𝐵1𝑡  +  0.10 ∗ 𝐵5𝑡 +  0.05 ∗ 𝐵9𝑡−1 −  1.01 

France 0.10 ∗ 𝐵10𝑡  +  0.10 ∗ 𝐵11𝑡−1 −  0.10 ∗ 𝐵11𝑡−4 +  1.01 

Germany 
0.10 ∗ (𝐵10𝑡−1) ∗ (𝐵1𝑡  +  𝐵10𝑡−1 +  𝐵14𝑡−2) +  1.01

𝐵10𝑡−1
 

Greece 
0.23 ∗ 𝐵1𝑡 ∗ (𝐵11𝑡 ) ∗ (𝐵11𝑡−4) − 𝐵11𝑡−4 − (𝐵1𝑡−4 ∗ 𝐵9𝑡 − 𝐵1𝑡 ) ∗ (𝐵11𝑡−4)

(𝐼11𝑡 ) ∗ (𝐼11𝑡−4)
 

Hungary 
−0.51 ∗ 𝐵1𝑡−4 +  13.10 ∗ 𝐵5𝑡  −  𝐵6𝑡−2 ∗ 𝐵7𝑡−1

𝐵11𝑡 
 

Italy 
−𝐵1𝑡−3 + 𝐵2𝑡  + 𝐵5𝑡−1 +  2.01 ∗ 𝐵9𝑡

𝐵8𝑡−3
 

Netherlands 0.01 ∗ 𝐵2𝑡−1 +  0.11 ∗ 𝐵5𝑡  +  0.10 ∗ 𝐵5𝑡−1 +  0.01 ∗ 𝐵9𝑡−1 

Poland 
0.28 ∗ 𝐵9𝑡

0.28 ∗
𝐵11𝑡−3

𝐵3𝑡−4
+  𝐵8𝑡−3 +  4.24

+  3.52 

Portugal 0.10 ∗ 𝐵12𝑡 −  0.10 ∗ 𝐵14𝑡−4 +  0.10 ∗ 𝐵4𝑡−3 +  0.10 ∗ 𝐵5𝑡  +  0.10 ∗ 𝐵5𝑡−1 +  0.23 

Romania 
0.31 ∗ 𝐵5𝑡−1 −

0.92

(
𝐵2𝑡−1 +  3.31

𝐵11𝑡−4
) ∗ (𝐵5𝑡−1)

 

Slovenia 
0.10 ∗ 𝐵11𝑡−3 −  0.10 ∗ 𝐵1𝑡−1 +  0.10 ∗ (𝐵11𝑡−3) ∗ (𝐵10𝑡−1 + 𝐵2𝑡  + 𝐵4𝑡−4) −  0.05

𝐵11𝑡−3
 

Spain 0.10 ∗ 𝐵1𝑡  +  0.10 ∗ 𝐵4𝑡−3 +  0.10 ∗ 𝐵5𝑡−2 +  0.10 ∗ 𝐵5𝑡−4 +  0.38 

Sweden 0.10 ∗ 𝐵5𝑡−2 −  0.10 ∗ 𝐵6𝑡−1 +  0.10 ∗ 𝐵9𝑡 

UK −0.04 ∗ 𝐵14𝑡−2 +  0.10 ∗ 𝐵5𝑡  +  0.41 

EA 0.10 ∗ 𝐵1𝑡  +  0.10 ∗ 𝐵10𝑡−1 +  0.10 ∗ 𝐵4𝑡−2 
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Table 2 Evolved consumer confidence indicators 

Austria 
2.01 ∗ 𝐶11𝑡  +  𝐶12𝑡−2 +  2.01 ∗ 𝐶4𝑡−2 −  𝐶5𝑡−3 −  𝐶9𝑡−2

𝐶12𝑡−1
 

Belgium 
𝐶13𝑡−3 +  𝐶14𝑡−1 +  𝐶2𝑡−2 ∗ 𝐶3𝑡−2

𝐶10𝑡  +  𝐶13𝑡−3
 

Bulgaria 
0.10 ∗ 𝐶6𝑡−1 ∗ (𝐶10𝑡 +  2.01 ∗ 𝐶7𝑡) − (𝐶10𝑡 + 𝐶7𝑡) ∗ 𝐶14𝑡−2

𝐶14𝑡−2
 

Czech Republic 0.10 ∗ (−𝐶15𝑡−2 +  𝐶3𝑡  +  𝐶8𝑡  −  𝐶9𝑡−4) 

Denmark 
𝐶3𝑡 ∗ 𝐶7𝑡−2 + (𝐶11𝑡−1) ∗ (𝐶12𝑡−3 +  𝐶3𝑡 +  𝐶4𝑡−3 − 𝐶5𝑡−2)

(𝐶11𝑡−1) ∗ (𝐶12𝑡−3)
 

Finland 0.10 ∗
−𝐶15𝑡−4 ∗ (𝐶3𝑡−2) + (𝐶3𝑡  +  𝐶8𝑡−4) ∗ (−0.50 ∗ 𝐶8𝑡−4 +  𝐶10𝑡−3 ∗ 𝐶3𝑡−2)

