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1. SUMMARY 

The original version of the Arrhenius equation does not take into account the temperature 

dependence of both the pre-exponential factor and the activation energy. However, a simple 

physical argument makes clear that this hypothesis (although valid indeed as an approximation) 

is not totally accurate. The two Arrhenius parameters are mutually interconnected, so that an 

increase of one of them with temperature leads to an increase of the other. This might be taken 

as a potential explanation of the widespread compensation effect, and the conditions under 

which this model results applicable have been explored by means of numerical simulations. An 

interesting parameter involved in them is Td, the temperature corresponding to an activation 

energy that exactly doubles the value at 0 K. Provided that this magnitude does not differ much 

from one member of a homologous reaction series to another, there will be a linear Ea vs. 

  lnR A ( or
o

H


  vs. 
o

S


 ) relationship, its slope being the isokinetic temperature, Tik (when T = 

Tik all the reactions of the series share the same rate constant). This physical model seems to 

be supported by the low values of parameter Td obtained for chemical reactions involving 

proteins as reactants. Additionally, given that the random experimental errors provoke a shift in 

parameter Tik toward the mean working temperature, this effect has been discounted in order to 

obtain the most probable (extrapolated) value of the isokinetic temperature for different reaction 

families selected from chemical bibliographic sources.  

Keywords: isokinetic temperature, kinetic compensation effect, modified Arrhenius and Eyring 

equations, numerical simulations, temperature-dependent activation energy. 
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2. RESUM 

La versió original de l’equació d’Arrhenius no te en compte les dependències amb la 

temperatura tant del factor pre-exponencial com de l’energia d’activació. Malgrat això, un simple 

argument físic deixa ben clar que aquesta hipòtesi (tot i que vàlida com una aproximació) no es 

del tot acurada. Els dos paràmetres d’Arrhenius estan mútuament interconnectats, de manera 

que un augment d’un amb la temperatura causa un augment de l’altre. Aquest fet es pot 

prendre com a una potencial explicació del efecte de compensació àmpliament estès, i les 

condicions sota les quals aquest model pot aplicar-se s’han explorat mitjançant simulacions 

numèriques. Un paràmetre interessant implicat en elles es Td, la temperatura a la qual el valor 

de l’energia d’activació es exactament el doble del que tindria a 0 K. Sempre que aquesta 

magnitud no variï massa entre els membres d’una mateixa família de reaccions homòlogues, hi 

haurà una correlació lineal entre Ea i   lnR A ( o entre
o

H


  i 
o

S


 ), sent el pendent igual a la 

temperatura isocinètica, Tik (quan T = Tik  totes les reaccions de la sèrie tenen la mateixa 

constant de velocitat). Aquest model físic sembla ser recolzat pels valors baixos del paràmetre 

Td obtinguts a partir de reaccions químiques involucrant proteïnes com a reactius. A més, com 

que els errors aleatoris experimentals provoquen un canvi al paràmetre Tik  que fa que tendeixi 

cap a la temperatura mitjana de treball, s’ha descomptat aquest efecte amb la intenció d’obtenir 

la temperatura isocinètica mes probable (extrapolada) per a diferents famílies de reaccions 

extretes de fonts bibliogràfiques. 

Paraules clau: efecte de compensació cinètic, energia d’activació dependent de la 

temperatura, equacions modificades d’Arrhenius i Eyring, simulacions numèriques, temperatura 

isocinètica. ,.
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3. INTRODUCTION  

Most chemical kineticists are familiar with the linear relationships involving either the 

Arrhenius (Ea vs. ln A) or Eyring (
o

H


 vs.
o

S


 ) parameters found in the study of many 

homologous reaction series. Such a striking behavior has been known at least from 1925,1 and 

it has been reported time and time again in scientific papers since then.2-5  

However, this kind of correlations is by no means restricted to the field of chemical kinetics, 

since it can also be found when handling equations of the general type: 

       

 T

 
 
    =    RT

X

Y Y e


   (1) 

 

corresponding to thermally activated processes, where
T

Y and Y are the values of a 

temperature-dependent physicochemical magnitude at the absolute temperatures T and  , 

respectively, X is the energy barrier and R  the ideal gas constant. Quite often, when the 

experimental X data are plotted against  ln Y


for a series of closely related processes, a 

positive-slope linear relationship is found: 

 

   i h iso ,i    =   +  ln X X R T Y   (2) 

 

where
i

X and 
,i

Y


 are the parameters corresponding to a particular member of the series i, 

h
X is the value of X for a hypothetical member with ln  = 0Y


 and 

iso
T is the temperature at 

which all the members of the series share the same value of the physicochemical magnitude 

under study (compensation effect), its natural logarithm being (from eqs 1 and 2): 

 

  

iso
 

h
T

iso

 
 

 
ln   =   

X

RT
Y    (3) 

 

This situation appears in a wide variety of physicochemical phenomena, the magnitude 
T

Y  

adopting alternatively the form of: a rate constant (Arrhenius equation);6 a rate 

constant/temperature ratio (Eyring equation);7,8 a reaction equilibrium constant (van’t Hoff 

equation);9  an  adsorption  equilibrium  constant;10  an  α /(1-  α)  ratio  (α  being  the  mass 

accommodation coefficient in the absorption of gas molecules by liquids);11,12 a viscous liquid 

fluidity;13 a diffusion coefficient;14-16 a polymer relaxation frequency;17 an annealing rate of 
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metastable defects;18 a rate of crystal growth;19 a thermal electron emission rate from 

semiconductor traps;20 or a solid-state electrical conductivity.21-25  

As pointed out by other authors,26 the widespread occurrence of this compensation effect in 

quite different kinds of phenomena (covering not only the above mentioned fields of chemistry 

and physics but also that of food technology27) seems to claim for a common explanation. 

Actually, the influence that both random28-31 and systematic32 errors in the experimental data 

might have on the observation of the compensation effect has been conveniently explored. In 

order to fill a still existing gap, the present contribution will be committed to analyze the potential 

impact that an error, not coming properly from the experiments performed, but rather from the 

mathematical model used to fit the experimental data (i.e., the temperature dependence of 

parameters Y  and X appearing in eq 1), might have on the occurrence of the compensation 

plots, placing a special focus on the field of chemical kinetics (Arrhenius and Eyring equations). 

4. OBJECTIVES  

Three different objectives will be considered in this project:  

First: Deducing the modified Arrhenius and Eyring equations. Among the things one should 

keep in mind when approaching to science, and particularly so in the field of physical chemistry, 

stands out the realization that all mathematical models are only approximations to the real 

behavior of nature. Relevant to the specific purpose of the present study is the fact that the 

temperature dependence of the rate constants, as described by both the Arrhenius and Eyring 

equations, does not take into consideration that the pre-exponential factor and the activation 

energy on one side, and the activation enthalpy and entropy on the other, are all four actually 

dependent on the temperature used in the experiments. This work will start with the integration 

of the differential forms of the Arrhenius and Eyring equations, once included the temperature 

dependence of the activation parameters, to obtain the modified versions of those laws. 

Second: Finding the conditions for a compensation effect. Once the development of the 

modified Arrhenius and Eyring equations is completed, numerical simulations will be performed 

in order to know under which conditions those laws are able to explain the existence of a kinetic 

compensation effect. In particular, different temperature dependences of the activation energy, 
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varying either systematically or randomly from one reaction of the homologous series to 

another, will be analyzed with this end in view.  

Third: Searching for the real isokinetic temperature value. This research project will finish 

with a numerical simulation study of the effect that accidental errors exert on the value of the 

slope of the linear compensation plot, using real experimental cases taken from the chemical 

literature, and thus obtaining the most probable value of the parameter known as isokinetic 

temperature of the reaction series (at which all the members have in common the same rate 

constant). 

The rationale for the present work can be summarized in the following question: Is the 

temperature dependence of the activation parameters capable of explaining at least some of the 

kinetic compensation plots observed in the laboratory? The answer to this problem will be 

sought by computer calculations and presented hereafter. 

