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1 Introduction
Material particles can be created or destroyed in processes such as the conversion of a gamma photon into an
electron-positron pair. To deal such phenomena we need to resort to quantum electrodynamics, that treats the
interplay between electrons, positrons and photons. In this theory operators that create or destroy particles
play a central role. In ordinary chemical processes the number of particles is kept constant, so no creation and
annihilation operators are needed to describe them.1 The standard quantum mechanics theory for material
particles, in which the number of particles of every type does not change over time, is then a suitable theoretical
framework. However, even in this context, it is often convenient to use some tools of quantum field theories —
specifically, the creation and annihilation operators— to state certain mathematical developments, particularly
in the study of infinite systems. This way of formulating the theory is known as second quantization formalism.2

2 The Fock space
Creation and annihilation operators are applications that, when applied to a state of an n-particle system,
produce a state of an (n + 1)- and an (n − 1)-particle system, respectively. Therefore they act in a broader
Hilbert space that those considered so far, which is known as the Fock space (F). If all of the variable-number
particles are of the same type the Fock space is the direct sum of every fixed-particle-number space.3

In the particular case of an electron system (or any system made of identical fermions) the Fock space is:

F = H0 ⊕H1 ⊕H⊗
a2

1 ⊕ · · ·H⊗
an

1 ⊕ · · ·

where H0 and H1 are, respectively, the zero-electron and one-electron Hilbert spaces. H0 is a one-dimensional
space containing a normalized vector 0Φ = |〉 that represents a state with no electrons (the vacuum state), which
is different from the zero vector (0). Let us choose a normalized discrete basis set {ψ1, · · ·ψi, · · · } in H1. The
set {nΦI} of all n-electron Slater determinants

nΦI ≡
∣∣(ψ1I

· · ·ψnI
)−
〉

is then a normalized basis of H⊗
an

1 , and the collection of all these basis for every value of n{
0Φ,

{
1ΦI

}
,
{

2ΦI
}
· · · {nΦI} · · ·

}
is a normalized basis of F .

When referring to state vectors as elements of the Fock space, an occupation-number representation is often
used in which each basis vector nΦI is identified by a sequence of occupation numbers ni that take the value 1
for the spin-orbitals present in nΦI and 0 for all the other:

nΦI = |n1, · · ·ni, · · · 〉 with n =
∑
i

ni

For instance, if ψ1 · · ·ψn are the first n spin-orbitals of the one-electron basis set, then nΦ0 =
∣∣(ψ1 · · ·ψn)−

〉
=

| 1, · · · 1︸ ︷︷ ︸
n

, 0, 0, · · · 〉. For the vacuum state all the occupation numbers are zero: |〉 = |0, · · · 0, · · · 〉. In the case of

boson systems the occupation numbers can take any natural value (including zero).

3 Electron creation and annihilation operators
The annihilation operator âi of an electron in the spin-orbital ψi is conveniently defined in the occupation-
number representation as

âi |n1, · · ·ni, · · · 〉 = (−1)νini |n1, · · · 1− ni, · · · 〉

1Certain spectroscopic phenomena are an exception, since they require a quantum description of electromagnetic radiation in
which photons can be created (radiation emission) and destroyed (radiation absorption).

2While in quantum electrodynamics the energy associated to the classical electromagnetic fields becomes a quantized observable,
in the present formalism a certain type of quantization will emerge from the quantum wave functions, hence the term “second
quantization”.

3One could wonder why to use direct products to build the Hilbert space of a many-particle system from the one-particle spaces
and direct sums to express the Fock space in terms of fixed-particle-number spaces. In the first case we have a complex system
that can be divided into different subsystems, and these are different from their union. On the other hand, the Fock space is the
Hilbert space of a single system in which the number of particles is not a fixed parameter, as in standard quantum mechanics, but
an observable that can take different values, may evolve in time, and may even not be well defined. In the Hilbert space containing
the states of this system there are subspaces that correspond to different eigenvalues of the “number of particles operator”, in the
same way that there are subspaces corresponding to different values of any other observable, and the direct sum of all of these
subspaces gives the whole Hilbert space.
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where νi =
∑i−1
j=1 nj and ν1 = 0. The reason for the term “annihilation” will become clear by applying this

definition to some particular cases:

