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1. SUMMARY 

Solid-phase peptide synthesis is a widely used strategy today, to produce peptides that can 

later be used in the pharmaceutical industry as they have therapeutic properties, among many 

others. In order to produce a peptide, throughout the synthesis solvents, reagents, additives, and 

bases are used that are considered toxic, dangerous, and even some have restrictions on their 

use. In addition, the strategy generates a large amount of waste because it is usual to work with 

an excess of reagents and a number of washes have to be performed. As it is a widely used 

synthesis, both at an industrial and research level, and thanks to the awareness of the ecological 

footprint that has been growing in recent years, the synthesis of peptides is being influenced by 

the use of green chemistry. That is, ecological alternatives to traditional products have been 

studied over the last few years, with the aim of producing peptides with similar yields and purities 

to those obtained with the classical approach but reducing toxicity and waste. In this work, a 

bibliographic study has been carried out on the green alternatives that have been investigated 

over the last years from the information given by recent reviews (2019 and 2020). Since the 

synthesis published by Merrifield for the first time dated in 1963, it was not until the decade of the 

present century that green chemistry has begun to be involved in the seek of synthetic alternatives 

more healthy and amenable to the environment. Several protocols have been proposed so far 

that replace the traditional products with less harmful and more compatible with the green 

chemistry postulates, and that have been considered promising by researchers according to the 

results achieved in different aspects of the synthesis (resin swelling, the solubility of reagents, 

yields and purities). This work tries to give the state-of-the-art in this field. 

Keywords: Solid Phase Peptide Synthesis, Green Chemistry, SPPS in Green Chemistry.  

 





Literature search about the impact of green chemistry on solid-phase peptide synthesis. 5 

 

2. RESUM 

La síntesi de pèptids en fase sòlida és una estratègia molt utilitzada en l'actualitat, per a 

produir pèptids que poden ser utilitzats en la indústria farmacèutica per tenir propietats 

terapèutiques, entre moltes altres. Per produir un pèptid, al llarg de la síntesi s'utilitzen 

dissolvents, reactius, additius i bases que es consideren tòxiques, perilloses i fins i tot algunes 

tenen restriccions en el seu ús. A més, l'estratègia genera una gran quantitat de residus perquè 

és habitual treballar amb un excés de reactius i cal realitzar una sèrie de rentats. Al tractar-se 

d'una síntesi molt utilitzada, tant a nivell industrial com de recerca, i gràcies a la consciència de 

l'empremta ecològica que ha anat creixent en els últims anys, la síntesi de pèptids està sent 

influenciada per l'ús de la química verda. És a dir, en els últims anys s'han estudiat alternatives 

ecològiques als productes tradicionals, amb l'objectiu de produir pèptids amb rendiments i 

pureses similars als obtinguts amb l'enfocament clàssic, però reduint la toxicitat i els residus. En 

aquest treball s'ha realitzat un estudi bibliogràfic sobre les alternatives verdes que s'han investigat 

en els últims anys a partir de la informació aportada per les revisions recents (2019 i 2020). Des 

de la síntesi publicada per Merrifield per primera vegada el 1963, no és fins a la dècada d'aquest 

segle que la química verda ha començat a involucrar-se en la recerca d'alternatives sintètiques 

més saludables i amigables amb el medi ambient. Fins al moment s'han proposat diversos 

protocols que reemplacen els productes tradicionals per altres menys nocius i més compatibles 

amb els postulats de la química verda, i que han estat considerats prometedors pels investigadors 

segons els resultats obtinguts en diferents aspectes de la síntesi (inflament de la resina, solubilitat 

de reactius, rendiments i pureses). Aquest treball intenta mostrar les últimes investigacions 

d'aquest camp. 

Paraules clau: Síntesi de pèptids en fase sòlida, química verda, SPPS en química verda.
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3. INTRODUCTION 

Throughout the years, different fields of application of peptides have been discovered, from 

hormonal functionality to antibiotics. Furthermore, studies have shown the potential of peptides in 

drug synthesis.1,2 The importance that peptides have acquired in recent years is due to their 

therapeutic role on different diseases such as diabetes, cardiovascular problems, and cancer, 

among others. Their use in other fields such as cosmetics, supplements, immunology, or 

diagnostics has also increased. All the interest they are generating is due to their high specificity, 

low toxicity and fewer side effects compared to other small molecules that used to be used for 

drug production in the past.3,4 For these reasons, researchers and the pharmaceutical industry 

have been involved in the development and production of peptides in recent years, where clinical 

trials have been carried out where it has been possible to commercialize some of the peptides. 

All this is leading to an increase in the production of pharmaceutical peptides. 

Peptides are molecules formed by the union of amino acids; these are linked together by 

covalent bonds known as peptide bonds. The formation of the peptide bond is a dehydration 

reaction, which involves the loss of a water molecule for each peptide bond generated. All peptide 

structures are made up of a terminal amino and a terminal carboxyl, as seen in Figure 1. 

Furthermore, the side chains may or may not be functionalized. The most common way to name 

amino acids is by using the 3-letter code. In Figure 1 there are three amino acids, glycine, serine, 

and valine linked together by peptide bonds, whose 3-letter code is Gly, Ser and Val, respectively. 

The peptide that these amino acids make up through the 3-letter code would be H-Gly-Ser-Val-

OH.  

 

 

 

 

Figure 1. An example of a peptide (tripeptide), H-Gly-Ser-Val-OH. These amino acids in particular are naturally 
proteinogenic, of which there are 20. The configuration of these amino acids is S. tBu 

C-terminus 

N-terminus 

Peptide bond 
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3.1. SOLID-PHASE PEPTIDE SYNTHESIS  

The most used strategy to synthesize peptides is the solid-phase peptide synthesis (SPPS), 

of which Merrifield first published in 1963.5 Due to the wide applicability of peptides there has 

been an increasing interest in this synthesis. Consequently, the improvements carried out have 

allowed many advances in peptide chemistry, such as starting by synthesizing simple peptide 

chains and today it is possible to do it with longer and more complex chains.  

In the SPPS, here are two strategies: The fluorenylmethoxycarbonyl/tert-butoxycarbonyl 

(Fmoc/tBu) strategy and the tert-butoxycarbonyl/benzyl (Boc/Bzl) strategy (See annex 1).6 These 

protecting groups can be divided into temporary and permanent. Fmoc and Boc belong to the 

group of temporary protecting groups since they are removed each time an amino acid is added 

to the peptide sequence. On the other hand, bzl and tBu are permanent protecting groups since 

they are not eliminated until the end of the synthesis because they protect side chains.7 

In the Fmoc strategy, resin and side-chain groups eliminations are orthogonal (Figure 2). 

Thus, Fmoc group elimination is performed using piperidine (PP) (basic conditions), whereas 

peptide-resin bond cleavage and side-chain groups removal are performed by an acid like 

trifluoroacetic acid (TFA). However, in the Boc strategy, this elimination takes place by strong and 

hazardous acids like hydrofluoric acid (HF) or trifluoromethanesulfonic acid (TFMSA) (Figure 3). 

 

 

 

 

 

 

 

 

Figure 2. Fmoc Deprotection and cleavage points. Figure 3. Boc Deprotection and cleavage points.  
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The reagents used in each strategy for deprotection are the main reason to use Fmoc/tBu as 

usual and Boc/benzyl on specific occasions, due to HF is a strong acid and it is highly toxic and 

dangerous.   

Although the Fmoc strategy is less dangerous than the Boc strategy, it is necessary to 

increase its ecological footprint and to combine it with green chemistry because of the toxic 

solvents used during the process like N,N-dimethylformamide (DMF) and dichloromethane 

(DCM), among others, and the amount of them that is utilized because of the number of washes 

and steps of synthesis.  

Scheme 1 shows a generalized scheme of SPPS since both the Fmoc and Boc protocols can 

be applied. A crucial issue of the synthesis falls on the swelling of the resin because it will 

influence the process since the same solvent can perform differently depending on the resin. The 

base composition of the resins differentiates 3 groups: polystyrene (PS), polyethylene glycol 

(PEG) and those grafted that are a mixture of PS and PEG. The swelling of the resin is a critical 

step in the synthesis, since with good swelling the reactive functional groups of the resin are 

available on the surface of the resin to allow the coupling of amino acids and thus carry out a 

successful synthesis. DCM, DMF and N-Methylpyrrolidone (NMP) are the most widely used 

solvents in the traditional protocols.  