5. METHODS AND CALCULATIONS 

5.1. RANDOM-NUMBER GENERATOR 

In some of the programs needed to perform the numerical calculations involved in the 

present study a set of scattered numbers was required (for instance, to simulate the accidental 

errors associated with all experimental measurements). In order to achieve this, a random 

number generator was included in one of the subroutines of the different programs, starting with 

the square root   J n , where J changed from one simulation to another and  took either 

integer or non-integer values indifferently, n being a fixed non-integer number (to avoid the 

occurrence of perfect squares). The scattered values were taken from the successive decimal 

digits of the corresponding square roots, and a random positive or negative sign was ascribed 

depending on the nature of the first digit (even or odd). Afterwards, these arrays of random 

numbers were used as required, the main application being the simulation of the accidental 

errors associated with the experimental determination of the rate constants at different 

temperatures. 
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5.2. CALCULATIONS AND GRAPHICS  

When necessary, linear fits were performed by means of the least square method (see 

Appendix 1).33 The hardware used in all the numerical simulations and figures was a Sony Vaio 

personal computer, and the software employed for the calculations was the programming 

language BBC BASIC (version for Windows) and for the graphics the program KaleidaGraph 

(version 4.03).  

6. TEMPERATURE DEPENDENCE OF THE ACTIVATION PARAMETERS 

 With the purpose of seeking a new explanation of the compensation effect (either kinetic or 

belonging to other fields of physics and chemistry), it has been taken into consideration the 

dependence (assumed to be linear for the sake of simplicity) of parameter X in eq 1 on 

temperature.34-37 By integration of the corresponding differential equation (see Appendix 2), it 

follows that: 

 

  

  

  

 

o o

d

T X

 

    =    

X X

RT RTY A T e


  (4) 

 
where parameter AX is the new pre-exponential factor, Xo the activation barrier at 0 K and Td 

the doubling temperature (at which  X  = 2 Xo). 

6.1. ARRHENIUS EQUATION: THE ORIGINAL LAW AND ITS MODIFIED VERSION 

The dependence of the rate constant of a chemical reaction on the absolute temperature 

can be expressed by means of the Arrhenius equation: 

 

 

 a 

T

 

   =     
E

RTk A e


  (5) 

where A is the pre-exponential factor and Ea the activation energy of the reaction under 

consideration.  
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 However, eq 11-A (developed in Appendix 2 for a general phenomenon incorporating an 

activation barrier) can be written in the case of chemical kinetics as the modified Arrhenius 

equation: 

 
 

 

 
 

  

d

a,o a,o
 

T E

  

   =    

E E

RT RTk A T e


   (6)  

where Ea,o is the activation energy at 0 K for each member of the reaction series, Td the 

doubling temperature (at which Ea,T = 2 Ea,o) and parameter AE comes from the integration 

constant, its physical significance being that of the value (independent of temperature) the rate 

constant would take for a hypothetical non-activated process with  Ea,o  = 0. 

Equation 6 has been reported to accommodate the experimental kinetic data better than the 

original Arrhenius law ( a particular case of the modified version with Td =  ).38-40 Other 

modifications of this equation have been proposed for special situations, for instance to fit the 

experimental rate constants obtained at very low temperatures.41  

  6.2. EYRING EQUATION: THE ORIGINAL LAW AND ITS MODIFIED VERSION 

 According to the transition state theory, the dependence of the rate constant on the absolute 

temperature can be expressed by means of the Eyring equation: 

 

 

 

o o  

o 1B
T

  
 

    
  

( )  =   n R RT

S H
k T

c
h

k e e

 
 

  (7)

 
 

thus representing an alternative to the Arrhenius law, kB and h being the Boltzmann and Planck 

constants, respectively, c
o
 the standard concentration (to guarantee the dimensional 

homogeneity of the equation42), n the kinetic order, 
o

S


  the activation entropy and 
o

H


  the 

activation enthalpy.  

 However, taking into consideration the temperature dependence of the activation enthalpy, 

a simple mathematical argument (see Appendix 3) leads to the modified Eyring equation: 

  

 
 T H

o o,o ,o

d

   1 +     
 

   =      

H H
RT RTk A T e

 
 


  (8) 

 

where
o

,o
H


 is the activation enthalpy at 0 K for each member of the reaction series, Td is the 

doubling temperature ( at which 
T

o

,
H


 = 2

o

,o
H


 ) and parameter AH comes from the new 
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integration constant, its physical significance being now that of the value (independent of 

temperature) the rate constant / temperature ratio would take for a hypothetical process with  
o

,o
H


 = 0. 

7. COMPENSATION EFFECT: ISOKINETIC TEMPERATURE 

7.1. ACTIVATION ENERGY VS. PRE-EXPONENTIAL FACTOR LINEAR CORRELATION 

As pointed out before, the experimental data found for many activated physical and 

chemical phenomena follow compensation laws of the type shown in eq 2. When the magnitude 

determined is a reaction rate constant and the law involved the Arrhenius equation, the 

correlation can be written as: 

 

  a,i a,h ik  i  =    +   ln E E R T A   (9) 

 

where Ea,i  and  Ai are the Arrhenius parameters corresponding to a particular member of the 

homologous series, Ea,h is the value of the activation energy for a hypothetical reaction with    

ln A i = 0 and Tik is the isokinetic temperature. When T = Tik all the members of the series 

share the same value of the rate constant, its natural logarithm being (from eqs 5 and 9): 

  

  

ik
 

a,h

T

ik

 
 

 
ln   =   

E

RT
k    (10) 

 

The reason for talking of the existence of a kinetic compensation effect lies in the observational 

fact that for many families of related chemical reactions an increase in the activation energy 

(unfavorable to the reaction rate) is found to be associated with another increase in the pre-

exponential factor (favorable to the reaction rate), the compensation being total when the 

experimental temperature equals the Tik value. 

As a real case example taken from the chemical literature, let us consider the kinetic 

behavior of the air oxidation of Fe(II) complexes with biologically active tridentate pyridyl 
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thiosemicarbazone ligands in methanol solutions,43 for which a linear compensation plot in the 

activation energy vs. pre-exponential factor plane can be observed (Figure 1, left), yielding an 

isokinetic temperature of 440 ± 25 K (well above the working temperature range).   

. 

  

 

  

 

 
 
 
 
 

 

 
Figure 1. Kinetic compensation plots derived from Arrhenius (left) and Eyring (right) data for the air 
oxidation of Fe(II) complexes with biologically active tridentate pyridyl thiosemicarbazone ligands in 

methanol solutions.  

 

7.2. ACTIVATION ENTHALPY VS. ACTIVATION ENTROPY LINEAR CORRELATION 

If the temperature - rate constant data are fitted to the Eyring equation, the compensation 

correlations (when applicable) are of the type: 

 

   

 
o o o
, , ,i h ik i +    =   H H T S       (11) 

 

where 
 o

, i
H


  and  

 o

, i
S


  are the activation enthalpy and entropy, respectively, for a particular 

member of the homologous series, 
o

,h
H


 is the value of the activation enthalpy for a 

hypothetical reaction with 
 o

, i
S


  = 0 .  

 From eqs 7 and 11 it follows that, if the experimental temperature equals the isokinetic one 

(T = Tik), the reactions belonging to the considered family would show the rate constant: 

 

 
 

o
,h

ik

   
 

  o 1  B ik
iso

  
   =    ( )  

H

RTnk T
k c e

h





  (12) 
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and this value would be the same indeed for all the chemical processes of the series, since the 

intercept (
o

,h
H


 ) and slope (Tik ) of the linear compensation plot remain invariable throughout 

the reaction family. 

 A representative case of this kind of behavior corresponding to the homologous series 

mentioned above [air oxidation of Fe(II) complexes] is displayed in Figure 1, right, leading to an 

identical isokinetic temperature (440 ± 25 K). 

8. NUMERICAL SIMULATIONS 

8.1. A NEW PHYSICAL MODEL: CONDITIONS OF LINEARITY 

Equation 6 by itself cannot explain the existence of an Ea – ln A kinetic compensation effect 

unless a different value of the exponent Ea,o /RTd corresponds to each member of the 

homologous reaction series (Td must not be directly proportional to Ea,o). Hence, given its 

mathematical structure, eq 6 implies the existence of a certain correlation between the 

Arrhenius pre-exponential factor and the activation energy for a homologous reaction series 

provided that the doubling temperature (Td ) is not directly proportional to the activation energy 

at 0 K (Ea,o) for each member of the series (since, in that case, the correlation would vanish).  

