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1. SUMMARY 

Heterogeneous catalysis is crucial on the development of chemical products in industrialized 

societies. A great deal of major industrial chemical transformations involves heterogeneous 

catalysts, which are typically comprised of transition metals and metal oxides as substrates. Two-

dimensional metastable transition-metal carbides and nitrides, known as MXenes, have garnered 

increasing attention for nearly a decade because of their versatile composition and structure, 

stability under certain conditions of interest in catalysis, and numerous appealing properties. 

The synthesis of Singe-atom Catalyst (SACs) is one of the main active areas in 

heterogeneous catalysis with the ultimate goal of promoting small-size metal particles as Sisngle 

Atoms (SAs). Thus, the search for appropriate substrate for SACs is highly demanded for the next 

generation of heterogeneous catalysis.  

The present study aims at introducing low-dimensional transition metal carbides as feasible 

substrates for anchoring single metal atoms by using first-principles based on density functional 

theory (DFT), calculations. In particular, we focussed on the 4d transition metal atoms (TMs) and 

nine bare MXene surfaces with M2C stoichiometry (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). The 

adsorption energies of four different active sites were studied to find the most stable site, HM, and 

the situation where the SA isolation would be thermodynamically favourable. This energetic 

parameter is used to find a correlation with respect to structural features such as the atomic height 

over the MXene surface, the MAX exfoliation energies, and by comparing 4d with 3d TMs. In 

addition, few TMs from Pt-group plus Au are also investigated in this project. The results show, 

shortly, that Pt and Au are better dispersed than Pd and Ag and all the 5d TMs are more prone to 

be isolated with the V2C MXene. 

Keywords: MXenes, Heterogeneous catalysis, Single-atom catalysts, Density Functional 

Theory, Adsorption energies. 
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2. RESUM 

La catàlisi heterogènia és crucial en el desenvolupament de productes químics en les societats 

industrialitzades. Un dels gran reptes són les transformacions químiques on intervé la catàlisi 

heterogènia. Hi ha carburs i nitrurs de metalls de transició bidimensionals i metaestables, també 

anomenats MXenes, que durant una dècada han sigut el focus d’atenció a causa de la seva 

versàtil composició i estructura, la seva estabilitat sota condicions d’interès com la catàlisi, i 

nombroses altres propietats atractives. 

La síntesi de catalitzadors d’àtoms aïllats (Singel Atoms Catalysts - SACs) és una de les 

àrees principals en la catàlisi heterogènia amb l’objectiu final d’obtenir petites partícules 

metàl·liques en la forma  d’àtoms aïllats (Single Atoms - SAs) . Per tant, la recerca de substrats 

apropiats pels SACs és molt important per la següent generació de catalitzadors heterogenis. 

El present estudi intenta introduir carburs de metalls de transició de petites dimensions com 

a substrats vàlids per ancorar àtoms metàl·lics aïllats emprant càlculs de primers principis basats 

en la teoria funcional de la densitat (DFT). En concret, ens centrarem en els metalls de transició 

(Transition Metals - TMs) de la sèrie 4d i nou MXenes nets amb la estequiometria M2C (M= Ti, V, 

Cr, Zr, Nb, Mo, Hf, Ta, i W).L’energia d’adsorció de quatre diferent llocs actius ha estat estudiada 

per trobar el lloc més estable; el HM, i per trobar la situació on l’aïllament del SA sigui 

termodinàmicament favorable. Aquest paràmetre energètic ha estat emprat per trobar una 

correlació respecte característiques estructurals com l’alçada atòmica sobre de la superfície del 

MXene, l’energia d’exfoliació de la fase MAX, i per comparar els TMs dels períodes 4d i 3d. 

Addicionalment, uns quants TMs del grup del Platí més el Au han sigut investigats en aquest 

projecte. Com a resum, el Pt i el Au estan millor dispersats que el Pd i el Ag, i per altra banda, 

tots els TMs de la sèrie 5d són més propensos de trobar-se aïllats amb el MXene V2C. 

Paraules clau: MXens, Catàlisi heterogènia, Catalitzadors d’àtoms aïllats, Teoria funcional de 

la densitat, Energies d’adsorció.  
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3. INTRODUCTION 

One of the clearest definitions of catalysis was given by Wilhelm Ostwald, who stated it as “the 

acceleration of a slow chemical process by the presence of a foreign material, which is not 

consumed”.1 More than a century later, catalysis contributes to more than 37% of the world Gross 

Domestic Product (GDP).2 The majority of industrial catalytic processes involve heterogeneous 

environments constituted by: A solid foreign material or catalyst, and reactants in the gas and/or 

liquid phase. Transition metals, metal oxide-based materials, and zeolites are among the most 

widely used material in heterogeneous catalysis, although transition-metal sulphides, nitrides, 

carbides, phosphates, phosphides, even ion-exchange resins, and clays are also employed for 

some particular applications. 3,4  

Recently, a fast-growing family of two-dimensional (2D) transition metal carbides, nitrides, 

and carbonitrides, usually referred as MXenes, have gained great interest since the discovery of 

the first Ti3C2 MXene in 2011.5 These MXenes have been successfully isolated by selective 

etching using hydrofluoric acid (HF) from MAX bulk phase precursors, which are composed by an 

early transition metal, M, a metal of the d-block, A, and either carbon or nitrogen denoted by X.5,6 

Since the M-A chemical bonds are weaker than the M-X ones, the formation of MXenes are 

feasible by using selective etchants.8 The resulting 2D flake materials have been fully 

characterized being made up of closed-packed layers of transition metals, e.g. M = Ti, V, Cr, Zr, 

Nb, Mo, Hf, Ta, and W, intercalated by, for instance, layers of carbon, i.e. X = C, with the general 

formula Mn+1XnTx, for n =1, 2, and 3, where Tx represents the surface functionalization bonded to 

the outer M layers. Clearly, these terminations depend on the employed etchants and the 

subsequent chemical treatment, and these are usually terminated with surface groups such as F, 