The coupling of the first amino acid to the resin uses to be through an ester bon and the 

experimental conditions depend on the type of functionalization of the resin. The right 

functionalization for the synthesis is achieved by utilizing a suitable linker. 

Amino acid couplings take place by prior activation of the carboxyl group of the amino acid. 

Carbodiimides can be used for activation (See annex 2) but they can provoke racemisation. To 

remedy this, additives such as 1-Hydroxy-7-azabenzotriazole (HOAt) and (1-

hydroxybenzotriazole (HOBt) (See annex 1), or other sophisticated coupling agents with N,N-

diisopropylethylamine (DIPEA) as a base (See annex 1) are used. The capping step consists of 

an additional reaction in which acetic anhydride is used to block amino acids that have not reacted 

due to ineffective coupling. 

In the Fmoc strategy, Fmoc removal is performed by using 20% of PP in DMF (See annex 2) 

and a mixture of TFA with a carbocation scavenger is utilized to remove the side chain protecting 

groups from the peptide and to cleave peptide from resin. 
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In spite of being the SPPS so useful, the synthetic process requires the use of a large number 

of toxic and dangerous solvents such as DMF and NMP which are classified in Registration, 

Evaluation, Authorisation, and restriction of Chemicals (REACH) by European chemicals Agency 

(ECHA) as very high concern.8,9 Moreover, a number of washes are needed to remove the by-

products and excess of reagents. These problems can cause serious damage to people and it 

also makes a negative environmental impact. 

For this reason, there have been several studies over time to reduce environmental impact 

and contribute to more efficient and sustainable production implementing the principles of green 

chemistry on the process. 
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Scheme 1. SPPS of the tripeptide H-Gly-Ser-Val-OH 
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3.2. GREEN CHEMESTRY 

The goal of Green Chemistry is not only to reduce, or even avoid, the use of dangerous 

solvents during a chemical process, it also improves and changes other factors that can influence 

on chemical procedures and reactions such as the designing of safer procedures and products. 

This kind of chemistry focus on find greener alternatives to those procedures and solvent which 

are hazardous and harm the environment. Besides that, chemical industrialization has been 

suffering an increase over the last years, and consequently, more waste and pollution has been 

generated. In 1998, Anastas et al presented what has been called the principles in which the 

green chemistry is based10,11: 

1. Waste prevention: It is preferable to reduce waste products rather than clean the 

waste that has produced. 

2. Atom economy: Optimize processes so that the use of reagents is the maximum 

over the final products. In other words, the number of reactive atoms should be the 

maximum possible on the products. 

3. Less dangerous chemical synthesis: Reorganize chemical procedures in a way 

that has reduced toxicity and hazard using less harmful products and reactions. 

4. Develop safer chemicals and products: Design products using efficient chemical 

processes and reduce their damaging effects in the meantime. 

5. Safer solvents and auxiliaries: Promote the use of safe and green solvents and 

avoid the use of auxiliaries which produce more waste, it is also essential that when 

we use them use the innocuous ones.  

6. Energy efficiency: Minimize the economic and environmental effects of the 

chemical processes in energy requirements. For this reason, use environmental 

pressure and temperature are preferable. 

7. Renewable feedstocks: Avoid the use of consumable materials and promote the 

use of renewable raw materials. 

8. Avoid or reduce derivates: Use derivates generates extra waste because of extra 

steps reagents needed. 

9. Catalysis in favor: Catalysis has shown more efficiency than stoichiometric 

reactions, and it also allows us to carry out unfavorable reactions. 

10. Biodegradation: Chemical products produced should reduce themselves after use. 

Chemical products should have an innocuous degradation. 
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11. Real-time analysis to prevent pollution: It helps to monitored procedures and 

control the prejudicial waste formation 

12. Accident prevention: Planning solvents and chemical substances before starting a 

procedure to reduce of accidents such as explosions and releases, among others. 

4. OBJECTIVES 

Due to the great relevance that the SPPS has achieved, the main goal of this project has 

been to carry out a bibliographic study of the way in which green chemistry is influencing the 

classical synthetic approach. 

5. METHODS 

Based on the objective of the project, a bibliographic review was proposed based on two 

reviews,12,13 for which an intersection of references from the two reviews was carried out, in 

addition to seeking complementary information on some concepts. Because green chemistry in 

SPPS is a concept that has started to be implemented relatively recently, starting in ‘00s, the 

search has focused on the last two decades. The databases that have been used are Scifinder 

and Reaxys, updating the search weekly and in this way being up-to-date with all the articles 

published about studies on the use of green chemistry protocols in SPPS. 

At the time of writing, an order has been followed, starting with solvents, and swelling, followed 

by coupling reagents and additives, and ending with the elimination of the Fmoc group. The writing 

has been developed temporarily, starting with the first years, and ending with the most recent 

about each specific solvent, reagent, or base. 
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6. RESULTS AND DISCUSSION  

Among the different aspects of SPPS, the studies have been focussed mainly in the search 

for alternatives to the traditional solvents that are used, such as DMF, DCM and NMP, since they 

are harmful to both health and the environment, and do not contribute to improving the 

environmental impact. Table 1 shows the classification of the three main solvents and different 

guidelines  such as Pfizer, Sanofi and GSK among others, which focus on analysing them by their 

characteristics.  

Table 1. Classification of the traditional solvents used in SPPS and different guidelines. Green: recommended, yellow: 
Problematic, orange: problematic or hazardous, red: Hazardous. aUnd.: Undesirable. bS.A: substitution advisable, S.R: 
substitution requested. cCC: Candidate to be confirmed by EACH, according to the REACH regulation for substances of 

very high concern (SVHC).14,15,16,17,18,19 

 

The substitution of PP by other solvents has also been studied over the years. This base is 

used to remove the temporary protecting group (Fmoc/Boc), which is flammable, corrosive and 

irritating. Besides, PP is a controlled and regulated substance, according to the 91/109/EC 

recommendation by the Drug Enforcement Agency (DEA), since it is used in the synthesis of 

narcotic drugs and psychotropic substances and generates large amounts of toxic waste, 

consequently increasing the manufacturing costs of peptides. 

The substitution of coupling reagents and additives, derived from benzotriazol, has also been 

considered due to the explosive properties that they can have in some situations.20 Therefore, 

they are not considered very stable products. 

 

 

Solvent AZ 
ACS 

GCI-PR 
GSK Pfizera Sanofib Overallc 

Hazardous 
Attributes 

DMF    Und. S.R  
Reproductive toxicity, 
harmful, irritant 

DCM    Und. S.A CC 
Cancerogenic, 
irritation. 

NMP    Und. S.R  
Reproductive toxicity 
Irritant, harmful. 
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6.1. SOLVENTS 

Two types of solvents are distinguished in spps. These are the aprotic and protic solvents, 

where different types of solvents make up both groups (see table 2). 

Solvent↓ Swelling 
Coupling 

1st aa 
Fmoc 

removal 
Coupling 

step 
Cleavage 

step 
Washings 

2-MeTHF ✓  ✓  ✓  ✓   ✓  

Anisole ✓    ✓  ✓  ✓  

CPME ✓   ✓ * ✓    

Isosorbide ✓   ✓ *    

GVL ✓  ✓  ✓  ✓   ✓  

EtOAc ✓   ✓    ✓  

NBP ✓     ✓   

NFM ✓   ✓  ✓    

PC ✓    ✓    

MEK ✓       

TFT ✓       

H2O  ✓  ✓  ✓    

EtOH ✓    ✓    

IPA ✓   ✓     

EtOAc/TMO ✓       

EtOAC/PC ✓       

2-
MeTHF/MeOH 

✓   ✓     

An/DCM ✓    ✓    

NBP/EtOAc ✓    ✓    

MeTHF/MeCN ✓       
Table 2. Summary of the solvents studied as alternatives to the traditional ones and their application in the different steps 
of the synthesis. *: moderate performance 

 

6.1.1 Aprotic solvents 

These are the solvents that do not form hydrogen bonds since they do not have O-H or N-H 

bonds. Ethers, esters, ketones, or carbonates are some of the kind of solvents that conformed 

aprotic ones. 