â1 |1, n2, · · ·ni, · · · 〉 = |0, n2, · · ·ni, · · · 〉
â2 |0, 1, · · ·ni, · · · 〉 = |0, 0, · · ·ni, · · · 〉
â2 |1, 1, · · ·ni, · · · 〉 = − |1, 0, · · ·ni, · · · 〉

That is, if the spin-orbital ψi is occupied in the many-electron vector |n1, · · ·ni, · · · 〉 then âi annihilates an
electron in that spin-orbital. So, from an n-electron vector we obtain an (n-1)-electron vector. Besides, it
changes the sign of the vector if ψi was in an even position among the occupied states. If ψi is empty in
|n1, · · ·ni, · · · 〉 the result of applying âi to this vector is zero. Thus

â1 |0, n2, · · ·ni, · · · 〉 = 0

When we use the usual occupied-spin-orbitals-only notation for the Slater determinants then the effect of
the annihilation operator âi over a determinant containing ψi takes the form:

âi

∣∣∣(ψj · · ·ψi · · ·ψk)−

〉
= (−1)νi

∣∣∣(ψj · · ·��ψi · · ·ψk)−〉
where νi is again the position number of ψi minus 1, and ��ψi means that ψi is absent in the determinant. νi
is also the number of transpositions needed to bring ψi to the first position of the determinant.4 Since every
transposition introduces a change of sign, we can obtain the effect of âi by first bringing ψi to the first position
and then dropping it from the determinant.

For a determinant that does not contain ψi it is clear that

âi

∣∣∣(ψj · · ·��ψi · · ·ψk)−〉 = 0

The creation operator âi† of an electron in the spin-orbital ψi is defined by

âi
† |n1, · · ·ni, · · · 〉 = (−1)νi(1− ni) |n1, · · · 1− ni, · · · 〉

Some examples reveal that this operator creates an electron in the spin-orbital ψi if this was empty, and
introduces a change of sign if the creation takes place in an even position among the occupied spin-orbitals:

â1
† |0, n2, · · ·ni, · · · 〉 = |1, n2, · · ·ni, · · · 〉
â2
† |0, 0, · · ·ni, · · · 〉 = |0, 1, · · ·ni, · · · 〉

â2
† |1, 0, · · ·ni, · · · 〉 = − |1, 1, · · ·ni, · · · 〉

Therefore, it produces an (n+1)-electron vector from an n-electron one. If ψi is occupied in |n1, · · ·ni, · · · 〉 the
result of applying âi† to this vector is zero; for instance:

â1
† |1, n2, · · ·ni, · · · 〉 = 0

Any many-electron basis vector can be obtained from the vacuum state by successive application of creation
operators:

|n1, · · ·ni, · · · 〉 =
(
â1
†
)n1

· · ·
(
âi
†
)ni

· · · |0, · · · 0, · · · 〉

In terms of the occupied-spin-orbitals-only notation the effect of the creation operator âi† over a determinant
not containing ψi is:

âi
†
∣∣∣(ψj · · ·��ψi · · ·ψk)−〉 = (−1)νi

∣∣∣(ψj · · ·ψi · · ·ψk)−

〉
where νi is the position in which ψi has been made to appear minus 1. νi is also the number of transpositions
needed to bring ψi to the first position of the determinant:

âi
†
∣∣∣(ψj · · ·ψi−1ψi+1 · · ·ψk)−

〉
= (−1)νi

∣∣∣(ψj · · ·ψi−1ψiψi+1 · · ·ψk)−

〉
=
∣∣∣(ψiψj · · ·ψi−1ψi+1 · · ·ψk)−

〉
so that we can also say that âi† creates an electron in the spin-orbital ψi placed in the first position of the
determinant:

âi
†
∣∣∣(ψj · · ·��ψi · · ·ψk)−〉 =

∣∣∣(ψiψj · · ·ψk)−

〉
4When the Slater determinants are represented by sequences of occupation numbers, the spin-orbital ordering must be the same

for all of them, but in the occupied-spin-orbitals-only notation this ordering can be altered.
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Then, if we want to advance it νi positions we have to introduce νi changes of sign; that is, we have to multiply
the determinant by (−1)νi .

It is evident that
âi
†
∣∣∣(ψj · · ·ψi · · ·ψk)−

〉
= 0

Let us now show that âi† is the adjoint of âi. From now on we will assume that the one-electron basis
{ψ1, · · ·ψi, · · · } is orthonormal, although some of the results that will be obtained are independent of this
assumption.

