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ABSTRACT

Background Heritability estimates have revealed an
important contribution of SNP variants for most common
traits; however, SNP analysis by single-trait genome-

wide association studies (GWAS) has failed to uncover
their impact. In this study, we applied a multitrait GWAS
approach to discover additional factor of the missing
heritability of human anthropometric variation.

Methods \We analysed 205 traits, including diseases
identified at baseline in the GCAT cohort (Genomes For
Life- Cohort study of the Genomes of Catalonia) (n=4988),
a Mediterranean adult population-based cohort study
from the south of Europe. We estimated SNP heritability
contribution and single-trait GWAS for all traits from
15million SNP variants. Then, we applied a multitrait-
related approach to study genome-wide association to
anthropometric measures in a two-stage meta-analysis
with the UK Biobank cohort (n=336107).

Results Heritability estimates (eg, skin colour,
alcohol consumption, smoking habit, body mass
index, educational level or height) revealed an
important contribution of SNP variants, ranging from
18% to 77%. Single-trait analysis identified 1785
SNPs with genome-wide significance threshold.

From these, several previously reported single-trait
hits were confirmed in our sample with LINC01432
(p=1.9%107") variants associated with male baldness,
LDLR variants with hyperlipidaemia (ICD-9:272)
(p=9.4x107"%) and variants in /RF4 (p=2.8x10""),
SLC45A2 (p=2.2x10""%, HERC2 (p=2.8x107""°),
OCA2 (p=2.4x10""?"Y and MCIR (p=7.7x107%)
associated with hair, eye and skin colour, freckling,
tanning capacity and sun burning sensitivity and the
Fitzpatrick phototype score, all highly correlated cross-
phenotypes. Multitrait meta-analysis of anthropometric
variation validated 27 loci in a two-stage meta-
analysis with a large British ancestry cohort, six of
which are newly reported here (p value threshold
<5x107%) at ZRANB2-AS2, PIK3R1, EPHA7, MADILT,
CACULT and MAP3K9.

Conclusion Considering multiple-related genetic
phenotypes improve associated genome signal
detection. These results indicate the potential value
of data-driven multivariate phenotyping for genetic
studies in large population-based cohorts to contribute
to knowledge of complex traits.

INTRODUCTION

Common disorders cause 85% of deaths in the
European Union (EU).! The increasing incidence
and prevalence of cancer, cardiovascular diseases,
chronic respiratory diseases, diabetes and mental
illness represent a challenge that leads to extra costs
for the healthcare system. Moreover, as European
population is getting older, this scenario will be
heightened in the next few years. Like complex
traits, many common diseases are complex inher-
ited conditions with genetic and environmental
determinants. Advancing in their understanding
requires the use of multifaceted and long-term
prospective approaches. Cohort analyses provide
an exceptional tool for dissecting the architecture
of complex diseases by contributing knowledge
for evidence-based prevention, as exemplified by
the Framingham Heart Study” or the European
Prospective Investigation into Cancer and Nutrition
cohort study.’

In the last decades, high performance DNA geno-
typing technology has fuelled genomic research
in large cohorts, having been the most promising
line in research on the aetiology of most common
diseases. Genome-wide association studies (GWAS)
have provided valuable information for many single
conditions.* Despite the perception of the limitations
of the GWAS analyses, efforts combining massive
data deriving from whole-genome sequencing at
population scale with novel conceptual and meth-
odological analysis frameworks have been set forth
to explore the last frontier of the missing herita-
bility issue,® driving the field of genomic research
on complex diseases to a new age.’Pritchard and
colleagues recently proposed the breakthrough idea
of the ommnigenic character of genetic architecture
of diseases and complex traits.” They suggested that
beyond a handful of driver genes (ie, core genes)
directly connected to an illness, the missing herita-
bility could be accounted for by multiple genes (ie,
peripheral genes) not clustered in functional path-
ways, but dispersed along the genome, explaining
the pleiotropy frequently seen in most complex
traits. Core genes have been already outlined by the
GWAS approach, but most of the possible contrib-
uting genes have been disregarded based on meth-
odological issues such as p value or lower minor
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Complex traits

allele frequency (MAF). Pathway disturbances have also been a
landmark in the search for genetic associations,® but not always
appear to the root of the mechanism of inheritance of complex
diseases, at least for peripheral genes.” With this challenging
vision, a multitrait genome association analysis of the whole
phenome’ becomes a more appropriate way to detect peripheral
gene variation effects and new network disturbances affecting
core genes. Multitrait analysis approaches are developed for
research of genetically complex conditions using raw or summa-
ry-level data statistics from GWAS in order to explain the largest
possible amount of the covariation between SNPs and traits. >

The contribution of total genetic variation, known as heri-
tability (broad-sense heritability, »%), is estimated now from
genome-wide studies in large cohorts directly from SNP data
(known as h’SNP). However, even if most disease conditions
have a strong genetic basis, it is well known that our capacity to
find genetic effects depends on the overall genetic contribution of
the trait. Overall estimations differed depending on the ancestry,
sample ascertainment, gender and age of the population under
study. Recently, data from the UK Biobank determined genetic
contributions with a phenome-based approach'® and identi-
fied a shared familial environment as a significant important
factor besides genetic heritability values in 12 common diseases
analysed."”