6.1.1.1 Ether solvents 

Ether solvents are the most widely used as alternatives in SPPS, being 2-

Methyltetrahydrofuran (2-MeTHF) (See annex 1) the most relevant. It is considered a green 

solvent because it comes from biomass and is also biodegradable, it is known as not mutagenic 

or irritant.2,1,3,5,6 
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In order to achieve the best synthetic results, it is important that the solvents used in the 

synthesis have a good swelling capacity since in this way the reagents can penetrate the resin 

and reach the reactive points, and therefore, be able to carry out the synthesis correctly. 

Otherwise, accessibility to the functional group would not be facilitated. As a general rule, PEG 

resins have better swelling capacity than PS  resins, but this is not the case for 2-MeTHF.21 Table 

3 shows the swelling  capacity of 2-MeTHF, which is considered moderate in grafted and PEG 

resins with TentaGel S as an exception, and good capacity in PS resins with the exceptions of 2-

Chlorotrityl chloride (CTC) resin that present moderate swelling. 

In 2015, Jad Y. et al.,22 evaluated the solubility of Fmoc-amino acids in 2-MeTHF, using Fmoc-

Gly-OH as a representative sample among others, the results were successful. Once these 

results were obtained, the authors proceeded to examine the solubility of coupling reagents, which 

showed good solubility in 2-MeTHF.  

Next year, in 2016, the same research group,23 synthesized the pentapeptide α-amino 

isobutyric acid-enkephalin (Aib-enkephalin) (See annex 1) and the best results were obtained on 

ChemMatrix resin using 2-MeTHF as solvent in the coupling, using N,N’-

Diisopropylcarbodiimide/Ethyl 2-cyano-2-(hydroxyimino)acetate (DIC/Oxyma) as coupling 

reagent, and Fmoc removal steps, as well as in the washings. Furthermore, the use of 2-MTHF 

minimized the formation of the des-Aib by-product (5%), compared to traditional solvents DCM 

and DMF. The authors also synthesized the decapeptide Aib- acyl Carrier Protein (ACP) (See 

annex 1) and observed that if they modified the deprotection conditions by increasing the 

temperature, better yields were obtained and the des-Aib secondary product was minimized 

(8.9%) compared to DMF protocol. 

In 2018, Al Musaimi O. et al.,24 studied the ability of 2-MeTHF to incorporate the first amino 

acid into the resin on CTC and Wang resins. To carry out this study, were chosen as model amino 

acids those that had lower solubility, hindered side-chains, and did not have side chain protecting 

groups. The results obtained were similar in 2-MeTHF and DCM. A similar study was carried out 

on Wang resin, where the amino acid models incorporated into the resin were six, among them 

Fmoc-Phe-OH, Fmoc-Leu-OH, Fmoc-Ser(tBu)-OH. 2-MeTHF showed a first amino acid 

incorporation yield similar to DMF. In both resins, the degree of racemization when the first Fmoc 

amino acid was incorporated, was lower when using 2-MeTHF than when using DCM. The degree 

of racemization ranged from 0.1 to 1.2% when 2-MeTHF was used, but it ranged from 0.2 to 5.5% 
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when DCM was used. With these results, the authors concluded that 2-MeTHF is an alternative 

to replace DMF and DCM in all the steps of SPPS (incorporation of the first amino acid, coupling 

and Fmoc removal). Moreover, using a single solvent minimizes the degradation of the resin and 

allows its reuse. 

Anisole (An) (See annex 1) is another solvent used by a few research groups due to its green 

attributes. It is biodegradable and low-cost.13,15,17Table 3 shows that anisole has a good swelling 

in almost all the resins except for PS, CTC and SpheriTide, a PEG resin. 

Lopez J. et al.,25 studied the coupling reaction, using DIC/Oxyma as coupling reagents, of 

Fmoc-Leu-OH to H-Phe-OMe in anisole and a fast reaction was observed. In addition, the authors 

studied the Fmoc removal step, where it was found that anisole is not efficient  since the reaction 

is very slow (uncomplete after 30 min). 

In 2020, Alhassan M. et al.,26 proposed a protocol for the TFA cleavage of a pentapeptide 

from a CTC resin using different solvents and comparing them with the traditional one (DCM). 

The results showed that anisole provided the best cleavage yields.  

Cyclopentyl methyl ether (CPME) (See annex 1) is described as non-mutagenic and non-

irritant solvent.13,15,17 Table 3 shows that it has moderate swelling in both PS and ChemMatrix 

(CM) resins and gives moderate-poor results in the rest of the PEG resins. As happened with the 

swelling of resins with 2-MeTHF, in the case of CPME the same happens because swelling is 

higher in PS resins than in PEGs. 

In 2015, Jad Y. et al.,22 conducted a study to measure the solubility of coupling reagents in 

CPME, the results of which showed the traditional reagent derived from benzotriazole (HBTU, 

HATU, See annex 1) and an ecological alternative to it derivate from Oxyma (COMU) (See annex 

2), as the only soluble. The authors also carried out the synthesis of the Aib-enkephalin in a PS 

resin with different coupling reagents, where it was found that the yields obtained when CPME 

was used were low since they ranged from 0.8 to 29, 2%, and amounts of the des-Aib by-product 

ranged from 5.6 to 82.5%. Specifically, when CPME was used with HOBt and Oxyma as coupling 

additives the results were better than the obtained with uronium salts. 

In 2017, Jad et al.,27 published a study related to the synthesis of a heptapeptide on a Rink 

Amide (RA)-PS resin and in a CM resin. They focused the attention on the Fmoc elimination step 

using CPME together with 20% PP. Poor yields were obtained with the PS resin, and moderate 

with the CM resin (26.3%). 
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Isosorbide dimethyl ether (See annex 1) is another green solvent because this product is 

derived from biomass and renewable resources whose origin occurs in the catalytic 

hydrogenation of glucose. 

Table 3 shows that isosorbide has good swelling on some grafted, PS and CM resins. 

In 2017, Jad Y. E., et al.,27 reported on the ability of isosorbide to remove the Fmoc group 

during the synthesis of an heptapeptide, on RA-PS and CM resins. This solvent showed a lower 

removal capacity compared with DMF and N-formylmorpholine (NFM). 

Table 3. Swelling capacity comparative between traditional solvents and most researched ether solvents. G.P: Great 
swelling (8< mL/g), Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), 

UN: Unknown results (Not tested)13,24,25,28,29 

 

6.1.1.2 Ester solvents 

Another group of solvents of interest that have been tested in the field of SPPS are esters. 

The most well-known and used ester solvent to date is ƴ-Valerolactone (GVL) (See annex 1), 

which is known as green solvent because it is biodegradable, comes from renewable resources 

(as biomass) and it is non-toxic.13,14,17 Table 4 shows the swelling capacities of the GVL, which 

are good in both PS and PEG resins, while in grafted resins it has a moderate capacity. It can be 

P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP 2-MeTHF Anisole CPME Isosorbide 

PS   UN     

Merrifield  G. S      

Sieber Amide      UN UN 

Wang-PS      UN UN 

2-CTC      UN UN 

JandaJel    G. S G. S   

ParaMax         

RA-MBHA-PS      UN UN 

AM-PS     G. S   

P
E

G
 

CM   G. S      

SpheriTide        

RA-CM  G. S    UN UN 

AM-CM  G. S     UN 

Wang-CM  G. S    UN UN 

G
ra

fte
d 

HypoGel 200        

ArgoGel        

TentaGel S        

NovaGel        
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common that both CTC and AM-PS resins present the worst swelling capacity in this solvent. In 

addition, some studies report that the swelling of PEG resins is more effective than those based 

on PS.13,27 

In 2017, Jad Y. E. et al.,27 studied the use of GVL in the Fmoc removal step during the 

synthesis of  an heptapeptide on RA-PS and CM resins. The Fmoc protecting group was removed 

using 20% PP in GVL obtaining successful yields that were better in CM resin than in PS resin. 

The results obtained with GVL were similar to those obtained with DMF and  a study was carried 

increasing the reaction time from 45 s to 7 min for both resins. Under these conditions, the 

performance of the Fmoc group elimination reaction was excellent (95,5% on PS resin and 100% 

on CM resin). 

In the same year, Kumar A. et al.,30 proved that GVL had excellent coupling capacity, using 

DIC/Oxyma as coupling reagents, by synthetising the pentapeptide Aib-enkephalin on RA-PS 

resin (99,2% yield). Moreover, they also synthetized the difficult decapeptide Aib-ACP in the same 

conditions also achieving very good yields (89,7%). Previously, the authors proved the good 

solubility of the amino acids in GVL. Another interesting result was that the formation of des-Aib 

side-product was reduced in GVL if compared to DMF. As the results were so positive, the authors 

synthesized the decapeptide Aib-ACP on a RA-PS resin using GVL as the sole solvent for the 

entire process. The final yield was good (52%) but lower compared to the previous syntheses. 