OH, H or O.1,7 

The great number of possible MXenes, in terms of composition, makes possible the tailoring 

of the MXenes properties by selecting the M and X elements, the number of atomic layers in the 

sheet, and the type of surface terminations. Focusing on the later one, a recent work has shown 

that the surface termination can be removed or substituted in a rational, predetermined way, 

further expanding the MXene universe and their possible applications, including bare MXenes. 
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These ones have generated a great expectation in several fields like photocatalysis,9 energy 

storage,10 heterogeneous catalysis,6,12 electrocatalysis,7,13 and charge storages.13,14  

One of the latest applications for MXenes is their use as suitable substrates for creating 

Single-Atom Catalysts (SACs).2,6,11,12 The idea is to generate specific active sites at the substrate 

surface, where single metal atoms get anchored. Pt/FeOx was the first SAC synthetized with a 

noted catalytic performance.11,12 Compared to traditional catalysts, SACs exhibit the advantages 

of both homogeneous and heterogeneous catalysts, in terms of improvement in specific activity 

and reduction in the amount of loaded noble metals.7 Trough high performance computing and 

sophisticated electronic structure methods, many theoretical efforts have been devoted to design 

efficient SACs, and ascribed their high chemical activities to the SAC low-coordination number, 

and its electronic polarization, which translates into strong metal-molecule interactions.13 The 

SACs catalytic activity and selectivity do not only depend on the nature of the Single-Atom (SA), 

but also on the solid supports that are used to disperse these SA. Therefore, an appropriate 

support is essential to ensure strong interactions between the isolated SACs and substrate, so to 

avoid the adatoms aggregation. 9  

The main goal of the present project is to investigate the capability of bare MXenes, with 

stoichiometry M2C M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, to form SACs by first-principles 

calculations assessment. This has been initially done for a list of 4d Transition Metals (TMs) Y, 

Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd, see Figure 1, thus following an earlier study carried out 

on 3d TMs. As will be explained below, other late TMs of the 5d series, these are, the Pt-group 

metals Os, Ir, and Pt, plus Au, have been studied as well, which provides a general overview of 

the possibilities of such MXenes in dispersing the studied TMs, as done previously on graphene,15 

likely to be done thanks to their metastability, and also observed on e.g., graphyne.16 The spotlight 

is placed on finding trends on the possible dispersion, here seized from a thermodynamic point 

of view, comparing the adsorption energies to the corresponding TMs bulk cohesive energies. 
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Figure 1.View of the Periodic Table with the elements that compose the investigated TM@MXene, 
highlighted in colour, including the early TM components, M, the explored 4d and 5d TM adatoms, and 

carbon as X, shown in blue, orange, and green, respectively.  
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4. OBJECTIVES 

The aim of this research project is to analyze the interaction of single 4d metal atoms (Y, Zr, Nb, 

Mo, Tc, Ru, Rh, Pd, Ag, and Cd) on bare MXenes with M2C stoichiometry (M= Ti, V, Cr, Zr, Nb, 

Mo, Hf, Ta, and W) that operate as substrates with the ultimate goal of proposing potential single 

atom catalysts (SACs). To shed light on this concern, the following particular goals will be 

addressed: 

• To evaluate the adsorption energies considering all possible combinations between 

single metal atoms and MXenes, so as to identify most stable adsorption sites.   

• To identify the influence of a particular single metal atom over MXenes and that of a 

MXene over the single metal atom.  

• To ascertain the M@MXene situations where the SA isolation would be 

thermodynamically favourable. 

• To correlate the adsorption energies with respect the atomic height over the surface 

and the MAX exfoliation energies, the latter generated from Al-derived MAX precursor 

phase.  

• To acquire trends of the possible SAC formation along MXene groups and series, as 

well as along the 4d series. 

• To compare such trends for the 3d and the 4d adatoms. 

• To finally evaluate the trends on Pt-group, plus Au, compared to the 4d cases. 
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5. THEORETICAL BACKGROUND 

5.1. QUANTUM CHEMISTRY 

During the last part of the XIX Century, many scientists believed that all the fundamental 

discoveries of science had been made, and so little remained to be discovered. Indeed, during 

the early XX Century they just established the laws of the macroscopic world related to the 

movement of objects, referred to as classical mechanics. However, when travelling towards 

nanoscale world, one can observe that the classical mechanics does not properly works. There, 

the laws of the nature are governed by Quantum Mechanics. This field of physics is the extension 

of classical ideas projected into the behaviour of subatomic, atomic, and molecular species. 

Hence, our current understanding of the atomic structure and molecular bonding derived from 

terms of the fundamental principles of quantum mechanics, and no understanding of chemical 

systems is possible without knowing the basics of this current theory of matter.  

During the last few decades, Quantum Mechanics suffered an explosive growth, thanks to the 

availability of highly parallelized supercomputing facilities placed in the hands of investigation, 

which allowed to routinely carry out atomistic and molecular calculations permitting the prediction 

of results and its synergistically union with experiments.  

5.1.1. Schrödinger Equation and Born-Oppenheimer Approximation 

A chemical system can be defined as a matter which consist of many particles in an arbitrary 

initial state. All observable properties of the quantum system can be predicted from its 

wavefunction solving the Schrödinger equation.14  

 

   Ĥ = 𝑇̂𝑒 +  𝑇̂𝑛 + 𝑉̂𝑒𝑒 +  𝑉̂𝑒𝑛 +  𝑉̂𝑛𝑛   (Eq. 1), 
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where 𝑇̂𝑒 and 𝑇̂𝑛 are the kinetic energy operators of the e electrons and n nuclei, respectively, 

whereas 𝑉̂𝑒𝑒 , 𝑉̂𝑛𝑛 , and 𝑉̂𝑒𝑛  stand for the coulomb repulsion among electrons, nuclei, and the 

attraction between electrons and nuclei, respectively.19   

The problem resides in that the Schrödinger equation can be only analytically solved for very 

simple systems, called hydrogenous atoms, when there is only one electron. As soon as, two 

electrons repel each another, one cannot figure out the electrostatic potential. This prompted of 

different approximations to obtain veridic results.17  

When one assumes that nuclei and the electrons are punctual masses, while spin-orbit 

interactions and other relativistic interactions can be disregarded, the time-independent 

Hamiltonian operator, Ĥ, can be expressed as the sum of kinetic and coulombic operators.  