In this study, we present new data on phenotype-wide estima-
tion of the heritability of 205 complex traits (including diseases)
and new insights into the genetics of anthropometric traits
in a Mediterranean Caucasian population using a two-stage
meta-analysis approach with multiple-related phenotypes
(MRPs).

MATERIALS AND METHODS

Population

The methodology of the GCAT study has been previously
described.'® Briefly, the subjects of the present study are part of
the GCAT project, a prospective study that includes a cohort of
a total of 19267 participants recruited from the general popula-
tion of Catalonia, a western Mediterranean region in the North-
east of Spain. Healthy general population volunteers between
40 and 65 years with the sole condition of being users of the
Spanish National Health Service were invited to be part of the
study mostly through the Blood and Tissue Bank, a public agency
of the Catalan Department of Health. All eligible participants
signed an informed consent agreement form and answered a
comprehensive epidemiological questionnaire. Anthropometric
measures and blood samples were also collected at baseline by
trained healthcare personnel. The GCAT study was approved by
the local ethics committee (Germans Trias University Hospital)
in 2013 and started on 2014.

Study participants

This study analyses the GCATcore data, a subset of 5459 partici-
pants (3066 women) with genotype data belonging to the interim
GCATdataset, August 2017 (see the URLs section). GCATcore
participants were randomly selected from whole cohort based on
overall demographic distribution (ie, gender, age, residence). In
this study, in order to increase the robustness of heritability esti-
mates, only Caucasian participants with a Spanish origin (based
on principal component analysis (PCA) analysis, see later in this
section) and with available genetic data were finally included:
4988 GCAT participants (2777 women). All samples passed
genotyping quality control (QC) (see later in this section).

Phenome

Baseline variables were obtained from a self-reported epidemi-
ological questionnaire and included biological traits, medical
diagnoses, drug use, lifestyle habits and sociodemographic
and socioeconomic variables.'"® Description of GCAT variables
dataset is available at GCAT (see the URLs section). To keep
as many as possible of the genotyped samples in the study, we
imputed anthropometric missing values (<1%) from the overall
distribution values using statistical approaches. Missing values
(<1%) for biological and anthropometric measures (height,
weight, waist and hip circumference, systolic and diastolic blood
pressure and heart rate) were imputed by stratifying the whole
GCAT cohort by gender and age and using multiple imputa-
tion by the fully conditional specification method, implemented
in the R mice package."” For GWAS analysis, we retained all
variables with at least five observations (n=205). For herita-
bility estimates, only variables with at least 500 individuals per
class were retained (n=96) for robustness. The description of
the traits and measures included in this study is summarised in
online supplementary table S1.

Genotyping, relatedness and population structure

Genotyping of the 5459 GCAT participants (GCATcore) was
done using the Infinium Expanded Multi-Ethnic Genotyping
Array (MEGA™) (ILLUMINA, San Diego, California, USA). A
customised cluster file was produced from the entire sample
dataset and used for joint calling. We applied PCA to detect any
hidden substructure and the method of moments for the estima-
tion of identity by descent probabilities to exclude cases with
cryptic relatedness. The extensive QC protocol used for cluster
analysis and call filtering is accessible at GCAT (see the URLs
section) and presented as supplementary material (online supple-
mentary file S1). Briefly, GCAT participants were excluded from
the analysis for different reasons, including poor call rate <0.94
(n=61), gender mismatch (n=19), duplicates (n=8), family
relatedness up to second degree (n=88) and excess or loss of
heterozygosity (n=52). Non-Caucasian individuals detected
as outliers in the PCA plot of the European populations from
the 1000 Genomes Project (n=96) and born outside of Spain
(n=147) were also excluded from the study. After QC and
filtering, 4988 GCAT participants and 1 652 023 genetic vari-
ants were included. Genotyping was performed at the PMPPC-
IGTP High Content Genomics and Bioinformatics Unit.

Multipanel imputation

For imputation analysis, 665 592 SNPs were included (40%).
Sexual and mitochondrial chromosomes were discarded as
well as autosomal chromosome variants with MAF <0.01and
AT-CG sites. We followed a two-stage imputation procedure,
which consists of prephasing the genotypes into whole chromo-
some haplotypes followed by imputation itself.”” The prephasing
was performed using SHAPEIT2, and genotype imputation was
performed with IMPUTE2. As reference panels for genotype
imputation, we used the 1000 Genomes Project phase 3,*' the
Genome of the Netherlands,”* UK10K* and the Haplotype
Reference Consortium.** All variants with IMPUTE2 info <0.7
were removed. After imputing the genotypes using each refer-
ence panel separately, we combined the results selecting the vari-
ants with a higher info score when they were present in more
than one reference panel. The SNP dosage from IMPUTE2 was
transformed to binary PLINK format by using the ‘-hard-call-
threshold 0.1 flag from PLINK. The final core set had approx-
imately 15 million variants with MAF>0.001and 9.5 million
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variants with MAF>0.01. Imputation was performed at the
Barcelona Supercomputing Center.