In 2018, Kumar A. et al.,31 reported better efficiencies that derived to a reduction in waste 

when using microwave (MW) compared to the traditional protocol. The authors synthetized a 

tripeptide, H-Leu-Phe-Gly-NH2, with a purity obtained was higher (around 95%) than the reported 

before. Moreover, the synthesis of the ACP peptide was performed under MW on a PS resin and 

changing the time conditions in different ways (traditional protocol, increasing deprotection time, 

increasing coupling time, and increasing both deprotection and coupling times). All the 

modifications showed a quality improvement of the peptide, resulting the best result when 

increasing of both times. In addition to that, a synthesis of the difficult decapeptide called 

JungRedemann (See annex 1) was carried out on a RA-CM resin. GVL gave the best purity 

results (68%) and no side reactions were observed in comparison with DMF (57% purity). These 

successful results moved to the synthesis of the 20-mer (ABC) and the 28-mer Thymosin (See 

annex 1) peptides on PS and CM resins using the latter modified protocol (extended times for 

coupling and deprotection steps). The high-performance liquid chromatography (HPLC) analysis 
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showed a good quality peptide synthesis although in the case of the ABC peptide an impurity was 

found corresponding to a secondary reaction of Met oxidation on the cleavage step. In the case 

of thymosin, the PS resin gave purity yields poorer than the CM resin. 

In 2019, Jad Y.E. et al.,32 compared the results obtained by using GVL with those when 

utilizing 2-MeTHF, in the synthesis of long peptides of up to 28 amino acids. The latter showed 

poorer yields than the former with a PS resin. The same authors,33 proposed an improvement of 

the protocol using GVL due to the secondary reaction formed by the Gly residue during the 

elimination of Fmoc due to Gly acylation with GVL. For this, the synthesis of the ABRF-1992 (See 

annex 1) peptide was carried out on CTC, focused on the formation of dipeptides of Fmoc-Aaa-

Gly-OH, where Aaa was Pro, Lys, Arg, the results of this study showed a minimization of side 

reactions. In another study, the same authors,34 decided to test GVL on a Wang resin when 

incorporating the first amino acid. Eighteen amino acids were coupled successfully at room 

temperature (rt). 

Other ester that was studied in SPPS is ethyl acetate (EtOAc) (See annex 1), whose 

greenness falls in its attributes as non-irritant neither phototoxic nor photo allergenic.13 Table 4 

shows its swelling capacity in some resins. As shown in the table, It has a good capacity of selling 

in CM, PS, JandaJel and ArgoGel resin. 

 

 

 

 

 

 

 

 

 

 

 

 



Literature search about the impact of green chemistry on solid-phase peptide synthesis. 21 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Swelling capacity comparative between traditional solvents and most researched ester solvents. G.P: Great 
swelling (8< mL/g), Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), 

UN: Unknown results (Not tested)25,28,29 

  

In 2016, Jad Y. E. et al.,23 presented some protocols to carry out the synthesis of the 

pentapeptide Aib-enkephalin and the decapeptide Aib-ACP on RA-PS and RA-CM resins. One of 

these protocols was about using EtOAc for the deprotection and washing steps, together with the 

use of 2-MeTHF for the washing and coupling steps. The results were compared to those obtained 

with DMF, using 2-MeTHF as the sole solvent. Des-Aib was the most formed by-product in the 

synthesis of Aib-enkephalin, on CM resin. Because of this, when studying a solvent, the amount 

of secondary product formed was considered in addition to the yield of the peptide. The peptide 

yields were higher when the CM resin was used than in the case of the PS resin. For both resins, 

the yield of the side reaction was lower than the one obtained with DMF and similar to the obtained 

when using 2-MeTHF. 

 

 

 

P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP GVL EtOAc 

PS   UN   

Merrifield  G. S    

Sieber Amide      

Wang-PS      

2-CTC      

JandaJel      

ParaMax      

RA-MBHA-PS      

AM-PS      

P
E

G
 

CM  G. S    

SpheriTide      

RA-CM  G. S    

AM-CM  G. S    

Wang-CM  G. S    

G
ra

fte
d 

HypoGel 200      

ArgoGel      

TentaGel S      

NovaGel      
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6.1.1.3 Amide solvents 

Table 5 shows the amide solvents most studied over the years. Although there is not much 

information about them, some studies of resin swelling have been carried out. N-

butylpyrrolidinone (NBP) (See annex 1) shows a good swelling in PS resins, whereas NFM gives 

better results with the CM resin. NBP is non-mutagenic neither toxic nor biodegradable, but its 

price is higher than DMF.13 

In 2018, Lopez J. et al.,25 successfully proved the solubility in NBP of the amino acids Fmoc-

Gln-OH and Fmoc-Gly-OH, and the coupling reagents DIC and additive Oxyma. Moreover, the 

synthesis of a linear Octreotide, an octapeptide (See annex 1)  was performed, showing that some 

couplings were slower in comparison with DMF, and the results obtained for the Fmoc removal 

were similar to those obtained with DMF and quicker enough to consider this solvent as an 

alternative. It was suggested that the coupling reaction is successful when low polar aprotic 

solvents like 2-MeTHF are used, but in Fmoc removal more polar solvents like NBP are required. 

There is a problem here, and it is that when using two different solvents the structure of the resin 

is decomposing and its reuse is more complicated. In addition, it makes recycling and waste 

reduction difficult. Moreover, using NBP the peptides produced have a lower quality but similar 

impurities in comparison with DMF. Finally, NBP is compatible with PS resins, because it could 

be used as alternative to DMF. 

In 2019, Jad. Y. E. et al.,32 also reported that NBP had a successful performance in Fmoc 

removal and a good capacity to dissolve Fmoc amino acids and coupling reagents. The swelling 

capacity on both RA-PS and RA-CM resins is higher in DMF than in NBP. However, serine, 

cysteine and histidine tend to racemize in the former more than in the latter. Also, another side-

reaction of SPPS, aspartimide formation (See annex 2), was considered in this study and the 

synthesis of an hexapeptide was carry out for this purpose. The results showed that the synthesis 

made in NBP gave better quality peptides than DMF, that is, the lower apolarity of NBP reduced 

the formation of aspartimide. The following year, Kumar A. et al.,35 studied reactions under stress 

conditions using NBP which results showed a fewer production of waste and impurities than using 

DMF.  

In 2017, NFM (See annex 1) was investigated by Jad Y. E. et al.,27 as green solvent because 

it is not carcinogenic. Although its high price and unknown stability, it has been considered as an 

alternative in this field. It was used in the Fmoc removal step by synthetising an heptapeptide in 
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both PS and CM resins. Despite of having poor swelling in the PS resin, it showed a good 

performance in the deprotection step. However,  the yield was lower than in the CM resin. As this 

first essay was successful, another one was tried by synthetising the same peptide extending the 

reaction time from 45 s to 7 min. Results were successful with the CM resin, similar to those 

obtained with DMF, but were moderate with the  PS resin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Swelling capacity comparative between traditional solvents and amide solvents used in SPPS. G.P: Great 
swelling (8< mL/g), Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), 

UN: Unknown results (Not tested).6 

 

In 2017, Kumar A. et al.,30 demonstrated that the use of  NFM for washing and during 

couplings provided successful yields (93,1%) using DIC/Oxyma as coupling reagent, by 

synthesizing the pentapeptide Aib-enkephalin on a RA-PS resin, but a performance related to the 

des-Aib side-product (3,6%) poorer than using DMF with GVL in coupling and washing (0,8%). 

The synthesis of the decapeptide Aib-ACP in the same resin was also performed in comparison 

with the DMF protocol, using NFM, GVL and 2-MeTFH as sole solvents in each protocol, obtaining 

as yields 54%, 52% and 25%, respectively.  