−0.50 ∗ 𝐶8𝑡−4 +  (𝐶10𝑡−3) ∗ (𝐶3𝑡−2)
 

France 2.06 +
0.15 ∗ 𝐶13𝑡−3

𝐶3𝑡−1 
−

1.85 ∗ 𝐶1𝑡−4

𝐶13𝑡−2 −  𝐶3𝑡−1
 

Germany 0.05 ∗ 𝐶10𝑡−2 +  0.04 ∗ 𝐶4𝑡−1 −  0.05 ∗ 𝐶5𝑡−2  −  0.05 ∗ 𝐶7𝑡 +  1.86 

Greece 0.10 ∗ 𝐶15𝑡−3 −  0.10 ∗ 𝐶2𝑡−1 +  0.10 ∗ 𝐶7𝑡  −  1.01 

Hungary 4.54 +
0.14 ∗ 𝐶13𝑡

𝐶9𝑡 
+

3.03 ∗ 𝐶8𝑡

𝐶3𝑡 − 𝐶13𝑡−1
 

Italy 
𝐶6𝑡−4 ∗  (−𝐶6𝑡−4)

 11.01 ∗ 𝐶6𝑡−4 − 𝐶10𝑡−2 +  20.50
 

Netherlands 
𝐶14𝑡−1 +  𝐶1𝑡−2 +  𝐶6𝑡−4 +  2.01 ∗ 𝐶7𝑡  +  𝐶9𝑡−1

𝐶13𝑡−4
 

Poland 
𝐶14𝑡−1 +  𝐶14𝑡−2 +  𝐶8𝑡−1 ∗  𝐶9𝑡 + 𝐶7𝑡

𝐶15𝑡−1
 

Portugal 
𝐶14𝑡−1 +  𝐶14𝑡−3 −  𝐶2𝑡−2 +  𝐶12𝑡−4 ∗  𝐶5𝑡−3 −  𝐶12𝑡−4 ∗  𝐶2𝑡−2

𝐶13𝑡−4
 

Romania 
4.65 ∗ 𝐶10𝑡 −  𝐶2𝑡 +  𝐶13𝑡−4 +  4.65 ∗ 𝐶7𝑡

𝐶8𝑡 
 

Slovenia 
𝐶14𝑡−1 −  𝐶6𝑡−1 +  𝐶7𝑡  −  2.01 ∗ 𝐶8𝑡

𝐶11𝑡−2
 

Spain 
−5.17 ∗ 𝐶1𝑡  +  0.76 ∗ 𝐶15𝑡  −  2.01 ∗ 𝐶3𝑡−1 + 4.44 ∗  𝐶9𝑡

𝐶11𝑡−3
 

Sweden 
−𝐶4𝑡−1 +  (𝐶8𝑡−1) ∗ (𝐶4𝑡−2 +  𝐶1𝑡  +  𝐶8𝑡−1)

(𝐶2𝑡−4) ∗ (𝐶8𝑡−1)
 

UK 
𝐶14𝑡−3 ∗ (𝐶14𝑡−3 −  𝐶3𝑡 ) −  𝐶14𝑡−3 − 𝐶3𝑡 ∗ 𝐶4𝑡−4 +  𝐶8𝑡−1

(𝐶15𝑡) ∗ (𝐶14𝑡−3 −  𝐶3𝑡 )
 

EA 
𝐶13𝑡−1 + 𝐶13𝑡−3 +  𝐶14𝑡−2 −  𝐶2𝑡−2 ∗ 𝐶7𝑡  +  3.78

𝐶13𝑡−3
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When comparing the resulting indicators of industrial and consumer confidence, we 

observed that genetic algorithms generated more linear expressions for firms’ 

expectations. In most countries, the derived expression is a linear combination of several 

industry survey variables, as opposed to evolved consumer confidence indicators, which 

are mostly non-linear and, include ratios and more complex interactions between survey 

indicators. 

Regarding the lag structure, most variables tend to appear indistinctly with and 

without lags, sometimes for the same country. In the case of the evolved consumer 

indicators, the financial and general economic situation over the last 12 months, as well 

as future unemployment expectations, mostly appear contemporaneously, in the same 

way as the observed production trend and new orders in recent months appear for the 

evolved industry indicators. The results of Table 1 and Table 2 are summarised in Fig. 1. 

 

  
Fig. 1. Bar chart with relative frequency of variable selection (industry and consumer survey) 
 

In the bar chart which shows the relative frequency with which each survey variable 

appears in the evolved expressions, we can observe that variable B5 from the industry 

survey (‘production expectations for the months ahead’) is the most frequent of the 

evolved industry confidence indicators. Regarding consumer expectations, variables C13 

(‘intention to buy a car’) and C14 (‘intention to purchase a home in the next 12 months’) 

are the variables most frequently selected by the algorithm, both contemporaneously and 

with lags. We observe that the distribution of the industry survey variables shows less 

variance than that of the consumer survey variables, which is more flat-topped, showing 

fatter tails. It can be seen that each survey variable of the consumer survey appears at 

least 3 or 4 times in the evolved consumer confidence indicators; however in the industry 

survey, production expectations appear 16 times, while other variables such as the 

‘competitive position inside the EU’ do not appear for any country. 
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These obtained results suggest the predictive potential of production expectations in 

the industry. In the case of consumers, the intention to buy a car or a house are the 

variables with the highest informational content to capture economic growth dynamics. 