The wavefunctions and the energies of a chemical system in a stationary state are obtained 

from the time-independent Schrödinger equation:  

 

Ĥ𝛹(𝑞𝑖,𝑞𝛼) = 𝐸𝛹(𝑞𝑖,𝑞𝛼)   (Eq. 2),

  

where 𝑞𝑖  and 𝑞𝛼  correspond to the electronic and the nuclear coordinates, respectively. The 

resolution of these equations requires some approximations so as to be solvable. The first one is 

the well-known Born-Oppenheimer Approximation (BOA),23 that sustains on the fact that nuclei 

are far heavier than electrons. Hence, the electrons move much faster than nuclei, so nuclei can 

be considered as static. Here, it must be pointed out that the internuclear distances are not a 

variable, and they are fixed to a constant value every time a calculation is done.19,20 So, the 

Schrödinger equation just has the electronic coordinates as variables and the contribution of the 

nuclei repulsion is a constant value. Knowing this and decoupling the different terms, the 

Schrödinger equation gets reduced to solving the electronic contribution Ĥ𝑒: 

 

Ĥ𝑒 = 𝑇̂𝑒  + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑛    (Eq. 3), 

 

Another inconvenience that must be taken into account is the interaction between electrons 

in polyelectronic systems. In a many-electron system, one needs to include the electron repulsion 

in the potential energy term or the wave-equation.18 There are two main approximations used 

following a variational principle, named as Hartree-Fock (HF) based methods, including all the 
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plethora of post-HF methodologies, and the Density Functional Theory (DFT).18 The former 

method requires a whole set of single-particle wave functions to calculate the single-electron 

potential, making it, from scratch, more computationally expensive for the analysis of systems like 

bulk or surface models. On the contrary, modern implementations of DFT can provide much 

higher accuracy than HF calculations at a lower computational cost. This theory reduces the 

problem of calculating the ground state of a many-electron system as the properties of the system 

can be determined considering a unique functional of the ground state with a single electron 

density. The low computational cost of DFT has led to a steady increase in the use of DFT for the 

study of larger molecules and systems of different kinds.20 

5.1.2. Density Functional Theory 

The DFT rests on two fundamental mathematical theorems proved by Hohenberg and Kohn,22 

plus the derivation of a set of equations by Kohn and Sham.18  

The first theorem proved that the ground-state energy from the Schrödinger equation is a unique 

functional of the electron density. It states that it exists a one-to-one mapping between the ground-

state wave function and the ground-state electron density. It is based on defining the system 

energy as a functional, i.e., a function of a function, in this case, the electron density function, 

ρ(r).  

 

𝐹[𝑓] =  ∫ ρ(r)
1

−1
     (Eq. 4), 

 

where 𝐹[𝑓] is the functional of the function ρ(r). In such a way, the system energy can be 

expressed as E [ρ(r)]. Another way to interpret Hohenberg and Kohn theory is establishing that 

the ground-state electron density uniquely determines all properties, including the energy and the 

wave-function, of the ground state. This leads us to solve the Schrödinger equation by finding a 

function of three spatial variables, the electron density, rather than a function of 3N variables, and 

the wave function, where N is the number of particles in the system.20 

Although this theorem rigorously proves that a functional of the electron density exists and it can 

be used to solve the Schrödinger equation, the theorem says nothing about what the function 

actually is. The second theorem defines another property of the functional known as the Kohn-

Sham potential: The electron density that minimizes the energy of the overall functional is the true 
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electron density corresponding to the full solution of the Schrödinger equation. This variational 

principle is used in practice with approximated forms of the functional. 

A useful way to write down the functional described by the Hohenberg-Kohn theorem is in 

terms of the single-electron wave functions, i(r), and therefore, the energy functional can be 

written as E[i(r)],20,22 which can be split into a collection of terms that can be written down in a 

simple analytical form: 

 

E[ρ] =  T[ρ] +  Ene[ρ] + Eee[ρ] + Enn[ρ] + Exc[ρ]  (Eq. 5), 

 

where the terms are, in order, the electronic kinetic energy, T[ρ], the Coulombic interactions 

between electrons and nuclei, Ene[ρ], the Coulombic interaction between pairs of electrons, 

Eee[ρ], the Coulombic interaction between pairs of nuclei, 𝐸𝑛𝑛[ρ], and the exchange-correlation 

functional, 𝐸𝑥𝑐[ρ]. This last one is defined to include all the quantum mechanical effects that are 

not included in the other terms.  

The results taken from Hohenberg and Kohn theorems show that the sought ground state can 

be found by minimizing the energy of an energy functional, and that this can be achieved by 

finding a self-consistent solution to a set of single-particle equations. However, the rock-in-the-

shoe to solve Kohn-Sham equations is that one has to specify the exchange-correlation 

function.19,20  

5.1.3. Exchange-Correlation Functionals 

Although a priori the formulation of the DFT theory is exact, all complexities of the many-body 

problem are cast into an unknown object, referred to as the exchange-correlation (xc) functional, 

𝐸𝑥𝑐 . This is a crucial term, which has to be approximated, though. Consequently, the success or 

failure of DFT calculations rests solely on the validity of the chosen approximation to the xc 

functional.24 

It follows from Eq. 5 that the 𝐸𝑥𝑐  has contributions from various factors such as the kinetic 

correlation energy, Tc, which is the difference between the kinetic energy of the real system and 

a reference system of noninteracting electrons, plus contains the self-interaction correction as 

well, the exchange energy, and the coulombic correlation energy. Thus, 𝐸𝑥𝑐  not only accounts 

for the difference between the classical and quantum mechanical electron-electron repulsion, but 



Single-Atoms Catalysts based on MXenes.  17 

 

it also includes the kinetic energy difference between the fictious noninteracting system and the 

real system. Even if this contribution is very small and sometimes neglected, in certain cases is 

key and should be accounted for.20,22 

A uniform electron gas model provides a practical way to use the Kohn-Sham equations by 

setting the xc potential at each position to be that xc potential of the electron density. Such derived 

xc functionals are called to be within the Local Density Approximation (LDA),22 as it uses only the 

density function as a variable to approximate the xc functional. Another improvement is the 

Generalized Gradient Approximation (GGA),25 which includes the density gradient in its 

calculations as a variable. Because there are many ways in which information from the gradient 

of the electron density can be included in a GGA functional, there are many distinct GGA 

functionals. Two of the most widely used in calculations involving solids are the Perdew-Wang 

functional (PW91),26 and the Perdew-Burke-Ernzerhof functional (PBE)27. 