 

P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP NBP NFM 

PS   UN   

Merrifield  G. S  UN UN 

Sieber Amide    UN UN 

Wang    UN UN 

2-CTC    UN UN 

JandaJel    UN UN 

ParaMax    UN UN 

RA-MBHA-PS    UN UN 

AM-PS     UN 

P
E

G
 

CM  G. S  UN  

Spheritide    UN UN 

RA-CM  G. S  UN UN 

AM-CM  G. S  UN UN 

Wang-CM  G. S  UN UN 

G
ra

fte
d 

HypoGel 200    UN UN 

ArgoGel    UN UN 

TentaGel    UN UN 

NovaGel    UN UN 
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6.1.1.4 Carbonate Solvents 

Propylene carbonate (PC) (See annex 1) is a cyclic carbonate considered non-carcinogenic, 

neither mutagenic, nor irritant, its price is lower than DMF and it has low toxicity.13 

In 2017, Lawrenson S. B et al.,36 described PC as an alternative to DMF for the coupling step. 

The yield was successful (93%) for the synthesis of a dipeptide using EDC/HOBt as coupling 

agents, on a CM resin. Also, the synthesis of a nonapeptide, Bradykinin (See annex 1), on the 

same resin gave a lower yield in comparison with the dipeptide yield, but the authors considered 

PC an alternative to DMF. No significant impurities and racemisation were found when PC was 

used in the synthesis of the nonapeptide whereas in DMF appeared impurities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Swelling capacity comparative between traditional solvents and carbonate solvents used in SPPS. G.P: Great 
swelling (8< mL/g), Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), 

UN: Unknown results (Not tested).13 

 

6.1.1.5 Ketone solvents 

The green attributes of buta-2-one (MEK) (See annex 1) lie in the fact that it is a non-

mutagenic nor carcinogenic compound.13 Protocols where the solvent plays an important role in 

P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP PC 

PS   UN  

Merrifield  G. S  UN 

Sieber Amide    UN 

Wang    UN 

2-CTC    UN 

JandaJel    UN 

ParaMax    UN 

RA-MBHA-PS    UN 

AM-PS    UN 

P
E

G
 

CM  G. S   

SpheriTide    UN 

RA-CM  G. S  UN 

AM-CM  G. S  UN 

Wang-CM  G. S  UN 

G
ra

fte
d 

HypoGel 200    UN 

ArgoGel    UN 

TentaGel    UN 

NovaGel    UN 
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peptide synthesis have not been developed and only swelling capacities have been tested in 

some resins.29 Table 7 shows that it is a solvent that has a good swelling capacity in few resins, 

such as Merrifield, some PEG (like CM) and ArgoGel (grafted), while in the rest of the resins it 

has a moderate swelling, as PS, Wang, CTC, SpheriTide, TentaGel, among others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Swelling capacity comparative between traditional solvents and ketone solvents in SPPS. G.P: Great swelling 
(8< mL/g), Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), UN: 

Unknown results (Not tested).13,27 

 

6.1.1.6 Fluorocarbon solvents 

ααα-trifluorotoluene (See annex 1) is classified as non-carcinogenic nor irritant. Table 8 

shows its compatibility with CM resins due its swelling capacity. It provided better Fmoc removal 

results and final yields with CM resin(31,1%) than PS resin (12,1%). Extending the time for Fmoc 

removal from 45 s to 7 min an increase in performance was observed and it provided moderate 

results in both resins, giving CM better Fmoc removal yields (58,6%) in comparison with RA-PS 

(47,7%).27 
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Solvent   → 
Resin      ↓ 

DMF DCM NMP MEK 

PS   UN  

Merrifield  G. S   

Sieber Amide     

Wang     

2-CTC     

JandaJel     

ParaMax     

RA-MBHA-PS     

AM-PS     

P
E

G
 

CM  G. S   

SpheriTide     

RA-CM  G. S   

AM-CM  G. S   

Wang-CM  G. S   

G
ra

fte
d 

HypoGel 200     

ArgoGel     

TentaGel S     

NovaGel     
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P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP ααα-Trifluorotoluene 

PS   UN  

Merrifield  G. S  UN 

Sieber Amide    UN 

Wang    UN 

2-CTC    UN 

JandaJel    UN 

ParaMax    UN 

RA-MBHA-PS    UN 

AM-PS    UN 

P
E

G
 

CM  G. S   

SpheriTide    UN 

RA-CM  G. S  UN 

AM-CM  G. S  UN 

Wang-CM  G. S  UN 

G
ra

fte
d 

HypoGel 200    UN 

ArgoGel    UN 

TentaGel S    UN 

NovaGel    UN 

Table 8. Swelling capacity comparative between traditional solvents and fluorocarbon solvents in SPPS.13,27 

 

6.1.2 Protic solvents 

They are the solvents that have O-H or N-H bonds. Alcohols and water are the most tried in 

SPPS. 

6.1.2.1 Water  

Water is the most ecologic solvent due it is a natural product which is not inflammable nor 

toxic and it has lower price than the other solvents. For these reasons, and because H2O is not 

an organic solvent, it has been testing in SPPS. The main problem is the poor solubility of Fmoc 

amino acids in water, which prevents the synthesis from being carried out. 

To solve this problem, in 2007, Hojo K. et al.,37 carried out the first experiment, where water 

was used as a solvent together with Fmoc amino acids that had previously been processed and 

converted into dispersible nanoparticles. The advantage of nano amino acids is that these can be 

removed by filtration and washed with water. In a RA-PEG resin was carry out the synthesis of 

the pentapeptide Leu-enkephalin (See annex 1) under these conditions with a yield of 67%. 

Another experiment was performed using water as the solvent in a PEG resin, but the peptide 

could not be synthesized. 
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In 2011, Hojo K. et al.,38 carried out an experiment using the Boc strategy in PEG as 

dispersant to enhance water solvent protocol. A tripeptide was prepared using water dispersible 

Boc nanoamino acids with a yield of 82% and a purity of 90%. The  synthesis of a tetrapeptide 

and Leu-enkephalin was also carried out with yields higher than the obtained in the former 

experiment. 

The same authors39 

 published in 2011 an article about catalytic reactions with water as solvent in SPPS. Water-

dispersible Fmoc-Phe-OH nanoparticles were coupled in a RA-TentaGel resin, obtaining a 

quantitative yield after 30 min. Moreover, Leu-enkephalin was synthesized in a 67% yield using 

processed Fmoc nanoamino acid particles in the same resin and coupling reagents that are 

soluble in water. The same experiment was carried out with unprocessed Fmoc nanoamino acids 

in PEG, but the results were not satisfactory. In another experiment, the synthesis of Leu-

enkephalin was performed with the protocol using water as the solvent and nanoparticles in the 

presence of Triton X-100 as a dispersing agent since it inhibits peptide aggregation. The results 

were better than those obtained previously, and  the purity was high (93%) and similar when using 

the traditional Fmoc strategy. 

In 2012, Hojo k. et al.,40 developed a water synthetic strategy using Fmoc nanoamino acids 

with MW to increase reaction rates. The peptides were  synthesized in a RA-TentaGel resin using 

Triton X-100 as dispersant. Leu-enkephalin was prepared under these conditions using soluble 

coupling reagents. Low racemization was observed, and the yield was high (76%). Moreover, 

ACP was synthesized with a high purity and a 38% yield. All together indicated that this strategy 

could be applied in simple peptide syntheses. 

To improve the MW-water strategy, in 2013 the same authors41 focused their research on 

racemization of cysteine because it is one of the amino acids most prone to this process. A 

nonapeptide was synthesized in a RA-PEG resin at pH around 7 to minimize racemization during 

the coupling reaction. The results were satisfactory, showing a reduction of the side-reaction 

(<3%). Furthermore, in 2014, Hojo K. et al.42 studied the histidine racemization, another amino 

acid sensitive to this side reaction. A low racemisation was obtained in the synthesis of the 

hexapeptide NPW30 in RA-PEG resin.  
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6.1.2.2 Alcohols 

From the point of view of swelling, ethanol (EtOH) has been studied more than isopropanol 

(IPA), although there isn’t much information performance about both of them. EtOH and IPA have 

similar swelling capacity, as shown in Table 9, but EtOH seems to have a better performance 

than IPA for all resins.28 IPA has one of the worst sweeling capacities on a CM resin, whereas 

EtOH has the best swelling capacity in a SpheriTide resin, whose swelling is poor in all green 

solvents. In the case of PEG resins, both solvents induce poor swelling.  

In 2011, Hojo K. et al.39 developed a protocol based on the use of aqueous EtOH (50%). Leu-

enkephalin was synthesized using Triton X-100 as dispersant with high yield and purity. 

