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ABSTRACT 

We present a quantum-chemical study of the impact of the environment on triplet exciton migration in 

polyA–polyT DNA sequences. Electronic couplings are estimated by combining the fragment excitation 

difference scheme with the polarizable continuum model. Conformational fluctuations are taken into 

account by considering 500 structures extracted from a classical molecular dynamics trajectory. In 

contrast to singlet transfer, we find that the environment effect is not strongly correlated with the 

coupling magnitude in vacuum, and can significantly enhance or reduce its value in individual 

conformations. Conformational averaging, however, leads to a net cancellation of medium effects on the 

overall transfer rate. 
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Highlights: > Environment effects on triplet-triplet energy transfer in DNA are studied theoretically. > 
Electronic couplings are significantly enhanced or reduced in individual conformations. > 
Conformational averaging leads to an overall cancellation of polarization effects. > Rate of triplet 
exciton transfer is expected to be rather insensitive to medium effects. 

 

1. Introduction 

Environment effects play a central role in electronic energy transfer, a ubiquitous non-radiative 

process where the excitation energy is transferred from a sensitized donor molecule to a proximate 

acceptor.[1] This is because of two main reasons: 1) environment may determine the arrangement of 

donor and acceptor, as found e.g. in photosynthetic light-harvesting pigment-protein complexes,[2] 2) 

the short- and long-range interactions of the medium with the corresponding electronic transitions 

modulate the resonance conditions for the energy transfer.[3] In addition, the environment induces 

strong screening effects in the electronic couplings that promote singlet-singlet energy transfer. 

Recently, significant advances in quantum-chemical methods coupled to continuum or discrete 

descriptions of the environment have allowed a critical assessment of Förster screening factor (1/n2, 

where n is the refractive index of the medium), widely used to describe screening effects. This has 

unveiled, for example, significant deviations from Förster approximation at close donor–acceptor 

separations (below 20 Å),[4] and due to the dielectric heterogeneous nature of a protein environment.[5] 

Recently, we estimated the absolute rate and delocalization of triplet excitons in DNA.[6] These 

characteristics remain largely unknown, despite the fact that triplet energy transfer (TET) can initiate 

phototoxic reactions,[7,8] such as the dimerization of thymine.[9,10] We found that triplet excitons are 

localized on single bases and can migrate along DNA on the nanosecond timescale.[6] However, we did 
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not consider the role of the environment on the TET process. Because TET couplings are not mediated 

by Coulomb interactions, but depend on orbital overlap, the environment does not induce screening 

effects as in singlet exciton transfer (SET), but can otherwise modulate the donor–acceptor interaction 

through a superexchange mechanism. The superexchange effects have been explored for TET in linked 

bichromophoric systems.[11] However, because in DNA there are no intervening molecules between the 

stacked base pairs, these interactions are expected to be small. The screening and superexchange effects 

refer to the explicit participation of the surrounding medium in the donor-acceptor interaction. The 

environment can also indirectly modulate the interaction by changing the properties of donor and 

acceptor with respect to vacuum. Typically, in SET solvation induces a significant increase in transition 

dipole moments and consequently in electronic couplings, which can be easily rationalized within the 

point-dipole approximation adopted in Förster theory[12] The question of how the polar environment 

affects the TET coupling is, however, less straightforward, because there is no general rule to predict 

how overlap of the donor and acceptor diabatic states is modulated by the surrounding medium. 

Here, we use the polarizable continuum model (PCM)[13] to explore the role of solvation on the TET 

couplings between stacked adenine–adenine (A–A) and thymine–thymine (T–T) bases in polyA-polyT 

DNA sequences. We use the CIS (configuration interaction of single excitations) method along with the 

6-31G(d) basis set to estimate electronic couplings between the lowest π→π* triplet states of A–A and 

T–T using the fragment excitation difference (FDE) scheme.[14] This approach was shown to provide 

electronic coupling values within ~20% agreement with EOM-CCSD (equation-of-motion coupled 

cluster with single and double substitutions) estimations.[6] In addition, it avoids problems related to the 

artificial stabilization of charge-transfer states in dimeric systems typically found in TD-DFT (time-

dependent density functional theory).[15] 