We want to prove the equality

〈n′1, · · ·n′i, · · · |âi|n1, · · ·ni, · · · 〉 =
〈
âi
†(n′1, · · ·n′i, · · · )

∣∣∣n1, · · ·ni, · · ·
〉

for any two sequences of occupation numbers {n′1, · · ·n′i, · · · } and {n1, · · ·ni, · · · }. By using the above definition
of âi† the right hand side member becomes

(−1)ν
′
i(1− n′i) 〈n′1, · · · 1− n′i, · · · |n1, · · ·ni, · · · 〉 = (−1)ν

′
i(1− n′i)δn′

1
,n1
· · · δ1−n′

i,ni
· · ·

Likewise, the left hand side member is

〈n′1, · · ·n′i, · · · |(−1)νini|n1, · · · 1− ni, · · · 〉 = (−1)νiniδn′
1
,n1 · · · δn′

i,1−ni
· · ·

This two expressions vanish unless n′1 = n1, · · ·n′i = 1− ni · · · , in which case they coincide.

Exercise
Let Φ =

∣∣(ψ1 · · ·ψi · · ·ψn)−
〉
be the Hartree-Fock Slater determinant of an n-electron system and let Φki

be the determinant that results upon changing in Φ the occupied spin-orbital ψi by an empty one ψk. The
spin-orbitals are assumed orthonormal.

• Write Φki in terms of Φ by applying on this the proper creation and annihilation operators.

• Use the resulting expression to show that
〈
Φ
∣∣Φki 〉 = 0.

3.1 Number operators
The product

âi
†âi ≡ n̂i

is known as occupation number operator of the spin-orbital ψi for reasons that will now become evident:

âi
†âi |n1, · · ·ni, · · · 〉 = âi

†(−1)νini |n1, · · · 1− ni, · · · 〉 = (−1)νini(−1)νi(1− (1− ni)) |n1, · · ·ni, · · · 〉

Since ni can only take the values 1 and 0, n2
i = ni and

n̂i |n1, · · ·ni, · · · 〉 = ni |n1, · · ·ni, · · · 〉

That is, |n1, · · ·ni, · · · 〉 is an eigenvector of n̂i, and its eigenvalue is the occupation number of the state ψi.
Occupation number operators are self-adjoint:〈

n′1, · · ·n′i, · · ·
∣∣∣âi†âi∣∣∣n1, · · ·ni, · · ·

〉
= 〈âi(n′1, · · ·n′i, · · · ) |âi|n1, · · ·ni, · · · 〉 =

〈
âi
†âi(n

′
1, · · ·n′i, · · · )|n1, · · ·ni, · · ·

〉
and they commute among themselves, since, for i 6= j,

âi
†âiâj

†âj = âi
†âj
†âj âi = âj

†âj âi
†âi

Their eigenvalues univocally determine a complete set of state vectors, so that they are a complete set of
commuting observables. On the other hand they are idempotent (n̂i2 = n̂i for the basis set {|n1, · · ·ni, · · · 〉}),
so that they are projection operators. n̂i projects onto the the subspace spanned by all the Slater determinants
containing ψi.

The sum of occupation number operators for every spin-orbital is known as the electron number operator for
obvious reasons:

n̂ =
∑
i

n̂i
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n̂ |n1, · · ·ni, · · · 〉 =
∑
i

ni |n1, · · ·ni, · · · 〉 = n |n1, · · ·ni, · · · 〉

Different n̂i do not project onto orthogonal subspaces, since n̂in̂j |n1, · · ·ni, · · · 〉 6= 0 if ni = nj = 1, so
that theorem 7 cannot be applied5 and, in fact, their sum n̂ is not a projection operator. The restrictions of
the operators n̂i to H1 do project onto orthogonal one-dimensional subspaces, so that the definition of n̂ is a
resolution of the identity in that subspace, and n̂ restricted to H1 is the identity operator in the spin-orbital
subspace.