Further improvements can be gained when including the electron density second derivative 

as an 𝐸𝑥𝑐  variable, in the so-called meta-GGA xc functionals. Finally, more complex xc 

functionals are the hybrids, which include a portion of the HF exchange in the mathematic 

expression. In the present study, the GGA-PBE xc functional is used, as known to be good in 

describing the energetic of transition metal carbide bulk and surfaces,28 and also of MXene 

systems.29 

5.2. BLOCH THEOREM AND PERIODIC SYSTEMS 

Crystalline solids are inherently periodic. This feature permits the simplification of the 

computational cost, reducing their description to a simple unit cell, which represents the extended 

solid in a three-dimensional space. On the other hand, the construction of two-dimensional 

models has the additional requirement of including a vacuum perpendicular to the material surface 

in order to avoid interaction between translationally repeated models defined within a three-

dimensional periodic cell.30  

Aside, Bloch theorem applies to the electronic wave-functions inside a crystal, and rests in 

the fact that the Coulomb potential in a crystalline solid is also periodic. This theorem enables the 

use of a unit cell to describe the properties of an infinite system.31 A peculiarity of this method is 

that the system described by this wavefunction is not defined in the real space, but in its reciprocal 
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one. Both spaces are inversely connected, meaning, in practice, that a short distance is in the 

real lattice corresponds to a long one in the reciprocal space, and vice versa. 

5.3. MXENE STRUCTURES 

The MXene materials are synthesized by selective chemical etching from MAX phases, as 

reported by the literature.32 For instance, the Ti3AlC2 compound, the MAX phase most used in 

MXene synthesis, is treated with HF to extract the Aluminium layers, and, after sonication to 

separate the layers, the 2D Ti3C2 is gained.19 It has been pointed out that the etching conditions 

are harsher for those MAX phases displaying larger exfoliation energies,32,33 understood as a form 

of surface tension or as the energy required to peel off an atomic layer from the surface of a bulk 

material, in this case, the A layers needed to be removed to gain the MXene material. In this 

sense, it is also related to the bond strength between the A layers and the MXene units.29 

MXenes offer periodicity only on the two possible material directions. However, when using 

three-dimensional cells, due to the use of periodic boundary conditions, the total height of the cell, 

in the direction perpendicular to the plane of the MXene slab, is set to a value that can ensure at 

least 10 Å of vacuum width between the periodic copies of the cell, even after adsorbing a small 

molecule,23 known to be enough to avoid interaction in between translationally repeated slabs, 

see Figure 2.  

 

Figure 2. Side (left) and top (right) views of a M2C MXene. M and C atoms are shown as blue and brown 
spheres, respectively. 

It is worth pointing out that many of the studies done with MXenes describe a real situation 

involving terminated MXene substrates.34 This is not surprising since after its synthesis, or under 

ambient conditions MXenes can become oxidized.29,35 However, as posed in this study, the 
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possible application in catalyst also allows inducing the oxygen depletion over the Mn+1XnOn 

through the cleaning by annealing at 700 ºC and exposing the resulting surface to H2 gas flow.35 

This variation can facilitate the process of obtaining single atoms by having 2D structures with 

metal carbon bonds (M–C), which are weaker compared to the metal oxygen bonds (M–O) in 

typical oxide supports.  

A total of nine MXenes with M2X stoichiometry  M= Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W  for 

TMs from groups IV–VI were selected to investigate the adsorption energy of different 4d and 5d 

adatoms at four different high-symmetry position of the MXene (0001) basal plane surface of bulk 

Transition Metal Carbide (TMCs) with rocksalt structure.30 For these TMCs, the (111) surfaces 

have considerable higher surface energy than the most stable (001) one.36 In accordance, 

MXenes are predicted to be quite chemically active, while permit to investigate surfaces that could 

hardly exist in bulk TMCs otherwise.  

Concerning the adsorption sites of MXenes for the explored TM adatoms, four different high 

symmetry sites are studied, labelled top site (T) where the adatom is placed above a M surface 

atom, the bridge site (B), where the adatom is above the surface in the midpoint of a M-M bond, 

and two kinds of three-fold hollow sites, having either a metal or a carbon underneath, HM and 

HC, respectively, see Figure 3. 

 

 

 

 

 

 

 

Figure 3.Top view of an employed p(3×3) MXene supercell, with tags detailing the explorer adsorption 

sites coloured in green, including top (T), bridge (B), three-fold hollow site with a subsurface metal atom 
(HM), and a three-fold hollow site with an underlying C atom (HC). Colour coding as in Figure 2. 
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5.4. ENERGETIC ASSESSMENTS 

5.4.1. Adsorption Energy 

For each studied adatom, MXene substrate, and site, the adsorption energy is calculated, so as 

to quantify the adsorption strength of the adatom metal on the (0001) MXene surface. For any 

adsorption energy, 𝐸𝑎𝑑𝑠 , is defined as: 

 

𝐸𝑎𝑑𝑠 = −[𝐸𝑇𝑀/𝑀𝑋𝑒𝑛𝑒 − (𝐸𝑀𝑋𝑒𝑛𝑒 + 𝐸𝑇𝑀)]   (Eq. 6), 

 

where 𝐸𝑇𝑀/𝑀𝑋𝑒𝑛𝑒 is the total energy of the MXene layer with the TM adatom attached, 𝐸𝑀𝑋𝑒𝑛𝑒 

is the total energy of the bare MXene (0001) surface, and 𝐸𝑇𝑀 the total energy of the isolated 

metal atom.7,34 This way the resulting adsorption energies are defined positive, this is, the larger 

the 𝐸𝑎𝑑𝑠  value, the stronger the interaction between MXene and the adatom.4 

It is well-known that any of the standard xc approximations do not include a description of 

dispersive forces, e.g., like van der Waals (vdW). These forces are normally only relevant for 

intermolecular situations; however, their inclusion always improves the description. To account 

for it, one needs to add a proper correction.36 Some examples are the popular Grimme D3 

correction.37 developed nonlocal van der Waals functionals (vdW-DF),38 even the accurate Many-

