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AbsTrACT 
background Heritability estimates have revealed an 
important contribution of SnP variants for most common 
traits; however, SnP analysis by single-trait genome-
wide association studies (gWaS) has failed to uncover 
their impact. in this study, we applied a multitrait gWaS 
approach to discover additional factor of the missing 
heritability of human anthropometric variation.
Methods We analysed 205 traits, including diseases 
identified at baseline in the gcat cohort (genomes For 
life- cohort study of the genomes of catalonia) (n=4988), 
a Mediterranean adult population-based cohort study 
from the south of europe. We estimated SnP heritability 
contribution and single-trait gWaS for all traits from 
15 million SnP variants. then, we applied a multitrait-
related approach to study genome-wide association to 
anthropometric measures in a two-stage meta-analysis 
with the UK Biobank cohort (n=336 107).
results Heritability estimates (eg, skin colour, 
alcohol consumption, smoking habit, body mass 
index, educational level or height) revealed an 
important contribution of SnP variants, ranging from 
18% to 77%. Single-trait analysis identified 1785 
SnPs with genome-wide significance threshold. 
From these, several previously reported single-trait 
hits were confirmed in our sample with LINC01432 
(p=1.9×10−9) variants associated with male baldness, 
LDLR variants with hyperlipidaemia (icD-9:272) 
(p=9.4×10−10) and variants in IRF4 (p=2.8×10−57), 
SLC45A2 (p=2.2×10−130), HERC2 (p=2.8×10−176), 
OCA2 (p=2.4×10−121) and MC1R (p=7.7×10−22) 
associated with hair, eye and skin colour, freckling, 
tanning capacity and sun burning sensitivity and the 
Fitzpatrick phototype score, all highly correlated cross-
phenotypes. Multitrait meta-analysis of anthropometric 
variation validated 27 loci in a two-stage meta-
analysis with a large British ancestry cohort, six of 
which are newly reported here (p value threshold 
<5×10−9) at ZRANB2-AS2, PIK3R1, EPHA7, MAD1L1, 
CACUL1 and MAP3K9.
Conclusion considering multiple-related genetic 
phenotypes improve associated genome signal 
detection. these results indicate the potential value 
of data-driven multivariate phenotyping for genetic 
studies in large population-based cohorts to contribute 
to knowledge of complex traits.

InTroduCTIon
Common disorders cause 85% of deaths in the 
European Union (EU).1 The increasing incidence 
and prevalence of cancer, cardiovascular diseases, 
chronic respiratory diseases, diabetes and mental 
illness represent a challenge that leads to extra costs 
for the healthcare system. Moreover, as European 
population is getting older, this scenario will be 
heightened in the next few years. Like complex 
traits, many common diseases are complex inher-
ited conditions with genetic and environmental 
determinants. Advancing in their understanding 
requires the use of multifaceted and long-term 
prospective approaches. Cohort analyses provide 
an exceptional tool for dissecting the architecture 
of complex diseases by contributing knowledge 
for evidence-based prevention, as exemplified by 
the Framingham Heart Study2 or the European 
Prospective Investigation into Cancer and Nutrition 
cohort study.3

In the last decades, high performance DNA geno-
typing technology has fuelled genomic research 
in large cohorts, having been the most promising 
line in research on the aetiology of most common 
diseases. Genome-wide association studies (GWAS) 
have provided valuable information for many single 
conditions.4 Despite the perception of the limitations 
of the GWAS analyses, efforts combining massive 
data deriving from whole-genome sequencing at 
population scale with novel conceptual and meth-
odological analysis frameworks have been set forth 
to explore the last frontier of the missing herita-
bility issue,5 driving the field of genomic research 
on complex diseases to a new age.6Pritchard and 
colleagues recently proposed the breakthrough idea 
of the omnigenic character of genetic architecture 
of diseases and complex traits.7 They suggested that 
beyond a handful of driver genes (ie, core genes) 
directly connected to an illness, the missing herita-
bility could be accounted for by multiple genes (ie, 
peripheral genes) not clustered in functional path-
ways, but dispersed along the genome, explaining 
the pleiotropy frequently seen in most complex 
traits. Core genes have been already outlined by the 
GWAS approach, but most of the possible contrib-
uting genes have been disregarded based on meth-
odological issues such as p value or lower minor 
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allele frequency (MAF). Pathway disturbances have also been a 
landmark in the search for genetic associations,8 but not always 
appear to the root of the mechanism of inheritance of complex 
diseases, at least for peripheral genes.7 With this challenging 
vision, a multitrait genome association analysis of the whole 
phenome9 becomes a more appropriate way to detect peripheral 
gene variation effects and new network disturbances affecting 
core genes. Multitrait analysis approaches are developed for 
research of genetically complex conditions using raw or summa-
ry-level data statistics from GWAS in order to explain the largest 
possible amount of the covariation between SNPs and traits.10–15