Heritability

Trait SNP heritability (hZSNP) was estimated from SNP/INDEL
array/imputed data with the GREML-LDMS method imple-
mented in the GCTA software.”” Since this method is rela-
tively unbiased regarding MAF and linkage disequilibrium (LD)
parameters, we considered autosomal variants with MAF>0.001
(15 060 719 SNPs) to avoid under/overestimation of heritability
due to the relatively small sample analysed in the core study.
Cryptic relatedness of distant relatives was also considered, and
individuals whose relatedness in the genetic relationship matrix
was >0.025 were discarded (n=4717). Population stratification
was controlled in the linear mixed model using the first 20 prin-
cipal components of the PCA derived from population genetic
structure analysis of the GCAT. Gender and age were also
included as covariates in the model. The hZSNpCIs were calculated
by using FIESTA.*

Single-trait genome-wide association analysis

We performed independent GWAs analyses for 205 selected
traits (61 continuous and 144 binary). A total of 9 499 600
SNPs with MAF>0.01 were considered for this purpose.
Linear regression models for continuous traits were assessed
with PLINK.*” For binary traits, given the unbalanced design of
most of the traits considered, we used a scoring test with saddle
point approximation included in the SPAtest R package.”® This
approach compensates a slight loss of power with the inclusion
of uncommon and rare conditions, without affecting robustness.
All the models included the first 20 PCAs, age and gender as
covariates. A PCA-mixed analysis was applied to approximate
the number of independent traits® (online supplementary figure
S1). Based on these figures, Bonferroni correction for multiple
traits was defined at p<5x10~""accounting for 100 indepen-
dent traits explaining 80% of the phenome variability.

Multitrait meta-analysis for correlated traits

We applied a multitrait approach for the analysis of anthropo-
metric traits (weight, height, body mass index (BMI) and waist
and hip circumference) in a two-stage association study using
individuals of British ancestry from the UK Biobank cohort
(N=336 107).** Waist-to-hip ratio was excluded from this anal-
ysis due to its unavailability from the UK Biobank resource. UK
Biobank summary-level statistics was calculated using linear
regression models with the inferred gender and the first 10
PCAs as covariates, similarly to the model applied on GCAT
data (see the URLs section). All SNPs with suggestive association
p<1x107° for any trait were retained from the GCAT GWAS
analysis. Then, only SNPs intersecting with the UK Biobank
resource were used for multitrait meta-analysis association
testing in both samples, and p<35x10~was considered signifi-
cant. The multitrait association testing was based on the distribu-
tion of the sum of squares of the z scores which is insensitive to
the direction of the scores.’! Briefly, let Z = (21, 2o, ..., 2;) be the
z scores for a given SNP for k phenotypes. The sum of squares of
the z scores, Sy = Ef:l zl?, can be approximated by the y* distri-
bution (x2). Let X be the covariance matrix of the genome-wide
z scores from the phenotypes under analysis. And let ¢; be the
eigenvalues of %, the distribution of Ss; is well approximated by
axt?i + b, where a, b and d depend on ¢;. Then, we calculated the

p value as: p (X?l > (Ssq — b) /a). To estimate the covariance

matrix of the correlated traits, we selected independent SNPs
(LD pruning in PLINK “--indep-pairwise 50 5 0.2”) and filtered
out SNPs with |z scores|>1.96 to avoid possible bias in the esti-
mation of X because of the difference in sample size and associa-
tion p values in the GCAT-UK Biobank. A summary flow chart of
the methods applied in this study is shown in figure 1.

Polygenic risk score

Genetic architecture was analysed by the polygenic risk score
(PRS). Polygenic risk score software (PRSice)*? was used to
predict the genetic variability of the identified loci for a given
trait. PRSice plots the percentage of variance explained for
a trait by using SNPs with different p value thresholds (P,)
(online supplementary figure S2). Here, we considered P_.=0.05.

URLs
GCAT study, http://genomesforlife.com;

National Human Genome Research Institute
GWAS Catalog, http://www.genome.gov/gwastudies/

(gwas_catalog_v1.0-associations_e91 r2018-02-06);

1000 Genomes Project http://www.internationalgenome.org/
(phase 3, v5a.20130502);

Genome of Netherland http://www.nlgenome.nl/ (Release
5.4);

UK10K  https://www.uk10k.org/
updated on 15 Feb 2016) ;

Haplotype Reference Consortium http://www.haplotype-
reference-consortium.org/(Release 1.1);

UKBiobank ~ GWAS  Results;  https://sites.google.com/
broadinstitute.org/ukbbgwasresults/home?authuser=0,
(Manifest20170915);

GTExportal, https://www.gtexportal.org/home/. (last data
accession, Release V.7, dbGaP accession phs000424. v7. P2);