Klein and Özmucur (2010) also found evidence of the predictive potential of variable B5 

when evaluating the usefulness of expectations from the industry survey to improve the 

forecasting performance of time series models in 26 European countries. It is also 

noteworthy that in spite of the leading properties of the variables contained in the 

consumer quarterly surveys, which are the most frequently selected variables by the 

algorithm, they have always been omitted by the EC in the construction of the official 

consumer confidence indicators. 

 

 

4. Nowcasting experiment 

 

In this section, we examine the predictive performance of the proposed confidence 

indicators in tracking economic activity in two different forecasting exercises. We used 

the last 17 quarters (2016.Q1 to 2020.Q1) as the out-of-sample period, and the root mean 

square forecasting error (RMSFE) as a measure of forecast accuracy. First, we compared 

the forecasts obtained with the evolved confidence indicators (Exp.IND and Exp.CONS) 

to those obtained with the corresponding confidence indicators constructed by the EC, 

previously re-scaled (Cof.IND and Cof.CONS). Because the output of the evolved 

indicators is directly expressed as expected annual GDP growth rates, we re-scaled the 

indicators presented in expressions (1) and (2), by regressing the GDP growth of each 

country on the components of the indicators during the in-sample period (2003.Q1 to 

2015.Q4). 

In Fig. 2 we graphically compare the evolution of the two GP-generated indicators to 

that of the GDP of each country. The last seventeen quarters of the sample are used as the 

out-of-sample period, in which we use the results of the surveys to estimate period-to-

period economic growth prior to the publication of official data. 
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Fig. 2. Evolution of GDP and firms’ and consumers’ evolved confidence indicators 

Notes: The black line represents the evolution of GDP growth, the grey dotted line the evolution of consumer confidence 

(Exp.CONS), and the dashed black line the evolution of industrial confidence (Exp.IND). The vertical line in 2016.Q1 

marks the beginning of the out-of-sample period. 
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Fig. 2. (cont.1) Evolution of GDP and firms’ and consumers’ evolved confidence indicators 

Notes: The black line represents the evolution of GDP growth, the grey dotted line the evolution of consumer confidence 

(Exp.CONS), and the dashed black line the evolution of industrial confidence (Exp.IND). The vertical line in 2016.Q1 

marks the beginning of the out-of-sample period. 

 



12 

 

 
Spain Sweden 

  
United Kingdom Euro Area 

 
 

 

Fig. 2. (cont.2) Evolution of GDP and firms’ and consumers’ evolved confidence indicators 

Notes: The black line represents the evolution of GDP growth, the grey dotted line the evolution of consumer confidence 

(Exp.CONS), and the dashed black line the evolution of industrial confidence (Exp.IND). The vertical line in 2016.Q1 

marks the beginning of the out-of-sample period. 

 

The EC publishes one composite indicator for the industry (ICI) and another one for 

households (CCI). Both indicators are obtained from the arithmetic mean of the balance 

series of a subset of questions: 

 

𝐼𝐶𝐼𝑡 =
𝐼2𝑡+ 𝐼5𝑡− 𝐼𝐼4𝑡

3
  (1) 

 

𝐶𝐶𝐼𝑡 =
𝐶2𝑡+𝐶4𝑡 +𝐶11𝑡− 𝐶7𝑡

4
  (2) 

 

The in-sample OLS estimates of the weights of each of the components of the 

confidence indicators published by the EC allow us computing scaled confidence 

indicators that are directly comparable with the evolved confidence indicators.  This 

experiment can be regarded as a nowcasting exercise, given that for each period the 

indicators provide an estimation of the current state of the economy before the official 

figures are released, making exclusive use of the latest survey data published by the EC. 

For further discussion of nowcasting, see Caruso (2018) and Giannone et al. (2008), 

and the references cited therein. 
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To test whether the reduction in accuracy is statistically significant, we computed the 

Harvey-Leybourne-Newbold statistic (Harvey, Leybourne and Newbold, 1997), which is 

a modification for small samples of the Diebold-Mariano (DM) statistic (Diebold and 

Mariano, 1995). Under the null hypothesis that there is no significant difference in 

precision, the statistic follows a Student-t distribution. A negative sign indicates that 

the second model has larger forecast errors. Results are presented in Table 3. 