The contribution of total genetic variation, known as heri-
tability (broad-sense heritability, h2), is estimated now from 
genome-wide studies in large cohorts directly from SNP data 
(known as h2SNP). However, even if most disease conditions 
have a strong genetic basis, it is well known that our capacity to 
find genetic effects depends on the overall genetic contribution of 
the trait. Overall estimations differed depending on the ancestry, 
sample ascertainment, gender and age of the population under 
study. Recently, data from the UK Biobank determined genetic 
contributions with a phenome-based approach16 and identi-
fied a shared familial environment as a significant important 
factor besides genetic heritability values in 12 common diseases 
analysed.17

In this study, we present new data on phenotype-wide estima-
tion of the heritability of 205 complex traits (including diseases) 
and new insights into the genetics of anthropometric traits 
in a Mediterranean Caucasian population using a two-stage 
meta-analysis approach with multiple-related phenotypes 
(MRPs).

MATerIAls And MeThods
Population
The methodology of the GCAT study has been previously 
described.18 Briefly, the subjects of the present study are part of 
the GCAT project, a prospective study that includes a cohort of 
a total of 19 267 participants recruited from the general popula-
tion of Catalonia, a western Mediterranean region in the North-
east of Spain. Healthy general population volunteers between 
40 and 65 years with the sole condition of being users of the 
Spanish National Health Service were invited to be part of the 
study mostly through the Blood and Tissue Bank, a public agency 
of the Catalan Department of Health. All eligible participants 
signed an informed consent agreement form and answered a 
comprehensive epidemiological questionnaire. Anthropometric 
measures and blood samples were also collected at baseline by 
trained healthcare personnel. The GCAT study was approved by 
the local ethics committee (Germans Trias University Hospital) 
in 2013 and started on 2014.

study participants
This study analyses the GCATcore data, a subset of 5459 partici-
pants (3066 women) with genotype data belonging to the interim 
GCATdataset, August 2017 (see the URLs section). GCATcore 
participants were randomly selected from whole cohort based on 
overall demographic distribution (ie, gender, age, residence). In 
this study, in order to increase the robustness of heritability esti-
mates, only Caucasian participants with a Spanish origin (based 
on principal component analysis (PCA) analysis, see later in this 
section) and with available genetic data were finally included: 
4988 GCAT participants (2777 women). All samples passed 
genotyping quality control (QC) (see later in this section).

Phenome
Baseline variables were obtained from a self-reported epidemi-
ological questionnaire and included biological traits, medical 
diagnoses, drug use, lifestyle habits and sociodemographic 
and socioeconomic variables.18 Description of GCAT variables 
dataset is available at GCAT (see the URLs section). To keep 
as many as possible of the genotyped samples in the study, we 
imputed anthropometric missing values (<1%) from the overall 
distribution values using statistical approaches. Missing values 
(<1%) for biological and anthropometric measures (height, 
weight, waist and hip circumference, systolic and diastolic blood 
pressure and heart rate) were imputed by stratifying the whole 
GCAT cohort by gender and age and using multiple imputa-
tion by the fully conditional specification method, implemented 
in the R mice package.19 For GWAS analysis, we retained all 
variables with at least five observations (n=205). For herita-
bility estimates, only variables with at least 500 individuals per 
class were retained (n=96) for robustness. The description of 
the traits and measures included in this study is summarised in 
online supplementary table S1.

Genotyping, relatedness and population structure
Genotyping of the 5459 GCAT participants (GCATcore) was 
done using the Infinium Expanded Multi-Ethnic Genotyping 
Array (MEGAEx) (ILLUMINA, San Diego, California, USA). A 
customised cluster file was produced from the entire sample 
dataset and used for joint calling. We applied PCA to detect any 
hidden substructure and the method of moments for the estima-
tion of identity by descent probabilities to exclude cases with 
cryptic relatedness. The extensive QC protocol used for cluster 
analysis and call filtering is accessible at GCAT (see the URLs 
section) and presented as supplementary material (online supple-
mentary file S1). Briefly, GCAT participants were excluded from 
the analysis for different reasons, including poor call rate <0.94 
(n=61), gender mismatch (n=19), duplicates (n=8), family 
relatedness up to second degree (n=88) and excess or loss of 
heterozygosity (n=52). Non-Caucasian individuals detected 
as outliers in the PCA plot of the European populations from 
the 1000 Genomes Project (n=96) and born outside of Spain 
(n=147) were also excluded from the study. After QC and 
filtering, 4988 GCAT participants and 1 652 023 genetic vari-
ants were included. Genotyping was performed at the PMPPC-
IGTP High Content Genomics and Bioinformatics Unit.