(Release  2012-06-02,

RESULTS

Heritability estimates

SNP heritability estimation (h,) in the GCATcore study showed
values ranging from 77% to 18%, with height being the trait
showing the strongest SNP contribution. The hZSNP SE for most
traits was high (near 10%), with wide ClIs, as expected by sample
size. However, robustness of the analysis is supported by similar
values to those reported elsewhere (see wide summary in Genome-
wide complex trait analysis, Wikipedia. The Free Encyclopedia,
2018). Statistically significant hZSNP estimations for continuous and
binary traits (cases >500) are shown in table 1. In particular, values
for height: h%,=0.77, 95% CI0.56 to 0.94 and BMI: h’,=0.38,
95% CI0.20 to 0.59 were identical to the maxima achieved in other
European populations, using comparable genomic approaches.
Besides the anthropometric traits, the Fitzpatrick’s phototype
score, a numerical classification schema for human skin colour to
measure the response of different types of skin to ultraviolet light,
had a high genetic consistency in our sample (hZSNP=0.63, 95%
CI 0.4 to 0.8), and concordantly all related categories (eye colour,
hair colour, freckling and skin sensitivity) showed high heritability
(hZSNP>0.3). It is worth noting that skin colour had the lowest
value (hZSNP=0.18, 95% CI 0.02 to 0.38), which is in concordance
with the blurred genetic architecture of skin colour.®® Interest-
ingly, other non-biological traits showed relatively high values in
our study. Educational level showed the third highest heritability
value (hZSNP=O.54, 95% CI 0.35 to 0.74). Lower estimates have
been observed in other Caucasian populations, but this could
be explained by the fact that this estimate is for educational
level as a categorical variable and not as binary (higher/lower).
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Figure 1
wide association studies; MAF, minor allele frequency; QC, quality control.
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A

Flow chart of the methods and criteria used in this study. GCAT, Genomes For Life- Cohort Study of the Genomes of Catalonia; GWAS, genome-

for each locus, the remaining SNPs are shown in online Supple-

larger UK Biobank study,'® with values around 20% (hZSNP=0.22,
95% CI 0.04 to 0.43).

Phenome analysis

GWAS identified 6820 associations in 1785 SNPs with genome-wide
significance threshold p<5x10~%and 29343 associations with a
suggestive association p<1x107°. Here, we report 26 genome-
wide association hits identified in our study which confirm results
previously identified in other European ancestry samples (GWAS
Catalog database (release V.1.0, €90, 27 September 2017)).* In
table 2, we show the SNP associations with the minimum p value

mentary file 5. Five genes associated with pigmentary traits were
identified in the analysis with highly significant SNP associations:
SLC45A2 (rs16891982, B=—0.546, SE=0.021, p=2.2x1071%),
IRF4 (rs12203592, B=1.915, SE=0.118, p=2.8x10~°"), HERC2
(rs1667394, B=-0.608, SE=0.02, p=2.8x10""%), OCA2
(rs11855019, B=—0.548, SE=0.022, p=2.4x10""*") and MC1R
(rs1805007, P=3.615, SE=0.326, p=7.7x107??) (online supple-
mentary figure S3). These genes are involved in the regulation and
distribution of melanin pigmentation or enzymes involved in mela-
nogenesis itself within the melanocyte cells present in the skin, hair
and eyes in Caucasian populations.*** Pigmentary traits (mainly
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2 R
Table 1 h~, of the analysed traits with h >0 SE <0.12, p<0.05and n,>500

Questionnaire—section Description Trait name h2SNP SE 95%Cl Pvalues n n, NA
Anthropometric and blood Height height_c 077 011 056t0094 2x107"2 4717 - 0
pressure

Other habits Phototype score phototype_ score 0.63 0.11 0.41t00.8 3.7x10° 4664 - 56
Demographic and Educational level education 054 010 035t00.74 1.1x107% 4698 - 19
socioeconomic

Other habits Fitzpatrick phototype score phototype_score categorical 0.52 0.11 0.29t00.74 6.0x107 4664 - 56
Other habits Eye colour phototype score eye_color_phototype_score 048 0.1 02710068  7.1x10° 4716 - 1
Other habits Freckling (has freckles) freckling_binary 0.47 0.11 0.26 to 0.68 8.1x10° 4713 590 4
Other habits Hair colour phototype score hair_color_phototype_score 0.46 0.11 0.26 to 0.68 6.7x10° 4709 - 9
Other habits Eye colour eye_color 044 011 0.24 t0 0.65 34x10° 4716 — 1
Other habits Hair colour hair_color 0.41 0.11 0.21t0 0.63 41x107° 4709 - 9
Other habits Hair colour (black) hair_color_black 0.39 0.11 0.22 t0 0.59 0.00018 4709 952 9
Anthropometric and blood BMI (kg/m?) bmi 0.38 0.11 0.2 to 0.59 0.00013 an7 - - 0
pressure

Anthropometric and blood Weight weight_c 0.37 0.11 0.19t0 0.57 0.00016 ani7 - 0
pressure