In general, linear combinations of Slater determinants nΨ —such as multiconfigurational wavefunctions—
are not eigenvectors of the occupation number operators, but their expected value can still be used to assign an
occupation number to each spin-orbital in the wave function, also referred to as the population of the spin-orbital:

〈ni〉nΨ = 〈nΨ |n̂i nΨ〉 =

〈∑
I

CI
nΦI |n̂i

∑
J

CJ
nΦJ

〉
=
∑
IJ

C∗ICJ 〈nΦI |n̂i nΦJ〉

Since n̂inΦJ = nΦJ if nΦJ contains ψi and vanishes otherwise, we can restrict the summation over J to the
determinants containing that spin-orbital:

〈ni〉nΨ =
∑
I,J3i

C∗ICJ 〈nΦI |nΦJ 〉 =
∑
I3i
|CI |2 ≤ 1

Thus, spin-orbital populations are, in general, less than 1 for multiconfigurational wave functions. Certainly, all
of the n-electron determinants are eigenfunctions of the electron number operator n̂ with eigenvalue n, so that
the same applies to nΨ.

3.2 Anticommutation rules
Electron creation and annihilation operators satisfy the following anticommutation rules:[

âi, âj
†
]

+
= δij [âi, âj ]+ =

[
âi
†, âj

†
]

+
= 0

where the anticommutator is defined as
[
Â, B̂

]
+
≡ ÂB̂ + B̂Â.

Let us prove the first rule. For i < j we have

(
âiâj

† + âj
†âi

)
|n1, · · ·ni, · · · 〉 = âi(−1)νj (1− nj) |n1, · · · 1− nj , · · · 〉+ âj

†(−1)νini |n1, · · · 1− ni, · · · 〉

= (−1)νj (1− nj)(−1)νini |n1, · · · 1− ni, · · · 1− nj , · · · 〉
+(−1)νini(−1)ν

′
j (1− nj) |n1, · · · 1− ni, · · · 1− nj , · · · 〉 = 0

since ν′j = νj ± 1, depending on ni being 0 or 1 respectively. For i = j(
âiâi

† + âi
†âi

)
|n1, · · ·ni, · · · 〉 = âi(−1)νi(1− ni) |n1, · · · 1− ni, · · · 〉+ ni |n1, · · ·ni, · · · 〉

= (−1)2νi(1− ni)2 |n1, · · ·ni, · · · 〉+ ni |n1, · · ·ni, · · · 〉 = |n1, · · ·ni, · · · 〉

since ni or 1− ni must vanish.
According to these rules, if we commute a pair of annihilation or creation operators we have to introduce a

change of sign; that is, those pairs of operators anticommute:

âiâj = −âj âi âi
†âj
† = −âj†âi†

If the two operators are of either type then

âiâj
† = δij − âj†âi

so that they anticommute if they correspond to different states:

âiâj
† = −âj†âi for i 6= j

but âi does not anticommute (nor commute) with âi†:

âiâi
† = 1− âi†âi

5A linear combination of projectors onto orthogonal subspaces is a projector if and only if all the coefficients are equal to 1.
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An immediate consequence of these rules is that we cannot create two electrons in the same state:(
âi
†
)2

=
1

2

[
âi
†, âi

†
]

+
= 0

in accordande with the fermionic character of these particles.

Exercise
Use the occupation-number representation of the Slater determinants to show that 〈 (ψiψj)−| (ψkψl)−〉 =
δikδjl − δilδjk.
Hint : Write the determinants as creation operators acting on the vacuum state; then move the creation
operators from the left to the right-hand side of the scalar product; then move the resulting annihilation
operators to the right until they operate directly on the vacuum state.

4 The non-relativistic many-electron hamiltonian in second quanti-
zation

We will now obtain an expression of the non-relativistic hamiltonian operator of a many-electron system in
terms of creation and annihilation operators that is independent of the number of electrons in the system. This
makes it quite convenient for some mathematical developments and, in particular, for infinite systems such as
solids.

The non-relativistic electronic hamiltonian of a system with n electron and N nuclei is a sum of one-electron
and two-electron terms:

nĤ =

n∑
i=1

h(i) +

n−1∑
i=1

n∑
j=i+1

1

rij

where ĥ(i) = −∇
2
i

2 −
∑N
A=1

ZA

riA
. We want to show that the second quantization formalism allows to put it in

the form

Ĥ =
∑
rs

hrsâr
†âs +

1

2

∑
rstu

grstuâr
†âs
†âuât

where hrs =
〈
ψr

∣∣∣ĥ ψs〉 and grstu =
〈
ψr(1)ψs(2)

∣∣∣ 1
r12

ψt(1)ψu(2)
〉
. To be precise, nĤ is the projection of Ĥ

onto the n-electron subspace of F , also referred to as the restriction of Ĥ to that subspace. The sums extend
over the spin-orbitals of the one-electron basis {ψr}, there being no reference to n.