In 2017, the use of IPA in the Fmoc removal step was investigated as green solvent by Jad 

Y. E. et al.27 An heptapeptide was synthetised on PS an CM resins with unsuccessful results in 

both cases, in comparison with the other green solvents and DMF. 

 

P
S

 

Solvent   → 
Resin      ↓ 

DMF DCM NMP EtOH IPA 

PS      

Merrifield  G. S    

Sieber Amide      

Wang      

2-CTC      

JandaJel      

ParaMax      

RA-MBHA-PS      

AM-PS      

P
E

G
 

CM  G. S    

SpheriTide      

RA-CM  G. S    

AM-CM  G. S    

Wang-CM  G. S    

G
ra

fte
d 

HypoGel 200      

ArgoGel      

TentaGel S      

NovaGel      
Table 9. Swelling capacity comparative between traditional solvents and alcohols solvents. G.P: Great swelling (8< mL/g), 
Green: Good swelling (4< mL/g), yellow: Moderate swelling (2-4 mL/g), red: Poor swelling (2>mL/g), UN: Unknown results 

(Not tested)27,28,29  

 



Literature search about the impact of green chemistry on solid-phase peptide synthesis. 29 

 

6.1.3 Mixed solvents 

Another alternative to traditional solvents is binary solvent mixtures, which are made up of 

previously studied green solvents. Several investigations have been carried out to find out the 

effectiveness of these mixtures. 

In 2019 Ran Y. et al.43 performed some experiments to check the swelling on a Merrifield 

resin of different binary mixtures. The mixtures that gave the best results were used in the 

synthesis of a tripeptide. The solvents chosen were PC, EtOAc and 2,2,5,5-

tetramethyltetrahydrofuran (TMO) (See annex 1). TMO originates from renewable raw materials, 

does not lead to the formation of toxic peroxides and is more ecological than  toluene. These 

solvents were compared with the mixtures EtOAc:PC (90:10) and TMO:PC (different ratios). The 

former gave the best swelling capacity (4,6mL/g) and the best yields (307mg/g) in the synthesis 

of the tripeptide H-Leu-Ala-Phe-OH, although the mixtures TMO:PC (90:10) and (40:60) provided 

good swelling capacity (3,8 mL/g in both mixtures).  

In that same year, Přibylka A. et al.44 used a mixture of 2-MeTHF and MeOH in the study for 

the elimination of the Fmoc group in the presence of NaOH as a base as an alternative to 

piperidine. Lue-enkephalin pentapeptide was synthesized in a RA-PS resin with results 

comparable to those obtained with DMF, DCM and piperidine. The same authors in 202045  

studied the formation of aspartimide (See annex 2)  and the stability of amino acid side chain 

protecting groups. The results obtained for the stability of the amino acids residues protecting 

groups t-Bu, Boc, Trt, and Pbf  (See annex 1) were in general successful since it was found that 

they continued intact when carrying out the Fmoc elimination, except in the case of the Boc 

protection for histidine. It was also confirmed that this protocol avoids the formation of aspartimide. 

The purities obtained by synthesizing a variety of peptide sequences using this protocol were 

successful.  

In 2019,  Ferrazzano L. et al.46 studied various solvent mixtures on Wang-PS, RA-PS, Wang-

Tentagel, RA-CM and RA-Tentagel resins. The selected mixtures were Cyrene (Cyr)/diethyl 

carbonate (DEC) (30:70), Sulfolane (Sul)/DEC (30:70) and (An)/DEC (70:30). Aib-enkephalin was 

synthesized on Wang-PS and RA-CM resins using different mixtures for the coupling step using 

DIC/Oxyma as coupling reagents), obtaining peptide better yields ( from 43,6% to 60,6%) than 

those achieved  by DMF (13,5% on Wang-PS resin and 53% on RA-CM resin), together with 

lower levels of des-Aib by-products (from 5% to 38%) in comparison with DMF (13,5% and 53%). 
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The authors concluded that the mixtures were compatible in both PS and PEG resins regardless 

of the functionalization used. Moreover, the most relevant results were obtained when the mixture 

An/DCM(70:30) was used to synthesize Aib-ACP, Aib-enkephalin and Octreotide. 

In 2020, trials with binary mixtures continued with the study of Erny M. et al.47 Fmoc-Ser(t-

Bu)−OH peptide was synthesized on a Ramage aminomethylstyrene (H-RMG AMS) resin using 

DIC/Oxyma as the coupling system and the formation of the by-product hydrocyanic acid (HCN) 

was evaluated (See annex 2). NBP and PC, two previously investigated green solvents, were 

used together with EtOAc, which inhibits the formation of secondary chains. In comparison with 

DMF, NBP and NBP/EtOAc (1:4) gave the lowest formation of HCN. From here they investigate 

the most efficient ratio of NBP/EtOAc to use, it led to better NBP/EtOAc results (1:4). 

In that same year, another study carried out by Magtaan J. K. et al.,29 compared the swelling 

of traditional solvents with green solvents. Specifically, the mixture 2-MeTHF/acetonitrile (MeCN) 

(1:1) had a moderate swelling capacity in PS resins and a little bit better in PEG resins. Other 

green solvents such as anisole, GVL or 2-MeTHF were found to have better swelling capacity. 

 

6.2 REAGENTS AND ADDITIVES 

Not only is necessary find alternatives for solvents but also reagents and additives used in 

some steps can contribute to the greening of chemistry, from the coupling steps to elimination of 

the Fmoc group. For this purpose, experiments have been carried on reducing toxicity and 

hazardousness. 

 

6.2.1 Coupling reagents and additives 

6.2.1.1 Coupling reagents in organic solvents 

The classical coupling agents such as DCC or DIC (See annex 1), among others, are 

necessary for the activation of the carboxyl group, which allows a rapid and quantitative amide 

bond formation. The addition of these reagents is usually accompanied by racemization, and this 

poses a purity problem in the synthesis of the peptide. To avoid or reduce this racemization 

additives are used, the usual ones are benzotriazoles such as HOBt and HOAt, which in some 

circumstances they are explosive.20 In order to minimize these risks, searches were carried out 

to find safer alternatives.12,13 In this sense, Oxyma and COMU (See annex 1 and 2) have been 
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described as the best environmentally friendly alternative to benzotriazoles and derivative 

coupling reagents.32,51 

In 2009,48 some experiments were made for first time using Oxyma as an additive with DIC, 

which is considered less hazardous than benzotriazole derivates such as HOBt and HOAt. It was 

found with the synthesis of a tripeptide on a Fmoc-RA-PS resin that elongation yields were better 

with Oxyma than with HOAt and HOBt, and that the racemization levels were similar to those 

obtained with the classical additives. Previously, simpler peptides were synthesized to find the 

best conditions resulting Oxyma the best yield (90,8%) in the case of the H-Gly-Cys-Phe-NH2 

synthesis. More complicated peptides were tested on the same resin, such as ACP or Leu-

enkephalin analogues. In the synthesis of Leu-enkephalin, with 5 min coupling time, HOAt showed 

the best yield (94,9%), whereas in the synthesis of Leu-enkephalin analogue, with 30 min coupling 

time, Oxyma showed the best yield (79%). In all the syntheses, an improvement on inhibition of 

the racemization and deletion by-products was observed when Oxyma was used.  

In 2014, Jad Y. E., et al.49 studied an alternative to Oxyma in the synthesis of, H-Gly-Ser-Phe-

NH2, H-Gly-Cys-Phe-NH2, among others, on a RA-PS resin .In this study the authors found that 

5-(hydroxyimino)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (B-Oxyma) (See annex 1) 

suppressed racemization (0,3-1%) better than Oxyma (0,4-3%). Aib was also synthetised using 

Oxyma with a 42,8% yield and the lowest percentage of by-product des-Aib (50,4%). B-oxyma 

presented lower yields than Oxyma and more by-product formation. 

In 2018, experiments carried out by Albericio F. and El-aham A.22 revealed a leak from the 

synthesized peptide sequence when using Oxyma. To solve this problem the potassium salt of 

Oxyma was introduced as an alternative (K-Oxyma) (See annex 1), which provided better 

solubilities and thermal stability than Oxyma. 