We computed the TET parameters for 500 nonsymmetrical conformations of A–A and T–T 

stacks sampled from a 15 ns classical molecular dynamics (MD) trajectory of the duplex 5ʹ′-

GG(AAAA)3G-3ʹ′). Our results show that the polar environment can indeed significantly modify the 

shape of the donor/acceptor excited state wave functions, leading to important differences between 
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electronic couplings obtained for individual conformations in vacuum and in solvent. The averaging 

over a large number of DNA structures suggests, however, that the effective TET coupling remains 

rather unchanged. This is because the environment can increase or decrease the electronic interaction 

between the triplet excitons, leading in average only to very small effects. The changes induced by 

solvation are found to be relatively small as compared with the largest coupling values.  

 

2. Computational methods 

Electronic couplings for triplet-triplet transfer reactions in A–A and T–T stacks were computed in 

vacuum and in the presence of the dielectric environment using the fragment excitation difference 

(FED) method developed by Hsu et al,[14] which extends the fragment charge difference scheme[16] to 

couplings between excited states. The FED method provides results in excellent agreement with directly 

computed interaction matrix elements[17] and allows to accurately account for short-range contributions 

mediated by orbital overlap promoting TET. All calculations were performed at the configuration 

interaction with single substitutions (CIS) level of theory, using the 6-31G(d) basis set, which was found 

to agree well with correlated EOM-CCSD/6-311++G(d,p) calculations.[6] Environment effects were 

accounted for in CIS calculations using the Polarizable Continuum Model (PCM).[13] PCM cavities 

were constructed from atomic radii obtained applying the United Atom Topological Model to the radii 

of the UFF force field, and using the SES (solvent excluding surface) algorithm to define the 

chromophore-environment boundary, as implemented in Gaussian09. The DNA polar environment 

surrounding A–A and T–T base pairs was modeled with the static and the optical dielectric constants 

ε=10 and εopt=2, respectively. In order to check the sensitivity of the results to the static dielectric 

constant, we also computed electronic couplings for symmetric A–A and T–T stacks[6] using ε = 5, 20 

and 80. The computed δ values (δ=Vsol-Vvac) do not deviate from the reference data obtained with ε=10 

by more than 20%.  



 5 

Using this methodology we have computed TET couplings for 500 A-A and T-T π-stacks sampled 

along an MD trajectory to account for a high sensitivity of TET properties to structural fluctuations. In 

particular, we extracted the structures from the 15 ns benchmark trajectory for the double-stranded DNA 

sequence 5’-GG(AAAA)3G-3’ obtained within the ABC project[18] (see ref. [6] for additional details). 

In order to avoid potential artifacts from end effects, we estimated the TET parameters for the mid-stack 

bases. All ab initio calculations were performed with Gaussian09.[19] To derive the coupling the 

Gaussian outputs were processed by using the program FCM.[20] Note that absolute values of the TET 

coupling are considered throughout this study. Although the sign of TET couplings can in principle be 

determined by analyzing the shape of wave functions as described in detail for ET matrix element,[21] 

we have not succeeded in elaborating a robust numerical procedure to determine the sign of TET matrix 

elements, because of the complex structure of excited state wave functions.  

 

3. Results and discussion 

Figure 1 shows the time evolution of the ratio Vsol/Vvac between electronic couplings computed in 

vacuum and in the polar environment. As seen, the medium significantly affects the electronic 

interaction between the bases. In ~17% of the conformations, there is a two-fold increase or decrease in 

the coupling, and for ~ 6 % of them, the electronic matrix element changes by a factor of 4. Figure 2 

represents the Vsol/Vvac values with respect to Vvac. There is a clear trend in Vsol/Vvac, the larger the 

coupling values the smaller its relative change upon solvation. This trend essentially differs from that 

observed in singlet energy transfer, where both polarization and screening effects are directly 

determined by the magnitude of Vvac. In particular, since the SET coupling is proportional to the 

transition dipoles of the donor and the acceptor (the dipole approximation), V ∝ µD × µA,[22]  Vsol should 

be proportional to the magnitude of Vvac.[4] In contrast with SET, TET is mediated by orbital overlap, 

rather than by the long-range Coulomb interaction. If the triplet excited state of each fragment contains 

a significant contribution of the HOMO→LUMO excitation (i.e. between the highest occupied and 

lowest unoccupied molecular orbitals, respectively), as in the considered A–A and T–T pairs, the TET 
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coupling approximately depends on the overlap between the HOMOs, as well as that between the 