Multipanel imputation
For imputation analysis, 665 592 SNPs were included (40%). 
Sexual and mitochondrial chromosomes were discarded as 
well as autosomal chromosome variants with MAF <0.01 and 
AT-CG sites. We followed a two-stage imputation procedure, 
which consists of prephasing the genotypes into whole chromo-
some haplotypes followed by imputation itself.20 The prephasing 
was performed using SHAPEIT2, and genotype imputation was 
performed with IMPUTE2. As reference panels for genotype 
imputation, we used the 1000 Genomes Project phase 3,21 the 
Genome of the Netherlands,22 UK10K23 and the Haplotype 
Reference Consortium.24 All variants with IMPUTE2 info <0.7 
were removed. After imputing the genotypes using each refer-
ence panel separately, we combined the results selecting the vari-
ants with a higher info score when they were present in more 
than one reference panel. The SNP dosage from IMPUTE2 was 
transformed to binary PLINK format by using the ‘-hard-call-
threshold 0.1’ flag from PLINK. The final core set had approx-
imately 15 million variants with MAF>0.001 and 9.5 million 
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variants with MAF>0.01. Imputation was performed at the 
Barcelona Supercomputing Center.

heritability
Trait SNP heritability (h2

SNP) was estimated from SNP/INDEL 
array/imputed data with the GREML-LDMS method imple-
mented in the GCTA software.25 Since this method is rela-
tively unbiased regarding MAF and linkage disequilibrium (LD) 
parameters, we considered autosomal variants with MAF>0.001 
(15 060 719 SNPs) to avoid under/overestimation of heritability 
due to the relatively small sample analysed in the core study. 
Cryptic relatedness of distant relatives was also considered, and 
individuals whose relatedness in the genetic relationship matrix 
was >0.025 were discarded (n=4717). Population stratification 
was controlled in the linear mixed model using the first 20 prin-
cipal components of the PCA derived from population genetic 
structure analysis of the GCAT. Gender and age were also 
included as covariates in the model. The h2

SNPCIs were calculated 
by using FIESTA.26

single-trait genome-wide association analysis
We performed independent GWAs analyses for 205 selected 
traits (61 continuous and 144 binary). A total of 9 499 600 
SNPs with MAF>0.01 were considered for this purpose. 
Linear regression models for continuous traits were assessed 
with PLINK.27 For binary traits, given the unbalanced design of 
most of the traits considered, we used a scoring test with saddle 
point approximation included in the SPAtest R package.28 This 
approach compensates a slight loss of power with the inclusion 
of uncommon and rare conditions, without affecting robustness. 
All the models included the first 20 PCAs, age and gender as 
covariates. A PCA-mixed analysis was applied to approximate 
the number of independent traits29 (online supplementary figure 
S1). Based on these figures, Bonferroni correction for multiple 
traits was defined at p<5×10−10 accounting for 100 indepen-
dent traits explaining 80% of the phenome variability.

Multitrait meta-analysis for correlated traits
We applied a multitrait approach for the analysis of anthropo-
metric traits (weight, height, body mass index (BMI) and waist 
and hip circumference) in a two-stage association study using 
individuals of British ancestry from the UK Biobank cohort 
(N=336 107).30 Waist-to-hip ratio was excluded from this anal-
ysis due to its unavailability from the UK Biobank resource. UK 
Biobank summary-level statistics was calculated using linear 
regression models with the inferred gender and the first 10 
PCAs as covariates, similarly to the model applied on GCAT 
data (see the URLs section). All SNPs with suggestive association 
p<1x10−5 for any trait were retained from the GCAT GWAS 
analysis. Then, only SNPs intersecting with the UK Biobank 
resource were used for multitrait meta-analysis association 
testing in both samples, and p<5x10−9was considered signifi-
cant. The multitrait association testing was based on the distribu-
tion of the sum of squares of the z scores which is insensitive to 
the direction of the scores.31 Briefly, let Z = ( z1 ,  z2 , …,  zk  ) be the 
z scores for a given SNP for k phenotypes. The sum of squares of 
the z scores,  Ssq =

∑k
i=1 z2

i  , can be approximated by the χ2 distri-
bution ( χ

2
 ). Let Σ  be the covariance matrix of the genome-wide 

z scores from the phenotypes under analysis. And let  ci   be the 
eigenvalues of Σ , the distribution of  Ssq   is well approximated by 

 aχ
2
d + b  , where a, b and d depend on  ci  . Then, we calculated the 

p value as: 
 
p
(
χ2

d >
(
Ssq − b

)
/a

)
 
. To estimate the covariance 

matrix of the correlated traits, we selected independent SNPs 
(LD pruning in PLINK “--indep-pairwise 50 5 0.2”) and filtered 
out SNPs with |z scores|>1.96 to avoid possible bias in the esti-
mation of Σ  because of the difference in sample size and associa-
tion p values in the GCAT-UK Biobank. A summary flow chart of 
the methods applied in this study is shown in figure 1.