To prove the preceding statement we will show that nĤ and Ĥ (restricted to H⊗
an

1 ) have the same matrix
elements for a given n-electron basis set. Let us first consider the one-electron part of Ĥ. Its matrix element
are: 〈

(ψk′ · · ·ψl′)−

∣∣∣∣∣∑
rs

hrsâr
†âs

∣∣∣∣∣ (ψk · · ·ψl)−
〉

=
∑
rs

hrs
〈
âr (ψk′ · · ·ψl′)− |âs (ψk · · ·ψl)−

〉
This vanishes unless r ∈ {k′ · · · l′} and s ∈ {k · · · l}. If both Slater determinants are equal the only non-vanishing
terms in the double sum correspond to r = s, and the corresponding diagonal matrix element reduces to∑

r∈{k···l}

hrr
〈
âr (ψk · · ·ψl)− |âr (ψk · · ·ψl)−

〉
=

∑
r∈{k···l}

hrr

If the two basis vectors differ in one spin-orbital —say ψa in the former is replaced by ψb in the latter— then
the only surviving term in the double sum is the one with r = a and s = b; that is hab. If there are two
or more differing spin-orbitals the matrix element vanishes. These results are the Slater-Condon rules for the
one-electron-type operator

∑n
i=1 h(i).

Let us now consider the two-electron terms of the second quantized hamiltonian. For a diagonal matrix
element we have〈

(ψk · · ·ψl)−

∣∣∣∣∣12 ∑
rstu

grstuâr
†âs
†âuât

∣∣∣∣∣ (ψk · · ·ψl)−
〉

=
1

2

∑
rstu

grstu
〈
âsâr (ψk · · ·ψl)− |âuât (ψk · · ·ψl)−

〉
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The terms in this sum vanish unless r = t ∈ {k · · · l} and s = u ∈ {k · · · l} or r = u ∈ {k · · · l} and s = t ∈
{k · · · l}. Thus, this diagonal element reduces

1

2

∑
r,s∈{k···l}

grsrs
〈
âsâr (ψk · · ·ψl)− |âsâr (ψk · · ·ψl)−

〉
+ grssr

〈
âsâr (ψk · · ·ψl)− |ârâs (ψk · · ·ψl)−

〉
=

1

2

∑
r,s∈{k···l}

grsrs − grssr =
∑

r,s∈{k···l},r>s

grsrs − grssr

where we have taken into account the anticommutativity of the annihilation operators. Similar deductions
can be applied for non-diagonal matrix elements, leading to the Slater-Condon rules for the two-electron-type
operator

∑n−1
i=1

∑n
j=i+1

1
rij

. This completes the proof.

In the above demonstration we have assumed that the spin-orbitals ψr form a complete set. For computa-
tional reasons a finite subset must be used, so that the second quantized hamiltonian is, in fact, the projection
of the exact hamiltonian onto the subspace spanned by that subset.

Similar expressions to those obtained for
∑n
i=1 h(i) and

∑n−1
i=1

∑n
j=i+1

1
rij

can be used to write the second
quantized form of any one- or two-electron-type operator.

Exercise
Show that the second quantized form of the first-order reduced density operator γ̂ in an arbitrary or-
thonormal spin-orbital basis set is

γ̂ =
∑
rs

γrsâr
†âs

and, for the natural spin-orbital basis,

γ̂ =
∑
i

niâi
†âi =

∑
i

nin̂i

Exercise
Use the anticommutation rules to show that a one-electron-type operator of an n-electron system, F̂ =∑n
i=1 f(i) =

∑
rs frsâr

†âs, can be cast into the form of a two-electron-type operator:

F̂ =
1

n− 1

∑
rstu

frtδsuâr
†âs
†âuât =

1

n− 1

∑
rstu

δrtfsuâr
†âs
†âuât

both being restricted to the n-electron subspace of the Fock space. Hint : use the anticommutation rules
to bring ât next to âr† to obtain

∑
rt frtâr

†ât = F̂ ; use also n̂ =
∑
s n̂s.