In 2019, Pawlas J. and Rasmussen J. H.,50 demonstrated that DIC/Oxyma had the best 

solubility capacity to dissolve an Fmoc amino acids in comparison with other coupling systems 

such as COMU/DIPEA, DIC/HOBt, HBTU and HATU (See acronyms). This study was carried out 

with a PS resin for the synthesis of a Aib-ACP analogue, where the mixture dimethylsulfoxide 

(DMSO)/EtOAc (1:9) was used as solvent. Oxyma gave a yield of 92% and  a  purity of 70% with 

and low level of secondary reactions (0,39%). Moreover, similar studies carried out by other 

authors showed that the Oxyma suppresses racemisation under the different conditions that were 

used.48,49,51,52  
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As an alternative to benzotriazole derivatives has been developed the reagent COMU (see 

annex 2), an Oxyma derivate based in an uronium salt with a morpholino carbon skeleton.53  

Hydrolytic stabilities showed to be better in COMU than benzotriazole derivates such as HATU or  

HBTU (See annex 2).54 It was stablished that Oxyma derivates such as COMU and HDMODC 

(See annex 1) were the most soluble in comparison with other coupling reagents. These excellent 

solubilities  will improve coupling yields and removal of waste (excess of reagents and by-

products). COMU can be used with two different bases, N,N-diisopropylethylamine (DIPEA) or 

2,4,6-trimethylpyridine (TMP) (See annex 1),the latter reducing racemization. COMU provided the 

best coupling yields in the syntheses of a pentapeptide and a decapeptide, with racemization 

levels lower than those obtained with HATU. Moreover, a stability experiment showed that COMU 

turned out to be the best because it was the most stable and with the most controlled 

decomposition, thus being safer than benzotriazoles. Moreover, COMU requires a lower amount 

of base (1 equiv).55 Experts recommend the use of DIC/Oxyma in MW automatized synthesis, 

whereas in a manual synthesis they suggest using COMU with DIPEA or TMP, which are soluble 

in 2-MeTHF, DMC or EtOAc. 

In 2020, Kumar A. et al.,35 tested the solubility of different coupling reagents in NBP at rt. They 

found that both the traditional coupling reagents and Oxyma derivatives were soluble, being 

COMU the best (0,33M). 

 

6.2.1.2 Coupling reagents and additives soluble in water. 

To carry out the SPPS in the greenest solvent which is water, it is necessary to use solvents 

and reagents soluble in water for the different reactions of the synthesis to take place. For this 

reason, coupling reagents used during the syntheses of peptides in water must be soluble in 

water. Reagents and additives such as HOBt, HOAt, Oxyma or COMU are not soluble, therefore 

several investigations have been carried out to reach a successful result. 

In 2007, Hojo K. et al.,16 described a protocol where water was used as green solvent. The 

amino acid derivative Fmoc-Phe-OH was coupled on a Leu-RA-grafted resin, which coupling yield 

became quantitative in a 30-min reaction. The water-soluble carbodiimide 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) (See annex 1) and the water-soluble 

additive N-hydroxy-5-norbornene-endo-2,3-dicarboximide (HONB) (See annex 1) were used in 

the presence of DIPEA to perform these coupling reactions.  
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In 2011, the same authors39 carried out a synthesis of Leu-enkephalin, among other peptides, 

on a RA-Tentagel resin using the Boc strategy to assay a new coupling reagent efficiency, 4-(4,6-

dimethoxy-1,3,5- triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) (See annex 1). This 

additive was used without any additive and with NMM as base. Water was used as sole solvent 

and triton X-100 as dispersant, resulting a yield of 86% and a purity of 93%. Comparing both 

water-soluble coupling reagents, DMTMM provided better yields in coupling reactions than EDC 

with HONB. 

In 2012, Hojo K. et al.40 synthetized Leu-enkephalin and an heptapeptide to study the coupling 

reaction time compared to EDC with DMTMM giving the latter better results than the former. In 

addition, it was observed that DMTMM was compatible with the use of MW in the synthesis of 

ACP, from which good yields and purities were obtained.  

In the following years, the same authors studied the reduction of the racemization levels in 

peptides containing cysteine41 and histidine42 amino acids. The authors synthetised peptides 

containing these amino acids, such as NPW30, by using MW in water and following a similar 

protocol and then they observed that the racemization of these amino acids was inhibited. For 

this reason, DMTMM and EDC were used to reach a quantitative coupling reaction. In the case 

of NPW30 the peptide yield was over 28% and level of His racemization was over 20%, whereas 

in the synthesis of the L,L-Cys-oxytocin the yield was over 24% while racemization was not 

significant. 

 

6.3 Fmoc REMOVAL 

PP (in solution of DMF) are the traditional conditions used in the Fmoc removal step. 

Traditional Fmoc removal strategy is performed in a highly basic medium due to PP (pKa 11.2). 

Moreover, this amine has strong nucleophilic character. Finally, due its restrictions, it has been 

necessary to find an alternative to this base. For this reason, some investigations have been 

carried out. 

In 2006, Hachmann J. and Lebl M.56 introduced for the first time 4-methylpiperidine (4MP) 

(See annex 1), which is not restricted by DEA, as a possible alternative to PP in the elimination 

of the Fmoc protecting group. The study was carried out with ACP, enkephalin and LHRH (See 

annex 1) peptides, resulting a similar behaviour to PP.  
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In 2013, Ralhan K. et al57 published for the first time a kinetic study about piperazine (PZ) and 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (See annex 1). The former is considered as an 

alternative to PP because it is less hazardous, and its use is not restricted. Both bases showed 

an efficient Fmoc removal in the syntheses of the Poly-Ala  (See annex 1). One of the problems 

that affect the use of strong bases for Fmoc removal is the generation of side reactions as the 

formation of aspartimide and epimerization of cysteine or histidine. To prove these bases as 

successful ones, the authors synthetized Scorpion toxin (See annex 1) on a CTC resin. The 

results showed that the best yield was obtained using  5% PZ and 1% formic acid (FA) in DMF 

(92,8%). Moreover, it was possible to reduce the formation of aspartimide o 7,2%.  A similar yield 

was obtained with 5% PZ and 1% DBU + 1% FA in DMF, minimizing racemisation to 1,41%. 

In 2014, Vergel Galeano et al.58 synthesized some peptides, including the difficult Lactoferricin 

and L1-HPV. Fmoc removal was carried out using 40% 4MP in DMF and the results were 

excellent to the point of considering 4MP as a potential alternative to PP.  

In 2016 a study was carried out by Luna O. F. et al.,59 synthesizing peptides such as NBC155, 

NBC759 and NBC1951 (See annex 1) on a RA-resin to compare the efficiency of PP, 4MP and 

PZ under MW conditions. The yields were similar using the three bases but deletions of Ala, Lys, 

Glu or His resulted when using these solvents. 

In 2020, Guzmán F. et al.60 studied PP, 4MP and PZ using the protocol developed in 1985 

called the 'Teabag Protocol'. This protocol is more practical because allows to prepare different 

peptides in parallel. In addition, the number of reagents, solvents and waste is reduced. This 

protocol was carried out on RA-polypropylene resin and several peptides, such as NBC759, 

NBC1951and NBC155, were used as models 4MP provided the most satisfactory results, 40% 

peptide yield in NBC759, NBC1951 provided 36% yield, NBC155 resulted in 60% peptide yield, 

which purities in all syntheses were above 70-75% .  
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7. CONCLUSIONS 

This work, based on the bibliographic search of the impact of green chemistry in SPPS, has 

shown that there is great interest in finding green alternatives to the traditional strategy, due to 

the numerous investigations that have been carried out in the last years. These have ranged from 

the swelling capacity of solvents in a resin to the substitution of the PP base in the Fmoc 

elimination step, through the selection of solvents and coupling reagents and additives. 

In general, it has been demonstrated that the swelling capacity is greater in PEG resins, but 

2-MeTHF and CPME have been the exception solvents since their swelling has been greater in 

PS resins. Furthermore, the solvents that have had the highest solubility with both the Fmoc amino 

acids and coupling agents have been 2-MeTHF, anisole and GVL. 

Despite the wide selection of alternative solvents that have been studied, the number of them 

is reduced when it comes to checking their compatibility (swelling or solubility), and the final 

synthetic results (yields, reduction of the formation of by-products and side-reactions). These 

parameters have been crucial to allowing the use of a single solvent in the entire synthetic 

process. 2-MeTHF and GVL have proved to be the most efficient aprotic solvents throughout the 

process, although some solvents gave quantitative yields only in specific parts of the synthesis, 

such as CMPE in the Fmoc elimination step or anisole in the cleavage step. The problem with 

these particular cases is the need to use more than one solvent when synthesizing a peptide, 

which could have a negative effect on the resin since it could be damaged, making its reuse 

difficult. In the case of protic solvents, water proved to be the effective alternative when used with 

Trition X-100 as a dispersant, producing peptides in quantitative yields and with high purities. 