Polygenic risk score
Genetic architecture was analysed by the polygenic risk score 
(PRS). Polygenic risk score software (PRSice)32 was used to 
predict the genetic variability of the identified loci for a given 
trait. PRSice plots the percentage of variance explained for 
a trait by using SNPs with different p value thresholds (PT) 
(online supplementary figure S2). Here, we considered PT=0.05.

urls
GCAT study, http:// genomesforlife. com;

National Human Genome Research Institute 
GWAS Catalog, http://www. genome. gov/ gwastudies/ 
(gwas_catalog_v1.0-associations_e91_r2018-02-06);

1000 Genomes Project http://www. internationalgenome. org/ 
(phase 3, v5a.20130502);

Genome of Netherland http://www. nlgenome. nl/ (Release 
5.4);

UK10K https://www. uk10k. org/ (Release 2012-06-02, 
updated on 15 Feb 2016) ;

Haplotype Reference Consortium http://www. haplotype- 
reference- consortium. org/(Release 1.1); 

UKBiobank GWAS Results; https:// sites. google. com/ 
broadinstitute. org/ ukbbgwasresults/ home? authuser= 0, 
(Manifest20170915);

GTExportal, https://www. gtexportal. org/ home/. (last data 
accession, Release V.7, dbGaP accession phs000424. v7. P2);

resulTs
heritability estimates
SNP heritability estimation (h2

SNP) in the GCATcore study showed 
values ranging from 77% to 18%, with height being the trait 
showing the strongest SNP contribution. The h2

SNP SE for most 
traits was high (near 10%), with wide CIs, as expected by sample 
size. However, robustness of the analysis is supported by similar 
values to those reported elsewhere (see wide summary in Genome-
wide complex trait analysis, Wikipedia. The Free Encyclopedia, 
2018). Statistically significant h2

SNP estimations for continuous and 
binary traits (cases >500) are shown in table 1. In particular, values 
for height: h2

SNP=0.77, 95% CI0.56 to 0.94 and BMI: h2
SNP=0.38, 

95% CI0.20 to 0.59 were identical to the maxima achieved in other 
European populations, using comparable genomic approaches. 
Besides the anthropometric traits, the Fitzpatrick’s phototype 
score, a numerical classification schema for human skin colour to 
measure the response of different types of skin to ultraviolet light, 
had a high genetic consistency in our sample (h2

SNP=0.63, 95% 
CI 0.4 to 0.8), and concordantly all related categories (eye colour, 
hair colour, freckling and skin sensitivity) showed high heritability 
(h2

SNP>0.3). It is worth noting that skin colour had the lowest 
value (h2

SNP=0.18, 95% CI 0.02 to 0.38), which is in concordance 
with the blurred genetic architecture of skin colour.33 Interest-
ingly, other non-biological traits showed relatively high values in 
our study. Educational level showed the third highest heritability 
value (h2

SNP=0.54, 95% CI 0.35 to 0.74). Lower estimates have 
been observed in other Caucasian populations, but this could 
be explained by the fact that this estimate is for educational 
level as a categorical variable and not as binary (higher/lower). 
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Figure 1 Flow chart of the methods and criteria used in this study. gcat, genomes For life- cohort Study of the genomes of catalonia; gWaS, genome-
wide association studies; MaF, minor allele frequency; Qc, quality control.

Self-perceived health was similar to h2
SNP from recent data from a 

larger UK Biobank study,16 with values around 20% (h2
SNP=0.22, 

95% CI 0.04 to 0.43).

Phenome analysis
GWAS identified 6820 associations in 1785 SNPs with genome-wide 
significance threshold p<5×10−8 and 29 343 associations with a 
suggestive association p<1×10−5. Here, we report 26 genome-
wide association hits identified in our study which confirm results 
previously identified in other European ancestry samples (GWAS 
Catalog database (release V.1.0, e90, 27 September 2017)).4 In 
table 2, we show the SNP associations with the minimum p value 

for each locus, the remaining SNPs are shown in online Supple-
mentary file 5. Five genes associated with pigmentary traits were 
identified in the analysis with highly significant SNP associations: 
SLC45A2 (rs16891982, β=−0.546, SE=0.021, p=2.2×10−130), 
IRF4 (rs12203592, β=1.915, SE=0.118, p=2.8×10−57), HERC2 
(rs1667394, β=−0.608, SE=0.02, p=2.8×10−176), OCA2 
(rs11855019, β=−0.548, SE=0.022, p=2.4×10−121) and MC1R 
(rs1805007, β=3.615, SE=0.326, p=7.7×10−22) (online supple-
mentary figure S3). These genes are involved in the regulation and 
distribution of melanin pigmentation or enzymes involved in mela-
nogenesis itself within the melanocyte cells present in the skin, hair 
and eyes in Caucasian populations.33–35 Pigmentary traits (mainly 
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Table 1 h2
SNP of the analysed traits with h2

SNP>0, SE <0.12, p<0.05 and nb>500

Questionnaire—section description Trait name h2snP se 95% CI P values n nb nA

Anthropometric and blood 
pressure

Height height_c 0.77 0.11 0.56 to 0.94 2×10−12 4717 – 0

Other habits Phototype score phototype_ score 0.63 0.11 0.4 to 0.8 3.7×10−9 4664 – 56