Body Dispersion (MBD).39 All these corrections have been thoroughly tested and successfully 

applied on a huge of different systems, including inter- and intramolecular cases starting from rare 

gases to large graphene sheets. The first mentioned correction, Grimme D3, has been found to 

be one of the best choices for the interaction of MXene surfaces with adatoms.40 

5.4.2. Cohesive Energy 

The cohesive energy, 𝐸𝑐𝑜ℎ , can be regarded as the energy that must be supplied to a solid to 

separate its atomic constituents into neutral free at rest and at infinite separation. From another 

point of view, it can be regarded as the released energy when such atoms cluster to form the 

solid. As far as SACs are concerned, the 𝐸𝑐𝑜ℎ  can be used to assess whether there is a 

thermodynamic preference towards isolating or clustering. This can be done by calculating the 

difference energy, in between 𝐸𝑎𝑑𝑠  and 𝐸𝑐𝑜ℎ , so: 
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𝐸𝑑𝑖𝑓𝑓 = 𝐸𝑎𝑑𝑠 − 𝐸𝑐𝑜ℎ    (Eq. 7), 

 

In general, a positive 𝐸𝑑𝑖𝑓𝑓  implies that the adatoms are more stable, i.e., stronger bound, 

when being dispersed adatoms on the substrate, compared to bulk environments. Vice versa, 

when 𝐸𝑑𝑖𝑓𝑓 is negative, the TM atoms are more stable in a bulk environment, being this a driving 

force towards clustering. The cohesive energies were already calculated with the same 

computational setup as in the present work, and available in the literature.41  
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6. COMPUTATIONAL DETAILS 

The present spin-polarised DFT calculations were carried out using the Vienna Ab initio 

Simulation Package (VASP),34 using the PBE xc functional,38 but also including the Grimme D3 

dispersion interaction description.39 The core electrons were described using Projector 

Augmented Wave (PAW)42 pseudopotentials, and the valence electron density was expanded in 

a plane wave basis set with a cutoff energy of 415 eV. The geometry optimizations were 

considered converged when the forces acting in the nuclei were all below 0,01 eV· Å-1, with an 

electron convergence criterion of 10-6eV.  A tetrahedron smearing of 0.2 eV width has been used 

to speed up electronic convergence, yet total energies have been extrapolated to zero smearing, 

i.e., zero Kelvin. All atoms were allowed to relax during the optimizations.  

In order to avoid interactions between replicated MXenes, the total height of the cell, in the 

direction perpendicular to the plane of the MXene slab, is set to 16 Å, thus ensuring at least 10 Å 

of vacuum width between the periodic copies of the cell, even after adsorbing a small molecule. 

To sample the necessary numerical integrations in the reciprocal space, Monkhorst-Pack k-points 

5×5×1 and 1×1×1 grids were used for the MXenes and the isolated TM atoms, respectively. These 

latter were thus calculated -point in an asymmetric cell of 9×10×11 Å dimensions.   
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7. RESULTS AND DISCUSSION 

In this section, the results based on the interaction of the 4d transition metal atoms (TM= Y, Zr, 

Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd); from now on referred to as adatoms, with nine bare MXenes 

surfaces are discussed. To facilitate the analysis the present study is restricted to MXenes with 

M2C stoichiometry where M corresponds to a d2 (Ti, Zr, Hf), d3 (V, Nb, Ta), and d4 (Cr, Mo, W) 

TMs. 

7.1. GEOMETRY AND STABILITY OF TM@MXENES  

The interaction of adatoms on each (0001) MXene surfaces has been investigated by considering 

four different high symmetry sites, see Figure 3, denoted as top (T) site when the adatom is placed 

above an M surface atom; bridge (B) site, sited above the surface in the midpoint of a M-M bond; 

and metal, HM, and carbon, HC, three-fold hollow sites with either a metal or a carbon atom lying 

beneath. Such calculations were carried out firstly at PBE level, and then, for the obtained minima, 

reoptimized at PBE-D3 level. Overall, this implied over 1000 optimizations. 

      In any case, most of bridge sites relaxed towards HM or HC. Indeed, HM is the most common 

and preferred site, followed by HC site for the vast majority of TM@MXene configurations. There 

exists just one single situation where the top site is the most stable, which is Cd@Zr2C, and five 

configurations where the B site is found to be a minimum: Y@Ti2C, Zr@Ti2C, Cd@Hf2C, 

Rh@Cr2C, Ag@Cr2C, and Cd@Cr2C. To get more insight, the adsorption strengths are discussed 

in the next section.  

7.2. ADSORPTION ENERGY 

In a first step, the Eads PBE-D3 values for 4d TMs on the (0001) basal surface of the explorer 

MXenes were acquired and listed in Table 1. Note in passing by that PBE Eads values are just 

slightly less strong, being in average terms, 0.3 – 0.4 eV smaller. In any case, as one can notice, 

the adsorption energies in Table 1 range from 1 to 10 eV, and normally are quite large, except for 

Cd adatoms on light MXenes (Ti2C, Zr2C, Hf2C, and V2C), where such an interaction could be 
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catalogued as physisorption. However, for the rest, the interaction is strong, being largest for Mo, 

Tc, Ru, and Rh adatoms supported on Cr2C, Mo2C, and W2C. From the above, it is clear that the 

adsorption strength depends on both the M2C M adatoms, and the TM adaoms.  