Tobacco consumption Smoking habit smoking_habit 0.36 0.11 0.19t0 0.58 0.00037 an7 - - 0
Tobacco consumption Smoking packs per day smoking_packs 0.35 0.11 0.17t0 0.55 0.00082 ani7 - 0
Other habits Skin sensitivity to sun skin_sensitivity_to_sun 0.33 0.11 0.15t0 0.52 0.0011 4714 - 3
Anthropometric and blood Hip circumference hip_c 0.31 0.1 0.15t0 0.51 0.0011 an7 - - 0
pressure

Occupation Working status (active) working_status_active 0.31 0.1 0.13 10 0.54 0.0014 4696 1570 23
Other habits Skin sensitivity to sun phototype  skin_sensitivity_to_sun_ 0.30 0.11 0.12t0 0.51 0.0022 s - 3

score phototype_score

Anthropometric and blood BMI obesity bmi_who_obesity 029 0.1 0.12 t0 0.51 0.0031 4717 1388 0
pressure

Physical activity Sleep duration sleep_duration 0.29 0.1 0.11t00.49 0.0033 4645 - 79
Other habits Freckling freckling 028  0.11 0.11t0 0.5 0.0043 47113 - 4
Medical history Mental health (MHI-5) sadness 0.26 0.1 0.09 to 0.48 0.0053 4717 504 0
Occupation Working last year working_last_year 0.26 0.11 0.09to 0.47 0.0065 4685 1190 32
Other habits Freckling phototype score freckling_phototype_score 0.26 0.11 0.09t00.46  0.0076 4713 - 4
Other habits Eye colour (dark) eye_color_dark 0.25 0.1 0.07 t0 0.47 0.012 4716 1192 1
Other habits Hair colour (brown) hair_color_brown 0.24 0.1 0.07 to 0.45 0.012 4709 1229 9
Anthropometric and blood Waist circumference waist_c 0.24 0.11 0.06 to 0.44 0.01 4717 - 0
pressure

Anthropometric and blood Waist-to-hip ratio WHO categories whr_who 0.23 0.1 0.05 to 0.45 0.016 ani - 0
pressure

Medical history Self-perceived health self_perceived_health 0.22 0.11 0.04 t0 0.43 0.024 47115 - 2
Tobacco consumption Smoking status (ever smoked) smoking_status 0.21 0.11 0.02 t0 0.42 0.026 4522 1828 204
Alcohol consumption Current alcohol consumption alcohol_actual 020 0.1 0.03t0 0.4 0.031 4713 3670 4
Diet Predimed score predimed_score 0.20 0.11 0.03 to 0.41 0.031 4627 - 95
Women'’s health No of female children offspring_female 0.19  0.11 0.02 t0 0.4 0.028 ani7 - 0
Anthropometric and blood Waist-to-hip ratio obesity whr_who_obesity 0.19 0.11 0.04t0 0.39 0.036 4717 1512 0
pressure

Women's health No of male children offspring_male 0.19 0.1 0.02 to 0.41 0.036 4717 - 0
Medical history Self-perceived health (bad) self_perceived_health_binary ~ 0.18 0.11 0.02t0 0.4 0.047 4715 629 2
Medical history Certain adverse effects not icd9_code3_995 0.18 0.11 0.01 to 0.37 0.042 4717 775 0

classified elsewhere

Demographic and Civil status (ever been married) civil_status_ever_married 0.18 0.11 0.01t00.38 0.04 4703 523 15
socioeconomic

Other habits Skin colour phototype score skin_color_phototype_score 0.18 0.11 0.02 to 0.38 0.047 an4a - 3

BMI, body mass index; h’,,
Weight_c, height_c, hip_c and waist_c mean calculated-imputed variable.

the red hair colour phenotype) are related to the defensive capacity
of the skin in response to sun exposure (UV-induced skin tanning
or sun burning), and it has been established as a risk factor for
sun-induced cancers (both melanoma and non-melanocytic skin
cancers).”® Other GWAS hits from the phenome-wide analysis vali-
dated previously reported findings in CCDC141-LOC105373766

SNP heritability estimation; MHI-5, Mental Health Inventory 5-item questionnaire; n,,sample size of the minor category in binary traits; _c for

(rs79146658, P=2.359, SE=0.374, p=3.4x10"""), SMAR-
CA4-LDLR (rs10412048, B=—0.5, SE=0.079, p=3.2x107"%;
rs6511720,3=-0.493,SE=0.08, p=9.4x 107 "% and LINC01432
(rs1160312, B=0.193, SE=0.03, p=1.9x107°) loci, related with
cardiovascular risk (heart_rate), hyperlipidaemia (icd9_code3 272)
and male pattern baldness (hair_loss_40), respectively (see table 2).
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Complex traits