LUMOs, localized on each fragment.[23] Because of that, the effect of the environment δ on the TET 

coupling (Vsol=Vvac+δ ) is not straightforward, as illustrated in Figure 3. Depending on the sign of Vvac 

and δ, Vsol
2 can be larger or smaller than Vvac

2. This can be explained as follows. In some cases, both the 

overlap between donor-acceptor HOMOs and LUMOs are reduced upon solvation, leading to a 

decreased coupling in the presence of the environment. In the opposite case, both overlaps are increased, 

leading to a net interaction enhanced compared to that in vacuum. Finally, in cases where the overlap 

between HOMOs increases, whereas that between LUMOs decreases (or vice versa), the net coupling 

could eventually either increase or decrease. In Figure 4 we illustrate how solvation modifies the 

HOMO and LUMO orbitals corresponding to the donor and acceptor for an individual A–A pair. These 

orbital changes are rather similar in different conformations, but depending on the mutual arrangement 

between donor and acceptor units, the changes induced on the electronic coupling vary considerably. 
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Figure 1. Time-evolution of the ratio of electronic couplings in the polar environment and in vacuum 

derived for A7–A8 and T23–T24 stacks. 

Overall, we find that the average absolute value of the environment effect, |δ|, for A–A and T–T 

stacks is 0.43⋅10-3 eV and 0.20⋅10-3 eV, respectively. As already noted, the magnitude of this effect does 

not depend on the magnitude of the overall coupling, as illustrated in Figure 3. This seems to indicate 

that the changes in HOMO and LUMO orbitals upon solvation, and the corresponding effects induced 

on the TET coupling, are somewhat similar across the range of structures sampled. Thus, when the Vvac 

coupling is much larger that the typical δ values induced by the medium (<2⋅10-3 eV), the overall 

coupling values remain rather unaffected.  

Interestingly, the effective coupling obtained by averaging the matrix elements squared over the MD 

trajectory remain largely unaffected upon the polar environment (see below). This arises from the fact 

that environment effects are small for structures that show a strong electronic interaction, and thus 

contribute more to the average coupling value,[6] as illustrated in Figure 2, but also because averaging 

over many conformation leads to an overall cancellation of the polarization effects. Our results clearly 

demonstrate the need to account for a sufficiently large number of conformations in order to explore the 

effect of the environment. Focusing on single conformations can lead to opposite conclusions about the 

effects of the polar medium on the TET coupling, as shown by Figure 2. 

At this point, let us clarify how the dielectric properties used to mimic the environment (static and 

optical dielectric constants) modify the triplet excitation energies and electronic couplings derived from 

our CIS calculations. If one assumes a frozen environment response, excitation energies are obtained in 

the presence of the environment kept in equilibrium with the ground state charge distribution. This 

effect is described in the CIS-PCM methodology through the static dielectric constant, which describes 

the complete nuclear and electronic response of the medium. Because this frozen environment 

polarization modifies the properties of the chromophores (molecular orbitals, transition densities, etc) 

compared to those in vacuum, the static dielectric constant induces an implicit solvent effect on the 
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electronic coupling in both singlet-singlet and triplet-triplet energy transfer, and is the origin of the 

environment effect we discuss in this study.  