Thus, as a particular case of eq 14-A (see Appendix 2), for a homologous reaction series it 

could be written: 

 

 

 

      

  

  

m d i
a,i

m  E

  ln
 

+ 
=   

1 + ln 
 

T T A
E R

T A
  (13) 

yielding a linear relationship in an Ea ln A plane provided that parameters Tm, Td and AE 

take the same values (or at least very similar) for all the members of the series. 

In order to analyze the conditions required for eq 6 to explain the kinetic compensation 

effect, it has been assumed that there is a simple linear dependence of both parameters Td and 

AE on the activation energy at 0 K corresponding to each member of the reaction homologous 

series: 

 

d
d d,o a,o

a,o

d
   =     +   

 d

T
T T E

E
  (14) 
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E
E E,o a,o

a,o

d
   =     +   

 d

A
A A E

E
  (15) 

where Td,o and AE,o are the values of parameters Td and AE, respectively, for a hypothetical 

member of the reaction series with Ea,o = 0.  

When the activation energy Ea was plotted against the logarithm of the Arrhenius pre-

exponential factor, a change in dTd /dEa,o (with fixed values of the other three parameters: Td,o, 

AE,o and dAE/dEa,o) led either to a perfect straight line (dTd /dEa,o = 0), to downward-concave 

curves (dTd /dEa,o < 0) or to upward-concave curves (dTd /dEa,o > 0) (Figure 2, left). For a 

fixed value of dTd /dEa,o > 0, an increase in parameter Td,o led to plots losing their upward-

concave curvature and getting closer and closer to a perfect straight line (reaching 

asymptotically that limit at Td,o = ∞) (Figure 3, left). A change in dAE /dEa,o led either to a 

perfect straight line (dAE/dEa,o = 0) or to upward-concave curves (dAE/dEa,o > 0) (Figure 4, 

left), whereas a change in AE,o led to upward-concave curves that gradually lost their curvature 

as that parameter increased (Figure 5, left). 

 Nevertheless, when the Ea – ln A data were fitted to straight lines, those plots yielded 

acceptable linear correlation coefficients (r   0.990) in 23 out of 34 cases (Figures 2 and 3, 

right; Figures 4 and 5, right, filled circles). It is noteworthy, however, that when the Ea = 0 point 

was excluded from the Ea – ln A correlations with variable dAE/dEa,o, almost perfectly linear 

plots (r   0.9995) were obtained in all the 15 cases considered (empty circles in Figures 4 and 

5, right).  

 On the other hand, provided that dTd /dEa,o = 0, the Ea – ln A plots were linear when 

parameter AE  took random values for the different members of the homologous series (Figure 

6, left), the linear correlation coefficient decreasing as the doubling temperature Td,o  increased 

(Figure 6, right). Moreover, provided that dB /dEa,o = 0, the Ea – ln A plots were also linear 

when parameter Td,o  took random values (within a  10% range) for the members of the series 

(Figure 7, r   0.991). 

 For a homologous reaction series it follows [from eqs 7, 21-A and 24-A (Appendix 3)] that: 

 

  

 

     

    

o 1
o om d B
,i ,i

m H

 ( )
     ln  

 

+ 
=     

1 + ln 
[ ]

nk c
H R S

h

T T

T A



      (16) 

 

yielding now a linear relationship in the enthalpy-entropy plane provided that parameters Tm, Td 

and AH are the same (or at least very similar) for all the members of the series. 
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Figure 2. Results from numerical simulations performed over the temperature range 15.0  35.0 ºC with 

Ea,o = 0 – 60 kJ mol-1, AE,o  = 10-2 rcu, dAE /dEa,o  = 0 and Td,o  = 3 103 K (rcu stands for rate constant 

units). Left: activation energy as a function of the logarithm of the Arrhenius pre-exponential factor at 
dTd/dEa,o  = -50, -40, -30, -20, -10, 0, 10, 20, 30, 40 and 50 (from right to left) K mol kJ 

-1; the perfectly 
linear E  ln A correlation (dTd /dEa,o = 0) is indicated by solid circles. Right: linear correlation coefficient 

of the Ea  ln A plots as a function of dTd /dEa,0. 

  

 

  

 

 
 
 
 
 

 

 

 

Figure 3. Results from numerical simulations performed over the temperature range 15.0  35.0 ºC with 
Ea,o = 0 – 60 kJ mol-1, AE,o = 10-2 rcu, dAE/dEa,o = 0 and dTd /dEa,o  = 50 K mol kJ 

-1 (rcu stands for rate 

constant units). Left: activation energy as a function of the logarithm of the Arrhenius pre-exponential factor 

at Td,o = 0.25, 0.35, 0.45, 0.60, 0.80, 1.05, 1.40 and 1.80 (from right to left)  104 K. Right: linear 
correlation coefficient of the Ea  ln A plots as a function of parameter Td,o. 
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Figure 4. Results from numerical simulations performed over the temperature range 15.0  35.0 ºC with 

Ea,o = 0 – 60 kJ mol-1, AE,o = 10-2 rcu, Td,o = 3 103 K and dTd /dEa,o = 0 (rcu stands for rate constant 

units). Left: activation energy as a function of the logarithm of the Arrhenius pre-exponential factor at 
dAE/dEa,o = 0, 0.001, 0.01, 0.1, 1 and 10 (from left to right) rcu mol kJ 

-1; the perfectly linear Ea  ln A 
correlation (dAE/dEa,o = 0) is indicated by solid circles. Right: linear correlation coefficient of the Ea  ln A 
plots as a function of the logarithm of dAE/dEa,o; filled circles: all points included in the correlation; empty 

circles: the Ea = 0 point excluded from the correlation. 

  

  

 

  

 

 
 
 
 
 

 

 
Figure 5. Results from numerical simulations performed over the temperature range 15.0  35.0 ºC with 

Ea,o = 0 – 60 kJ mol-1, dAE/dEa,o = 10 rcu mol kJ 

-1, Td,o = 3 103 K and dTd /dEa,o = 0  (rcu stands for 

rate constant units). Left: activation energy as a function of the logarithm of the Arrhenius pre-exponential 
factor at log ( AE,o /rcu) = -2, -1, 0, 1, 2, 3, 4, 5 and 6 (from left to right). Right: linear correlation coefficient 
of the Ea  ln A plots as a function of log AE,o; filled circles: all points included in the correlation; empty 

circles: the Ea = 0 point excluded from the correlation. 

  

-10

0

10

20

30

40

50

60

70

-50 0 50 100 150 200

E
  
 /

 k
J 

m
o
l-1

a

R ln A / J K
-1

 mol
-1

0.95

0.96

0.97

0.98

0.99

1.00

1.01

-3 -2 -1 0 1

L
in

ea
r 

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

log [(dA  /dE    )  / rcu mol kJ
 -1

]a,oE

-10

0

10

20

30

40

50

60

70

-50 0 50 100 150 200 250

E
  
 /

 k
J 

m
o
l-1

a

R ln A / J K
-1

 mol
-1

0.95

0.96

0.97

0.98

0.99

1.00

1.01

-2 0 2 4 6

L
in

ea
r 

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

log (A     / rcu)E,o



18 Alburquerque Alvarez, Iker 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Results from numerical simulations performed over the temperature range 15.0  35.0 ºC with 
Ea,o = 10 – 100 kJ mol-1, AE,o  = 0.001 – 0.100 (random values) rcu, dAE/dEa,o  = 0 and dTd /dEa,o  = 0 

(rcu stands for rate constant units). Left: activation energy as a function of the logarithm of the Arrhenius 

pre-exponential factor at Td,o  = 1.0, 1.5, 2.0, 2.5 and 4.0 (from right to left) 103 K. Right: linear 
correlation coefficient of the Ea ln A plots as a function of parameter Td,o. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Activation energy as a function of the logarithm of the Arrhenius pre-exponential factor from 
numerical simulations performed over the temperature range 15.0  35.0 ºC at random doubling 

temperatures within  10% of the average values Td,o  = 1, 2, 3, 4 and 5 (from right to left)  103 K with 

