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Abstract

Traditional empirical asset pricing focuses on the average cases. We propose
a new approach to analyze the cross-section of the returns. We test the
predictive power of market-beta, size, book-to-market ratio, profitability,
investment, momentum, and liquidity, across the whole conditional distribution
of market returns. Our results indicate that the relevant characteristics to
explain the winners’ tail, the losers’ tail and the center of the distribution, in a
given period, differ. Indeed, some characteristics can be discarded from our
specification if our main interest is to model expected extreme losses (such as
traditional momentum), and some others should be kept even if they do not
seem particularly significant for the average scenario, because they become
significant at the tails (such as size). Book-to-market is mainly a left tail factor,
in the sense that it explains to a greater extent the loser’s tail than either the
center or the tail of the winners. On the contrary, liquidity and investment are
right-tail factors, because they explain in greater proportion the winners’ tail
than the rest of the distribution. Market beta is relevant throughout the whole
cross-section, but affect winners and losers in diametrically opposite ways (the
effect is positive on the right tail and negative on the left tail). We show that the
practice of adding characteristics to our pricing equation should be clearly
informed by our particular interests regarding the cross-sectional distribution of
the returns, that is, whether we are more interested in a certain fragment of the
distribution than in other parts. Our results emphasize the need to consider
carefully what factors to include in the pricing equation, which depends on the
dynamics that one wants to understand and even on one attitude towards risk.
In short, not all factors serve all purposes.
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1. Introduction

The two fundamental questions in asset pricing are why different assets earn different rates of return
and what are the systematic factors that explain movements and commonalities in time of these
returns. Answering these questions requires describing and understanding the forces that determine
the whole cross-sectional distribution of the returns and not only its central fragment, as is implicitly
assumed by virtually all the empirical asset pricing literature. We remedy this limitation of the
traditional approach which uses firms’ characteristics to explain cross-sectional variations of market
returns. The consequences of the limitation that we seek to overcome are considerable. For instance,
if the characteristics that explain the right tail, the left tail at the center of the cross-sectional
distribution of market returns differ, or if such characteristics exert a different impact on different
fragments of the returns’ distribution, investment recommendations based on the examination of the
risk implied and the return offered by a given asset or portfolio will differ as well. In particular,
incorrect specifications of the pricing equation may lead to underestimate or overestimate the risk of
such an asset or portfolio, and so-called “smart-beta” strategies that are based on exploiting arbitrage
opportunities based on the estimation of the price of risk due to the characteristics appearing in the

pricing equation will be incorrectly informed.

Our approach expands the literature in two general ways. First, we expand the cross-sectional asset-
pricing model recently revisited by Fama and French (2019) based on characteristics to the quantile-
pricing case. We are able to provide quantile factor series which can be thought of as indicators of
the time-varying effects of asset characteristics on the whole distribution of cross-sectional returns in
the stock market. Second, we show that the particular interest of market participants in different
fragments of the stock returns distribution (for instance due to different attitudes towards risk) is a
first-order consideration when specifying an asset pricing equation. In short, not all factors serve all
purposes. Our main pragmatic message can be summarized as follows: consider carefully what
factors to include in your model of the returns, which would depend on the issue or dynamics you
want to understand. For instance, if you are interested in modeling the prices of stocks with an
expected combination of high-risk, high-reward (i.e. your stock/portfolio tends to be at the cross-
sectional tails of the market distribution), the characteristics necessary to understand this kind of
assets are different to those necessary to model assets with historical gains and losses much closer to

the average scenario. The same message suits the estimation of Value at Risk statistics conditioned



on pricing factors used in risk management applications by practitioners and regulators, which

should consider their particular interest in the left tail of the market returns distribution.

From a different but related perspective, the heterogeneities in the relationship between
characteristics and cross-sectional returns that we document call from more comprehensive and
complementary ways to evaluate asset-pricing models than those cutrently in practice, based on
‘alphas’ and residuals of pricing equations focused on the average returns. Pricing errors based on
conditional mean-targets, even as those considered by Barillas and Shanken (2018), Giglio and Xu
(2019), Giglio et al. (2020), Chib et al. (2020) or Feng et al. (2020), are not well suited to fully evaluate
the performance of an asset-pricing model in the tails of the cross-sectional distribution.
Complementary statistics such as the local quantile-R’, or the global average R® that weights
differently the various fragments of the distribution, should be reported alongside the traditional
ones, as a regular practice. Much work is needed seeking to connect the linear pricing errors literature
with the factors-in-quantiles literature. Our conservative goal in this respect is to draw the attention

of the profession to this important issue and to give a first step in the desired direction.

Modeling the returns using firms’ characteristics has the advantage of producing interpretable factors
that underlay market movements. This in turn helps us to understand market dynamics, and not only
to predict it. The lack of economic insight highlighted for instance by Campbell (2018, Ch. 3), that
usually accompanies factor analysis in finance, pioneered by the works of Chamberlain and
Rothschild (1983) and Connor and Korajczyk (1988), is an important limitation of the statistical
approach that we aim to overcome for the quantile factors case. Hence, we propose how to estimate
quantile factor models based on characteristics for modeling asset prices and for risk management
applications. Our proposal is an extension of the traditional cross-sectional pricing framework based
on characteristics in Fama and French (2019), but instead of limiting our analysis to the average
returns, our empirical model considers the effects of assets’ characteristics alongside the full
conditional distribution of the cross-section of these returns. In particular, our strategy allows us to
test the hypothesis that traditional asset characteristics such as firms’ market beta, size, book-to-
market ratio, liquidity, momentum, profitability or investment, which are arguably the most popular
tirms’ characteristics identified by the literature, explain the tails of the cross-sectional distribution of
stock returns to a different extent of what they explain its center. Moreover, the characteristics
underlying the dynamics of the winners (right tail) or the losers (left tail) are not necessarily the same,
and their economic impact is asymmetric alongside the returns’ cross-section. This fact, indeed,

should not be very surprising from a theoretical point of view, since many prominent works have



pointed out to a nonlinear relationship between state variables and market returns (e.g. Amihud and
Mendelson 1986; Campbell and Cochrane, 1999; Bansal and Yaron, 2004; He and Krishnamurthy,
2013), yet the literature has focused almost exclusively on explaining the central part of the returns’

cross-sectional distribution.

Our empirical strategy relies on conducting monthly cross-sectional conditional quantile regressions
(Koenker and Bassett, 1978) using data from January 1928 to December 2019 for the universe of
stocks in the US market, although we focus our main analyses on the last 20 years of the sample.
Quantile regression is a powerful tool to analyze stock returns, but nevertheless its usage in empirical
asset pricing has been rather limited. Quantiles are order statistics and therefore robust to outliers,
which generally plague financial series. Quantile regressions do not rely on strong distributional
assumptions on the error term that are inappropriate when modeling returns (e.g. multivariate
Gaussian or ii.d. cross-sectional errors). More importantly, they allow the researcher to estimate the
effects of explanatory characteristics on the full conditional distribution of the explained variable.
Quantile regressions have been recently used in the financial literature notably to model systemic risk
in the banking sector by Adrian and Brunnermeier (2016), or in the macro-financial literature aiming

to assess the predictability of economic activity by financial conditions (Adrian, et al. 2019).

Our main empirical results can be summarized as follows: i) not all traditional characteristics are
relevant to explain the winners’ tail, the losers’ tail and average asset returns, to the same degree.
Indeed, some characteristics that are relevant to explain returns close to the center of the distribution
lose much of their relevance at the tails. That is the case of momentum and, to some extent,
operating profitability. The opposite case is also found in our results. Namely, some characteristics,
such as size, are far more relevant to explain both tails of the distribution than its center. In the same
line, some characteristics are better at explaining only the winners’ tail, while some others the losers’
tail. We include investment and liquidity in the former group and the book-to-market ratio in the
latter. ii) Some characteristics, such as the market beta or size, show diametrically opposite effects on
both tails of the market returns distribution, to the point that the sign of the effects changes from
negative to positive for the market beta, and from positive to negative for size. iii) The joint ability of
the popular characteristics considered in our model varies significantly in time and also across
quantiles. It seems easier to explain the tails of the distribution (average R*=0.10 for both tails), than
the center of the distribution (average R*=0.03). Regarding the time-variation of the joint explanatory
power, which is notorious (max R*=0.26 and min R*=0.01 for the losers’ tail and max R*=0.35 and

min R’=0.01 for the tail of the winners), we conjecture that the set of factors considered in our

4



specification gain economic relevance under certain macro-economic states. iv) We show that
successfully selecting characteristics for our asset pricing equation clearly depends on what part of
the distribution of the market returns we are particularly interested in. For instance, if we care more
about the right side of the distribution, we would add to our baseline model the enterprise multiple
proposed by Loughran and Wellman (2011), while if our interest is in the left side of the distribution

we would add the assez growth variable of Cooper et al. (2008).

The rest of this document is organized as follows. Section two is a brief revision of the related
literature that puts our contribution in perspective. Section three consists of the methodology. In the
fourth section we describe our data and sources, which (except for the returns) is publicly available
thanks to Chen and Zimmermann (2020), via the Open source for asset pricing project. In the fifth
section we present our main results and provide intuition for our findings. This section also includes
robustness exercises, mainly consisting of changing the working sample, thus conditioning our
results on different macroeconomic states, and taking a more historical perspective for our
estimations. The sixth section concludes and highlights some future lines of research for the topic of

pricing the tails of winners and losers in the stock market.