Table 2 Continued

Published

Studies year

P values

SE

GCAT trait

GWAS Catalog traitst

Info

Imputed

Yes

Chr:position*

SNP

Gene

3.2x107"°

0.079
0.081

—0.501
—0.493

icd9_code3_272

icd9_code3_272

2017

1
12

Cholesterol, total

0.999

19:11193949
19:11202306

SMARCA4, LDLR

LDLR

9.4x10710%*

No

1s6511720

2008, 2009,

LDL cholesterol, carotid intima media thickness, cardiovascular
disease risk factors, lipoprotein-associated phospholipase A2

activity and mass, cholesterol, total, metabolite levels, lipid

2010, 2011,

2012,2013

metabolism phenotypes, Abdominal aortic aneurysm

Male-pattern baldness

6.2x1072%*

0.032

0.19

hair_loss_40

2016

1

No

20:22000281

RPL41P1-

LINC01432

1.9x1079%*

0.032

0.193

hair_loss_40

2008

1

Male-pattern baldness

No

20:22050503

151160312

LINC01432

*Chr:position based on hg19.

tGWAS Catalog traits based on GWAS Catalog database (release V.1.0, €90, 27 September 2017).

5x107 threshold for univariate GWAS and 5x107' threshold accounting for multiple phenotypes.

GWAS, genome-wide association studies; LDL, low-density lipoprotein.

puted variable.

c for heart-rate_c, means calculated-im|

Multitrait meta-analysis of anthropometric traits
Anthropometric traits had a high heritability in our sample
(height=77%, BMI=38%, weight=37%, hip circumfer-
ence=31%and waist circumference=24%), and all were highly
correlated (online supplementary figure S1). In the first stage, from
single-trait GWAS, we retained 606 SNPs with suggestive associa-
tion (p<1x107°) (see figure 2). None of them reached the genome-
wide significance threshold. In the second stage, we analysed those
476 SNPs that intersected with the UK Biobank cohort dataset.
Multitrait meta-analysis identified 111 SNPs in 27 independent
loci with p<§x10~ (online Supplementary file 7). Table 3 shows
the SNPs with the highest significance for each independent loci
and the univariate summary statistics of the anthropometric traits
in both cohorts.

We estimated the covariance matrix (Z) for each dataset (GCAT,
UK Biobank and GCAT +UK Biobank). Then, as described in
the Materials and methods section, we selected those indepen-
dent SNPs with |z scores| <1.96, resulting in 765 646, 630890
and 535 860 being considered for the X estimation. Eigenvalues
of X showed d=1.36, 1.4 and 2.72 values. Covariance matrices
were similar in both GCAT and UK Biobank (online supplemen-
tary tables S4 and S5). One degree of freedom (GCAT and UK
Biobank) and three (GCAT +UK Biobank) of the ? distribution
were considered for multitrait analysis. We identified 27 inde-
pendent multitrait loci associated in GCAT and UK Biobank
(table 3). We intersected these SNPs with the GWAS Catalog,
and we found that § SNPs had previously been reported in multiple
GWAS, 16 loci were reported considering a *250000base
pair window from the identified SNP and 6 were new loci
involving the following genes/SNPs: MAD1L1 (rs62444886,
p=2.3x10"Y), PIK3R1 (rs12657050, p=2.8x107"3; rs695166,
p=8.4x10"Y), ZRANB2-AS2 (rs11205277, p=1.4x1077),
EPHA7 (rs143547391, p=6.5x10""%), CACUL1 (rs12414412,
p=4x10"") and MAP3K9 (rs7151024, p=5.7x107"9,
Regarding DPYD, DPYD-IT1 (rs140281723), GABRG3-AS1 and
GABRG3 (rs184405367) genes/SNPs, we did not replicate asso-
ciation in UK Biobank samples (UKmulti p=0.035 and 1, respec-
tively). The risk allele, frequency and functional annotation
using the Variant Effect Predictor tool*” of identified variants are
shown in online Supplementary file 9.

Polygenic risk score

The skin phototype association analysis identified five loci
accounting for a high predictive value (PRS of 15.6%) suggesting
few main genes (oligogenic architecture) contributing to the
phenotype (online supplementary figure S2). However, for
anthropometric traits, 27 loci were identified in our cohort but
with a lower PRS (2.3%) suggesting a polygenic architecture
with multiple genes and a high environmental impact. The newly
identified loci only increased PRS slightly over the corresponding
single-trait analysis (2.2% to 2.5%, 2.3% to 3.3%, 2.29% to 3.5%,
2.5% to 3.7% and 1.5% to 2.6% for height, weight, BMI and
hip and waist circumference, respectively) pointing towards the
multitrait approach as an effective screening strategy to identify
new biomarkers.

DISCUSSION

Dissecting the architecture of common diseases should incorpo-
rate multitrait approaches to understand the phenome and its
genetic aetiology, including pleiotropy and the co-occurrence
of multiple morbidities, correlated traits and the diseasome as
targets for genomic analysis.’® In this study, we used the GCAT
study, a South-European Mediterranean population prospective

Galvan-Femenia |, et al. J Med Genet 2018;55:765-778. doi:10.1136/jmedgenet-2018-105437 m
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Figure 2 Manhattan plot of the anthropometric traits (BMI, height, weight and hip and waist circumference) from the GCAT. BMI, body mass index.

cohort to analyse the phenotypic variation attributable to geno-
type variability for 205 selected human traits (including diseases
as well as biological, anthropometric and social features). Our
results show that by considering genetic covariance matrices
for interrelated traits, we increased the number of detected loci
from six new loci for anthropometric traits, pointing to multi-
trait analysis as an effective strategy to gain statistical power to
identify genetic association.