Demographic and 
socioeconomic

Educational level education 0.54 0.10 0.35 to 0.74 1.1×10−8 4698 – 19

Other habits Fitzpatrick phototype score phototype_score categorical 0.52 0.11 0.29 to 0.74 6.0×10−7 4664 – 56

Other habits Eye colour phototype score eye_color_phototype_score 0.48 0.11 0.27 to 0.68 7.1×10−6 4716 – 1

Other habits Freckling (has freckles) freckling_binary 0.47 0.11 0.26 to 0.68 8.1×10−6 4713 590 4

Other habits Hair colour phototype score hair_color_phototype_score 0.46 0.11 0.26 to 0.68 6.7×10−6 4709 – 9

Other habits Eye colour eye_color 0.44 0.11 0.24 to 0.65 3.4×10−5 4716 – 1

Other habits Hair colour hair_color 0.41 0.11 0.21 to 0.63 4.1×10−5 4709 – 9

Other habits Hair colour (black) hair_color_black 0.39 0.11 0.22 to 0.59 0.00018 4709 952 9

Anthropometric and blood 
pressure

BMI (kg/m2) bmi 0.38 0.11 0.2 to 0.59 0.00013 4717 – 0

Anthropometric and blood 
pressure

Weight weight_c 0.37 0.11 0.19 to 0.57 0.00016 4717 – 0

Tobacco consumption Smoking habit smoking_habit 0.36 0.11 0.19 to 0.58 0.00037 4717 – 0

Tobacco consumption Smoking packs per day smoking_packs 0.35 0.11 0.17 to 0.55 0.00082 4717 – 0

Other habits Skin sensitivity to sun skin_sensitivity_to_sun 0.33 0.11 0.15 to 0.52 0.0011 4714 – 3

Anthropometric and blood 
pressure

Hip circumference hip_c 0.31 0.11 0.15 to 0.51 0.0011 4717 – 0

Occupation Working status (active) working_status_active 0.31 0.11 0.13 to 0.54 0.0014 4696 1570 23

Other habits Skin sensitivity to sun phototype 
score

skin_sensitivity_to_sun_ 
phototype_score

0.30 0.11 0.12 to 0.51 0.0022 4714 – 3

Anthropometric and blood 
pressure

BMI obesity bmi_who_obesity 0.29 0.11 0.12 to 0.51 0.0031 4717 1388 0

Physical activity Sleep duration sleep_duration 0.29 0.11 0.1 to 0.49 0.0033 4645 – 79

Other habits Freckling freckling 0.28 0.11 0.11 to 0.5 0.0043 4713 – 4

Medical history Mental health (MHI-5) sadness 0.26 0.11 0.09 to 0.48 0.0053 4717 504 0

Occupation Working last year working_last_year 0.26 0.11 0.09 to 0.47 0.0065 4685 1190 32

Other habits Freckling phototype score freckling_phototype_score 0.26 0.11 0.09 to 0.46 0.0076 4713 – 4

Other habits Eye colour (dark) eye_color_dark 0.25 0.11 0.07 to 0.47 0.012 4716 1192 1

Other habits Hair colour (brown) hair_color_brown 0.24 0.11 0.07 to 0.45 0.012 4709 1229 9

Anthropometric and blood 
pressure

Waist circumference waist_c 0.24 0.11 0.06 to 0.44 0.01 4717 – 0

Anthropometric and blood 
pressure

Waist-to-hip ratio WHO categories whr_who 0.23 0.11 0.05 to 0.45 0.016 4717 – 0

Medical history Self-perceived health self_perceived_health 0.22 0.11 0.04 to 0.43 0.024 4715 – 2

Tobacco consumption Smoking status (ever smoked) smoking_status 0.21 0.11 0.02 to 0.42 0.026 4522 1828 204

Alcohol consumption Current alcohol consumption alcohol_actual 0.20 0.11 0.03 to 0.4 0.031 4713 3670 4

Diet Predimed score predimed_score 0.20 0.11 0.03 to 0.41 0.031 4627 – 95

Women’s health No of female children offspring_female 0.19 0.11 0.02 to 0.4 0.028 4717 – 0

Anthropometric and blood 
pressure

Waist-to-hip ratio obesity whr_who_obesity 0.19 0.11 0.04 to 0.39 0.036 4717 1512 0

Women’s health No of male children offspring_male 0.19 0.11 0.02 to 0.41 0.036 4717 – 0

Medical history Self-perceived health (bad) self_perceived_health_binary 0.18 0.11 0.02 to 0.4 0.047 4715 629 2

Medical history Certain adverse effects not 
classified elsewhere

icd9_code3_995 0.18 0.11 0.01 to 0.37 0.042 4717 775 0

Demographic and 
socioeconomic

Civil status (ever been married) civil_status_ever_married 0.18 0.11 0.01 to 0.38 0.04 4703 523 15