2. Related Literature and Contribution

Our work is mainly related to the model studied by Fama and French (2019). These authors have
emphasized the importance of considering cross-sectional variation of characteristics (as opposed to
time-series variation), when explaining market returns. This line of research goes back at least to
Fama and McBeth (1973) and emphasizes the time-varying factor loads of economic factors, which
are better encapsulated in an asset pricing model by conducting cross-sectional regressions each
period, and stacking the results, than by building ‘mimic’ portfolios according to a characteristic-
sorted criterion and then conducting time-series regressions, as it has been done for instance by the
same authors in previous opportunities (Fama and French, 1993, 2015). The former strategy works
especially well in terms of reducing the pricing errors for individual stock returns (instead of

portfolios), which is our unit of interest.

From a statistical point of view our work is related to previous methodological studies that have
proposed panel-quantile or other non-linear panel structures to model asset returns or other sets of
economic series with time-series and cross-sectional dimensions. For instance, Amengual and

Sentana (2018) reject the hypothesis of a Gaussian copula describing the cross-sectional dependence



among monthly returns on individual US stocks. Indeed, they find strong nonlinear tail dependences,
co-skewness and co-kurtosis among the analyzed returns. Ando and Bai (2020) report that common
statistical factor structures explaining asset returns distribution in global financial markets depict
divergent patterns on the lower an upper tails of the distribution, after the Global Financial Crisis.
Chen et al. (2021) report that the number of statistical quantile-factors is lower at the tails of the
returns distribution than at the center. The literature of statistical quantile-factor models, from our
perspective, provides the most convincing corpus of evidence of a changing number of statistical
factors or a changing influence of such factors across the conditional distribution of the returns,
although it offers no clear evidence on what the factors are. In this line, Belloni et al. (2019) and Ma
et al. (2020) go one step forward, as they propose panel quantile models that use latent statistical
factors as building blocks and other covariates as a complement. They test their models using stock
market returns, as a case of study, and document important differences across quantiles of pricing

covariates and factors, with a monthly and daily frequency respectively.

Although it is a step in the right direction, the quantile-factors reported by these latter authors also
lack economic interpretability by themselves, because they serve the related purpose of inducing
time-varying factors loads through which characteristics jointly impact the returns, hence such factors
are still purely statistical in nature. In other words, the factors remain as a combination at the quantile
level of all the information within the sample, which, similar to traditional PCAs, do not offer an
economic insight. Another important difference of our model with respect to the aforementioned
literature is that this literature needs to resort to a balanced panel structure to estimate their models.
In turn, this forces the researcher to retain only the firms present in the market during the whole
sample period, which can easily render survivorship bias to the estimates. For instance, only around
23% of firms that were listed in the market in the year 2000, were present at the end of 2019. Such
an approach is unsuitable to analyze the stock market from a more historical perspective, as we do in
section 5.4 of the results, simply because too few firms were listed in the market during the whole
sample period as to construct a representative panel from 1928 to 2019, indeed only 38 in our
dataset. Our approach is flexible enough to overcome this problem. Moreover, even if the panels in
the previous literature were unbalanced, the strategy followed by these authors keeps the researcher
from analyzing the time-varying nature of the documented relationships at the quantile level, which
as we will see, is key to understand the heterogeneous flows of information from asset characteristics
to excess returns, and to evaluate the robustness of the documented quantile-effects in time. Finally,

none of the studies above examine and quantify the importance of considering quantile



heterogeneities when we are setting our asset pricing equation (see subsection 5.6), which is one of

our two main contributions.

Another line of studies related to ours, develops different frameworks seeking to incorporate asset
characteristics to inform latent factor estimation and to offer the possibility of a nonlinear
relationship between explanatory factors and asset returns. For instance, Connor et al. (2012), Feng
et al. (2019), Lettau et al. (2020), Kelly et al. (2019), Kelly et al. (2020) all seek to estimate latent
factors and factor-loadings which are theoretically informed by covariates. Gu et al. (2020 a,b) and
Chen et al. (2020), pursue the same objective but they use Machine Learning tools such as (deep)
neural networks and decision trees to synthetize the rich information contained in the characteristics
dimension. Deep neural networks, in particular Autoencoders, can be understood as a generalization
of PCA to a nonlinear space (see for instance Feng et al. (2018) and Andreini et al. (2020)). This line
of studies seeks to encapsulate nonlinearities in the relationship between returns and characteristics
that otherwise could not be incorporated into the model, because they are not reducible to a linear
approximation via some transformation of the original variables (or some double or triple sorting
conditional on characteristics). This latter set of studies is totally silent about our main concern.
Namely, we care about the whole conditional distribution of the cross-section of the returns, and not
only the average. In other words, our focus is on the whole cross-sectional distribution of the returns
(i.e., left tail, right tail, center) and not on the shape of the relationship between characteristics and

the average cross-sectional returns.

3. Methodology

We follow the notation in Fama and French (2019). In the following model, returns in month % Ry,
i =1,...,n, are explained by past values of size (MCj;—,), book-to-market ratio (BM;;_4), operating

profitability (OP;;_1), and the rate of growth of assets INVj;_4):
Ryt = R,, + Rye,MCit_q + Rgy, BMj:_1 + Rop,OPjr—1 + Ry INVie_1 + €5, (1)

where R, is the intercept of the cross-section regression in month % and n; the number of different
companies with information in month % As emphasized by Fama and French (2019) the slope
estimates in Equation 1 (i.e. Ryc,, Rpum,, Rop, and R;yy,) are portfolio returns that can be interpreted

as factors once they have been stacked. The intercept is the month 7 return common to all assets,



which is not captured by the explanatory variables in the regression (see as well Fama and McBeth

(1973) and Fama (1970)). e;; is a residual term.

A small rearrangement of terms in Equation 1 shows that, indeed, stacking the slopes of the cross-
sectional regressions for all months in the sample, Equation 1 can be interpreted as a factor-asset-

pricing model with time varying factor loadings given by firms’ characteristics, in the following way:
Ryt —R,, = MCyt_1Ryc, + BMy_1Rgy, + OP;t_1Rop, + INVit_1Riyy, + €5t (2)

We have interchanged the order of the characteristics and the time-varying slopes, in order to
emphasize the common factor structure. In both versions of the model given by equations 1 or 2 the
relationship is linear. That is, it consists of a mean-to-mean mapping that measures average
movements of the Right Hand Side (RHS) variables on average responses of the Left Hand Side
(LHS) returns.

We expand the model in equations 1 and 2 in order to explain the whole conditional distribution of
returns Ry in a given month, which we propose to summarize via an interpretable quantile-factor

structure. To this end, we generalize Equation 1, in the following way:
QR = RS, + Ric,MCir—1 + REy,BMie—1 + RGp OPi¢—1 + Riyy, INVie—1,  (3)

where Qgit is the 8th conditional quantile of R given asset characteristics on the RHS of the
equation. We can alternatively present the model using matrices notation as le.t = RY, X/,_,, where
Xie = {MCy, BMy;, OPy, INV;.} , such that QF = inf{r: Fi(r|X{,_,) = 6} where F;(") is the
cumulative distribution function. Note that Equation 3 does not contain a random term because Qgi .
characterizes R;; but it is deterministic in nature. Note that the slopes have superscripts because they

change for each value of 8. So, going back to Equation 3 we have that RY,:

RY, = argmingE[pg(Ri: — RS — B X}i_1)], “)

where pg(+) is a loss function, given by pg(e) = (1 — 9)1{e<0}|e| + 91{e>0}|e|, where Ifo<qy is an
indicator function that is equal to 1 when the subscript is true and 0 otherwise (see Uribe and Guillen
(2020. Ch. 3)). As it is well known, the mathematical formulation in Equation 4 leads to the solution
of a linear programming optimization problem. Its basic structure and the counterpart algorithm

solution can be found in Koenker (2005), and are omitted here.
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To estimate the model in equations 3-4 we follow the most popular specification for the estimation
of conditional quantiles due to Koenker and Basset (1978), which has been also followed by the
recent literature in statistical quantile-factor models (see Ando and Bai (2019); Belloni et al. (2019);
Chen et al. (2021)). In short, the interpretable quantiles pricing that we propose can be obtained by
stacking the quantile slopes of cross-sectional quantile regressions of the returns on firms’
characteristics for all months in the working sample. Our approach, on top of providing
interpretability of the quantile-factors, by construction, also relaxes the assumption of constant
slopes associated with each characteristic made in past quantile-factor literature. Our model is also a
generalization of the factor model proposed by Fama and French (2019), which has time varying
factors loads, but does not consider changing slopes across the quantiles of R;;. Moreover it relaxes,
in words of Fama and French (2019, p. 1893): “the unrealistic assumption that the disturbances in (1)
are cross-sectionally iid”. Equation 5 gives an alternative representation of the model in Equation 3,

closer to traditional asset pricing specifications:
— RO 0 y! 4

where R)B(t = {Rﬁ,ct,Rth,Rgpt,RfNVt} is a vector or parameters to be estimated, the quantile-
dependent idiosyncratic error e is assumed to satisfy the following quantile restriction P [e{i <
Olet, R,‘?t] = 0. We emphasize that Equation 5 is not a regression. It is a quantile-pricing model in
which the factors may be different according to the quantiles that one aims to analyze, and the time-

varying factor loads are idiosyncratic characteristics of the firms.