 

Eads TM@M2C [eV] 

 
 M\TM Y Zr Nb Mo Tc Ru Rh Pd Ag Cd  

 d2 Ti 2.77 3.67 3.79 5.76 4.37 5.01 5.02 3.16 1.52 0.31 
 

  Zr 2.59 3.39 3.35 5.56 3.86 4.79 5.11 3.44 1.60 0.32 
 

  Hf 3.36 4.21 4.18 6.42 4.79 5.74 6.04 4.29 2.29 0.49 
 

 d
3 V 3.09 4.16 4.08 6.48 4.56 4.63 4.26 2.49 1.18 0.43 

 

  Nb 4.52 5.71 5.58 7.96 6.21 6.49 6.27 4.47 2.78 1.26 
 

  Ta 2.64 3.83 3.65 6.04 4.33 4.68 4.52 2.69 0.87 1.07 
 

 d
4 Cr 5.21 6.62 6.59 8.57 6.29 5.96 5.74 4.19 2.67 1.54 

 

  Mo 6.52 7.95 7.93 9.93 7.61 7.42 7.03 5.46 4.12 2.77 
 

    W 7.08 8.59 8.69 10.78 8.79 8.38 7.89 6.29 4.59 3.07 
 

Table 1.PBE-D3 Eads of all TM@M2C configurations.  

One can evaluate the Eads of the different TMs along the 4d series, as done in Figure 4. Notice 

the volcano shape of the trend, with an increase up to Mo, followed by a decrease up to Cd. This 

goes along with the number of unpaired d electrons; this is, the Eads increases with the number of 

d electrons, reaching a maximum at d5 half-filled configurations, like in the Mo 4d5. From this on, 

the pairing of electrons provokes a decrease in the Eads value, up to the Cd filled 4d10 

configuration.  

To further investigate the SAC isolation or the thermodynamic trends towards clustering or 

isolation, the PBE TM bulk cohesive energy of each metal has been gained, 41 and so the Ediff has 

been obtained. Thus, for those cases with Ediff >0 there would be a thermodynamic driving force 

towards adatom isolation, while Eads <0 would go towards clustering. However, one should regard 

that DFT has an intrinsic error, of ca. 0.2 eV. Therefore, Ediff values within this error range, should 

not be assigned neither as favourable SACs nor like clusters. Table 2 is a compilation of the 

different cases where this happens, mostly cases for Mo and Ag adatoms, and the Hf2C MXene, 

followed by Nb2C and Cr2C.  
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Figure 4. Evolution of the PBE-D3 Eads along the 4d series for all the considered M2C MXenes.  

 

Adatom (M) MXene (M2C) Ediff [eV] 

Pd Zr2C -0.27 

Mo Hf2C 0.21 

Ag Hf2C -0.20 

Cd Hf2C -0.24 

Mo V2C 0.27 

Ru Nb2C -0.18 

Ag Nb2C -0.29 

Mo Ta2C -0.17 

Rh Cr2C 0.12 

Ag Cr2C 0.18 

Table 2. PBE Ediff of all the cases with unclear isolated atom or clustering preferences.  

One can plot Ediff along the d series, as done on Figure 5 where it appears that as one goes 

along the d series, the adsorption energy increases in analogy the adsorption strength increases 

by moving down the period, as shown in Figure 6.  As far as d series is concerned, is observed 

on all MXenes that the elements with an empty or full occupancy of the 4d shell, e.g., Y and Cd, 
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would display the smallest cohesive energies, which are placed at the extremes of the volcano 

shape. According to this, one would expect such TMs to have the largest Ediff, and, as one moves 

away from these values the Ediff would decrease, so the Ediff representation should have a concave 

tendency in principle. However, this trend is not observed, and, on the contrary, a zigzag shape 

is observed. The clearest exception of this trend is Ta2C, which has lower adsorption energy than 

Hf2C and Nb2C, as shown in Figures 5 and 6. Thus, Ta2C can be considered as an out-layer that 

has less appetence for isolated atoms. 

Indeed, there is a trend with the first elements with a low occupancy of d shell, where the 

adatoms with an empty or semi-empty half-shell seems to follow the trend of a strong field 

situation. With the Y adatom, there is just one electron in the half-shell, so it is not semi-full and 

has less stability; with Zr, there are two electrons in the half-shell, so there is more stability, and 

therefore, the TM@MXene has higher Eads. In the case of Nb adatom, there are three electrons, 

two placed in the same orbital with opposite spins and one unpaired in another orbital, so the half-

shell will have a high electron repulsion, higher that the other adatoms mentioned above, and so, 

lower stability, and higher Eads. The last adatom that follows this trend is Mo, which has the half-

shell occupied by four electrons, distributed within the two orbitals, and that would be reflected in 

a higher Eads. From this adatom on, this trend losses strength as the higher half-shells gains 

electrons, and so the field seems to get distorted.  

So, following Figure 5, it can be said that Zr adatom can be isolated within all the explored 

MXenes, where other TMs, such as Nb, are difficult to isolate regardless the MXene. For the rest 

of cases, intermediate situations are found that depend on both the employed M2C and the TM 

adatom. For instance, W2C and Mo2C are signatures of TM dispersion, while few SACs are 

possible on Zr2C, expect for Zr adatoms upon. 

From the above, we can summarize that the adatoms with less than half occupancy 4d shell 

follow the strong field situation trend, while the ones with more than half occupancy 4d shell follow 

the concave tendency as expected from the Ecoh valance.    
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Figure 5. Ediff evolution along the 4d series of adatoms of the different studied MXenes. 

Having analysed the 4d series trend, one can pay attention to the MXene substrate effects. 

For instance, Figure 6 shows the 4d trends separately for group IV and VI MXenes. The Ediff of 

the IV group increases moving down the period; the distance between the Ediff of Zr2C and the 

Ti2C MXenes is bigger than the one between Hf2C and Zr2C MXenes, as shown in Figure 6 on 

the left. There are few adatoms, Rh, Pd, and Ag, that do not follow this trend. In Zr2C MXene, the 

Ediff of the mentioned adatoms is lower than the ones of Ti2C MXene. In the V group, there exists 

a clear tendency going down the period, between the V2C and the Nb2C as the distance between 

both is proportional for all the adatoms, with little difference for the adatoms that have half 

occupancy 4d shell. Ta2C, as mentioned earlier, is an outlier, which has similar Ediff behaviour to 

the one of V2C. In this case, the Ru, Rh, Pd, and Cd are the adatoms that follow a similar situation 

observed with the Ti2C and Zr2C as mentioned earlier. The Ediff values of these adatoms on the 

Ta2C MXene are higher than the ones for V2C.  Concerning the VI group, Figure 6 on the right, 

the Ediff increases as going down the period, the distance between the Ediff of Mo2C and the W2C 

MXenes is smaller than the one of Cr2C and Mo2C MXenes, a trend contrary to group IV. All the 

adatoms follow this trend with the exception of Ag and Cd adatoms. With W2C MXene, the 

adatoms mentioned have a lower Ediff compared with the trend of all the adatoms as shown in the 

right panel of Figure 6.  
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Figure 6. Ediff trend of the MXenes along the groups IV to VI. 