Ea,o = 10 – 100 kJ mol-1, AE,o  = 1.00 10-2 rcu, dAE/dEa,o  = 0 and dTd /dEa,o  = 0 (rcu stands for rate 

constant units) 
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8.2. ISOKINETIC TEMPERATURE: DISCOUNTING THE EFFECT OF RANDOM ERRORS 

Permanganate is extensively used as a versatile oxidizing agent in the chemistry 

laboratory.44-47 However, whereas potassium permanganate is soluble in water, most organic 

substrates are only soluble in low polarity organic solvents. This limitation can be overcome by 

the use of the compounds known as phase transfer agents, such as crown ethers or quaternary 

ammonium salts.48 In particular, for the oxidation of a series of substituted cinnamic acids by 

tributylmethylammonium permanganate in methylene chloride solutions, it has been found the 

occurrence of a kinetic compensation effect especially interesting because the reported 

isokinetic temperature (627 ± 52 K) is much higher than the mean experimental one (286 

K),49,50 thus minimizing the probability that the observed correlation might be caused by the 

accumulation of random experimental errors rather than by a real physical phenomenon.51-57  

In order to implement the numerical simulations, the following steps were carried out: i) First 

of all, the values of the activation enthalpies (ordinates) corresponding to a perfect linear 

relationship with the same intercept and slope as those of the compensation plot found in the 

laboratory (and reported in the bibliographic source) were calculated, all the while keeping 

invariant the experimental activation entropies (abscissas). ii) Then, the theoretical rate 

constants at different temperatures were obtained for each member of the reaction series using 

the Eyring equation. iii) Afterwards, the accidental errors of the rate constants for each member 

of the reaction series were incorporated into the simulations by means of a random-number 

generator, leading to a cloud of scattered theoretical points. iv) Finally, the simulated activation 

parameters were inferred making use again of the Eyring equation, leading to a new enthalpy-

entropy correlation to be compared with the experimental one. 

When the simulations were performed taking as a basis the above-mentioned homologous 

series corresponding to the permanganate oxidation of substituted cinnamic acids, it was 

observed that, as the maximum limit allowed for the accidental errors increased from 0 to 100 

%, the correlation coefficient of the compensation plot first decreased, passed through a 

minimum and then increased to approach asymptotically the unity value associated with a 

perfect straight line (Figure 8, left). At the same time, the slope decreased from the experimental 

isokinetic temperature to scattered data close to the mean working temperature (Figure 8, right). 

    

. 
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Figure 8. Correlation coefficient (left) and isokinetic temperature (right) as a function of the maximum limit 
allowed to the percent random errors of the rate constants for the simulated compensation plots based on 

the oxidation of a series of substituted cinnamic acids by tributylmethylammonium permanganate in 
methylene chloride solutions, assuming that in the absence of errors there exists a perfect enthalpy-

entropy straight line with a slope equal to the experimental isokinetic temperature (627 K). The dashed line 

corresponds to a perfect enthalpy-entropy correlation (r = 1). 

 

The fitting error associated with the compensation plot was defined from the absolute values 

of the deviations of the experimental activation enthalpies with respect to the best adjusting 

straight line as obtained by means of the least square method: 
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where  
o

, i ,exp
H




  

and  
o

, i ,cal
H


    are the experimental and calculated values of the activation 

enthalpy for each member of the homologous series, respectively, and N is the total number of 

reactions studied.  

The experimental point was placed on a Tik vs. E diagram (Figure 9, left). In the case under 

study, the point was characterized by the coordinates (Tik = 627 K, E = 0.75 kJ mol-1) on that 

plane. Then, the scattered simulation points were added to the plot, obtained each of them from 

a set of reactions whose number equaled that of the experimental homologous series (N = 13). 

Finally, the maximum probability curve for the (Tik, E ) couples could be drawn taking this time 

as a starting point for the simulations a set of 105 reactions. Actually, the perfect maximum 

probability curve would require a family with an infinite number of reactions but, because of the 
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material impossibility to implement this condition, a finite ensemble with a high number of 

reactions was accepted as a good enough approximation. 

It is interesting to highlight as a result of this numerical study that, when the magnitude of 

the accidental errors increased, the slope of the compensation plot gradually decreased, 

showing a trend to approach the mean experimental temperature if the errors were high 

enough, thus going from a hypothesized perfect linear correlation (r = 1) with a slope equal to 

the experimental isokinetic temperature (Tik ) to an almost perfect straight line (r > 0.990) with a 

slope equal to the mean working temperature (Tm ). 

In order to find the highest probability value of the isokinetic temperature, the slope of the 

assumed perfect enthalpy-entropy straight line was systematically changed (by means of a 

computer program developed for that purpose) until achieving a situation where the 

experimental point exactly matched one of those belonging to the maximum probability curve. 

That happened when the slope of the assumed isokinetic plot was 681 K (Figure 9, right).  
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Figure 9. Isokinetic temperature as a function of the fitting error for the simulated enthalpy-entropy 

compensation plots based on the oxidation of a series of substituted cinnamic acids by 
tributylmethylammonium permanganate in methylene chloride solutions, showing the experimental point 

(filled circle), the points obtained from computer simulations incorporating accidental errors (empty circles) 
and the maximum probability curve (continuous line). The calculations were performed assuming that in 

the absence of errors (E = 0) there exists a perfect enthalpy-entropy straight line with a slope equal either 

to the experimental isokinetic temperature (627 K, left) or to the temperature leading to a situation where 
the experimental point matches exactly the prediction of the maximum probability curve (681 K, right). The 

accidental errors allowed to the rate constants varied within the range 0  – 100 %. 
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The error-tolerated limits of that temperature were found by repetition of the same 

procedure, this time replacing the experimental isokinetic temperature (627 ± 52 K) by its 

allowed limits (575 and 679 K), yielding the result of 681 ± 45 K. The maximum probability 

curves corresponding to those temperatures are shown in Figure 10.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 10. Isokinetic temperature as a function of the fitting error for the simulated enthalpy-entropy 

compensation plots based on the oxidation of a series of substituted cinnamic acids by 
tributylmethylammonium permanganate in methylene chloride solutions, showing the experimental point 

(filled circle) and its error-tolerated limits (empty circles), as well as the maximum probability curves 
beginning at 636, 681 and 727 K (continuous lines). 

 
 

(a) Tik,exp are the experimental isokinetic temperature and its error-tolerated limits. 

(b) Tik,sim are the most probable simulated isokinetic temperature and its error-tolerated limits. 

(c) The accidental percent error corresponds to the maximum imprecision allowed to the rate constants. 

Table 1. Experimental and simulated (E-based) kinetic compensation data for the oxidation of a series of 

substituted cinnamic acids by tributylmethylammonium permanganate in methylene chloride solutions 

according to the maximum probability curve procedure. 

Tik,exp [K] Tik,sim [K] Accidental error [%] 

575 636 3.39 

627 681 2.94 

679 727 2.59 
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According to the calculations, the upper bound of the random errors associated with the 

experimental rate constants (for this example taken from the chemical literature) was 3.0 ± 0.4 

% (Table 1).  

The above described procedure may be repeated, now using the correlation coefficient (r ) 

instead of the fitting error (E ) as a measure of the quality of the linear enthalpy-entropy plot, 

yielding the results shown below for the maximum probability curves starting either at the 

coordinates (r = 1, Tik = 627 K) of the point corresponding to the experimental isokinetic 

temperature (Figure 11, left) or to those (r = 1, Tik = 713 K) of the point corresponding to the 

highest probability value of the isokinetic temperature (Figure 11, right). 

 

  

 

  

 

 
 
 
 
 

 

 
Figure 11. Isokinetic temperature as a function of the correlation coefficient for the simulated enthalpy-

entropy compensation plots based on the oxidation of a series of substituted cinnamic acids by 
tributylmethylammonium permanganate in methylene chloride solutions, showing the experimental point 

(filled circle), the points obtained from computer simulations incorporating accidental errors (empty circles) 
and the maximum probability curve (continuous line). The calculations were performed assuming that in 
the absence of errors (r = 1) there exists a perfect enthalpy-entropy straight line with a slope equal either 

to the experimental isokinetic temperature (627 K, left) or to the temperature leading to a situation where 
the experimental point matches exactly the prediction of the maximum probability curve (713 K, right).  