Other habits Skin colour phototype score skin_color_phototype_score 0.18 0.11 0.02 to 0.38 0.047 4714 – 3

BMI, body mass index; h2
SNP, SNP heritability estimation; MHI-5, Mental Health Inventory 5-item questionnaire; nb,sample size of the minor category in binary traits; _c for 

Weight_c, height_c, hip_c and waist_c mean calculated-imputed  variable.

the red hair colour phenotype) are related to the defensive capacity 
of the skin in response to sun exposure (UV-induced skin tanning 
or sun burning), and it has been established as a risk factor for 
sun-induced cancers (both melanoma and non-melanocytic skin 
cancers).36 Other GWAS hits from the phenome-wide analysis vali-
dated previously reported findings in CCDC141-LOC105373766 

(rs79146658, β=2.359, SE=0.374, p=3.4×10−10), SMAR-
CA4-LDLR (rs10412048, β=−0.5, SE=0.079, p=3.2×10−10; 
rs6511720, β=−0.493, SE=0.08, p=9.4×10−10) and LINC01432 
(rs1160312, β=0.193, SE=0.03, p=1.9×10−9) loci, related with 
cardiovascular risk (heart_rate), hyperlipidaemia (icd9_code3_272) 
and male pattern baldness (hair_loss_40), respectively (see table 2).
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Multitrait meta-analysis of anthropometric traits
Anthropometric traits had a high heritability in our sample 
(height=77%, BMI=38%, weight=37%, hip circumfer-
ence=31% and waist circumference=24%), and all were highly 
correlated (online supplementary figure S1). In the first stage, from 
single-trait GWAS, we retained 606 SNPs with suggestive associa-
tion (p<1×10−5) (see figure 2). None of them reached the genome-
wide significance threshold. In the second stage, we analysed those 
476 SNPs that intersected with the UK Biobank cohort dataset. 
Multitrait meta-analysis identified 111 SNPs in 27 independent 
loci with p<5×10−9 (online Supplementary file 7). Table 3 shows 
the SNPs with the highest significance for each independent loci 
and the univariate summary statistics of the anthropometric traits 
in both cohorts.

We estimated the covariance matrix (Σ) for each dataset (GCAT, 
UK Biobank and GCAT +UK Biobank). Then, as described in 
the Materials and methods section, we selected those indepen-
dent SNPs with |z scores|<1.96, resulting in 765 646, 630 890 
and 535 860 being considered for the Σ estimation. Eigenvalues 
of Σ showed d=1.36, 1.4 and 2.72 values. Covariance matrices 
were similar in both GCAT and UK Biobank (online supplemen-
tary tables S4 and S5). One degree of freedom (GCAT and UK 
Biobank) and three (GCAT +UK Biobank) of the 2 distribution 
were considered for multitrait analysis. We identified 27 inde-
pendent multitrait loci associated in GCAT and UK Biobank 
(table 3). We intersected these SNPs with the GWAS Catalog, 
and we found that 5 SNPs had previously been reported in multiple 
GWAS, 16 loci were reported considering a ±250 000 base 
pair window from the identified SNP and 6 were new loci 
involving the following genes/SNPs: MAD1L1 (rs62444886, 
p=2.3×10−15), PIK3R1 (rs12657050, p=2.8×10−13; rs695166, 
p=8.4×10−15), ZRANB2-AS2 (rs11205277, p=1.4×10−9), 
EPHA7 (rs143547391, p=6.5×10−10), CACUL1 (rs12414412, 
p=4×10−13) and MAP3K9 (rs7151024, p=5.7×10−10). 
Regarding DPYD, DPYD-IT1 (rs140281723), GABRG3-AS1 and 
GABRG3 (rs184405367) genes/SNPs, we did not replicate asso-
ciation in UK Biobank samples (UKmulti p=0.035 and 1, respec-
tively). The risk allele, frequency and functional annotation 
using the Variant Effect Predictor tool37 of identified variants are 
shown in online Supplementary file 9.

Polygenic risk score
The skin phototype association analysis identified five loci 
accounting for a high predictive value (PRS of 15.6%) suggesting 
few main genes (oligogenic architecture) contributing to the 
phenotype (online supplementary figure S2). However, for 
anthropometric traits, 27 loci were identified in our cohort but 
with a lower PRS (2.3%) suggesting a polygenic architecture 
with multiple genes and a high environmental impact. The newly 
identified loci only increased PRS slightly over the corresponding 
single-trait analysis (2.2% to 2.5%, 2.3% to 3.3%, 2.2% to 3.5%, 
2.5% to 3.7% and 1.5% to 2.6% for height, weight, BMI and 
hip and waist circumference, respectively) pointing towards the 
multitrait approach as an effective screening strategy to identify 
new biomarkers.

dIsCussIon
Dissecting the architecture of common diseases should incorpo-
rate multitrait approaches to understand the phenome and its 
genetic aetiology, including pleiotropy and the co-occurrence 
of multiple morbidities, correlated traits and the diseasome as 
targets for genomic analysis.38 In this study, we used the GCAT 
study, a South-European Mediterranean population prospective 
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Complex traits

Figure 2 Manhattan plot of the anthropometric traits (BMi, height, weight and hip and waist circumference) from the gcat. BMi, body mass index.

cohort to analyse the phenotypic variation attributable to geno-
type variability for 205 selected human traits (including diseases 
as well as biological, anthropometric and social features). Our 
results show that by considering genetic covariance matrices 
for interrelated traits, we increased the number of detected loci 
from six new loci for anthropometric traits, pointing to multi-
trait analysis as an effective strategy to gain statistical power to 
identify genetic association.