These trends are more pronounced going through the series. For instance, in the 3d series, 

see Figure 7 on the left, the Ediff increases going along the series, the Ediff distance between V2C 

and Ti2C MXenes is smaller than the one between Cr2C and V2C MXenes. Note that there are a 

few adatoms, Ru, Rh, Pd, and Ag, that do not follow this trend. On V2C MXene, such exceptional 

adatoms have a lower Ediff than the ones of Ti2C MXene, a similar situation is observed between 

the Zr2C and the Ti2C MXenes. Concerning the 4d series, middle panel of Figure 7, the Ediff 

distance between the same adatoms of the different MXenes is proportional, with a little variation 

with the adatoms that have half occupancy 4d shell. The trend is regular on 3d and 4d series, but, 

on 5d series, see Figure 7 on the right, Ta2C is an outlier again, displaying Ediff values consistently 

smaller than expected. The unique configuration that differs is that just Cd@Ta2C MXene, which 

has a higher Ediff than Cd@Hf2C. 
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Figure 7. Ediff trends for the studied MXenes 3d (left), 4d (middle), and 5d (right) series. 

7.3. ADATOM-MXENE – DISTANCES 

The distances between the MXene surface metal atoms and the d-block element adatom could 

be a structural factor when studying the Eads of the different adatoms attached to MXenes. One 

may argue that the smaller the distance between the adatom and the MXene, the stronger is the 

chemical bond and, consequently, the Eads would be more favourable. To this end, the adatom 

height with respect the MXene surface plane, h, has been gained, and the adatoms trend follows 

a convex trend, as shown in Figure 8, just the opposite of the volcano plot shown in Figure 4; i.e., 

the stronger the bonding, the smaller the height. 

 

 

 

 

 

 

 

 

Figure 8. Trend of the adatom height, h, to the MXene surface along the 4d series.  
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To further support the previous statement, one can correlate the height of the different 

adatoms versus the TM@MXene adsorption energy, as shown in Figure 9. When doing so, the 

trend of the larger the Eads, the smaller the height, h, is consistently observed. However, the 

adjustment is limited, this is, having regression coefficient R2 values always below 0.67, as shown 

in Figure 9. This implies that the height is biased by the adsorption strength, but not just governed 

by that single factor, and other factors must apply. Indeed, the linear adjustment is best for V2C, 

but decreases when going down a group and along a d series, for instance, affected by the strong 

field situation for those TMs with less than half 4d occupancy that follow a strong field situation.  

As going down the period and along with the series, the R2 decreases as observed along the 

sequences V2C, Nb2C and Ta2C group, and Zr2C, Nb2C, and Mo2C series, respectively. It can be 

said that, in the third period, there is a relation between the Eads and the height from the MXene 

surface to the adatom, but this relation gets less clear as going down the period and through the 

series. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Linear correlation of heights, h, versus the TM adatom Eads. 

R2 = 0.504 R2 = 0.661 R2 = 0.579 

R2 = 0.661

 
R2 = 0.619 R2 = 0.581 

R2 = 0.492 R2 = 0.433 R2 = 0.284 



Single-Atoms Catalysts based on MXenes.  33 

 

7.4. ADSORPTION ENERGY VS EXFOLIATION ENERGY 

It is reasonable to think it could exist a certain relationship between the reactivity of the 

synthesized MXene and its exfoliation energy. This hypothesis would imply that MXenes with high 

exfoliation energies will be less stable, and therefore, more chemically active, and more prone to 

have a TM@MXene situation than those with lower exfoliation energies. This is shown correlating 

its adsorption energies for each TM with respect the exfoliation energies, taken from the Al-

containing MAX phases, and computed using the same procedure as here used43. 

Notice that, Figure 10, the x-axis, contains the Eexf of the Al@MAX phases, and so are the 

same values for all the graphs, while the y-axis, displays the TM@MXene Eads of each adatom 

anchored on the nine MXenes. Accordingly, one should take notice of the variation between the 

graphs of the ordinate axis, the height of the points of the graphs, and in consequence, the slope 

when doing a regression.  

Concerning the adatoms, as going through the series, the TM@MXene/Al@MAX relation 

increases till the Mo@MXene and then decreases until Cd@MXene. As expected, the Eads is 

affected by the Eexf, so that the larger the exfoliation energy, the larger the adsorption energy. 

Aside, and as above stated, the slope increases up to Mo, and then decrease until Cd, a feature 

that could be explained based on the full shell model, as, while the TM shell is getting completed, 

the slope decrease, implying that a less activity is observed. Thus, based on such hypothesis, the 

Mo adatoms are the ones best targeted for SAC situation, closely followed by Tc and the Nb 

adatoms.   

Secondly, the contribution within each TM is analyzed. Overall, one may conclude that all 

cases follow a similar trend. However, one has to remark two exception cases: V2C and Ta2C 

MXenes, which both have a higher Eexf and a lower Eads compared to Nb2C, and contrary, Mo2C 

MXene has a lower Eexf and a higher Eads compared to Cr2C and W2C. The fact that the relation 

Eads versus Eexf tends to increase as going through the different MXenes implies that as going 

through the period and along the series of the d-metal of the MXene, the substrate implication is 

more favourable for SAC. 
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Figure 10. Trends of Eads of TM@MXene versus Eexf of Al containing MAX. 

It can be said as well that the W2C MXene is the one that has the most favourable SAC 

situation, followed by Mo2C, Nb2C, Hf2C, and Zr2C, respectively. Getting these results, one can 

conclude that, in this case, the d-metal MXene acts better as a substrate once the d-metal has a 

higher number of valence electrons, as farther are these from the nuclei.   

In Figure 10 are shown the values obtained from the linear fitting of each trend. Noting that, 

R2 increases moving from the full shell towards the half-full shell, with two exceptions: (i) Nb 

adatom has a smaller R2 than Zr, and (ii) Ag and Cr adatoms that have a higher R2 than expected. 