In our results section we include three additional characteristics in our baseline specification.
Namely, “momentum”, MOM, “liquidity”, LIQ, and the “market beta” (beta), which renders the

following model:
Rie = RY, + MCyr_1R¢c, + BMy_1 RSy, + OPie_1REp, + INVie_1 Ry,

+M0Mit—1R1\€IOMt + betait—leemt + +L1Qit—1R1?1Qt +ef, (6

The inclusion of these three characteristics obeys a large body of empirical studies that has
consistently documented the importance of these characteristics (see for instance Campbell (2017,

Ch.3), Bali et al. (2016) for a review of the subject).



3.1. Time and quantile goodness of fit

We assess the relative effectiveness of the cross-sectional characteristics to explain returns alongside
the quantiles and across time. To evaluate individual asset characteristics we estimate the t-statistics
associated to the quantile coefficients at each cross-sectional estimation step. Complementarily, to
examine the joint local adjustment of the model we estimate the pseudo-R squared statistic, R 2(0),

proposed by Koenker and Machado (1999) given by:
R%(6) =1-V(6)/V(8), )

where 7 (8) stands for the square residuals of a restricted optimization problem that only includes an
intercept within the set of regressors, specific to the 8 quantile, and V(6) is the residual variation left
unexplained by a given conditional quantile asset pricing model. Note that by construction R?(8)
lies between zero and one. Unlike a traditional R? statistic which measures the relative performance
of two linear models while explaining the conditional mean function, R?(6) is a measure of the

relative success of the corresponding quantile regression. Therefore, R?(0) constitutes a local
measure of goodness of fit for a particular quantile (and a particular month), rather than a global

measure of the goodness of fit.
3.2.  Adding new characteristics

We also aim to increase the model performance as measured by the quantile- R’. Nevertheless, as
emphasized in subsection 3.1 there is one R* per each quantile and per each period. We average the
statistics in time using equally-weighted averages. But, given that we wish to emphasize the
importance of considering the interest in different fragments of the distribution that a market
participant may have, we use different weighting schemes across the quantile dimension. In
particular, let R2(8) be the time-average of the quantile 8. We consider five values of 8, namely 6; €

{0.05,0.25,0.5,0.75,0.95}, for i € {1, ..., 5}, then our global goodness of fit statistic will be given by:
Avg R? =¥?_, a; R%(6)), (8)

Note that the parameter a; reflects the importance of a given quantile for the global adjustment of
the model. When a; is small the associated quantile is not relatively important for us, while a large a;
mean that we assign a relatively high importance to the associated quantile. We consider five

different weighting schemes, each of them with five components (aq, ..., as), which aim to reflect
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different interests by the investor when deciding about a new variable to include in the asset-pricing
model. We index each weighing scheme with a different subscript, so that we end up with five
{wy, ..,ws} . Such that w; =0.50.3,0.15,0.05,0] , w, =[0.35,0.25,0.2,0.15,0.05] , w; =
[0.2,0.2,0.2,0.2,0.2], w, = [0.05,0.15,0.2,0.25,0.35] and ws = [0,0.05,0.15,0.3,0.5], in this way, w;
reflects a greater interest on the left tail of the cross-sectional distribution, while wg reflects a greater

interest in the right tail. The other cases are in-between these two extremes.

4. Data

Our baseline specification uses the following definitions of variables: MCj; is the size of the firm,
constructed as the natural log of the market capitalization of the firm 7 in period 74 and it is not
included in Chen and Zimmerman (2020) [CZ henceforth] data base, so we constructed it using
CRSP monthly data. BM, is the book-to-market ratio constructed as the annual book equity over
market equity, and corresponds to “BM” in CZ database. INVj, refers to the growth rate of
investment in one year, “grcapxly” in CZ data-base. It was constructed as the growth between one-
year lagged capital expenditures and two-year lagged capital expenditures. OP;; refers to operating
profitability, which is our base line specification is measured as the gross profitability indicator
employed by Novy-Marx (2013) calculated as revenue minus cost of goods sold, divided by total
assets. This variable 1s “GP” in the CZ database, and it has the longest and most consistent
information between the several profitability measures available in the database. MOM;, refers to
momentum, and corresponds to Mom12m in CZ, which is constructed using stock return between
months t-12 and t-1. beta;; stands for the market beta of firm 7 in month # and it corresponds to
the simple CAPM beta (“beta” in CZ), constructed as the coefficient of a 60-month rolling window
regression of monthly stock returns minus the risk-free rate on market return. LIQ;; refers to
liquidity, which in our base-line specification cortesponds to “illiquidity” in CZ, and is the (i)liquidity
measure proposed Amihud (2002) constructed using the twelve month average of daily absolute

value of the return divided by turnover.

Our data on characteristics have a monthly frequency, and we combined them with holding period
returns in the US market, obtained via CRSP. This firm information database consists in 3.75M
observations and 208 characteristics for 26,852 different firms between 1928 and 2019, besides, we
have 4.61M returns of capital, that we combine altogether to generate our study database. A

description of the data is provided in Table 1, where we present the mean, standard deviation,
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skewness and kurtosis averaged across time, for the statistics estimated on a monthly frequency for
the cross section of characteristics. As it can be seen, there is a great deal of variability across
characteristics. For this reason in our explanatory regressions we used standardized variables on the
RHS of Equation 06, in order to make regression coefficient among the variables and among the
regressions comparable (this is called in the statistical literature as a “beta-coetficient regression”). In
this case, the intercepts are by construction set equal to zero, for the average scenario, but not for the
quantiles (they become a rough estimate of the unconditional quantiles) and the slopes are directly
measured in relative terms, which allow us to read their magnitude on top of their sign, across the
variety of our specifications.

Table 1
Summary Statistics

RET Beta BM MC LIQ OP INV MOM
Mean 0.81 1.10 -0.72 12.88 0.00 0.26 2.30 0.12
Stand. De. 16.76 0.83 1.02 2.10 0.00 0.36 110.27 0.66
Skewness 4.02 2.05 -0.58 0.23 22.66 -4.06 38.09 5.26
Kurtosis 94.82 42.82 2.77 -0.21 821.78 151.16 2467.08 117.29

The table shows the time-averages of the cross-sectional mean, standard deviation, skewness and
kurtosis calculated for each month from January 2000 to December 2019, for the market returns
(RET), and the following characteristics: Beta, BM (Book to Market ratio), MV (size), LIQ (illiquidity),
OP (Profitability), INV (Investment) and MOM (Momentum).

Table 2 provides the evolution in time of the number of firms in our sample. It summarizes the
information of our main study period, which is available on a monthly frequency, from January 2000
to December 2019. It presents the information only for five months: January 2005, 2010, 2015 and
December 2019. The rows represent the number of firms entering the sample in a particular date.
For instance, at the beginning of the sample 7,040 firms entered the sample (because our main
sample starts on that particular date), while, in January 2005, 37 firms entered the sample. In
December 2019 15 new firms appeared in the sample. It is also possible to examine the permanency
of a given set of firms during the sample period. For instance, of the 7,040 firms starting in January
2000, only 1,609 had information by the end of 2019. Of the 20 firms that entered the sample in
January 2010, only 9 were still present by the end of 2019.

Table 2
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Firms’ Movement Triangle: January 2000-December 2019
2000-01  2005-01  2010-01 2015-01 2019-12

2000-01[ 7040 .. 3998 _ 2707 .. 2056 .. 1609
2005-01 " %L . 9
2010-01 " @ 125 9
2015-01 R 12
2019-12 C g
TOTAL| 7040 5204 4466 4273 4165

Note: The table shows the firms that enter the sample at each point of time (in rows), and how many of the
ones that started in a particular date are still present in a latter month (columns). The original tables have a

monthly frequency, and it is available from February 1928. We present a summarized version.

The above calculations allow us to highlight the infeasibility of constructing balanced-panels to
estimate our pricing models at the tails. Quantiles require more information to be accurately
predicted than means, so the loss of information due to balancing the panel structure is even more
costly than in traditional empirical models that focus on the estimation of the conditional mean. For
instance, if we were going to construct a panel for our main sample, we would end up with 1,609
firms that were present during the whole sample period. Our estimations would use, in such a
hypothetical case, 1,609 observations per month. On the contrary if we conduct cross-sectional
regressions as we do here, our estimates use 7,040 in 00-01, 5,204 in 05-01, ..., 4165 in 19-12. In
short, the balanced-panel structure requires dropping 69% of the working sample. But it is not only
about the vast loss of information, but also the firms that remain in the sample across the years are
likely the strongest ones, so we are facing a case of survivorship bias. Analyzing the effects of
characteristics such as value, liquidity, size, etc. would be very inappropriate in the case that we only

kept such an unrepresentative subset of the population.

Our main results regard the reduced sample January 2000- December 2019, but we also conduct an
historical analysis to test the robustness of our claims, which uses all market information from 1928
to 2019. We focus our main analyses on the reduced and most recent sample. In this regard we
follow the insights of past literature that has emphasized the different magnitude of the economic
effects of characteristics such as value in recent years against older samples (Cohen et al., 2003; Fama

and French, 2021). The same pattern has been established for most of the characteristics, which
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naturally tend to exert a greater impact on the returns in older samples when they were originally
noticed, than in more recent samples (McLean, and Pontiff, J. 2016; Linnainmaa, and Roberts, 2018).

Our intention is thus to provide timely and currently relevant results.