The optical dielectric constant εopt (i.e. the square of the refractive index), in turn, is introduced to 

describe the effects arising from the fast response of the environment electronic polarization to the 

excited state. In the linear response CIS-PCM scheme, such an effect is approximately proportional to 

the square of the transition dipole moment between the ground state and the excite state of interest (see 

Ref. [24] for a detailed discussion on the difference between linear response and state-specific methods 

in the context of continuum solvation models). Thus, such an effect (and the εopt value adopted in the 

model) does not affect triplet excited states having a null transition dipole, whereas it plays a role in 

singlet transitions. Thus, in contrast to singlet-singlet energy transfer, the refractive index properties of 

the environment, represented by the εopt ≈ n2 value, do not contribute to a screening of triplet-triplet 

electronic couplings. This effect can be understood from the fact that triplet-triplet couplings are 

mediated by orbital overlap, not Coulomb interactions, therefore superexchange interactions mediated 

by the solvent can not be accounted for using a continuum solvation model.[25] Because there are no 

solvent molecules between the stacked bases we study, superexchange effects are however expected to 

be small, so in this study we have focused on the polarization effects induced by changes on the 

nucleobase properties upon solvation. 
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Figure 2. Ratio of electronic couplings in the polar medium and in vacuum computed for A7–A8 and 

T23–T24 stacks (500 structures for each type were considered).  

At this point, we note that according to Marcus equation,[26] the TET rates scale as the square of the 

electronic couplings. In Table 1, we report the effective squared couplings derived by averaging V2 

values in vacuum and in the presence of the environment. For the A–A stack, V2 is reduced by 7 % (9.16 

× 10-6 to 8.53 × 10-6 eV2) when the polar medium is accounted for, whereas for T–T, we find an 

enhancement of the coupling by 16 % (1.57 × 10-6 to 1.83 × 10-6 eV2). Therefore, the absolute rates 

obtained in our previous study for TET within a homogeneous DNA stack[6] do not change 

significantly when the polar environment is accounted for. Finally, we note that the highly localized 

character of the triplet excitons in DNA stacks found in that study remains unchanged by their 

embedding in the polar medium. 
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Figure 3. Effect of the polar environment (δ= Vsol-Vvac) on the TET coupling computed for A7–A8 and 

T23–T24 stacks (500 structures for each type were considered). The dashed line corresponds to the 

average value.  
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Figure 4. a) HOMO and LUMO orbitals corresponding to the donor and acceptor units for an individual 

A7–A8 pair (surface isovalue 0.03 a.u.). b) Changes of the HOMO and LUMO orbitals when passing 

from vacuum to the polar environment (surface isovalue 0.003 a.u.).  

Table 1. Effective electronic couplings squared V2, calculated for the A7–A8 and T23–T24 stacks in 

vacuum and embedded in the dielectric environment. Results are averaged over 500 conformations 

sampled from a 15 ns molecular dynamics trajectory. Values are in eV2. 

 A7–A8 T23–T24 

Vacuum 9.16 × 10-6 1.57 × 10-6 

Environment 8.53 × 10-6 1.83 × 10-6 

 

4. Conclusions 

This is a first computational study on the effects of the polar environment on the TET coupling. 

Conformational flexibility of the donor and acceptor sites was accounted for by performing CIS-PCM 

calculations on 500 snapshots of A–A and T–T π stacks. The polarization (reaction field) contribution to 

the coupling (its average absolute value for A–A and T–T is 0.43⋅10-3 eV and 0.20⋅10-3 eV, 

respectively), can considerably modulate its values in individual conformations. This effect can be 

traced to the perturbation of molecular orbitals of each fragment and thus to a change of their overlap 

upon solvation, which translates into a new electronic coupling value. The effective coupling is not, 

however, essentially affected (its value for A–A and T–T changes only by a factor 0.93 and 1.16, 

respectively), because averaging over many conformations leads to an overall cancellation of the 

polarization effects. We note that absolute changes of the TET coupling in the π stacks due to the 

solute-solvent interaction are calculated to be significantly smaller than the coupling values in 

conformations with strong electronic interaction between donor and acceptor. 
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Despite the fact that A and T nucleobases (and their stacks) are very polar species (e. g. our estimated 

dipole moments are ~2.5 and ~5.0 D, respectively) only moderate effects of the polar medium on the 

TET effective coupling are found. Thus, one can expect that also in other TET systems, the triplet 

exciton mobility should not be very sensitive to the polarization effects of the environment.  
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