 

The error-tolerated limits of that temperature were found as described above, replacing 

again the experimental isokinetic temperature (627 ± 52 K) by its allowed limits (575 and 679 

K), yielding the result of 714 ± 53 K. The maximum probability curves corresponding to those 

temperatures are shown in Figure 12. 
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This time (according to the r-based calculations) the upper bound of the random errors 

associated with the experimental rate constants was 3.8 ± 0.3 % (Table 2), slightly higher than 

the value obtained from the E-based calculations.  

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 12. Isokinetic temperature as a function of the linear correlation coefficient for the simulated 
enthalpy-entropy compensation plots based on the oxidation of a series of substituted cinnamic acids by 
tributylmethylammonium permanganate in methylene chloride solutions, showing the experimental point 

(filled circle) and its error-tolerated limits (empty circles), as well as the maximum probability curves 
beginning at 662, 713 and 767 K (continuous lines). 

 
 

(a) Tik,exp are the experimental isokinetic temperature and its error-tolerated limits. 

(b) Tik,sim are the most probable simulated isokinetic temperature and its error-tolerated limits. 

(c) The accidental percent error corresponds to the maximum imprecision allowed to the rate constants. 

Table 2. Experimental and simulated (r-based) kinetic compensation data for the oxidation of a series of 

substituted cinnamic acids by tributylmethylammonium permanganate in methylene chloride solutions 

according to the maximum probability curve procedure. 

 

Tik,exp [K] Tik,sim [K] Accidental error [%] 

575 662 4.06 

627 713 3.70 

679 767 3.50 
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On the other hand, another way to find the highest probability value of the isokinetic 

temperature would be to focus on the number of simulations leading to points placed close 

enough to the experimental one, rather than on the concept of maximum probability curve. The 

simulations accepted as valid in this new strategy were those leading to statistical parameters 

within a ten percent margin of the experimental values: Tik = 627 ± 52 K and either E = 0.75 kJ 

mol-1 (Tik – E plane) or 1 –  r = 0.036 (Tik – r plane), depending on the kind of method: 

 

 ik exp ik sim ik exp0.9 1.1 ( )      ( )       ( )T T T    (18) 

 

 exp sim exp0.9 1.1            E E E    (19) 

 

      exp sim exp0.9 (1 ) 1 1.1 (1 )              r r r       (20) 

 

Whereas in the cases of the isokinetic temperature and the fitting error the 10  % amplitude 

range was established with respect to the experimental values of those magnitudes, in the case 

of the correlation coefficient it was opted to take that range with respect to the experimental 

value of 1 – r, so as to ensure that the possibility of rsim > 1 was avoided.  

The implementation of these conditions is illustrated in the examples shown in the following 

graphs, where it can be observed that a change in the slope assumed for the enthalpy-entropy 

compensation plot from the experimental value (Figures 13 and 14, left) to the extrapolated 

maximum probability values (Figures 13 and 14, right) results in an increase of the density of 

points placed on the regions considered as valid according to eqs 18-20. 

The number of simulations performed in each case was 106, changing from one to another 

the random errors associated to the rate constants at the different temperatures. This procedure 

was repeated taking for (Tik)exp in eq 18 either the experimental value of the isokinetic 

temperature (627 K) or its error-tolerated limits (575 and 679 K). The probability curves so 

obtained presented maxima slightly shifted toward higher temperatures for the r-based method 

(Figure 15, right) with respect to the  E-based method (Figure 15, left). 

The resulting data are compiled in Table 3, yielding for the extrapolated most probable 

isokinetic temperatures the values 677 ± 36 K (E-based) and 702 ± 60 K (r-based). 



26 Alburquerque Alvarez, Iker 

 

 

  

 

  

 

 
 
 
 
 

 

 
Figure 13. Isokinetic temperature as a function of the fitting error for the simulated enthalpy-entropy 

compensation plots based on the case under study, showing the experimental point (filled circle), the 
points obtained from computer simulations incorporating accidental errors (empty circles) and the 

maximum probability curve (continuous line). The calculations were performed assuming that in the 
absence of errors (E = 0) there exists a perfect enthalpy-entropy straight line with a slope equal either to 

the experimental (627 K, left) or the maximum probability (677 K, right) values of the isokinetic 
temperature. The accidental errors allowed to the rate constants varied within the range 2.59 – 3.39 %. The 

dashed lines show the limits of the regions corresponding to potentially valid simulations. 

 

 

  

 

  

 

 
 
 
 
 

 
Figure 14. Isokinetic temperature as a function of the correlation coefficient for the simulated enthalpy-

entropy compensation plots based on the case under study, showing the experimental point (filled circle), 
the points obtained from computer simulations incorporating accidental errors (empty circles) and the 
maximum probability curve (continuous line). The calculations were performed assuming that in the 

absence of errors (r = 1) there exists a perfect enthalpy-entropy straight line with a slope equal either to 

the experimental (627 K, left) or the maximum probability (702 K, right) values of the isokinetic 
temperature. The accidental errors allowed to the rate constants varied within the range 3.50 – 4.06 %. The 

dashed lines show the limits of the regions corresponding to potentially valid simulations. 
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Figure 15. Probability as a function of the extrapolated (error-free) isokinetic temperature for the simulated 
enthalpy-entropy compensation plots based on the oxidation of a series of substituted cinnamic acids by 

tributylmethylammonium permanganate in methylene chloride solutions. The calculations were performed 
assuming that the laboratory obtained (error-prone) isokinetic temperature was equal either to the 

experimental value (627 K, middle curves) or to its error-tolerated inferior (575 K, highest curves) and 
superior (679 K, lowest curves) limits. The accidental errors allowed to the rate constants varied within the 

ranges either 0.00 – 3.39 % (E-based method, left) or 0.00 – 4.06 % (r-based method, right). 
 
 

(a) Parameter E is the experimental fitting error of the enthalpy-entropy compensation plot. 

(b) Parameter r is the experimental correlation coefficient of the enthalpy-entropy compensation plot.  

(c) Tik,exp are the experimental isokinetic temperature and its error-tolerated limits. 

(d) Tik,sim are the most probable simulated isokinetic temperature and its error-tolerated limits. 

 
  

Table 3. Experimental and simulated (either E-based or r-based) isokinetic temperatures for the oxidation 

of a series of substituted cinnamic acids by tributylmethylammonium permanganate in methylene chloride 

solutions according to the point-counting procedure. 
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The values of the extrapolated isokinetic temperature, as well as their corresponding error 

limits, obtained from the four different methods employed so far (maximum probability curve and 

point counting, each in its E- or r-based version) can be compared in Table 4. 

 

(a) Parameter E is the experimental fitting error of the enthalpy-entropy compensation plot. 

(b) Parameter r is the experimental correlation coefficient of the enthalpy-entropy compensation plot.  

 

Table 4.  Highest probability values of the extrapolated isokinetic temperature (in K) for the oxidation 

of a series of substituted cinnamic acids by tributylmethylammonium permanganate in methylene chloride 

solutions according to the different methods. 

 

It can be concluded that, although the extrapolated data are notably consistent, the r-based 

methods yield more divergent results (differing in 11 K) than their E-based counterparts 

(differing in 4 K), besides their imprecisions being higher (53 - 60 K vs. 36 - 45 K). Moreover, 

given that the E-methods lead to comparable results, the maximum probability curve version 

should be preferred over the point-counting one, not only because the former does not require 

any relatively arbitrary condition as the latter (the 10 % amplitude range, eqs 18-20), but also 

because it can be implemented in a more automatized way (does not require a point by point 

curve building). 

By way of summary, it can be concluded that, although the experimental data for the 

currently analyzed case yielded a linear compensation plot with a slope equal to 627 ± 52 K,  

the actual isokinetic temperature (once discounted the effect of random errors) was probably 

681 ± 45 K, the deviation being attributable to the accidental type imprecisions made in the 

determination of the rate constants, since the randomness of the latter results in a bias so that 

the slope of the enthalpy-entropy correlation moves toward the mean experimental temperature 

(286 K).  