 
Table 3 

Forecast accuracy – RMSFE – Evolved confidence indicators vs. scaled confidence indicators 

  Industry   Consumers   

  Exp.IND Cof.IND HLN Exp.CONS Cof.CONS HLN 

Austria  1.097 1.186 -0.324 1.383 1.651 -0.839 

Belgium  1.089 0.954 -0.122 0.946 1.698 -4.978 

Bulgaria  0.665 1.180 -2.611 0.851 0.918 -1.206 

Czech Republic  1.393 1.639 -0.410 3.056 3.433 -0.392 

Denmark  1.643 1.516 0.272 1.189 1.084 0.686 

Finland  2.284 2.243 1.100 2.335 2.759 -1.391 

France  1.633 1.461 1.197 1.737 1.711 -1.137 

Germany  1.244 1.808 -2.447 0.991 2.056 -2.120 

Greece  1.838 1.757 0.334 4.386 4.248 0.799 

Hungary  3.865 1.229 6.700 0.838 3.656 -6.518 

Italy  1.373 1.167 0.711 1.522 1.568 -3.436 

Netherlands  0.706 1.040 -2.311 0.592 2.265 -7.009 

Poland  1.532 2.019 -2.469 1.116 2.486 -3.235 

Portugal  1.009 1.113 -1.758 1.216 1.309 0.552 

Romania  2.454 3.017 -1.349 1.506 1.268 1.325 

Slovenia  1.505 1.355 0.425 3.989 2.203 2.606 

Spain  1.583 1.523 -1.235 2.357 1.629 0.973 

Sweden  1.431 3.254 -3.018 0.952 1.520 -4.806 

United Kingdom  0.895 1.232 -1.243 0.775 2.137 -6.045 

Euro Area  1.025 1.093 -1.382 2.147 2.031 -0.329 

Notes: HLN denotes the Harvey-Leybourne-Newbold test statistic. 

 

In Table 3 we can observe that in most countries the lowest forecast errors are 

obtained using the evolved indicators (Table 1 and Table 2), although the difference in 

accuracy is not always statistically significant. For industry, we obtained significantly 

lower forecast errors for Bulgaria, Germany, the Netherlands, Poland and Sweden; 

however, for consumers, in Belgium, Germany, Hungary, Italy, the Netherlands, Poland, 

Sweden, and the UK. We also observed notable differences in accuracy between firms 

and households in countries like the Czech Republic and Greece. 

The EC weights the confidence indicators of the surveys in order to compute the 

Economic Sentiment Indicator (ESI). Gelper and Croux (2010), and more recently Lukac 

and Cizmesija (2021), have shown that letting the aggregation weights of each component 
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of the ESI be data-driven improves its forecasting performance. Hence, we next combined 

the estimations obtained from the evolved industry and consumer confidence indicators 

by means of constrained optimisation. We used a generalised reduced gradient non-linear 

algorithm to minimise the summation of squared forecast errors and imposed two 

restrictions: (a) the sum of both weights must equal one, and (b) the weights must be equal 

to or larger than zero. The resulting weights are annexed in the Appendix (Table A2). 

We applied the computed relative weights to combine firms’ and consumers’ 

expectations obtained from the evolved confidence indicators (Exp.Agg) and the scaled 

confidence indicators (Cof.Agg). We additionally computed Cof.Agg* as the average 

between the expectations obtained from the scaled confidence indicators. Results of the 

forecasting comparison are presented in Table 4. 

 

Table 4 

Forecast accuracy – Aggregate expectations – Exp.Agg vs. Cof.Agg 
 RMSFE HLN 

 Exp.Agg Cof.Agg Cof.Agg* 
Exp.Agg 

vs. 

Cof.Agg 

Exp.Agg. 

vs. 

Cof.Agg* 

Austria 1.082 1.181 1.286 -0.370 -0.501 

Belgium 0.994 0.937 1.085 -0.908 -3.151 

Bulgaria 0.630 0.686 0.708 -0.253 -0.598 

Czech Republic 1.489 1.580 1.910 0.046 -1.007 

Denmark 1.147 1.120 1.235 0.463 -0.865 

Finland 2.087 2.241 2.366 0.196 -0.600 

France 1.648 1.448 1.485 0.576 0.204 

Germany 0.943 1.653 1.655 -2.892 -3.219 

Greece 2.472 2.733 2.839 -1.211 -1.734 

Hungary 0.870 3.547 2.237 -6.073 -4.721 

Italy 1.365 1.168 1.258 1.034 0.085 

Netherlands 0.658 1.271 1.599 -3.196 -4.817 

Poland 0.932 2.226 2.197 -5.065 -5.520 

Portugal 1.099 0.988 0.978 1.419 1.393 

Romania 1.517 1.884 1.921 -1.260 -1.612 

Slovenia 1.505 2.203 1.408 -0.247 0.391 

Spain 1.677 1.493 1.494 0.139 0.010 

Sweden 0.930 1.955 2.230 -4.150 -3.917 

United Kingdom 0.747 1.425 1.467 -3.443 -3.912 

Euro Area 1.238 0.804 0.981 0.598 -0.215 

Notes: Cof.Agg* denotes the average of the the scaled confidence indicators for firms (Cof.IND) and 

consumers (Cof.CONS). HLN denotes the Harvey-Leybourne-Newbold test statistic. 

 

Again, we can observe that in most cases the lowest forecast errors are obtained with 

the aggregated expectations coming from the proposed confidence indicators (Exp.Agg), 

although the difference in accuracy is only statistically significant in seven countries 
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(Belgium, Germany, Hungary, the Netherlands, Poland, Sweden, and the UK). We also 

found that data-driven weights improved the forecasting performance of the scaled 

confidence indicators. 