Moreover,  Water and GVL proved to be compatible with the use of MW, which allowed to improve 

the synthetic results. NFM is another successfully studied alternative that provided better PS resin 

yields than GVL and 2-MeTHF, but its purities were lower and by-product formation was higher 

than the latter. 

In the case of additives for coupling, Oxyma showed optimal results in the performance of the 

coupling reaction and reduction of racemization when compared to HOAt and HOBt. However, B-
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Oxyma afforded peptides with lower yields and more by-product formation than Oxyma when 

synthesizing more difficult peptides. Regarding the coupling agents, it was found that the Oxyma 

derivative COMU gave in general better yields compared to benzotriazole derivatives HATU or 

HBTU. It was also found to be soluble in various ecological solvents such as 2-MeTHFand NBP. 

It is worth mentioning that several authors recommend the use of Oxyma as additive of the 

coupling agent DIC, and COMU with DIPEA or TMP, both bases giving similar results. 

The solubility of the coupling reagents and additives is a key point when using water as the 

solvent for SPPS and several studies have been carried out in this respect. In this sense, EDC 

with HONB as additive and DMTMM have been found as effective soluble coupling reagents. The 

former has been used with DIPEA and the latter together with NMM as bases. Both coupling 

reagents have achieved quantitative results in the synthesis of difficult peptides. In addition, they 

have proved to be effective in the reduction of racemisation of Cysteine and histidine, amino acids 

prone to give this side reaction. 

Another interesting point is the need to find an alternative to PP, the base used for removing 

the Fmoc group. This product is controlled by DEA for being used in drug synthesis and, therefore, 

difficult to purchase, apart from being corrosive and irritating. Two potential alternatives have been 

found so far, 4MP and PZ. 4MP has provided yields similar to PP and higher than PZ. Moreover, 

4MP is cheaper, for which it has been considered the best alternative to PP. 

As has been proven, nowadays it is affordable both economically and synthetically to use 

more ecological protocols for the synthesis of peptides in moderate to high yields, reducing at the 

same time toxicity, danger, and waste. Despite these advances, scientific community claim for  

continuing the research in this field in order to improve the synthetic yields and the purity of the 

product by using a protocol as green as possible. 
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9. ABBREVIATIONS/ACRONYMS 

ACP  Acyl Carrier Protein 

ACS GCI PR American Chemical Society Green Chemistry Institute Pharmaceutical 

Roundtable 

Aib  α- aminoisobutyric acid 

Ala  Alanine 

AMS  Aminomethylstyrene 

An  Anisole 

Arg  Arginine 

Asn  Asparagine 

Asp  Aspartic acid 

AZ  AstraZeneca 

Boc  Tert-butoxycarbonyl  

B-Oxyma 5-(hydroxyimino)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione 

Bzl  Benzyl 

CM  ChemMatrix 

COMU 1-Cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-

carbenium hexafluorophosphate 

CPME Cyclopentyl methyl ether 

CTC  2-Chlorotrityl chloride 

Cyr  Cyrene 

Cys  Cysteine 

DBU  1,8-Diazabicyclo[5.4.0]undec-7-ene 
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DCC  N,N'-Dicyclohexylcarbodiimide 

DCM  Dichloromethane 

DEC  Diethyl carbonate 

Des-aa Peptide deletion in which the amino acid aa has not been incorporated 

DIC  N,N’-Diisopropylcarbodiimide 

DIPEA N,N-Diisopropylethylamine 

DMF  N,N-Dimethylformamide 

DMSO Dimethylsulfoxide 

DMTMM 4-(4,6-dimethoxy-1,3,5- triazin-2-yl)-4-methylmorpholinium chloride 

DVB  Divinylbenzene 

ECHA European Chemicals Agency 

EDC  1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

EtOAc Ethyl acetate 

EtOH  Ethanol 

Fmoc  Fluorenylmethoxycarbonyl  

Gln  Glutamine 

Glu  Glutamic acid 

Gly  Glycine 

GSK  GlaxoSmithKline 

GVL  ƴ-Valerolactone 

HATU 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide 

hexafluorophosphate 

HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

HCN  Hydrocyanic acid 

HDMODC 1-[(1-(dicyanomethyleneaminooxy)dimethylamino-morpholinomethylene)] 

methanaminium hexafluorophosphate 

HF  Hydrofluoric acid 
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His  Histidine 

HOAt  1-Hydroxy-7-azabenzotriazole 

HOBt  1-Hydroxybenzotriazole 

HONB N-hydroxy-5-norbornene-endo-2,3-dicarboximide 

HPLC High-performance liquid chromatography 

K-Oxyma Ethyl (Z)-2-cyano-3-hydroxyacrylate, potassium salt 

Ile  Isoleucine 

IPA  Isopropanol 

Leu  Leucine 

Lys  Lysine 

MeCN Acetonitrile 

MEK  2-Butanone 

Met  Methionine 

4MP  4-methylpiperidine 

2-MeTHF 2-Methyltetrahydrofuran 

NBP  N-butylpyrrolidinone 

NFM  N-formylmorpholine 

NMP  N-Methylpyrrolidone 

Oxyma Ethyl 2-cyano-2-(hydroxyimino)acetate 

PC  Propylene carbonate 

PEG  Polyethylene glycol 

Phe  Phenylalanine 

PP  Piperidine 

Pro  Proline 

PS  Polystyrene 

PZ  Piperazine 

RA  Rink Amide 
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REACH Registration, Evaluation, Authorisation, and restriction of Chemicals 

RMG  Ramage 

Ser  Serine 

SPPS Solid-phase peptide synthesis 

Sul  Sulfolane 

tBu  Tert-butyl 

TFA  Trifluoroacetic acid 

TFMSA trifluoromethanesulfonic acid 

TFT  ααα-trifluorotoluene 

Thr  Threonine 

TIS  Triisopropylsilane 

TMO  2,2,5,5-tetramethyltetrahydrofuran 

TMP  2,4,6-trimethylpyridine 

Trp  Tryptophan 

Tyr  Tyrosine 

Val  Valin 
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APPENDIX 1: STRUCTURES  

ABC  H-Val-Tyr-Trp-Thr-Ser-Pro-Phe-Met-Lys-Leu-Ile-His-Glu-Gln-Cys-Asn-Arg-Ala-Asp-Gly-NH2 
ABRF-19992 H-Gly-Val-Arg-Gly-Asp-Lys-Gly-Asn-Pro-Gly-Trp-Pro-Gly-Ala-Pro-Tyr-NH2 

ACP  H-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-NH2 

Aib-ACP  H-Val-Gln-Aib-Aib-Ile-Asp-Tyr-Ile-Asn-Gly-NH2 
Aib-enkephalin H-Tyr-Aib-Aib-Phe-Leu-NH2 
Bradykinin  H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH 
JungRedemann H-Trp-Phe-Thr-Thr-Leu-Ile-Ser-Thr-IleMet-NH2 
Lue-enkephalin H-Tyr-Gly-Gly-Phe-Leu-NH2 

LHRH  H-Glu-His-Trp-Ser-Tyr-Gly-Trp-Leu-Pro-Gly-NH2 
Linear Octreotide H-D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol 
NBC155  H-Thr-Leu-Glu-Glu-Phe-Ser-Ala-Lys-Leu-NH2 
NBC759  H-Lys-Lys-Trp-Arg-Trp-Trp-Leu-Lys-Ala-Leu-Ala-Lys-Lys-NH2 
NBC1915  H-Val-Ala-Pro-Ile-Ala-Lys-Tyr-Leu-Ala-Thr-Ala-Leu-Ala-Lys-Trp-Ala-Leu-Lys-Gln-Gly-Phe-Ala- 

Lys-Leu-Lys-Ser-NH2 
Poly-Ala  H-Tyr-Ala10-Lys-OH 
Scorpion toxin II H-Val-Lys-Asp-Gly-Tyr-Ile-NH2 
Thymosin  H-Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-Ile-Thr-Thr-Lys-Asp-Leu-Lys-Glu-Lys-Lys-Glu-Val- 

Val-Glu-Glu-Ala-Glu-Asn-NH2 
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