5. Results

Our results consist of six parts. In subsection 5.1 we report and describe our estimated quantile
factors. We conduct cross-sectional quantile regressions each month and save the quantile slopes
associated to each of the seven firms’ characteristics in our model: Size (MC), Book to Market (BM),
Operating Profitability (OP), Investment (INV), Momentum (MOM), market beta, and illiquidity
(LIQ). We stack the quantile slopes associated to each characteristic in a vector, and we call this
vector a quantile factor. In subsection 5.2 we evaluate the joint significance of the model across time.
In 5.3 we report the individual significance of the characteristics in the pricing equation at different
quantiles. These three subsections employ a dataset starting in January 2000 and ending in December
2019, so that we can focus our main analysis in more contemporaneous dynamics, still relevant
today. In subsection 5.4 we provide a more historical perspective, enhancing the results from the
previous subsections. Thus, we report the historical quantile factors from February 1928 to
December 2019. This longer sample comes at a cost: We need to restrict our attention to only four
traditional factors: beta, size, liquidity, and momentum. Data on profitability, investment and book-
to-market, for the eatly years, are not as reliable and abundant as for the other four characteristics. In
subsection 5.5 we evaluate the robustness of our claims across different economic states (i.e. crisis
versus normal periods; before and after the Great Recession). Finally, in the last subsection, 5.6, we
show that selecting new characteristics for our pricing equation depends on how we consider the
various fragments of the cross-sectional distribution of market returns. In this subsection we
consider a subset of 21 characteristics that are candidates to be added to our pricing equation and we
define different weighting schemes that reflect a variety of interests of the investor when choosing
characteristics. We show that if the maximum number of characteristics is small the pricing models
are not necessarily the same for investors that assignh more importance to some fragments of the

returns’ distribution than to others (e.g., left-tail, right-tail, center, etc.).
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5.1. Quantile factors based on characteristics

We estimate a conditional quantile regression each month in our sample, where the explained (LHS)
variable is the cross-sectional returns and the explanatory (RHS) variables are firms’ characteristics.
In our specification the factor loads are given by the characteristics (which change in time and across
firms), not by the quantile slopes, which we stack in order to construct quantile factors series,
common to all firms. Hence, quantile factors vary in time and across quantiles, but they do not vary
across firms. Before estimation, all the characteristics were standardized to have unit variance and
mean equal to zero each month, which eases the comparisons between the quantile slopes (i.e.
factors) associated with different characteristics. Note that these transformations do not affect our
conclusions because quantile regressions are robust to monotone transformations of original
variables. This subsection 5.1 is organized in four parts: The first one shows the main statistics of the
estimated quantile factors. The second describes how those effects change across quantiles. In the
third part, we change our perspective and compare how fitted quantile factors vary across time. In

the fourth and last one, we present and discuss the correlations between quantile factors.
A. Summary statistics of guantile factors

Table 3 shows the summary statistics of the various quantile factors that we estimate. The table
shows the mean, median, standard deviation, maximum, minimum, skewness and kurtosis of the
intercept of each regression (Alpha) and of the quantile factors associated with each characteristic.
The largest effects in relative terms are produced by the variation of market beta across firms joint to
the variation of size (MC), as can be observed panels of Mean and Median in Table 3. However, the
distribution of the effects varies greatly across quantiles, and in unpaired ways for the considered
characteristics. For instance, let us focus on the effect of market beta. It is positive for the winners’
tail of the cross-sectional distribution of the returns reaching a maximum at 8=0.95 (mean=4.19,
median=3.05), but it is negative for the losers’ tail, again reaching a maximum (negative) effect at
0=0.95 (mean=-3.45, median=-2.89). We can compare it with the effect of profitability (OP), which
is very stable across quantiles, and never flips its sign (the mean effect is 0.24 at 6=0.05 and 0.37 at
0=0.95). The sign’s flipping also cleatly occurs in the case of size (MC) -from mean=3.51 to mean=-
4.51-, and illiquidity (LIQ), -from mean=-0.51 to mean=2.96-, at 8=0.05 and 0.95 respectively-. The
reverse in the sign is ambiguous for momentum (MOM), book-to-market (BM) and investment
(INV), because it clearly occurs just for the farther tail of the distribution when 8=0.95, but not for

fragments closer to the center (e.g. 8=0.75).
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Comparing Maxima and Minima in panels 4 and 5 of Table 3, helps us to document further
heterogeneities across quantile factors. For instance, the maximum effects (largest values of quantile
slopes) tend to occur at the right tail of the distribution for all characteristics (except for size), while
the minima effects are more evenly divided in the two tails. The most notorious change in magnitude
between the effects reported at the center of the distribution, 8=0.25, 0.5, 0.75 and the tails of the
distribution, occurs for illiquidity (max=35.70) and investment (max=25.33) at the right tail, 6=0.95.
This can be seen as an indicator of nonlinear effects across the effect of such characteristics on

market return, which is particularly notorious for “outstanding” winners in the market.

In terms of skewness and kurtosis the panorama is not less heterogeneous. In general, factors at the
lowest quantiles (associated to the losers’ tail) present a negative skewness (except for investment).
We emphasize that we are reporting a negative skewness in the #we distribution of the factors. Thus,
it means that the effects on the returns of the characteristics for the losers tend to be more
trequently negative than otherwise. Some factors such as those constructed using BM, MC or MOM,

are mainly characterized by a negative skewness independently on the quantile.

Finally, according to the kurtosis reported in the last panel of Table 3 (which measures how thick are
the tails of the distribution), the factors more prone to outliers are beta and MC, especially at the
right cross-sectional tail, and investment across the whole distribution. This coincides with the
analysis of maxima and minima that we reported before. Investment effect on prices is mainly due
through outliers in time and in the cross-section than as a product of a generalized pattern in the

data.

Table 3
Summary Statistics of Quantile Factors

Alpha Beta BM MC LIQ or INV MOM

Mean
0=0.05 -18.07 -3.45 0.61 3.51 -0.51 0.24 -0.02 0.54
0=0.25 -6.25 -1.97 0.42 1.35 -0.33 0.13 0.04 0.45
0=0.5 0.10 -0.48 0.25 0.48 -0.09 0.23 0.02 0.32
0=0.75 6.95 1.30 0.06 -0.65 0.30 0.43 -0.05 0.15
0=0.95 22.60 4.19 -0.21 -4.51 2.96 0.37 0.25 -0.11
Median
0=0.05 -16.69 -2.89 0.74 3.70 -0.36 0.25 0.09 0.63
0=0.25 -5.05 -1.58 0.42 1.38 -0.33 0.15 0.00 0.32
0=0.5 0.26 -0.31 0.21 0.52 -0.09 0.22 -0.04 0.30
0=0.75 6.30 1.04 -0.09 -0.59 0.01 0.42 -0.11 0.23
0=0.95 20.24 3.05 -0.45 -4.33 1.39 0.39 -0.35 -0.03
Standard Deviation
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6=0.05 7.22 2.75 1.38 1.64 1.83 1.12 1.20 1.35

0=0.25 5.53 2.58 1.06 1.19 1.08 0.79 0.66 1.26
0=0.5 5.11 2.74 1.11 1.15 0.87 0.75 0.63 1.34
06=0.75 6.03 3.26 1.49 1.36 1.40 0.92 0.52 1.60
0=0.95 10.39 4.98 2.76 2.17 5.92 1.81 2.90 2.13
Masxcimun
06=0.05 -4.94 1.05 4.60 7.50 6.69 3.39 14.18 3.49
0=0.25 5.04 6.18 4.48 5.23 4.79 3.27 8.91 4.24
0=0.5 17.70 13.27 4.26 5.05 3.31 3.30 7.65 4.85
0=0.75 34.15 21.02 6.65 5.71 7.15 3.83 5.08 7.06
0=0.95 76.31 39.02 11.30 3.47 35.70 8.77 25.33 10.51
Minimun
0=0.05 -52.07 -15.02 -5.60 -2.29 -9.32 -2.83 -4.40 -3.77
06=0.25 -33.17 -13.05 -3.29 -3.76 -5.84 -2.05 -1.00 -5.11
0=0.5 -21.15 -10.61 -6.88 -4.75 -4.16 -1.89 -0.96 -5.97
0=0.75 -10.01 -8.05 -11.28 -7.02 -5.30 -2.63 -1.08 -7.24
0=0.95 3.70 -3.55 -24.97 -18.36 -6.63 -8.05 -1.75 -9.21
Skewness
0=0.05 -1.32 -1.51 -0.40 -0.56 -1.02 -0.02 6.38 -0.35
0=0.25 -1.18 -1.15 -0.10 -0.51 -0.59 0.23 10.08 -0.22
06=0.5 -0.31 0.14 -0.39 -0.06 0.15 0.08 8.52 -0.50
0=0.75 0.85 1.62 -0.90 0.48 1.42 0.16 5.56 -0.63
0=0.95 1.87 3.01 -2.13 -0.78 2.59 0.19 7.02 -0.25
Kurtosis
0=0.05 2.56 2.74 1.30 0.97 5.19 0.09 80.85 0.13
0=0.25 2.54 2.51 2.63 2.03 6.30 1.10 132.21 1.66
0=0.5 1.69 341 8.06 3.30 4.04 1.20 95.51 3.08
0=0.75 2.52 7.04 15.29 5.15 5.33 1.68 48.60 3.64
0=0.95 6.03 13.93 27.98 7.21 9.06 3.44 53.37 3.90

Note: The table shows the time-series average, standard error, skewness, kurtosis, maximum and minimum of

the estimated quantile factors from January 2000 to December 2019.
B.  Effects of characteristics across quantiles

In Figure 1 we plot the same information but this time we present it using a box-plot, which allows
us to clearly identify patterns across quantiles, ignoring the time variation. The more notorious fact is
that market beta and size are featured by opposite signs on the two tails of the cross-sectional
distribution of the returns. That is, on the one hand, an increment in the market beta is associated
with an increase of the winners’ tail, because we report a positive quantile slope at 8 = 0.95, while it
is associated to a decrease of the losers’ tail, i.e. negative quantile slopes at @ = 0.05. The effect in
the median is somewhere in between, and for this reason is not significant for a large number of

firms. On the other hand, an increment in size is associated to a reduction of the quantile of market
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returns at @ = 0.95, and an increment of the quantile of market returns at 8 = 0.05. Putting this
together means that an increment of beta enlarges the whole support of the unconditional market
return cross-sectional distribution, while an increment of size shrinks this support. Another way to
analyze this effect is by thinking of the support of the distribution as a measure of the dispersion of
the returns, as it is clearly the case when we use the interquartile range as a proxy for volatility. In this

case, while beta increases the cross-sectional volatility, size decreases it.