Use this result to write the n-electron hamiltonian as a sum of two-electron operators:

Ĥ =
∑
rstu

wrstuâr
†âs
†âuât with wrstu =

1

n− 1
hrtδsuâr

†âs
†âuât +

1

2
grstu

The expected value of the hamiltonian for any n-electron state nΨ in in the second quantization formalism
is

〈
nΨ
∣∣∣Ĥ∣∣∣ nΨ

〉
=

∑
rs

hrs

〈
nΨ
∣∣∣âr†âs∣∣∣ nΨ

〉
+

1

2

∑
rstu

grstu

〈
nΨ
∣∣∣âr†âs†âuât∣∣∣ nΨ

〉
=

∑
rs

hrs 〈âr nΨ |âs| nΨ〉+
1

2

∑
rstu

grstu 〈âsâr nΨ |âuât| nΨ〉

For the particular case of a single-determinant wave function nΦ the only non-vanishing terms in the above
summations are those for which r, s, t and u correspond to spin-orbitals that are occupied in the determinant,
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and the usual Hartree-Fock-type energy expression is readily obtained:〈
nΦ
∣∣∣Ĥ∣∣∣ nΦ

〉
=

occ∑
rs

hrs 〈âr nΦ |âs| nΦ〉+
1

2

occ∑
rstu

grstu 〈âsâr nΦ |âuât| nΦ〉

=

occ∑
r

hrr +
1

2

occ∑
rs

grsrs − grssr

=

occ∑
r

hrr +

occ∑
r<s

grsrs − grssr

Although the number of electrons does not appear explicitly in the above expressions, it is implied in the lists
of occupation numbers of the n-electron basis vectors nΦI = |n1, · · ·ni, · · · 〉: n =

∑
i ni.

4.1 Restricted spin-orbitals

Usually the spin-orbitals ψr are chosen as products of an orbital φr and a spin vector α or β. Then
〈
ψr

∣∣∣ĥ ψs〉 = 0

unless ψr and ψs have the same spin factor, and
〈
ψrψs

∣∣∣ 1
r12

ψtψu

〉
= 0 unless ψr and ψt on the one hand, and

ψs and ψu on the other, have the same spin factor. By carrying out the scalar products of the spin factors we are
left with scalar products involving only orbitals. Thus, for a closed-shell determinant the electronic hamiltonian
takes the form:

Ĥ =
∑
rs

hrs
∑
ω=α,β

ârω
†
âsω +

1

2

∑
rstu

grstu
∑

ω,τ=α,β

ârω
†
âsτ
†
âuτ âtω

where hrs =
〈
φr

∣∣∣ĥ φs〉, grstu =
〈
φr(1)φs(2)

∣∣∣ 1
r12

φt(1)φu(2)
〉

and the indexes r, s, t and u extend over the
orbital basis. As told before, this basis set must be truncated in practice to a finite number m, so that we work
on a 2m-dimensional subspace of H1. Then the sums over r, s, t and u in the preceding equation extend over
those m orbitals and the resulting second-quantized operator is an approximation to the true hamiltonian nĤ.

5 Change of spin-orbital basis set
For each spin-orbital basis set there is a corresponding set of creation and annihilation operators, and different
sets can be connected by using the appropriate resolutions of the identity. So, the operators â′r

†
corresponding

to a new basis set {ψ′1, · · ·ψ′r, · · · } should satisfy the equation

â′r
†
|〉 = ψ′r =

(∑
i

|ψi〉 〈ψi|

)
ψ′r =

∑
i

〈ψi|ψ′r〉 âi
† |〉

which is clearly fulfilled if
â′r
†

=
∑
i

〈ψi|ψ′r〉 âi
†

By applying his relationship to each basis vector of the Fock space it can be shown to be general. This
relationship is, in fact, the same that connects the elements of the two basis sets:

ψ′r =
∑
i

〈ψi|ψ′r〉ψi

By taking adjoints in both sides of the transformation equation for creation operators one obtains the corre-
sponding relation for the annihilation operators:

â′r =
∑
i

〈ψ′r|ψi〉 âi

5.1 Field operators
If we change to a continuous basis set, as the position eigenvectors {|~r, ω〉}, the resulting creation and annihilation
operators will be functions of a continuous index (~r), and they are called field operators or quantum field
operators. The preceding equation then becomes