The relative importance of genetic and non-genetic factors 
varies across populations. Moreover, this is not constant in a 
population and changes with age.16 Here, we have reported heri-
tability estimates on an adult population based on SNP data. In 
the present study, h2

SNP values move in a wide range from 18% 
to 77%, being anthropometric traits (height) and skin colour-re-
lated traits (Fitzpatrick’s phototype score) the traits with the 
highest genetic determination. In our cohort, heritability of 
anthropometric traits, such as height and BMI, was likely esti-
mated as a maximum, with negligible missed heritability when 
comparing with other reported estimates in similar populations39 
and in the same way being the observed genetic variance only a 
small part of their complete variance (around 3%). In the case of 
skin colour-related traits, the portion of the explained variance 
was larger, in accordance with a less complex polygenic nature of 
this trait, and fewer genes baring stronger predictive value (IRF4, 
HERC2, OCA2, MC1R and SLC45A2) (PRS=15.6%). The vari-
ants identified in these loci associated with skin colour-related 
traits are functional and have been reported elsewhere in several 
studies. These differences in heritability and prediction values 
indicate a different genomic architecture, suggesting an exposure 
variation, the exposome,3 as a main actor for many polygenic 
traits. Higher estimates in self-perceived health heritability, and 
probably some other reported traits such as ‘smoking_habits’, 

‘smoking_packs’, or ‘sadness’ (item from the Mental-Health 
Inventory 5-item questionnaire), reflect a pleiotropic effect40 
with multiple associated loci. In this sense, a recent meta-anal-
ysis on subjective well-being revealed new loci accounting for a 
polygenic model of well-being status.41