Some factors such as illiquidity, which is measured following Amihud (2002), as the twelve month
average of daily return in absolute value, divided by the turnover, present a clearly more significant
effect at the winners’ tail than at the center or the losers’ tail, while some others such as BM seen

more important for the left tail than for the right tail.

Figure 1. Quantile Factors
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Note: The figure shows the distribution from January 2000 to December 2019 of the quantile seven-factors
model 6 = {0.05,0.5,0.95}. We plotted the values between -20 and 20, in order to make the effects more
evident, so than some points for liquidity are not visible in the figure, but this does not alter our main

conclusions at all.

18



Profitability and investment show more stable effects across quantiles, at least for most of the
months. Nevertheless, investment is characterized by an extremely high dispersion, with slope values
of large magnitude at the right tail of the time distribution of the slopes (feature that is shared with
the liquidity factor), so that it tends to exert its effect mainly through occasionally large shocks to the
winners’ tail of the cross-section of the returns. Momentum also tends to explain the cross-section at
similar magnitudes across quantiles, but the dispersion between the effects (i.e. the monthly slopes of

the quantiles) is larger at the tails, specially the right tail, than at the center of the distribution.
C. Quantile factors across time

Figure 2 shows the evolution of the quantile factors from January 2000 to December 2019, which
can be interpreted as the time-varying effects of a given characteristic on a specific quantile of the
cross-sectional distribution of stock returns. All the quantile-factors are very volatile in time, which
highlights the importance of considering time-varying slopes in the estimation process. Quantile
factors are based on returns, in the same way that cross-sectional factors coming from the slopes of
linear regressions, as in Fama and French (2019), are based on returns, which explains the high
volatility observed in Figure 2. In short, as it is always the case with pricing factors in asset pricing,

the average 7 time of the factors is dominated by its standard deviation.

Note that in our model the factor loads in the asset pricing equation are time-varying (because are
given by the characteristics) and the slopes of the quantile regression are time-varying as well. This
gives a great deal of flexibility to our estimates, which is necessary because, for instance, the fact that
factor loads are time-varying has been noticed at least since Rosenberg (1974), and more recently
revisited by authors such as Avramov and Chordia (2006) or Fama and French (2019). Our findings
help to establish the same fact also across quantiles. That is, not only the effects of characteristics at
the mean of the distribution of the returns are described by time-varying factors loads but this occurs

as well at the quantile level.
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Figure 2. Evolution of Quantile Factors Jan 2000- Dec 2019
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Momentum 12 - MOM Quantile Intercepts

Quantile 0.05 Quantile 0.5 Quantile 0.95 Quantile 0.05 Quantile 0.5 Quantile 0.95

Date Date Date Date Date Date

Note: The figure shows the evolution of the quantile factors for the seven-factor model estimated at 6 =
{0.05,0.5,0.95} from January 2000 to December 2019. In the vertical axis is shown the effect of a given
characteristic on the cross-sectional quantile of market returns, while the horizontal effect is the
corresponding month. All the characteristics were normalized to have zero mean and unitary variance each

month.
D.  Correlation between the quantile factors

In Table 4 we show the correlation between the quantile factors within characteristics. As highlighted
by Chen et al (2021) a low correlation across different quantile factors means that the information
convey by such factors is dissimilar, and therefore, linear regressions, which condense information at
the center of the distribution of the LHS variables are inadequate, or analogously that PCA is
inappropriate, because it focuses exclusively on the average scenario. The evidence reported in this
respect is conclusive. Namely, for all factors the correlation steadily decreases when the distance
between the quantiles increases. In other words, the effects of asset characteristics are very different
across the conditional distribution of the returns. In some cases, such as liquidity and investment,
this correlation even changes its sign for the farther away factors (p=-0.2 between LIQ at 8=0.05
and 8=0.95 and INV at the same quantiles). Factors are more similar if they are closer. For instance,
regarding beta, the correlation between the beta-factor at §=0.05 and 8=0.25 and between 8=0.95
and 8=0.75 is 0.9, while it reduces to p= 0.5 between the factors at 8=0.05 and 8=0.75, and even
further to p=0.3 between the factors at =0.05 and 8=0.95. The same pattern is detected for all the
variables, so Table 4 provides solid evidence about the heterogeneity of the effects of asset
characteristics on the cross-sectional returns distribution, and of course, on the presence of non-

redundant quantile factors in asset prices.
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Table 4

Correlations (p) ‘within’ Factors at Different Quantiles

Beta BM
0=0.05 06=0.25 6=0.5 6=0.75 06=0.95 0=0.05 6=0.25 06=0.5 6=0.75 ©=0.95
6=0.05 1.0 1.0
0=025 0.9 1.0 0.8 1.0
0=0.5 0.7 0.9 1.0 0.7 0.9 1.0
6=0.75 0.5 0.8 0.9 1.0 0.5 0.8 0.9 1.0
0=095 0.3 0.6 0.8 0.9 1.0 0.3 0.5 0.7 0.9 1.0
MC LIQ
0=0.05 6=0.25 6=0.5 6=0.75 6=0.95 0=0.05 6=0.25 06=0.5 6=0.75 ©6=0.95
6=0.05 1.0 1.0
6=0.25 0.9 1.0 0.5 1.0
0=0.5 0.6 0.9 1.0 0.1 0.5 1.0
06=0.75 0.4 0.7 0.9 1.0 0.0 0.3 0.6 1.0
0=095 0.0 0.3 0.5 0.8 1.0 -0.2 -0.1 0.3 0.6 1.0
OP INV
0=0.05 6=0.25 6=0.5 6=0.75 6=0.95 0=0.05 6=0.25 6=0.5 6=0.75 ©=0.95
0=0.05 1.0 1.0
6=0.25 0.8 1.0 0.6 1.0
0=0.5 0.6 0.9 1.0 0.3 0.7 1.0
6=0.75 0.4 0.7 0.9 1.0 0.1 0.4 0.8 1.0
0=095 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.3 0.4 1.0
MOM
6=0.05 6=0.25 6=0.5 6=0.75 6=0.95

6=0.05 1.0

6=0.25 0.8 1.0

6=0.5 0.6 0.9 1.0

6=0.75 0.5 0.8 0.9 1.0

0=095 0.2 0.5 0.7 0.8 1.0

Note: The table shows Pearson’s cotrelation within factors. That is, the correlation of the factors at different

quantiles for the same characteristic. The sample starts in January 2000 and ends in December 2019.
5.2. Analysis of the joint significance in time

Figure 3 shows the evolution in time of the (pseudo) R-square defined in Equation 7, for the sample
running from January 2000 until December 2019. The cross-sectional approach that we follow
enables us to use the R*as a local measure of the goodness of fit of pricing characteristics, because
we are able to estimate one statistic for each quantile, for each month. We restrict our attention again

to the two tails of the distribution located at 8 =0.05 and 8=0.95 and to the median, 8 =0.50.
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Intermediate results are consistent with the ones reported in this section and they are available for

0=0.25 and 8=0.75, upon request.

Figure 3. Time Dynamics of Pseudo- R by Quantile
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Note: The figure shows the evolution from January 2000 to December 2019 of the pseudo-R2 given by
R2(0)=1-V(0)/ 7(6), where V(0) is the square residuals of a restricted model that only considers an
intercept, specific to the 8 quantile, and V(8) is the residual variation left unexplained the conditional quantile

asset pricing model. By construction R%(8) lies between zero and one. We have plotted in the figure the

cotresponding statistics for 8 = {0.05,0.5,0.95}.

The first thing that can be noticed from examining the figure is that the time variation of the statistic
is larger than its quantile-variation, nevertheless both sources of heterogeneities in the model
adjustment are important. There are not clear trends or cycles in the model adjustment, which does
not seem particularly affected by the 2008-2009 crisis either. Regarding the variation in time, the
minimum value of the R*for #=0.05 is 0.01 and it was recorded in January 2000, while the maximum
value is 0.26, recorded in November 2002, amounting to a difference between the two of 0.25. When
we focus on the highest quantile, #=0.95, the minimum R* is 0.01 and the maximum 0.35, recorded
in October 2007 and December 2000, respectively (with a difference of 0.34). For the median these
numbers are 0.19 (December 2000) and 0.001 (June 2013), amounting to a difference of 0.19. With

respect to the variation of R* between the quantiles, the model does a much better job explaining the
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tails of the distribution (average R* for =0.05 is 0.104 and R* for #=0.95 is 0.098) than the center of

the distribution (average R* for 8 =0.50 equals 0.033). This large gap in the explanatory power
remains relatively stable across the sample, as the model almost all the time explains better the tails

than the center.