This forecasting exercise addresses the question about the information content of 

business and consumer survey expectations, and whether more sophisticated aggregation 

schemes based on machine learning could provide composite indicators that can better 

track economic activity. Our findings are in line with recent research by Ardia et al. 

(2019), who found that the use of optimised news-based sentiment values yielded 

accuracy gains for forecasting US industrial production. For Switzerland and Germany, 

Iselin and Siliverstovs (2016) obtained improvements in accuracy of one-step-ahead GDP 

forecasts by augmenting benchmark autoregressive models with variations of the 

recession-word index. Similarly, Juhro and Iyke (2020) found that accounting for 

consumer and business sentiments led to improved forecast accuracy of consumption in 

Indonesia. 

There is ample evidence that survey expectations are useful for predicting economic 

variables (Altug and Çakmakli, 2016; Claveria, 2020, 2021; Girardi et al., 2015; Klein 

and Özmucur, 2010; Martinsen et al., 2014). In this sense, the obtained results are 

consistent with recent research regarding the predictive content of survey expectations. 

Cepni et al. (2019) showed the usefulness of diffusion indexes from the Markit survey in 

nowcasting and forecasting GDP in emerging markets by means of machine-learning and 

dimensionality-reduction techniques. Using qualitative survey responses from the ifo’s 

World Economic Survey (WES), Hutson et al. (2014) found that respondents provided 

statistically significant directional forecasts. Driver and Meade (2019) used survey data 

from South Africa to investigate the accuracy of directional and point forecasts of 

investment, and found that for shorter horizons survey forecasts enhanced by time-series 

data significantly improved point forecasting accuracy. 

 

 

5. Iterative forecasting experiment 

 

In order to further explore the potential of the proposed approach for short-term economic 

forecasting, we designed an iterative out-of-sample forecasting experiment in which we 

re-ran the evolutionary process for each period of the out-of-sample subset using a rolling 
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estimation window. We compared the obtained results with autoregressive moving 

average (ARIMA) forecasts used as a benchmark. 

In order to determine the number of lags that should be included in the model, we 

have selected the model with the lowest value of the Akaike Information Criterion (AIC) 

considering models with a minimum number of 1 lag up to a maximum of 4, including 

all the intermediate lags. In Table 5, we present the results of comparing the out-of-sample 

forecasting performance of the proposed approach to rolling ARIMA forecasts used as a 

benchmark for two different forecast horizons (h). 

 
Table 5 

Forecast accuracy – RMSFE – Iterative aggregate expectations vs. ARIMA forecasts 

  h=1   h=4  

 SR ARIMA HLN SR ARIMA HLN 

Austria 0.474 0.883 -0.835 0.475 1.590 -2.103 

Belgium 0.421 1.093 -2.729 0.555 1.139 -2.384 

Bulgaria 0.650 0.316 2.190 0.928 0.688 0.668 

Czech Republic 0.629 1.264 -1.493 0.929 2.578 -4.068 

Denmark 0.599 1.410 -3.084 0.624 2.195 -4.073 

Finland 0.657 0.832 -1.413 0.719 1.181 -1.193 

France 0.908 1.541 -1.108 1.047 2.275 -1.599 

Germany 0.530 0.905 -1.203 0.711 1.594 -2.581 

Greece 0.523 0.952 -2.280 0.535 1.827 -3.175 

Hungary 0.528 2.866 -4.146 1.829 2.845 -0.860 

Italy 0.649 1.493 -1.447 1.055 1.849 -2.957 

Netherlands 0.287 0.734 -1.773 1.107 1.182 0.402 

Poland 0.419 2.774 -5.990 0.842 2.743 -2.458 

Portugal 0.643 1.335 -1.157 1.502 1.802 -0.380 

Romania 0.543 3.254 -8.019 2.326 3.329 -0.775 

Slovenia 0.543 2.380 -5.018 2.048 2.574 -0.924 

Spain 0.711 1.630 -0.929 0.685 1.862 -1.952 

Sweden 0.274 0.955 -4.316 0.572 1.804 -6.157 

United Kingdom 0.383 0.861 -2.978 0.609 1.465 -1.819 

Euro Area 0.426 1.102 -0.867 0.853 1.705 -1.610 

Notes: h denotes the forecasting horizon. SR denotes the iterative forecasts obtained with the proposed GP-based 

approach, and ARIMA refer to the iterative ARIMA forecasts. HLN denotes the Harvey-Leybourne-Newbold test 

statistic. 

 

 

We find that in all countries except Bulgaria, iterative sentiment indicators produce 

lower RMSFE values than ARIMA models, regardless of the forecast horizon. This gain 

in forecast accuracy is significant in ten of the countries for one-quarter-ahead predictions 

(h=1), and in nine economies for four-quarter-ahead forecasts (h=4). Consequently, the 

iterative approach allows to refine the predictive capacity obtained in the nowcasting 

exercise (Table 3 and Table 4). Compared to ARIMA predictions, the relative 
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improvement of the proposed methodology increases along with the predictive horizon. 