â(~r, ω) =
∑
i

〈~r, ω|ψi〉 âi =
∑
i

ψi(~r, ω)âi
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and, by taking adjoints,
â†(~r, ω) =

∑
i

ψ∗i (~r, ω)âi
†

â†(~r, ω) creates a particle at point ~r with spin ω:

â†(~r, ω) |〉 =
∑
i

〈ψi|~r, ω〉 âi† |〉 =
∑
i

|ψi〉 〈ψi|~r, ω〉 = |~r, ω〉

The expression âi of in terms of the field operator â(~r, ω) can be readily obtained from the expression of this
operator in terms of the âj ’s:∑

ω=α,β

∫
~r

ψ∗i (~r, ω)â(~r, ω)d~r =
∑
ω=α,β

∫
~r

ψ∗i (~r, ω)
∑
j

ψj(~r, ω)âjd~r =
∑
j

δij âj = âi

By taking adjoints in both sides of this equation the corresponding expression for âi† is obtained:∑
ω=α,β

∫
~r

ψi(~r, ω)â†(~r, ω)d~r = âi
†

Field operators fulfill similar anticommutation relationships than discrete creation and annihilation opera-
tors:

[
â(~r, ω), â†(~r′, ω′)

]
+

=

∑
i

ψi(~r, ω)âi,
∑
j

ψ∗j (~r′, ω′)âj
†


+

=
∑
i,j

ψi(~r, ω)ψ∗j (~r′, ω′)
[
âi, âj

†
]

+

=
∑
i,j

ψi(~r, ω)ψ∗j (~r′, ω′)δij =
∑
i

〈~r, ω|ψi〉 〈ψi|~r′, ω′〉 = 〈~r, ω|~r′, ω′〉

that, is [
â(~r, ω), â†(~r′, ω′)

]
+

= δωω′δ(~r, ~r′)

In the same way
[â(~r, ω), â(~r′, ω′)]+ =

∑
i,j

ψi(~r, ω)ψj(~r
′, ω′) [âi, âj ]+ = 0

and, by taking adjoints: [
â†(~r, ω), â†(~r′, ω′)

]
+

= 0

Field operators are usually denoted by ψ̂(~r, ω) and ψ̂†(~r, ω) . Many texts omit the accent ^ in the notation
of operators, which can lead to confusion with the notation normally used for wave functions.

6 Particles and holes
Electron creation and annihilation operators are sometimes referred to a Fermi vacuum or Fermi sea instead
of the zero-electron vacuum. The Fermi sea is the independent-electron ground state, in which all the electrons
occupy the lowest-energy spin-orbitals. The energy of the highest occupied spin-orbital is known as the Fermi
level. The independent-particle excited states are identified by specifying their occupation number differences
with respect to the ground state vector; that is, the holes created in the Fermi sea by annihilation operators
and the particles created above the Fermi level by creation operators. That is, an operator that annihilates an
electron below the Fermi level is viewed as a hole creation operator. A hole acts as a particle with positive charge
e (a quasi-particle), and a neutral pair formed by an electron and a hole interacting by electrostatic attraction
is sometimes called an exciton. The Fermi sea can be considered as a new vacuum with no particles (above the
Fermi level) and no holes (below the Fermi level).

The language of particles and holes is common in solid-state theory, and it is also sometimes used for finite
systems, particularly in the statement of post-Hartree-Fock methods.

7 Non-fixed-particle-number systems
It is clear that the second quantized operator of any observable in fixed-particle-number quantum mechanics
must contain an equal number of creation and annihilation operators, so that these should always appear in pairs
of either type. However, single operators that create or annihilate photons are needed to study spectroscopic
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phenomena in which de quantum nature of light plays a relevant role, such as the spontaneous emission of
radiation or the Raman scattering. Since photons have spin 1 they are bosons and the corresponding creation
and annihilation operators are defined otherwise (see, for instance, Quantum electrodynamics by José A. N. F.
Gomes and Juan C. Paniagua, in Computational Chemistry: Structure, Interactions and Reactivity, ed. by S.
Fraga. Studies in Physical and Theoretical Chemistry, vol. 77 (B). Elsevier, Amsterdam (1992)).