Method  E - based r - based 

Maximum probability curve 681 ± 45 713 ± 53 

Point-counting 677 ± 36 702 ± 60   
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9. APPLICATION TO BIBLIOGRAPHIC DATA 

9.1. PHYSICAL MODEL: DOUBLING TEMPERATURE VALUES 

Once arrived here, it is convenient to stop and think on the main purpose of the present 

work. It can be formulated as finding an answer to the following questions:  

First: Why, within the realm of a homologous reaction series, the activation energy may 

change considerably from one member to another, whereas the rate constant does not vary so 

much?  

Second: Does it mean that the dependence of the rate constant on temperature cannot be 

described by a simple exponential function? 

First question – experimental facts: The kinetic data reported in the chemical literature for 

different homologous reaction series have been used to calculate the expected and found 

values of the rate constant ratio from the Arrhenius equation as: 
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where Tm is the experimental mean temperature, and Ea ,1 and Ea ,2 the lowest and highest 

activation energies within each series, respectively. 

As shown in both Figure 16 and Table 1-A (Appendix 4), the values of the rate constant ratio 

experimentally found in the laboratories43, 49, 58-68 were consistently lower than those expected 

according to eq 21, in which only the information contained in the activation energies was 

considered. This is a reflection of the phenomenon known as kinetic compensation effect,  since 

an increase in the activation energy usually  comes with a parallel increase in the Arrhenius pre-

exponential factor. In particular, when within the same reaction series the activation energies 

are different enough, an expected ratio of 15 orders of magnitude may be reduced to only 2 

orders as seen in the actual experiments. 
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Figure 16. Expected (red points) and found (blue points) values of the logarithm of the rate constant ratio 
at the mean experimental temperature for two members of each homologous reaction series taken from 

bibliographic sources as a function of the difference between the corresponding lowest (Ea,1) and highest 
(Ea,2) activation energies. The dashed lines mark the intersection of the two straight lines at the origin of 

coordinates. 

 

Second question – modified Arrhenius equation as a potential answer: As has been 

demonstrated before, if it is assumed that the activation energy increases with temperature in 

either an exact or approximate linear way, the pre-exponential factor also increases (eq 6). 

Thus, whereas according to the original version of the Arrhenius equation (eq 5) the rate 

constant extrapolated at T = ∞ would be a finite magnitude (the pre-exponential factor): 
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according to the modified version of the same equation the extrapolated rate constant would be 

an infinite magnitude:   
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This result seems indeed logical if taken into account that the pre-exponential factor is at least 

partially related with the frequency of reactant collisions per unit volume, parameter expected to 
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increase indefinitely as the temperature increases (the Arrhenius equation does not account for 

its temperature dependence). 

First of all, an important point that should be conveniently addressed is whether eq 6 may 

be coherent or not with the usually Arrhenius fulfilling experimental data. Actually, if ln kAE vs. 

1/T is a linear relationship, it follows straightforwardly that ln kMAE vs. 1/T cannot lead to a 

perfect linear plot. However, as shown in Figure 17 (left), provided that the exponent of the 

temperature in the pre-exponential factor is low enough, the Arrhenius plot would be acceptably 

linear for a temperature range as wide as 900 K (much more than reported in most kinetic 

studies).   . 

 

  

 

  

 

 
 
 
 
 

 

 
Figure 17. Arrhenius plots for the simulation of reactions fulfilling the modified Arrhenius equation with  AE 

= 1.0010-2 M-1 s-1 and Td = 3000 K. Left: a single reaction with Ea ,o  =  20  kJ mol-1 at T = 100 1000 

K (r = 0.99974). Right: a five reaction homologous series with Ea ,o  =  20 (empty circles), 30 (filled 

circles), 40 (empty triangles), 50 (filled triangles) and 60 (squares) kJ mol-1 at T = 15.0 35.0 ºC (Tm = 

298 K), showing an isokinetic temperature at 492 K. 
 

Moreover, the modified Arrhenius equation leads to perfectly behaved isokinetic plots 

(Figure 17, right) with the only requirement that the doubling temperature (Td) remains constant 

along the reaction series. According to eqs 13 and 16, the isokinetic and doubling temperatures 

would then be: 
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The values of parameter Td calculated from eq 26 for different homologous reaction series 

reported in the literature appear compiled in Table 2-A (Appendix 4). 

9.2. SEEKING THE TRUE ISOKINETIC TEMPERATURE: HIGHEST PROBABILITY VALUES 

The Arrhenius equation allows writing the ratio of rate constants determined at the same 

absolute temperature (T ) as: 
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where the subscripts 1 and 2 correspond to the reactions with the lowest and highest activation 

energies of the homologous series, respectively. Given that in the particular case of T = Tik the 

rate constants for the different family members are known to take identical values, it can be 

concluded that: 
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and consequently: 
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Finally, from eq 27 (at T = Tm) and eq 29 it follows that: 
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Therefore, three different alternatives are possible depending on the value of the mean 

experimental temperature (Scheme 1). As can be seen in Table 1-A (Appendix 4), from the 17 

homologous reaction series consulted in the literature, the predominant situation was that of 

ratio > 1 (76 %), whereas that of ratio < 1 accounted only for a small fraction (24  %). Since the 

first particular case has already been addressed in depth in a previous section, now the 

attention will be focused on the second.  
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Scheme 1. Values of the rate constant ratio under different experimental conditions of 
the mean working temperature in relation to the isokinetic temperature of the 

homologous reaction series. 
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Figure 18. Correlation coefficient (left) and isokinetic temperature (right) as functions of the maximum limit 
allowed to the percent random errors of the rate constants for the simulated compensation plots based on 

the oxidation of blue copper proteins by tris(1,10-phenanthroline)cobalt(III) ion, assuming that in the 

absence of errors there exists a perfect enthalpy-entropy straight line with a slope equal to the 
experimental isokinetic temperature (211 K). The dashed line corresponds to a perfect enthalpy-entropy 

correlation (r = 1) and the continuous lines to the maximum probability curves. 

 

It might be interesting to know the aspect of the simulation graphs in those particular cases 

where the mean experimental temperature is higher than the isokinetic temperature (Tm > Tik). 
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To that end, the series chosen as an example was that of the oxidation of blue copper proteins 

by tris(1,10-phenanthroline)cobalt(III) ion.63 Again, it was observed that, as the experimental 

accidental errors of the rate constants increased, the correlation coefficient of the compensation 

plot first decreased, passed through a minimum and then increased (Figure 18, left). However, 

the slope increased this time from the experimental isokinetic temperature to values close to the 

mean working temperature (Figure 18, right).  

 

  

 

  

 

 
 
 
 
 

 

 
Figure 19. Isokinetic temperature as a function of the fitting error for the simulated enthalpy-entropy 

compensation plots based on the oxidation of blue copper proteins by tris(1,10-phenanthroline)cobalt(III) 

ion, showing the experimental point (filled circle), the points obtained from computer simulations 
incorporating accidental errors (empty circles) and the maximum probability curve (continuous line). The 

calculations were performed assuming that in the absence of errors (E = 0) there exists a perfect enthalpy-

entropy straight line with a slope equal either to the experimental isokinetic temperature (211 K, left) or to 
the temperature leading to a situation where the experimental point matches exactly the prediction of the 

maximum probability curve (195 K, right). The accidental errors allowed to the rate constants varied within 
the range 0 – 100 %. 

 

Accordingly, the simulated isokinetic temperature increased from either the experimental 

value (Figure 19, left) or the extrapolated maximum probability value (Figure 19, right) to the 

mean working temperature as the fitting activation enthalpy error increased.  

Once more, the procedure was repeated, now assessing the quality of the linear 

compensation plot by means of the correlation coefficient (r ) instead of the fitting error (E ), 

yielding the results represented below for the maximum probability curves starting either at the 

coordinates (r = 1, Tik = 211 K) of the point corresponding to the experimental isokinetic 

temperature (Figure 20, left) or to those (r = 1, Tik = 196 K) of the point corresponding to the 

extrapolated highest probability value of the isokinetic temperature (Figure 20, right).  