Proof of this is that the RMSFE obtained for one- and four-quarter-ahead predictions is 

practically identical in most countries. The explanation lies fundamentally in the fact that 

the generated indicators tend to show a stable behaviour over long periods. 

These results show the predictive potential of the proposed procedure, and provide 

evidence regarding the ability of GP to solve optimisation problems related to economic 

modelling and forecasting. In this sense, our study connects with previous research by 

Chen et al. (2010), who incorporated GP in a vector error correction framework and 

obtained better forecasts of US imports than with ARIMA models. Using information 

from the ifo’s WES, Claveria et al. (2017b) implemented GP to construct a perceptions 

index and an expectations index, obtaining more accurate forecasts with the former. 

Similarly, Duda and Szydło (2011) applied GP to develop a set of empirical models to 

forecast GDP, investment and loan rates in Poland, and found that the proposed approach 

outperformed artificial neural network models. Focusing on the EA, Kapetanios et al. 

(2016) showed the usefulness of genetic algorithms to forecast quarterly GDP growth 

and monthly inflation. Previous applications of evolutionary computing in finance have 

also shown the potential of GP for the prediction of the financial failure of firms (Acosta-

González and Fernández, 2014), to forecasting exchange rates (Álvarez-Díaz and Álvarez, 

2003, 2005), and for stock price forecasting (Kaboudan, 2000; Larkin and Ryan, 2008; 

Wilson and Banzhaf, 2009). 

 

 

6. Conclusion 

 

Economic sentiment indicators are key for monitoring the current state of the economy 

and providing forward-looking information regarding imminent economic developments. 

In this paper, we propose a machine-learning method for sentiment indicators 

construction. The proposed approach allows us to find optimal combinations of a wide 

range of qualitative survey expectations that minimise a loss function and generate 

quantitative estimates of economic growth. By means of genetic algorithms, we obtained 

country-specific industry and consumer confidence indicators that allow monitoring the 

dynamics of economic activity in fifteen European countries and the EA, both from the 

demand and the supply sides of the economy. 
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The obtained evolved expressions differ from the confidence indicators constructed 

by the EC in several ways. On the one hand, they are based on information coming from 

all the available variables of the industry and consumer surveys. On the other hand, they 

generate direct estimates of economic growth. Additionally, the proposed approach 

automatically selects the expectational variables with the highest forecasting power and 

their optimal lag structure, detecting and modelling the existing non-linear relationships 

between survey expectations. 

An examination of the obtained mathematical expressions gives insight into the 

relative predictive power of each of the survey variables of the industry and the consumer 

surveys, and also into the optimal number of lags to be taken from each of the variables 

to best track year-on-year GDP growth in each country. We find that firms’ production 

expectations for the months ahead and and consumers’ assessments about the general 

economic situation over the previous months are, respectively, the survey variables that 

most frequently appear in the evolved indicators, both lagged and contemporaneous. We 

also observed that all questions of the consumer survey appeared in the indicators, while 

in the case of the industry survey the distribution between variables is less uniform, with 

the two questions related to production being the most frequent. These findings can be 

very useful when using data from business and consumer surveys for economic analysis. 

Finally, we assessed the forecasting performance of the proposed indicators. On the 

one hand, we compared them to the confidence indicators constructed by the EC in a 

nowcasting exercise and found that the evolved expressions outperform the scaled 

confidence indicators in most cases, although the differences are only significant in less 

than half of the countries. On the other hand, we designed a recursive out-of-sample 

forecasting experiment in which we iteratively re-computed the indicators to track 

economic growth. The obtained predictions were then compared to recursive 

autoregressive moving average forecasts of GDP used as a benchmark. We found that the 

proposed approach significantly outperforms univariate time series models in terms of 

accuracy. 

The obtained results provide evidence regarding the ability of genetic programming 

to solve optimisation problems related to economic modelling, and show the potential of 

the methodology as a predictive tool. Furthermore, the proposed indicators are easy to 

implement and help to monitor the evolution of the economy, from both the demand and 

the supply sides. From an economic policy point of view, we have provided managers 

and researchers with a set of country-specific indicators that transform the qualitative 
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expectations of firms and consumers into advanced estimates of national GDP growth 

without making any assumptions regarding economic agents’ behaviours. 

We want to note that due to the empirical nature of the proposed approach, the evolved 

expressions lack any theoretical background. In this sense, an issue left for further 

research is the introduction of restrictions in the design of the experiments with the 

objective of generating expressions that admit an economic interpretation. Another 

limitation of the proposed approach is that, as opposed to standard regression, the 

significance of the parameters obtained in symbolic regression cannot be assessed. Other 

aspects that remain to be explored are the implementation of the analysis using mixed 

frequency data, as well as the extension of the analysis to other economic tendency 

surveys, such as the construction and retail trade surveys of the Joint Harmonised 

Programme of Business and Consumer Surveys conducted by the EC or the Consumer 

Survey of the University of Michigan. 

 

 

References 

 

Álvarez-Díaz, M. (2020). Is it possible to accurately forecast the evolution of Brent crude oil 

prices? An answer based on parametric and nonparametric forecasting methods. Empirical 

Economics, 10(6), 1285–1305. 