The difference in the joint explanatory power of the variables in our specification across the sample
period may obey the omission of some factors (characteristics) that appear to be relevant only under
specific economic states (and perhaps are short-lived). On the other hand, the relative stability of the
explanatory power in the two tails of the distribution which is considerably larger than the
explanatory power at the center, means that the explanatory power of the individual characteristics
considered in the model significantly changes across the distribution of extreme market returns, and
that there exist notable increments in the explanatory power of some factors in the tails compared to
the center of the distribution. From these results we still do not know if the relevance of the factors
increases symmetrically from the median towards the two tails of the distribution, or if by the
contrary, the increments in the explanatory power of some factors are compensated by reductions in
the explanatory power of other factors, according to the tail of the distribution that we aim to
emphasize. But, in any case, the explanatory power of the characteristics considered in our model
changes significantly across the distribution of the returns. In short, the results in Figure 3 point out

to the presence of more powerful factors in the tails with respect to the center of distribution.
5.3.  Analysis of individual significance

Figure 4 shows the t-statistics at different quantiles, associated to the individual characteristics
included in our model. The figure consists of three stacked box-plots for the cases 8 =
{0.05,0.5,0.95} for each characteristic. The horizontal dotted line in the figure marks a t-statistic
equal to two. The characteristics that tend to be significant most of the time across all specifications
are beta and size. The least significant is investment. Nevertheless, the plot also documents
important asymmetries of significance at the quantile level. Beta presents larger t-statistics at the
center of the distribution (which are also more dispersed) than at the tails, but they are significant
alongside the whole distribution, while size shows the opposite behavior. Momentum presents larger
t-statistics at the center of the distribution than at the tails, which means that momentum has more
relevance for the median stocks than for the stocks with returns located at the tails of the
distribution. Profitability is not as significant as momentum, but it also shows a greater number of

statistics above two in the center of the distribution, compared to its tails. On its side, liquidity
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concentrates a larger number of t-statistics above 2 at the winners’ tail of the distribution, compared

to the center and the left tail (and also a larger number of outliers in the same tail).

Figure 4. Individual Significance of Characteristics Across Quantiles
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Note: The figure shows the absolute value of the t-statistics from January 2000 to December 2019, associated
to the explanatory characteristics in our baseline specification: beta, size, book-market, profitability,
investment, liquidity and momentum, for the cases 8 = {0.05,0.5,0.95}. The height of each box is the
interquartile range, so that within the box are found 50% of the statistics, while the solid black line is the time-
series-median of the statistics. The horizontal dotted line that crosses the figure is the critical value 2. Fach t-
statistic (in absolute value) above 2 corresponds to the combination of a month and a quantile at which the

characteristic was significant to explain the market returns.
5.4.  Historical perspective on quantile factors

Figure 5 depicts the evolution of the quantile factors for size, market beta, liquidity and momentum,
for which there is enough data to conduct cross-sectional quantile regression starting in February
1928. The asymmetric patterns that we have documented before, regarding the way in which
characteristics impact the cross-sectional distribution of the returns, are confirmed by Figure 5. In
particular, beta exerts a significant effect on the returns, negative for the left tail and positive for the

right tail, while size shows the opposite dynamics. Liquidity is more of a right-tail factor, which gains
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relevance (and presents the largest variability) for the winners’ tail of the distribution. Finally,

momentum seems to exert a more modest and stable effect across quantiles.

Figure 5. Quantile Effects February 1928 — December 2019
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Note: The figure shows the evolution of the quantile four-factor model estimated at 8 = {0.05,0.5,0.95}
from February 1928 to December 2019. In the vertical axis is shown the effect of a given characteristic on the
cross-sectional quantile of market returns, while the horizontal effect is the corresponding month. The factors

included in the model were selected based on data availability for the longest time span in the sample.

In terms of model adjustment we also confirm our previous analyses. Figure 6 shows the evolution
of the quantile R* for the two tails of the distribution and the median. During this long sample,
which spans almost a century, the two tails are easier to explain than the center of the distribution. It
also seems that, in general, model fit was larger in the first half of the 20" century than at the end of
the period. It seems as well that there are periods in which model adjustment increases, and some
other in which it decreases, describing a cyclical behavior, and the volatility of the statistic was
greater at the beginning of the sample, which is expected as the number of firms listed at the market
was lower. We can also observe that none of the tails is easier to explain than the other, in a general

sense, but instead it depends on the period.
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Figure 6. Time Dynamics of Pseudo- R? by Quantile
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Note: The figure shows the evolution from February 1928 to December 2019 of the pseudo-R? given by
R%2(0) =1—1(8)/V(0), as it is defined in equation 7. By construction R?(8) lies between zero and one.
We have plotted in the figure the corresponding statistics for 8 = {0.05,0.5,0.95}.

5.5, Comparison under different economic states

In Figure 7 we present differently the information regarding the absolute value of the t-statistics.
Namely, it divides our main sample in three different periods: pre-crisis from January 2000 to
October 2007, crisis from November 2007 to June 2009, and post-crisis July 2009 to December
2019. We then plotted the kernel estimated densities of the statistics for each subsample at the three
quantiles, 8 = {0.05,0.5,0.95}. Each subplot in the figure corresponds to a given characteristic at a
given quantile. If the densities differ significantly, it means that the relevance (assimilated to statistical
significance in the figure) has changed during the sample period, for instance as a consequence of a
changing macroeconomic state, which could be associated to new emerging factors or with a
reduction (or increment) of the influence of the old factors included in the model. On the other
hand, if the densities look alike for the different subsamples, but they do not across the columns of
the table, means that there are asymmetries across the quantiles, additional to those documented in

the previous subsections.
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Figure 7. T-statistics before the crisis (Jan 00- Oct 07), during the crisis (Nov 07- Jun 09) and after the crisis (Jul 09- Dec 19)
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Note: The figure shows the densities of the absolute value of t-statics for each explanatory characteristic -top to bottom- at three different quantiles, 8 =
{0.05,0.5,0.95} -left to right-. The densities correspond to three petiods within the sample: pre-ctisis from January 2000 to October 2007, ctisis from November
2007 to June 2009, and post-ctisis July 2009 to December 2019. The dotted vertical line in each subplot corresponds to the critical value of 2.
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Regarding the market beta, in the first row of the figure, the crisis and post-crisis periods
present densities relatively similar, in contrast, before the crisis the t-statistics tend to be larger,
so the distribution is characterized by a longer right tail in the pre-crisis period. There are also
differences across the quantiles, notably the statistic density depicts a larger tail towards the
right of the time distribution for 8 =0.5 and 8 =0.95. In all the cases the peak of the densities is
recorded well above the value of 2, which attests to the significance of market beta at explaining

cross-sectional differences of the returns.

With respect to the characteristic associated to value, BM in the figure, the three densities are
very similar for 6§ =0.05 and 8 =0.95, while the density of the crisis period in the median
scenario housed larger t-statistics, meaning that during the crisis, value gained statistical power
for the stocks generating returns close to the center of the cross-sectional distribution.
Compared to beta, BM is less significant. We can notice as well that the t-statistics are generally
larger when 8 =0.5 than otherwise. Interestingly, we do not find any reduction in the individual
significance of value during the sample petiod for 8 =0.05 and 6 =0.95. Only when 6 =0.5 one
could say that the importance has been reduced after the crisis. Although we cannot directly
compare our results with the previous literature that documents the decreasing importance of
value as a factor (see references in Fama and French (2021)), because we have focused on a
recent sample in this subsection, we can exert that at least in the last twenty years BM remains
equally important across time, especially at the two tails of the cross-sectional distribution of the
returns. The importance has decreased only at the center of the distribution compared to the

crisis period.

Now we turn our attention to size, MC in the figure. Size shows heterogeneities at the two
levels that we are analyzing. At 8 =0.05, left column of the figure, size has gained relevance
since 2000. Indeed, this characteristic became more important to explain returns, during the
crisis (compared with the previous 8 years), and even more relevant after the crisis, as witnessed
by a peak of the distribution shifted to the right in time. At 8 =0.50, central column of the
tigure, the three densities of the subsamples are more similar, and indeed it seems that size
gained some relevance during the crisis that disappeared afterwards. At 8 =0.95, the right-
column, the densities of the pre-crisis and crisis periods look alike, while the peak of the density
after the crisis has shifted to the right, meaning that the size characteristic has gained some

power to explain the winners’ tail of the cross-section across the years.

Investment tells us a different history. It is clearly less significant than all of the aforementioned

characteristics, as can be noticed observing the peaks of the densities, located in all the cases
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before the dotted lines that mark a critical value equal to 2. When investment is significant, it
has very long tails, and this pattern is present alongside the three quantiles, plotted in the figure,
especially at 8 =0.95. An important asymmetry with respect to investment appears when we
compare the median case with the tails. For the median, the statistical significance of investment
decreased during the crisis, and it has increased since then, reaching similar pre-crisis levels for

the third subsample (2008-2019), while it remained stable for the tails during the last decades.