180

240

300

0.0 1.9 3.8

T
  
 /

 K
ik

E / kJ mol
-1

160

220

280

340

0.0 1.4 2.8 4.2

T
  
 /

 K
ik

E / kJ mol
-1



Numerical simulation study on the temperature dependence of the Arrhenius parameters and its relation with the kinetic compensation effect 35 

 

  

 

  

 

 
 
 
 
 

 

 
Figure 20. Isokinetic temperature as a function of the correlation coefficient for the simulated enthalpy-

entropy compensation plots based on the oxidation of blue copper proteins by tris(1,10-
phenanthroline)cobalt(III) ion, showing the experimental point (filled circle), the points obtained from 

computer simulations incorporating accidental errors (empty circles) and the maximum probability curve 
(continuous line). The calculations were performed assuming that in the absence of errors (r  = 1) there 

exists a perfect enthalpy-entropy straight line with a slope equal either to the experimental isokinetic 
temperature (211 K, left) or to the temperature leading to a situation where the experimental point matches 
exactly the prediction of the maximum probability curve (196 K, right). The accidental errors allowed to the 

rate constants varied within the range 0 – 100 %. 
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Figure 21. Isokinetic temperature as a function of either the fitting error (left) or the correlation coefficient 

(right) for the simulated enthalpy-entropy compensation plots based on the oxidation of blue copper 
proteins by tris(1,10-phenanthroline)cobalt(III) ion, showing the experimental point (filled circle) and its 

error-tolerated limits (empty circles), as well as the maximum probability curves (continuous lines) 

beginning either at  183, 195 and 207 K (E-based method) or at 186, 196 and 205 K (r-based method). 
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by its allowed limits (197 and 225 K), yielding the results of 195 ± 12 K (E-based method, 

Figure 21, left) and 196 ± 10 K (r-based method, Figure 21, right). 

The values of the extrapolated isokinetic temperature obtained by the E-based version of 

the maximum probability curve method for different homologous reaction series selected from 

the specialized literature appear compiled in Table 2-A (Appendix 4). A mere inspection of them 

reveals that (as shown in Figure 22, left), when the experimental isokinetic temperature is higher 

than the mean working temperature (Tik,exp > Tm), the extrapolated value should be looked for 

in the high temperature range (Tik,sim > Tik,exp). On the contrary, when the experimental 

isokinetic temperature is lower than the mean working temperature (Tik,exp < Tm), the 

extrapolated value should be looked for in the low temperature range (Tik,sim < Tik,exp). This is 

so because the random errors provoke a shift of the experimental isokinetic temperature toward 

the mean working temperature (Tik,exp  Tm).  

Further, the relative error of the extrapolated isokinetic temperature decreased dramatically 

as the correlation coefficient of the enthalpy-entropy linear plot increased (Figure 22, right). On 

the other hand, it should be noticed that the higher values of parameter E (k) might not be 

entirely attributable to experimental errors of the rate constants, but rather to the own nature of 

each chemical reaction: according to the physical model proposed in the present work, 

parameter Td might be slightly different for each member of the homologous series. 
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Figure 22. Tik,sim –  Tik,exp as a function of Tik,exp –  Tm (left) and the relative error of Tik,sim as a 

function of the correlation coefficient of the isokinetic plot (right) for different homologous reaction series 
taken from the chemical literature. The dashed lines mark out the area corresponding to the points with 

double negative coordinates (Tik,exp <  Tm   Tik,sim <  Tik,exp). 
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10. CONCLUSIONS 

 (i) The compensation effect is a widespread phenomenon, spanning over the fields of both 

physics and chemistry. This seems to call for a general explanation, the main potential 

alternatives being: the ubiquitous experimental errors (either accidental or systematic) and the 

effect of temperature on the activation energy. 

 (ii) A certain dependence of the Arrhenius parameters on temperature cannot be discarded, 

since the frequency of reactant collisions per unit volume and the occupation number of each 

electronic energy level (for the reactants and the activated complex) are both strongly 

temperature-dependent. 

 (iii) The Arrhenius parameters are interconnected, so that an increase (or decrease) of the 

activation energy with temperature results in an increase (or decrease) of the pre-exponential 

factor (and vice versa). 

 (iv) The modified Arrhenius and Eyring equations (physical model) can explain the kinetic 

compensation effect unless the doubling temperature is directly proportional to the activation 

energy at 0 K (situation that seems implausible for physico-chemical reasons). 

 (v) According to the bibliographic kinetic data, the values obtained for the doubling 

temperature (in the range 819 – 3887 K) are high enough to be consistent with almost linear    

ln k vs. 1/T plots (linearized Arrhenius equation).  

(vi) That physical model seems to be supported by the low values of parameter Td obtained 

for chemical reactions involving either proteins or biomimetic enzyme-like complexes as 

reactants (819 – 1416 K) when compared with the remaining data (1557– 3887 K).  

 (vii) The random errors provoke a shift of the experimental isokinetic temperature toward 

the mean working temperature. By discounting this effect, the most probable (extrapolated) 

value of the isokinetic temperature can be found. 

(viii) When the experimental isokinetic temperature is higher (lower) than the mean working 

temperature, the extrapolated value should be looked for in the high (low) temperature range: 

Tik,sim > Tik,exp (or Tik,sim < Tik,exp ). 

(ix) The high values of parameter E (k) found for some homologous series might indicate 

that, due to the own nature of each chemical reaction, the doubling temperature might be 

slightly different for each member of the series. 
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APPENDIX 1: Statistical methods 

The kinetic data involved in the linear correlations needed in this study were fitted by means 

of the least-square method, according to the following mathematical expressions:  
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where xi  is the abscissa and yi the ordinate of each couple of data, N the total number of 

points, a the intercept, b the slope, r  the correlation coefficient, while E(a) and E(b) stand for 

the intercept and slope errors, respectively.  

 

  

       

     

=1 =1 =1

=1 =1 =1 =1

2 2 2

  

 = 

( ) ( )  [ ][ ]  

N N N

N N N N

i i i i

i i i

2

i i i i

i i i i

N x y x y

r

N x x N y y



 

  

   

 

=1

=1

2

2

1  = 

( )
N

N i

i
i

i

x

S x
N






       

=1 =1 =1

=1 =1

2

2

2   

  
 1 

 =  
 2 

( )
[ ]

N N N

N Ni i i

i i i
i i i

i i

y b x y

S y b x y
N N N

  


  
 



44 Alburquerque Alvarez, Iker 

 

APPENDIX 2: Theoretical background: general model 

 For whatever physical or chemical phenomenon involving atoms or molecules that have to 

overcome an activation barrier, it follows from eq 1 that: 
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Now, let us assume that parameter X in eq 6-A, the energy barrier to be overcome in the 

activated process under consideration, depends on temperature. For the sake of simplicity, a 

linear dependence will be hypothesized: 
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where Xo is the energy barrier at T = 0 K, and Td stands for the doubling temperature, that is, 

the value of T at which 
 
XT = 2 Xo. 

From eqs 6-A and 7-A and posterior integration: 
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where ln AX is the integration constant. Equation 10-A can also be written in its equivalent form: 
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where parameter AX comes from the integration constant, its physical significance being that of 

the value (independent of temperature) the magnitude YT would take for a hypothetical non-

activated process with  Xo  = 0. 
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Hence, let us assume that the correct dependence of the property YT on temperature is 

given by eq 11-A. In that case, if the experimental data are fitted according to the simplified form 

shown in eq 1, the fitting parameters will be (from eqs 7-A and 11-A): 
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where Tm is the mean value of the experimental temperature range used in the study 

(supposed to be short enough). Finally, from eqs 12-A and 13-A, for a series of closely related 

processes it could be written: 
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thus explaining the correlation shown in eq 2 with: 
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provided that parameters Tm, Td and AX are the same (or at least very similar) for all the 

members of the series. The constancy of Tm along the series is a condition easily fulfilled, 

because the same experimental temperature range is often used for all the processes under 

study.  

In the case of parameter Td, it may be justified (at least partially) by the argument that 

follows. According to eq 7-A, the dependence of the activation barrier on temperature is given 

by the derivative:  
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If there is a systematic change of this derivative along the series, the simplest way to take it into 

consideration is to assume a linear dependence on the value of Xo corresponding to each 

particular process: 
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where parameter a is the value of dXT/dT for a hypothetical member of the homologous series 

with  Xo = 0
 
 and parameter b coincides with the value of the second derivative (∂2XT / ∂T ∂Xo). 