The relative importance of genetic and non-genetic factors
varies across populations. Moreover, this is not constant in a
population and changes with age.'® Here, we have reported heri-
tability estimates on an adult population based on SNP data. In
the present study, hZSNP values move in a wide range from 18%
to 77%, being anthropometric traits (height) and skin colour-re-
lated traits (Fitzpatrick’s phototype score) the traits with the
highest genetic determination. In our cohort, heritability of
anthropometric traits, such as height and BMI, was likely esti-
mated as a maximum, with negligible missed heritability when
comparing with other reported estimates in similar populations®”
and in the same way being the observed genetic variance only a
small part of their complete variance (around 3%). In the case of
skin colour-related traits, the portion of the explained variance
was larger, in accordance with a less complex polygenic nature of
this trait, and fewer genes baring stronger predictive value (IRF4,
HERC2, OCA2, MC1R and SLC45A2) (PRS=15.6%). The vari-
ants identified in these loci associated with skin colour-related
traits are functional and have been reported elsewhere in several
studies. These differences in heritability and prediction values
indicate a different genomic architecture, suggesting an exposure
variation, the exposome,’ as a main actor for many polygenic
traits. Higher estimates in self-perceived health heritability, and
probably some other reported traits such as ‘smoking_habits’,

‘smoking_packs’, or ‘sadness’ (item from the Mental-Health
Inventory 5-item questionnaire), reflect a pleiotropic effect
with multiple associated loci. In this sense, a recent meta-anal-
ysis on subjective well-being revealed new loci accounting for a
polygenic model of well-being status.*!

Single-trait GWAS analysis identified a number of genetic
variants associated with skin colour-related traits (online supple-
mentary figure S3) and other complex traits (heart rate, hyper-
lipidaemia or male pattern baldness); whereas failed to identify
specific variants associated with any single anthropometric
trait (at the p<5x10~*threshold cut-off). However, we should
observe that gender differences were not considered in this anal-
ysis even though it has been shown that genetic effects have a
gender bias.** Applying multitrait analyses of anthropometric
traits, we identified 27 loci, six of which had not been reported
previously; CALCUL1,ZRANB2-AS2, MAD1L1,EPHA7, PIK3R1
and MAP3K9. Owing to LD and the occurrence of all identified
variants in non-coding regions (see online Supplementary file 9),
we cannot be certain about the genes involved. Two out of six of
the identified associated variants, in CALCUL1 and MAP3K9, are
putative expression quantitative trait loci (eQTL) (see the URLs
section). Three of the variants (ZRANB2-AS2chr1:71702511,
EPHA7chr6:94075927 and MAP3K9chr14:71268446) are
specific of the GCAT sample (p<5x107%) (online Supplemen-
tary files 10,11, S,12) probably due to genetic background differ-
ences between populations (ie, LD patterns) or as an expression
of a particular genetic contribution of the Mediterranean popu-
lations to these polygenic traits. Identified variants implicate
genes with diverse functions, involved in several pathways and
processes. Some of them are involved in growth, developmental
or metabolic processes.
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Complex traits

- MAP3K9, mitogen-activated protein kinase 9, has been asso-

:_g; S g ciated to some rare cancers (ie, retroperitoneum carcinoma

) 2 g é and retroperitoneum neuroblastoma), and GWAS studies

S sl e & have identified variants associated with reasoning ability.*’

s s = i} Based on GTEx database (see URL section) we identified

£ é % BB % ; S rs7151024 as an eQTL, expressed in subcutaneous adipose

2 a2 8 23c3 tissue (p=1.4x107%, eQTL effect size (es)=—0.38) that may

- affect fat distribution and anthropometric traits. ZRANB2-AS2

% 2 é g is a non-coding RNA, and GWAS studies have identified vari-

Pl ants in ZRANB2-AS2 associated with facial morphology,**

5 5 3 and also with general cognitive function,* traits which are

g |u 3 S = genetically correlated with a wide range of physical variables.

[ EPHA7 belongs to the ephrin receptor subfamily of protein-ty-

s a g P rosine kinase, implicated in mediating developmental events,

el particularly in the nervous system. EPHA7 has been impli-

£ = cated in neurodevelopment processes*® as well being as a

= 2§ 8 88 tumour suppressor gene in cancer.”’ CACUL1, CDK2-associ-

H N N ated cullin domain 1, is a cell cycle-dependent kinase binding

;f,_' w3 § g % protein capable of promoting cell progression. In the GWAS

£ Catalog, any of the anthropometric traits analysed here have

'g = o been associated with variants in CACUL1 (online Supplemen-

gla|B8 23 tary file 13). However, the associated rs12414412, reported

as an eQTL expressed in skeletal muscle (p=1.4x107",

F1 % 5 8 eQTL es=-0.31), may affect body constit'utivon. CACULI

zlgs g8 suppresses androgen receptor (AR) transcriptional activity,

impairing LSD-mediated activation of the AR,* whose genetic

o= g 5 8 variation is associated with longitudinal height in young

3 7 = boys.*’ MAD1L1, mitotic arrest deficient 1-like protein 1, is

e . ~ a component of the mitotic spindle-assembly checkpoint, and

.58 _ 8 some cancers (prostate and gastric) have been associated to

. MAD1L1 dysfunction.*® Our study identified BMI, weight and

2% ik . B hip and waist circumference single-trait association (p<107°)