Single-trait GWAS analysis identified a number of genetic 
variants associated with skin colour-related traits (online supple-
mentary figure S3) and other complex traits (heart rate, hyper-
lipidaemia or male pattern baldness); whereas failed to identify 
specific variants associated with any single anthropometric 
trait (at the p<5×10−8 threshold cut-off). However, we should 
observe that gender differences were not considered in this anal-
ysis even though it has been shown that genetic effects have a 
gender bias.42 Applying multitrait analyses of anthropometric 
traits, we identified 27 loci, six of which had not been reported 
previously; CALCUL1, ZRANB2-AS2, MAD1L1, EPHA7, PIK3R1 
and MAP3K9. Owing to LD and the occurrence of all identified 
variants in non-coding regions (see online Supplementary file 9), 
we cannot be certain about the genes involved. Two out of six of 
the identified associated variants, in CALCUL1 and MAP3K9, are 
putative expression quantitative trait loci (eQTL) (see the URLs 
section). Three of the variants (ZRANB2-AS2chr1:71702511, 
EPHA7chr6:94075927 and MAP3K9chr14:71268446) are 
specific of the GCAT sample (p<5×10−9) (online Supplemen-
tary files 10,11, S,12) probably due to genetic background differ-
ences between populations (ie, LD patterns) or as an expression 
of a particular genetic contribution of the Mediterranean popu-
lations to these polygenic traits. Identified variants implicate 
genes with diverse functions, involved in several pathways and 
processes. Some of them are involved in growth, developmental 
or metabolic processes.
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MAP3K9, mitogen-activated protein kinase 9, has been asso-
ciated to some rare cancers (ie, retroperitoneum carcinoma 
and retroperitoneum neuroblastoma), and GWAS studies 
have identified variants associated with reasoning ability.43  
Based on GTEx database (see URL section) we identified 
rs7151024 as an eQTL, expressed in subcutaneous adipose 
tissue (p=1.4×10−8, eQTL effect size (es)=−0.38) that may 
affect fat distribution and anthropometric traits. ZRANB2-AS2 
is a non-coding RNA, and GWAS studies have identified vari-
ants in ZRANB2-AS2 associated with facial morphology,44 
and also with general cognitive function,45 traits which are 
genetically correlated with a wide range of physical variables. 
EPHA7 belongs to the ephrin receptor subfamily of protein-ty-
rosine kinase, implicated in mediating developmental events, 
particularly in the nervous system. EPHA7 has been impli-
cated in neurodevelopment processes46 as well being as a 
tumour suppressor gene in cancer.47CACUL1, CDK2-associ-
ated cullin domain 1, is a cell cycle-dependent kinase binding 
protein capable of promoting cell progression. In the GWAS 
Catalog, any of the anthropometric traits analysed here have 
been associated with variants in CACUL1 (online Supplemen-
tary file 13). However, the associated rs12414412, reported 
as an eQTL expressed in skeletal muscle (p=1.4×10−7, 
eQTL es=−0.31), may affect body constitution. CACUL1 
suppresses androgen receptor (AR) transcriptional activity, 
impairing LSD-mediated activation of the AR,48 whose genetic 
variation is associated with longitudinal height in young 
boys.49MAD1L1, mitotic arrest deficient 1-like protein 1, is 
a component of the mitotic spindle-assembly checkpoint, and 
some cancers (prostate and gastric) have been associated to 
MAD1L1 dysfunction.50 Our study identified BMI, weight and 
hip and waist circumference single-trait association (p<10−5) 
with the intronic variant rs62444886 in the MAD1L1 locus, 
as well as a significant multitrait association in meta-analysis 
(table 3, online Supplementary file 14). GWAS analysis iden-
tified MAD1L1 as a susceptibility gene for bipolar disorder 
and schizophrenia, involved in reward system functions in 
healthy adults,51 but until now, no other study has identified 
it as a genetic contributor to weight. The higher prevalence of 
obesity and related disorders such as diabetes in schizophrenia 
patients could reflect a possible underlying common genetic 
contribution. In this sense, we observed also GWAS signifi-
cant signals in INS-IGF2 (GCAT-UKmulti p=1.5×10−21), an 
analogue of the INS gene (previously associated with diabetes 
type I and type II disorders).52 Additionally, epigenome-wide 
association studies in adults53 and children54 support a role for 
MAD1L1 in BMI–methylation association, with differentially 
methylated CpG patterns in CD4+ and CD8+ T cells between 
obese and non-obese women. PIK3R1, phosphoinositide-3-ki-
nase regulatory subunit 1, plays a role in the metabolic actions 
of insulin, and a mutation in this gene has been associated 
with insulin resistance. Moreover, common variants are asso-
ciated with lower body fat percentage as well as the control 
of peripheral adipose tissue mobilisation.55 Genetic variation 
in the GWAS Catalog is also associated with cartilage thick-
ness56 and mineral bone density,57 both related to anthropo-
metric traits. Diseases associated with PIK3R1 include SHORT 
syndrome,58 characterised by individuals with short stature 
and a restricted intrauterine growth, in addition to multiple 
anomalies. Our study identified the intronic variant (rs695166) 
associated with waist circumference association in single-trait 
analysis (p<10−6), but not in the UKdataset, which associates 
with height (p=2.3×10−14). However, analysis of the UKBio-
bank data supported a similar peak profile overlapping the 
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gene region (see online Supplementary file 12) and multitrait 
analysis association (GCAT-UK multi p=8.4×10−15) (table 3).

Multiple approaches for multitrait analysis using GWAS data 
have been successfully applied in the research of genetically 
complex conditions using raw data or summary-level data statis-
tics. Using raw data, Ferreira and Purcell11 used a test based on 
the Wilk’s lambda derived from a canonical correlation analysis. 
Korte et al13 implemented a mixed-model approach accounting 
for correlation structure and the kinship relatedness matrix. 
O’Reilly et al14 proposed an inverted regression model for each 
SNP as the response and all the traits as covariates. Regarding 
the use of GWAS summary-level data statistics, Cotsapas et al10 
developed a statistic for cross-phenotype analysis based on an 
asymptotic 2 distribution derived from p values of the SNP asso-
ciations. Zhu et al15 implemented CPASSOC that accounts for 
the genetic correlation structure of the traits and the sample size 
for each cohort. Kim et al12 proposed an adaptive association test 
for multiple traits that uses Monte Carlo simulations to approx-
imate its null distribution. Recently, Bayes factor approaches59 
have been proposed for studying multitrait genetic associations. 
Here, for meta-analysis purposes, we chose the multitrait analysis 
described by Yang and Wang.31 This test, based on the 2 distribu-
tion with ‘d’ df, depends on the genetic covariance structure of 
the traits and considers the distribution of the sum square of the 
z scores which is insensitive to the heterogeneous effect of the 
SNP. Nevertheless, this approach doesn’t allow allele effect esti-
mation. In this sense, maximum likelihood methods have been 
recently proposed to deal with this limitation41 by accounting for 
different measures of the same phenotypic trait with different 
levels of heritability.

In complex diseases research, MRPs are the common obser-
vation in genome-wide association analysis of large cohorts, and 
over simplification of extreme phenotypes or the use of stan-
dardised phenotypes for meta-analysis reduces the power to 
detect the underlying genetic contribution to complex traits. As 
an alternative, multitrait analyses help to detect additional loci 
that are missing by applying a conventional meta-analysis. Our 
results highlight the potential value of data-driven multivariate 
phenotyping for genetic studies in large complex cohorts.
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