Profitability gained relevance during the crisis, particularly for the worst performing assets,
when 8 =0.05, but since then it has returned to its previous levels. In general, profitability is not
as significant as the most traditional characteristics in our model (i.e. beta, size), but it is more
relevant than investment for the cross-section of the returns. It also exerts a stable impact on

the cross-section at different quantiles and times.

Liquidity is a very especial factor. In short, the higher the quantile the larger the effects of
liquidity on the returns. We can observe that liquidity houses very high values for winners’
stocks, which confirms our classification of liquidity as a right-tail factor. That liquidity is a
nonlinear factor can be rationalized by theoretical studies on the limits of arbitrage, that point

out to a nonlinear relationship between liquidity and prices.

Finally, regarding momentum, at both 8 =0.05 and 8 =0.50, it gained some additional relevance
during the crisis. It also seems that momentum has gained relevance for the lower and central
quantiles of the distribution of the returns in recent years, as witnessed by the fact that the
density of the t-statistics has shifted to the right for 8 =0.05 and 6 =0.50. Nevertheless, for at 6

=0.95, the three densities are stable in time.

All'in all; as it can be perceived after a general examination of the subplots in the figure, that the
divergence across the quantiles’ patterns documented in the previous subsections dominate the
changes experienced by individual characteristics in terms of statistical significance across

macroeconomic states.
5.6.  Competing characteristics, weighting the tails

In this section we illustrate the importance of considering the various motivations that an
investor, regulator or market analyst may have when they study the cross-sectional distribution
of asset returns. These motivations can make market participants more interested in some
fragments of the cross-sectional distribution than in others. For instance, a regulator may be
more interested in evaluating the expected performance of the left tail of the market returns,

which consists of the stocks with the most negative performance, and therefore, is related to the
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market’s downside risk. On the contrary, an investor may be more interested in evaluating the
future performance of the right tail of the market returns, the so-called upside risk, if he holds a
short position against a market index. It could also be the case that, given the nature of the
stocks in our portfolio, we could expect variations of the returns of our own portfolio closer to
the mean of the market distribution and in this case, we will not be equally interested in the
market tails than in the center of the distribution. In all the cases above, the interest could be in
principle connected with the attitude towards risk of the agents, which in turn, has an effect on
the risk statistic that they set to minimize in their optimization program, i.e., variance, left- or
right high- quantiles, left- or right- low quantiles, etc. All this information is lost in traditional

empirical asset pricing exercises that exclusively focus on the average return.

There is a large set of variables to choose from for adding to our baseline specification. Chen
and Zimmerman (2020) compare the performance of individual clear predictors of the cross-
section, by reporting the associated t-statistic of each predictor. They built upon 210 firm-level
predictors to conduct their calculations. Although these authors are only interested in the
prediction of the average returns, their work serves us as a starting point. We select the
predictors with highest t-statistic among the 210 predictors considered by Chen and
Zimmerman (2020), and then we exclude from this subset similar predictors to the ones already
included in our baseline specification. For instance, we only consider one additional momentum
characteristic, on top of the momentum predictor that we already have included in Equation 6.
Table Al in the Appendix reports the variables’ name, acronym and description, joint to the t-
statistics reported by CZ, which we consider in this section as candidates to be included in our

model.

As stated in the methodology, which reflect various interests by the investor when deciding
about the asset-pricing equation. We index each weighing scheme with a subscript, so that we
end up with five {wy,..,ws} . Such that w, =[0.5,0.3,0.150.050] , w,=
[0.35,0.25,0.2,0.15,0.05] , w3 =[0.2,0.2,0.2,0.2,0.2] , w, = [0.05,0.15,0.2,0.25,0.35] and ws =
[0,0.05,0.15,0.3,0.5] . wy reflects a larger interest on the left tail of the cross-sectional
distribution, while Wy reflects a greater interest in the right tail. The other cases are in-between

these two extremes.

Figure 8 presents a ranking of the variables according to the Avg R? of the model when they
are included in the asset pricing equation. The intensity of the color of each cell indicates the
value of the statistic, the darker the cell the greater the explanatory power of the associated

model. It is clear that the ranking depends on the weighting scheme. That is evident because the
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colors are not uniformly distributed across the figure. For instance, let us compared scheme wy
and Ws which are the more extreme ways to assign the weight to each quantile. According to
these two schemes (and all the schemes in between) the first variable that should be added to
our baseline specification is momentum seasonality 16-20 (MomSeasAlt16to20a) proposed
among other forms of momentum by Heston and Sadka (2008). In the case of wy the second
variable in the ranking is Net Operating Assets (NOA) proposed by Hirshleifer et al. (2004),
while the second variable in the ranking for s is the enterprise multiple (EntMult) proposed
by Loughran and Wellman (2011). There are some variables like Industry return of big firms
(IndRetBig) proposed by Hou (2007) which are placed at the bottom of the ranking for all the
models. Nevertheless, in order to consider the marginal effect of a new variable, we need to go

one step forward (see Figures 9 and 10).

Figure 8. Ranking of New Variables (Round One)
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Note: The figure shows the ranking of the characteristics according to different weighting schemes using as a
criterion the Avg. R? reported in Equation 8 of the main text. The darker the cell the higher the model goodness of
fit when a particular variable on the RHS of the figure is added to our baseline specification. In particular we
estimate  our models for w; =[0.5,0.3,0.15,0.050] , w, =[0.35,0.25,0.2,0.15,0.05] , w;=
[0.2,0.2,0.2,0.2,0.2] ,w, =[0.05,0.15,0.2,0.25,0.35] and wg = [0,0.05,0.15,0.3,0.5]. Moving from w; towards
Wy reflects a decreasing interest in the left tail of the distribution, and correspondingly increased interest in the

right tail of the distribution. Our sample starts in January 2000 and ends in November 2019.
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Now we wonder what if we were interested in considering a second additional variable, on top
of MomSeasAlt16to20a. It would not be appropriate just selecting the next variable in the
ranking provided in Figure 7, because the estimations that support Figure 8 do not take into
account the correlation between two possible added variables, instead, they only consider their
marginal effects compared to the baseline model. In this case, what one should do is to
construct again the same figure, but taking as a baseline the new updated model that includes
MomSeasAlt16to20a. This is what Figure 9 reports. Note that this time we have excluded
MomSeasAlt16to20a because it was already incorporated in the first round of our analysis. Now

NOA seems to be the best election independently on the weighting scheme.

Figure 9. Ranking of New Variables (Round Two)
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Note: The figure shows the ranking of the characteristics according to different weighting schemes using as a

criterion the Avg. R? reported in Equation 8 of the main text. The datker the cell the higher the model goodness of
fit when a particular variable on the RHS of the figure is added to our baseline specification. In particular we
estimate  our models for w; =[0.5,0.3,0.15,0.050] , w, =[0.35,0.25,0.2,0.15,0.05] , ws=
[0.2,0.2,0.2,0.2,0.2] ,w, =[0.05,0.15,0.2,0.25,0.35] and wg = [0,0.05,0.15,0.3,0.5]. Moving from w; towards
Wy reflects a decreasing interest in the left tail of the distribution, and correspondingly increased interest in the

right tail of the distribution. Our sample starts in January 2000 and ends in November 2019.
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If we repeat the same exercise, as we do in Figure 10 one more time, in our third round,
something interesting is uncovered. It totally depends on the weighting scheme what variable
should be added next to increase our model performance. If we assign a higher importance to
the left-tail realizations of the market we would include asset growth, while if we assign more

weight to the right-tail realization we should include the enterprise multiple.

Figure 10. Ranking of New Variables (Round Three)
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Note: The figure shows the ranking of the characteristics according to different weighting schemes using as a

criterion the Avg. R? reported in Equation 8 of the main text. The darker the cell the higher the model goodness of
fit when a particular variable on the RHS of the figure is added to our baseline specification. In particular we
estimate our models for w; =[0.5,0.3,0.15,0.050] , w, =[0.35,0.25,0.2,0.15,0.05] , w;=
[0.2,0.2,0.2,0.2,0.2] ,w, =[0.05,0.15,0.2,0.25,0.35] and wg = [0,0.05,0.15,0.3,0.5]. Moving from w; towards
Wy reflects a decreasing interest in the left tail of the distribution, and correspondingly increased interest in the

right tail of the distribution. Our sample starts in January 2000 and ends in November 2019.

What if we were to include an additional variable on top of the last three? In this case, we
should plot again the same figure, excluding the variables already incorporated in our pricing
model. However, our pricing model would be different depending on the weighting scheme.
Figure 11 illustrates this idea up to eight rounds of iteration of the same reasoning. Notice that
the decision at each node of the plot from up to down is conditional on our previous decision,

so that the final model after three or four rounds of adding a variable would be significantly
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different. In principle we cannot compare across these models, even using our quantile pseudo
R’ Indeed, different models would be optimal for different agents. This is a point ovetlook by
the literature and traditional asset pricing exercises, which implicitly assume either that the
investor only catres about the center of the distribution, so that w = [0,0,1,0,0] or that there are
not heterogeneities in the model adjustment (or equivalently in the pricing errors) across the

distribution of the returns. Both assumptions are wrong, as illustrated by Figure 10.