Álvarez-Díaz, M., & Álvarez, A. (2003). Forecasting exchange rates using genetic algorithms. 

Applied Economics Letters, 10(6), 319–322. 

Álvarez-Díaz, M., & Álvarez, A. (2005). Genetic multi-model composite forecast for non-linear 

prediction of exchange rates. Empirical Economics, 30(3), 643–663. 

Ardia, D., Bluteau, K., & Boudt, K. (2019). Questioning the news about economic growth: Sparse 

forecasting using thousands of news-based sentiment values. International Journal of 

Forecasting, 35(4), 1370–1386. 

Caruso, A. (2018). Nowcasting with the help of foreign indicators: The case of Mexico. Economic 

Modelling, 69, 160–168.  

Cepni, O., Güney, I. E., & Swanson, N. R. (2019). Nowcasting and forecasting GDP in emerging 

markets using global financial and macroeconomic diffusion indexes. International Journal 

of Forecasting, 35(2), 555–572. 

Chen, X., Pang, Y., & Zheng, G. (2010). Macroeconomic forecasting using GP based vector error 

correction model. In J. Wang (Ed.), Business Intelligence in Economic Forecasting: 

Technologies and Techniques (pp. 1–15). Hershey, PA: IGI Global. 

Claveria, O. (2020). Uncertainty indicators based on expectations of business and consumer 

surveys. Empirica. Forthcoming. 

Claveria, O. (2021). On the aggregation of survey-based economic uncertainty indicators between 

different agents and across variables. Journal of Business Cycle Research. Forthcoming. 

Claveria, O., Monte, E., & Torra, S. (2017a). A new approach for the quantification of qualitative 

measures of economic expectations. Quality & Quantity, 51(6), 2685–2706. 

Claveria, O., Monte, E., & Torra, S. (2017b). Using survey data to forecast real activity with 

evolutionary algorithms. A cross-country analysis. Journal of Applied Economics, 20(2), 

329–349. 

Claveria, O., Monte, E., & Torra, S. (2019). Evolutionary computation for macroeconomic 

forecasting. Computational Economics, 53(2), 833–849. 

javascript:void(0)
javascript:void(0)


20 

 

Claveria, O., Monte, E., Torra, S. (2020). Economic forecasting with evolved confidence 

indicators. Economic Modelling, 93, 576–585. 

Claveria, O., Monte, E., & Torra, S. (2021). A genetic programming approach for estimating 

economic sentiment in the Baltic countries and the European Union. Technological and 

Economic Development of Economy. 27(1), 262–279. 

Claveria, O., Pons, E., & Ramos, R. (2007). Business and consumer expectations and 

macroeconomic forecasts. International Journal of Forecasting, 23(1), 47–69. 

Diebold, F. X., & Mariano, R. (1995). Comparing predictive accuracy. Journal of Business and 

Economic Statistics, 13(3), 253–263. 

Driver, C., & Meade, N. (2019). Enhancing survey-based investment forecasts. Journal of 

Forecasting, 38(3), 236–255. 

European Commission (2020). Business and consumer surveys. Available at: 

https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-

databases/business-and-consumer-surveys_en. 

Eurostat (2020). Database. Available at: https://ec.europa.eu/eurostat/data/database. 

Fortin, F. A., De Rainville, F. M., Gardner, M. A., Parizeau, M., & Gagné, C. (2012). DEAP: 

Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(1), 2171–

2175. 

Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informational content 

of macroeconomic data. Journal of Monetary Economics, 55(4), 665–676. 

Girardi, A., Gayer, C., & Reuter, A. (2015). The role of survey data in nowcasting euro area GDP 

growth. Journal of Forecasting, 35(5), 400–418. 

Harding, S., Leitner, J., & Schmidhuber, J. (2013) Cartesian genetic programming for image 

processing. In: Riolo, R. et al. (Eds.), Genetic Programming Theory and Practice X. Genetic 

and Evolutionary Computation. New York, NY: Springer. 

Harvey, D. I., Leybourne, S. J., & Newbold, P. (1997). Testing the equality of prediction mean 

squared errors. International Journal of forecasting, 13(2), 281–291. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 

inference and prediction (2nd Edition). New York: Springer Series in Statistics. 

Hutson, M., Joutz, F., & Stekler, H. (2014). Interpreting and evaluating CESIfo’s World 

Economic Survey directional forecasts. Economic Modelling, 38, 6–11. 

Iselin, D., & Siliverstovs, B. (2016). Using newspapers for tracking the business cycle: a 

comparative study for Germany and Switzerland. Applied Economics, 48(12), 1103–1118. 

Juhro, S. M., & Iyke, B. N. (2020). Consumer confidence and consumption in Indonesia. 

Economic Modelling, 89, 367–377. 

Kaboudan, M. A. (2000). Genetic programing prediction of stock prices. Computational 

Economics, 16(3), 207–236. 

Kapetanios, G., Marcellino, M., & Papailias, F. (2016). Forecasting inflation and GDP growth 

using heuristic optimisation of information criteria and variable reduction methods. 