Since a process with no activation barrier is expected to remain so at all temperatures (for 

instance, a chemical reaction involving no bond breakage will show a zero activation energy 

irrespective of temperature), it can be concluded that for Xo = 0 the derivative dXT/dT  must 

also be zero, thus implying that a = 0. Hence, from eqs 17-A and 18-A: 
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Equations 17-A and 19-A are consistent with the hypothesis used above according to which 

the energy barrier of a process with Xo = 0
 
is expected not to depend on temperature, and they 

imply that the higher the value of Xo for a particular process the higher the temperature 

dependence of its XT value: along a certain homologous series, the members with the higher 

energy barriers will show XT values more sensitive to temperature than the members with the 

lower energy barriers.  

However, this argument should be considered only as an approximation to the real behavior 

of activated physico-chemical processes. For instance, it could have been assumed that the 

dependence given in eq 18-A can be described by a second degree polynomial (dXT/dT  =   

Xo/Td  =  a +  b Xo + c Xo
2

 ), the required condition a = 0 leading then to  Td  =                   

1/( b + c Xo). Nevertheless, provided that the energy barrier range along the series is narrow 

enough, the quadratic term c Xo
2
 is expected to have a negligible contribution when compared 

with b Xo. Thus, although a certain dependence of Td on Xo 
cannot be excluded, it is not a 

direct proportion relationship indeed. Therefore, if this conclusion is accepted, a simple 

inspection of eq 11-A reveals that the pre-exponential factor Y∞ in eq 1 must be somehow 

correlated with the activation barrier X as a consequence of the temperature dependence of the 

latter (only a direct proportion relationship between parameters Td  and Xo would abolish that 

correlation).  
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Finally, because of the (at least partially) entropic nature of parameter AX, its variation from 

one member of the series to another and, so, its interdependence with the value of Xo, cannot 

be discarded beforehand, and the potential effect that this variation (along with that of Td) may 

have on the profile of the X ln Y∞ plots may be analyzed in detail with the aid of numerical 

simulations (see Section 8.1). 

Although the argument so far developed in this section is of an eminently theoretical nature, 

a rather solid proof can be found from the experimental standpoint. As will be shown later (Table 

2-A, Appendix 4), the three lowest values of parameter Td (819, 1117 and 1309 K), among 

those calculated for 17 homologous reaction series, corresponded to chemical processes 

involving a protein as one of their reactants. Furthermore, the fourth lowest value (1416 K) 

corresponded to the reactions of biomimetic enzyme-like complexes with O2 to yield thermally 

labile peroxo species. Considering that proteins share the unusual feature of their structure 

being largely dependent on temperature (for instance, a gentle heating may be enough to result 

in the breaking of hydrogen bonds between residual amino acids), it seems indeed logical that 

the corresponding activation energies be more temperature dependent than usual (when the 

reactant structure is temperature independent). Since a low value of Td means precisely that 

the activation energy is more sensitive to temperature than ordinary, it can be concluded that 

these results strongly support the physical model (dependence of the Arrhenius and Eyring 

parameters on temperature) as an explanation of the kinetic compensation effect. 
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APPENDIX 3: Application to chemical kinetics: modified Eyring law  

 By derivation in the original version of the Eyring equation: 
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Assuming now that the activation enthalpy increases linearly with temperature: 
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 Here 
o

,oH  is the activation enthalpy at 0 K for a particular member of the reaction series and 

Td the doubling temperature ( at which 
o

,TH = 2
o

,oH ). From equations 20-A and 21-A 

and posterior integration: 
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where ln AH is the integration constant. This equation can also be written in its equivalent form 

(modified Eyring equation): 
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the relationship between the new pre-exponential factor (
 HA ) and the activation entropy being 

then (from eqs 7, 21-A and 24-A): 
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APPENDIX 4: Tabulated kinetic data 

(a) Ea,1 and Ea,2 are the lowest and highest activation energies for each reaction series, respectively. 

(b) Tm  is the experimental mean temperature for each reaction series. 

(c) k1 / k2 is the ratio between the highest and lowest rate constants at the temperature Tm for each reaction series. 

(d) Expected ratio: calculated assuming the same Arrhenius pre-exponential factors for all the members of the series. 
(e) Found ratio: experimentally observed value. 
 

 

Table 1-A.  Expected (non-compensated) and found (compensated) rate constant ratios at the mean 

experimental temperature for different homologous reaction series taken from the chemical literature. 

Ea,2 - Ea,1  

[kJ mol-1] 

Tm  

[K] 

k1 / k2  

expected 

k1 / k2  

found 

Reference 

9 ± 2 301 39.6 0.43 58 

10 ± 2 298 66.4 2.58 59 

17 ± 3 286   1.04 x 103 58.0 49 

18 ± 6 286 1.63 x 103 3.90 60 

20 ± 5 294 3.56 x 103 12.5 43 

21 ± 7 298 4.06 x 103 0.80 59 

22 ± 10 223 1.41 x 104 0.11 61 

26 ± 1 306 2.28 x 104 1.71 62 

27 ± 4 292 7.40 x 104 0.01 63 

32 ± 3 408 1.33 x 104 12.8 64 

32 ± 5 426 7.99 x 103 2.08 64 

33 ± 2 296 5.81 x 105 169 65 

38 ± 2 233 2.52 x 108 248 66 

40 ± 3 268 7.41 x 107 2115 66 

42 ± 8 301 2.20 x 107 75.5 67 

75 ± 17 334 5.24 x 1011 6.35 68 

124 ± 30 419   3.00 x 1015 109 64 
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(a) N is the number of reactions in each homologous series. 

(b) r is the correlation coefficient of the experimental enthalpy-entropy linear plot. 

(c) E is the experimental activation enthalpy fitting error. 
(d) E (k)  is the random error percentage of the rate constants according to the simulations. 

(e) Td  is the calculated doubling temperature for each reaction series. 

(f) Tik,exp and Tik,sim are the experimental and simulated (most probable) isokinetic 

temperatures for each reaction series, respectively.  
 

Table 2-A.  Experimental and simulated kinetic data for different homologous reaction series taken 

from the chemical literature. 

N 

 

r 

 

E  

[kJ mol-1] 

E (k)  

[%] 

Td  

[K] 

Tik,exp  

[K] 

Tik,sim  

[K] 

Reference 

4 0.955 3.31 33.3 ± 20.3 3121 ± 774 503 ± 110 476 ± 243 64 

4  1.000 0.57 29.4 ± 5.5 2087 ± 35 355 ± 5 358 ± 5 68 

5 0.976 3.33 23.1 ± 5.6 2873 ± 406 477 ± 62 521 ± 52 66 

5  0.995 0.91 15.6 ± 6.2   2954 ± 203 479 ± 29 507 ± 22 64 

5  0.999 0.02 0.6 ± 0.1 1309 ± 33 240 ± 5 239 ± 5 58 

6 0.928 3.42 49.1 ± 13.2 1557 ± 373 277 ± 55 286 ± 151 62 

6  0.988 0.55 9.3 ± 2.7 2200 ± 193 373 ± 29 408 ± 22 67 

6  0.996 0.10 2.0 ± 0.4 2091 ± 109 357 ± 16 371 ± 14 60 

8 0.987 1.43 22.7 ± 3.3 1117 ± 93 211 ± 14 195 ± 12 63 

8  0.998 1.86 26.4 ± 4.3 2976 ± 87 482 ± 12  493 ± 11 64 

9  0.978 2.29 21.6 ± 4.3 2517 ± 227 420 ± 34 477 ± 26 65 

9  0.989 0.80 7.2 ± 1.1 2646 ± 167 440 ± 25 464 ± 22 43 

10  0.837 4.00 61.4 ± 11.2 1416 ± 380 256 ± 59 245 ± 192 66 

10 0.962 1.45 36.5 ± 7.0 819 ± 105 163 ± 16 137 ± 13 61 

13  0.810 1.50 22.1 ± 9.2 1436 ± 379 259 ± 57 273 ± 234 59 

13 0.964 0.75 3.0 ± 0.4  3887 ± 346 627 ± 52 681 ± 45 49 

13  0.990 0.53 31.3 ± 8.5 1655 ± 84 292 ± 13 294 ± 49 59 