Figure 11. Variable Selection Graph
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Note: The figure shows the decision three that an hypothetical market participant would face, if she was to decide
on what new variable to include in her model, at the top of the figure the investors starts with our baseline model
(which we take as granted), in each subsequent node, from top to down, the investor would select a new variable to
add to the model, but the decision would depend on the weighting scheme that she uses, which reflects the interest
of that particular investor in the different fragments of the cross-sectional distribution of the returns. The tree is
not hypothetical but it was constructed using the Avg. R? that we report in Equation 8 with five different weighting
schemes w; = [0.5,0.3,0.15,0.05,0] , w, =[0.35,0.25,0.2,0.15,0.05] , w; =[0.2,0.2,0.2,0.2,0.2] , w, =
[0.05,0.15,0.2,0.25,0.35] and ws = [0,0.05,0.15,0.3,0.5]. Moving from w; towards wg reflects a decreasing

interest in the left tail of the distribution, and a correspondent increasing interest in the right tail of the distribution.
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In the limiting case in which we end up adding all possible variables to the model (210 in our
case), the reasoning sketched in this subsection would be mainly irrelevant. But in real life the
number of variables in the model does matter. For instance, Molavi et al. (2021) has recently
explained the way in which model complexity found in real life applications, measured by the
maximum number of factors that agents can add to their pricing models, is likely an explanation
of the returns’ predictability patterns found in asset returns. This fact emphasizes the
importance of considering what to explain in the cross-section of the returns, which do not

have to necessarily be the cross-sectional mean.

6. Conclusions

We propose a new way to analyze cross-sectional market returns using traditional
characteristics. Our model is able to generate quantile factors series that can be interpreted as
time-varying effects of traditional characteristics on the various cross-sectional quantiles of
stock returns, or alternatively, as underlying time-varying systemic factors that determine the

joint dynamics of the full conditional distribution of asset returns.

Factor series vary greatly across time, which highlights the necessity of considering time-varying
factors loads explicitly in the asset-pricing model formulation. Moreover, the joint fit of the
model also varies in time. Indeed, as always occurs with asset pricing factors, the time-series
volatility of the factor dominates their time-series averages. The correlations within the
quantiles-factors of a given characteristic are low in absolute value. The lowest correlation
across the two tails (quantiles at 8 = 0.05 and 0.95) are recorded for investment and liquidity (-
0.2), and the highest for beta (0.3), which witnesses to the important drawback of only
considering factors that explain the center of the distribution, as it is done by the extant

literature on empirical asset pricing.

Not all characteristics explain the cross-section at the same level alongside its various quantiles.
Indeed, the winners’ tail of the distribution is better explained by factors such as investment or
liquidity, the losers’ tail by the book-to-market ratio, and the center of the distribution by
momentum or profitability. In general, even factors such as beta and size that exert a significant
effect on the whole cross-sectional distribution of the returns, present opposite signs in the two
tails. Beta’s effect is positive at the winners’ tail and negative at the losers’ tail, while the
opposite holds for size. In general, the tails of the distribution are better explained than the

center by the traditional asset pricing equation that we studied, which points out to the
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existence of additional statistical power of the factors in the model at the tails of the distribution

compared to the median.

Our results are robust to expanding our sample size as early as February 1928, since we have
reliable information in our database to assess the quantile effects of beta, size, liquidity and
momentum. We confirm in this longer sample that beta and size exert opposite effects on the
left and right tails of the cross-section, while momentum impacts it in a stable fashion. Liquidity
in this longer sample also exerts a different effect on winners and losers, which is different than
for the shorter sample. Indeed, the effect of an increase in illiquidity is negative on the left of
the market and positive on the right tail, but it is greater in magnitude on the right tail, thus
confirming liquidity as a right tail factor. In short, liquidity is a very particular factor, the larger
the quantile of the cross-section the longer the right tail of the liquidity effects. That liquidity is
a nonlinear factor can be rationalized by theoretical studies on the limits of arbitrage, that point
out to a nonlinear relationship between liquidity and prices, for instance due to binding risk-
taking constraints, or to the surpassing of certain market volatility thresholds. Nevertheless, the
asymmetric impact of liquidity, which is especially large for the tail of the winners, calls for a
closer examination for instance of the relationship between central bank liquidity and individual
stock market liquidity. It could be the case that a greater provision of liquidity impacts the

strong stocks in the market in a greater magnitude to what it affects the non-winners’ stocks.

This analysis is only possible because by construction our model does not rely on a balanced
panel structure, which would reduce the sample to a point of making unfeasible the estimations.
We also examine the significance of the quantile effects under the light of different economic
states. In particular, we compare the t-statistics at the two tails and the center of the
distribution, before, during and after the Great Recession in the US and we document relatively
stable patterns in terms of significance in time, which might have changed during the crisis, but

after the crisis came back to the previous levels.

These results are of evident interest for portfolio managers, who usually decide to diversify their
portfolios according to some ‘smart beta’ strategy based on characteristics. Our insight is that
depending on the portfolio, whether it tends to generate returns closer to the average or to the
tails, the inclusion of a new stock based on characteristics must be informed by the ability of
such characteristic to diversify risk at the particular fragment of the distribution that the

manager cares more about (usually the left tail).

There is an important issue derived from our analysis that we approach from a conservative

perspective. If the effect of characteristics is different alongside the various fragments of the
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cross-section distribution of the returns, pricing metrics based on alphas, or model residuals
constructed targeting the mean in their loss function, are not entirely adequate to measure the
performance of pricing models. The implications of this fact are important because potential
investors could be more interested in the left tail of the distribution than in the center, if for
instance they are particularly risk-averse. Conversely, more aggressive investors would be
interested in explaining better the right tail of the distribution than the center. From this
perspective, the information on the level of risk-aversion of practitioners, or in general on the
interest of the modelers, which is ignored by traditional alpha-tests, becomes fundamental. We
propose to complement traditional pricing-etror statistics with the quantile-R*, and average
global quantile-R* calculated using different schemes to weight across quantiles. We show
empirically that indeed heterogeneities in the quantile dimension matter when selecting the
optimal pricing model. In short, not all factors serve all purposes. More research is needed in
this respect, especially to aggregate the local adjustment metrics that we report into a global
measure, easier to use and interpret, but also seeking to incorporate in the quantile dimensions
the recent progresses made in the field to perform effective (and unbiased) intensive search for
factors, but considering the whole cross-sectional of the returns and not only the average cases.
This same reasoning that we have developed for the traditional 7-factor model in the literature

could be expanded even to test the robustness to such a traditional approach.
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Appendix
Table Al.
Candidate Variables
Authors Name (Acronym) Description t-stat.
(linear)

Bradshaw et al. Net debt financing Long-term debt issuance minus long-term debt 8.44
(2006) (NetDebtFinance) reduction minus current debt changes, scaled by the

average total assets in years t-1 and t.

Chan et al. (1996) Earnings forecast REVG is the sum of revisions from months t-6 to t. 6.98
revisions (REVO0) Revisions are the change in the mean earnings

estimate for the next quarter from month t-1 to t,
scaled by stock price in month t-1.

Chan et al. (1996) Earnings announcement | Sum of the firm return from one day before earnings | 12.98
return announcement to 2 days after the announcement.
(AnnouncementReturn)

Cooper et al. 2008) | Asset Annual growth rate of total assets (at) 7.80
Growthistf AssetGrowth)

Hartzmark and Dividends (DivIind ) Dummy variable equal to 1 if return with dividends is | 6.06

Salomon (2013) greater than return without dividends 11 months ago

or 2 months ago, and 0 otherwise

Hirshleifer et al. Net Operating Assets Difference between operating assets and operating 7.71

(2004) (NOA) liabilities, scaled by lagged total assets.

Hou (2007) Industry return of big Average monthly return of the 30% largest companies | 9.52
firms (IndRetBig ) by market value of equity in Fama-French 48 industry

portfolios. The 30% largest companies were excluded.
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Jegadeesh and Revenue Surprise Yeatly change in revenue per share minus the average | 7.23
Livnat (2000) (RevenueSurprise) yeatly change in revenue per share, over the previous
two years, scaled by the standard deviation.
Loh and Warachka | Number of consecutive | Number of four-quarter net income increases over 14.24
(2012) earnings increases the previous 2 years.
(NumEarnIncrease)
Loughran and Enterprise Multiple Market value of equity plus long-term debt, plus debt | 6.36
Wellman (2011) (EntMult) in current liabilities, plus deferred charges, minus cash
and short-term investment, divided by operating
income.
Lyandres et al. Change in property, One-year change in property, plants and equipment 9.19
(2008) plants and equipment, plus one-year change in inventory, scaled by one-year
and investment assets, lagged assets.
(InvestPPEInv )
Richardson et al. Change in financial Financial liabilities and current liabilities minus 11.88
(2005) liabilities (DelFINL ) preferred stock, between years t-1 and t, scaled by
average total assets in years t-1 and t.
Richardson et al. Change in net financial Short-term investments plus investments and 9.09
(2005) assets (DelNetFin) advances minus the sum of long-term debt, debt in
current liabilities and preferred stock capital. All
Divided by the difference between the current and
one-year lagged sum by total assets.
Heston and Sadka Return seasonality years | Returns seasonality years 16 to 20 5.07
(2008) 11 to 15
(MomSeasAlt16to20a)
Bali et al. (2016) Skewness of daily Skewness of daily returns over previous month. 6.40
returns (ReturnSkew)
Note: The table shows the candidate variables to be added to our pricing equation (Eq. 6), the

proponent authors, description and linear t-statistic. All information was taken from CZ (2020), where

more information details may be retrieved.
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