Computational Statistics and Data Analysis, 100, 369–382. 

Klein, L. R., & Özmucur, S. (2010). The use of consumer and business surveys in forecasting. 

Economic Modelling, 27(6), 1453–1462. 

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural 

selection. Cambridge, MA: MIT Press. 

Larkin, F., & Ryan, C. (2008). Good news: Using news feeds with genetic programming to predict 

stock prices. In M. O’Neil et al. (Eds.), Genetic Programming (pp. 49–60). Berlin: 

Springer-Verlag. 

Lukac, Z., & Cizmesija, M. (2014). (Re)Constructing the European Economic Sentiment 

Indicator: An optimization approach. Social Indicators Research. Forthcoming. 

Martinsen, K., Ravazzolo, F., & Wulfsberg, F. (2014). Forecasting macroeconomic variables 

using disaggregate survey data. International Journal of Forecasting, 30(1), 65–77. 

Nicolau, M., & Agapitos, A. (2020). Choosing function sets with better generalisation 

performance for symbolic regression models. Genetic Programming and Evolvable 

Machines. Forthcoming. 

Sorić, P., Lolić, I., & Čižmešija, M. (2016). European economic sentiment indicator: an empirical 

reappraisal. Quality & Quantity, 50(5), 2025–2054. 

https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-surveys_en
https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/business-and-consumer-surveys_en
https://ec.europa.eu/eurostat/data/database
javascript:void(0)
javascript:void(0)


21 

 

Vanneschi, L., & Poli, R. (2012) Genetic programming – Introduction, applications, theory and 

open issues. In: Rozenberg, G. et al. (Eds.), Handbook of Natural Computing. Berlin: 

Springer. 

Wilson, G., & Banzhaf, W. (2009). Prediction of interday stock prices using developmental and 

linear genetic programming. In M. Giacobini et al. (Eds.), Applications of Evolutionary 

Computing (pp. 172–181). Berlin: Springer-Verlag. 

 

  



22 

 

APPENDIX 

 

Monthly and quarterly survey indicators from the Joint Harmonised EU Industry and 

Consumer surveys: 

 
Table A1 

Survey indicators 

Industry survey 

Monthly questions 

B1 – Production trend observed in recent months 

B2 – Assessment of order-book levels 

B3 – Assessment of export order-book levels 

B4 – Assessment of stocks of finished products 

B5 – Production expectations for the months ahead 

B6 – Selling price expectations for the months ahead 

B7 – Employment expectations for the months ahead 

Quarterly questions 

B8 – Assessment of current production capacity 

B9 – New orders in recent months 

B10 – Export expectations for the months ahead 

B11 – Current level of capacity utilization (%) 

B12 – Competitive position domestic market 

B13 – Competitive position inside EU 

B14 – Competitive position outside EU 

Consumer survey 

Monthly questions 

C1 – Financial  situation over last 12 months 

C2 – Financial situation over next 12 months 

C3 – General economic situation over last 12 months 

C4 – General economic situation over next 12 months 

C5 – Price trends over last 12 months 

C6 – Price trends over next 12 months 

C7 – Unemployment expectations over next 12 months 

C8 – Major purchases at present 

C9 – Major purchases over next 12 months 

C10 – Savings at present 

C11 – Savings over next 12 months 

C12 – Statement on financial situation of household 

Quarterly questions 

C13 – Intention to buy a car within the next 12 months 

C14 – Purchase or build a home within the next 12 months 

C15 – Home improvements over the next 12 months 
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The resulting optimal weights of both evolved indicators for each country are reported 

in Table A2. 

 

Table A2 

Relative weights of evolved expectations 

 Firms’ 

expectations 
Consumers’ 

expectations 
  

Firms’ 

expectations 
Consumers’ 

expectations 

Austria 0.948 0.052  Italy 0.824 0.176 

Belgium 0.727 0.273  Netherlands 0.773 0.227 

Bulgaria 0.389 0.611  Poland 0.441 0.559 

Czech Republic 0.675 0.325  Portugal 0.464 0.536 

Denmark 0.182 0.818  Romania 0.481 0.519 

Finland 0.759 0.241  Slovenia 0.000 1.000 

France 0.698 0.302  Spain 0.815 0.185 

Germany 0.730 0.270  Sweden 0.343 0.657 

Greece 0.541 0.459  UK 0.542 0.458 

Hungary 0.037 0.963  EA 0.712 0.288 

Notes: Relative weights computed with a generalized reduced gradient non-linear algorithm. 

 

While in most countries the obtained relative weight of the evolved industry 

confidence indicator is higher than that of the evolved consumer confidence indicator, 

there are several exceptions: in Bulgaria, Denmark, Hungary, Slovenia and Sweden, 

consumers’ expectations clearly outweigh firms’ expectations. In Greece, Poland, 

Portugal, Romania and the UK, the algorithm yields a similar weight to both expectations. 

These results suggest that arbitrarily chosen weights of partial confidence indicators for 

the construction of sentiment indexes may not necessarily result in the best predictors of 

economic activity (Sorić et al., 2016). 
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