In short, one can conclude that the best MXene for a SAC situation is that one in which the d-

metal is characterized by a higher number of valence electrons, which are farther from the nuclei 

and available to bond the TM adatoms. Concerning the adatoms, the half-full shell situation is the 

most appropriate for the TM adatom. Attending to this, Mo adatom, followed by Tc and Nb, are 

the best ones. Clearly, Eexf is relevant factor to identify the reactivity of MXenes but is not the only 

one, as one can observe from the regression coefficient in Figure 10. 

7.5. COMPARISON AMONG ADATOMS FROM DIFFERENT SERIES 

The above SAC is definitely complex ant it is to be expected that just one substrate will not work 

with the same accuracy for all the different metal atoms. In this section, the trends for isolating or 

clustering between 3d and 4d adatoms are compared, using as substrate the MXenes. This will 

lead us to capture interesting trends when moving down the d series along the groups.   

R2 = 0.407 R2 = 0.463 R2 = 0.453 R2 = 0.465 R2 = 0.421 

R2 = 0.420 R2 = 0.177 R2 = 0.092 R2 = 0.082 R2 = 0.212 
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Figure 11 shows a Ediff comparison between 3d adatoms and 4d adatoms belonging to the 

same group, versus the metal composition of MXenes. At first glance, 4d Zr and Mo adatoms are 

generally better isolated on the MXene surfaces, compared to the respective 3d Ti and Cr 

adatoms of the same respective groups. In all the cases, Nb2C, Cr2C, Mo2C, and W2C MXenes 

display higher Ediff values with the 4d adatoms compared to the corresponding 3d adatoms. In the 

case of Hf2C MXene, the Tc, Ru, Rh, and Pd, 4d adatoms have higher Ediff than the counterparts 

Mn, Fe, Co, and Ni 3d adatoms. The rest of adatoms that have not been mentioned, have a higher 

Ediff with the 3d rather than the 4d.  

In conclusion, there are a few 4d adatoms that can be energetically isolated with the 

investigated MXenes. As going from the 3d to the 4d adatoms, d4 MXenes act better as a 

substrate with the 4d metal atoms rather than the 3d. The Zr and Mo 4d metal atoms have more 

tendency to be as a SA with the studied MXenes than Ti and Cr 3d metal atoms, respectively.  

  
Figure 11. Trends of Ediff 3d and 4d adatoms on the nine explored MXenes. 

7.6. PT-GROUP 

Given the possibilities of isolating Ru, Rh, and Pt-group metals on a series of MXenes mostly 

Nb2C, Cr2C, Mo2C, and W2C, plus the same casuistry of Ag coinage metal, one may wonder 

whether such trends to isolate Pt-group and coinage metals are also featured on 5d TMs. Thus, 

the six Pt-group TMs, these are the Ru, Rh, Pd, Ps, Ir, and Pt are studied in this section, plus Ag 

and Au. The exploration has been carried out solely on HM and HC sites, as being the only minima 

found for the 4d Pt-group TMs and Ag, resulting the HM the most common preferred site, with only 

few TM@MXene cases preferring the HC site.  
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      The corresponding Ediff values comparing 4d and 5d TMs is shown in Figure 12, revealing 

similar trends for the 5d TM, where is worth pointing out that, while 4d Ru and Rh adatoms have 

larger Ediff values than respective 5d Os and Ir with the sole exception of V2C, 4d Pd and Ag 

adatoms display smaller Ediff values than the 5d Pt and Au counterparts. The results are translated 

into the fact that Pt and Au adatoms are easier to isolate than the Os and Ir adatoms, plus all the 

5d elements are more prone to be as a SA with the V2C MXene.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Evolution of Ediff for the different studied MXenes comparing 4d and 5d TMs.  

Another captured trend is the adatom height evolution versus Eads, see Figure 13. Ideally, one 

would expect a similar regression slope, but with a larger height for 5d TMs given their larger 

atomic radii. However, 5d TMs display a smaller slope, and as a general trend, have a smaller 

height to the MXene and a larger Eads, than the 4d.  

Figure 13 has also the compilation of the R2 values obtained from the linear fitting of each. 

Noting that the 4d R2 values are larger than the 5d, it can be said that as going down a group the 

dispersion increases. This could be because as ones goes down the period, the valence electrons 

are more delocalized, thus, its height and Eads vary more from one value to another.
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Figure 13. Correlation of TM heights, h, versus their Eads. 

 

 

  

R2 = 0.980 
R2= 0.952 

R2 = 0.960 
R2= 0.861 

R2 = 0.965 
R2= 0.900 

R2 = 0.980 
R2= 0.979 

R2 = 0.938 
R2= 0.998 

R2 = 0.968 
R2= 0.994 

R2 = 0.858 
R2= 0.248 

R2 = 0.994 
R2= 0.919 

R2 = 0.691 
R2= 0.550 
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8. CONCLUSIONS 

Once studied the adsorption energy on the different TMs on the different MXenes, the 

following conclusions can be extracted: 

• The preferred site for the 4d TM adatoms on the MXenes is HM site, followed by HC. 

• Zr2C is apparently able to isolate any 4d TM adatom upon.  

• The adatoms with less than half occupancy 4d shell seem to follow the strong field 

situation trend and the ones with more than half occupancy 4d shell seem to follow a 

concave tendency. 

• There is a relation between the TM height and the Eads as far as the stronger the bond, 

the closer the adatom to the MXene surface. However, this relation gets less clear as 

going down the groups and through the d series.  

• The best MXene for a SAC situation is one with a high number of valence electrons and 

radius, which is the case for W2C.  

• As far as TM adatoms are concerned, the half-full d shell situation is the most 

appropriate for a SAC, as featured by Mo. 

• Clearly, the MAX exfoliation energy is a physicochemical descriptor biasing the MXene 

surface chemical activity, here shown for the Eads. 

• When going down to the 5d TMs, it appears as late TMs are better dispersed, as 

observed comparing Pt and Au versus Pd and Ag. 

• All the 5d elements are more prone to be as a SA with the V2C MXene. 
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