. EE with the intronic variant rs62444886 in the MAD1L1 locus,

- - as well as a significant multitrait association in meta-analysis

|28 =8 (table 3, online Supplementary file 14). GWAS analysis iden-

g tified MADIL1 as a susceptibility gene for bipolar disorder

:‘% a3 B8 and schizophrenia, involved in reward system functions in

Z[als s TS healthy adults,’® but until now, no other study has identified

g R it as a genetic contributor to weight. The higher prevalence of

Sle g 28 obesity and related disorders such as diabetes in schizophrenia

e " patients could reflect a possible underlying common genetic

contribution. In this sense, we observed also GWAS signifi-

cant signals in INS-IGF2 (GCAT-UKmulti p=1.5x1072"), an

e F w3 analogue of the INS gene (previously associated with diabetes

#|85 5 type I and type II disorders).’* Additionally, epigenome-wide

2 association studies in adults’® and children’® support a role for

_g < MADI1L1 in BMI-methylation association, with differentially

£l L= - <3 methylated CpG patterns in CD4+ and CD8+ T cells between

z gl e §. g | ;% obese and non-obese women. PIK3R1, phosphoinositide-3-ki-

. « |2 % nase regulatory subunit 1, plays a role in the metabolic actions

.2 2|& &S of insulin, and a mutation in this gene has been associated

c g %’ 5 % H g2 with insulin resistance. Moreover, common variants are asso-

'§ § < § § < § S ciated with lower body fat percentage as well as the control

£ of peripheral adipose tissue mobilisation.”> Genetic variation

3 5 : 3 in the GWAS Catalog is also associated with cartilage thick-

s |8 g j: € ness’® and mineral bone density,’” both related to anthropo-

1 : g g metric traits. Diseases associated with PIK3R1 include SHORT

E E 8 § E : syndrome,’® characterised by individuals with short stature

S g8 z 2 > and a restricted intrauterine growth, in addition to multiple

§ Ak R 3 anomalies. Our study identified the intronic variant (rs695166)

g . g associated with waist circumference association in single-trait

3 g % 2 £ analysis (p<107°), but not in the UKdataset, which associates

s slg E $Egzs with height (p=2.3x10"). However, analysis of the UKBio-
- S| S SPR52 P . .

bank data supported a similar peak profile overlapping the
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Complex traits

gene region (see online Supplementary file 12) and multitrait
analysis association (GCAT-UK multi p=8.4x107") (table 3).

Multiple approaches for multitrait analysis using GWAS data
have been successfully applied in the research of genetically
complex conditions using raw data or summary-level data statis-
tics. Using raw data, Ferreira and Purcell'' used a test based on
the Wilk’s lambda derived from a canonical correlation analysis.
Korte et al** implemented a mixed-model approach accounting
for correlation structure and the kinship relatedness matrix.
O’Reilly et al™* proposed an inverted regression model for each
SNP as the response and all the traits as covariates. Regarding
the use of GWAS summary-level data statistics, Cotsapas et al'
developed a statistic for cross-phenotype analysis based on an
asymptotic * distribution derived from p values of the SNP asso-
ciations. Zhu et al'® implemented CPASSOC that accounts for
the genetic correlation structure of the traits and the sample size
for each cohort. Kim et al'? proposed an adaptive association test
for multiple traits that uses Monte Carlo simulations to approx-
imate its null distribution. Recently, Bayes factor approaches®”
have been proposed for studying multitrait genetic associations.
Here, for meta-analysis purposes, we chose the multitrait analysis
described by Yang and Wang.*! This test, based on the * distribu-
tion with ‘d’ df, depends on the genetic covariance structure of
the traits and considers the distribution of the sum square of the
z scores which is insensitive to the heterogeneous effect of the
SNP. Nevertheless, this approach doesn’t allow allele effect esti-
mation. In this sense, maximum likelihood methods have been
recently proposed to deal with this limitation*' by accounting for
different measures of the same phenotypic trait with different
levels of heritability.

In complex diseases research, MRPs are the common obser-
vation in genome-wide association analysis of large cohorts, and
over simplification of extreme phenotypes or the use of stan-
dardised phenotypes for meta-analysis reduces the power to
detect the underlying genetic contribution to complex traits. As
an alternative, multitrait analyses help to detect additional loci
that are missing by applying a conventional meta-analysis. Our
results highlight the potential value of data-driven multivariate
phenotyping for genetic studies in large complex cohorts.
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