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1. SUMMARY 

During the last decades, the phosphorus concentration in wastewaters has increased 

worldwide causing water eutrophication. Thus, many studies have focused on looking for 

conventional and non-conventional methods and materials for phosphorus removal. One of the 

non-conventional materials is the acid mine drainage sludge which has been previously studied 

as phosphorus adsorbent with good results. This fact motivates the study of basaluminite, an 

aluminum oxy-hydroxysulfate, one of the compounds of the sludge that can precipitate 

separated from the rest of acid mine drainage sludge, and which is expected to be a good 

phosphorus adsorbent. 

A fixed-bed column using synthetic basaluminite has been constructed to know the P 

sorption capacity in this mineral. First, a tracer test has been carried out to determine the 

porosity and the average residence time of the column with a result of 0.34 and 31.20 minutes, 

respectively. After that, a breakthrough curve has performed measuring daily the phosphorus 

concentration from column effluent daily in order to calculate the adsorption phosphorus 

capacity in basaluminite. These results conclude that synthetic basaluminite presented a 

maximum phosphorus adsorption capacity of 46.0 mg P/g adsorbent. It has a similar adsorption 

capacity than schwertmannite and natural basaluminite and, a better capacity than other 

sorbents such as activated aluminum oxide or magnetic iron oxide. As a conclusion, the 

basaluminite, a non-conventional material which was a residue at first, has proved to be a 

remarkable P adsorbent compared to other commercial adsorbents.  

Keywords: Phosphorus removal, adsorption capacity, synthetic basaluminite, acid mine 

drainage, breakthrough curve, tracer test. 
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2. RESUM 

Durant les últimes dècades, la concentració de fòsfor a les aigües residuals ha augmentat 

arreu, provocant la seva eutrofització. Per tant, molts estudis s’han centrat en trobar mètodes i 

materials convencionals i no convencionals per a l'eliminació de fòsfor. El fang de drenatge àcid 

de mina, un material no convencional, s'ha estudiat prèviament com adsorbent de fòsfor amb 

bons resultats. Aquest fet motiva l’estudi de la basaluminita, un hidroxisulfat d'alumini del que 

s'espera que serà un bon adsorbent de fòsfor i que pot precipitar independentment de la resta 

del fang de drenatge àcid de mina,.  

En aquest treball es descriu i es porta a terme la construcció d’una columna de llit fix amb 

basaluminita sintètica per tal d’estudiar la capacitat d’adsorció de fòsfor d’aquest mineral. 

Primerament, es fa un test de traçadors per determinar la porositat i el temps de residència mig 

de la columna amb uns resultats de 0,34 i 31,20 minuts, respectivament. Després d’això, es 

realitza una corba de ruptura mesurant diàriament la concentració de fòsfor de l’efluent de la 

columna amb l’objectiu de calcular la capacitat d’adsorció de fòsfor de la basaluminita. Els 

resultats conclouen que la basaluminita sintètica, amb un valor màxim de capacitat d’adsorció 

de fòsfor de 46,0 mg P/g adsorbent, té una capacitat d'adsorció similar a la schwertmannita i la 

basaluminita natural i també, una millor capacitat que altres sorbents com l’òxid d’alumini 

activat o l’òxid de ferro magnètic. Com a conclusió, la basaluminita, un material no convencional 

que era en primer lloc un residu, ha demostrat ser un remarcable adsorbent comparat front 

altres adsorbents comercials. 

Paraules clau: Eliminació del fòsfor, capacitat d’adsorció, basaluminita 

sintètica, drenatge àcid de mina, corba de ruptura, test de traçadors. 
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3. INTRODUCTION 

3.1. PHOSPHORUS, SOURCES AND APPLICATIONS 

Phosphorus (P) is one of the most abundant elements in the Earth. This element is a non-

metal and it has an electron configuration ([Ne] 3s3 3p3). When P is bounded with oxygen atoms 

to form phosphate, one electron in the p and in the s orbitals can jump to the d orbital giving the 

reactivity to the phosphate which has a versatility to react with other compounds, for example, at 

a cellular level. Thus, this element is essential for life.[1] 

The P sources are very diverse among the surface of the Earth. P can be found in minerals, 

in rocks, such as basaltic weathered rocks, dissolved in water or in organisms. P contained in 

rocks could be transformed into fertilizers and feeds for aquaculture or farms.[1][2] Also, P 

exists in natural waters which has different physical compartments such as in colloids, in fulvic 

and humic acids, or in aquatic organisms among others.[3] 

There are more than 100000 known P compounds that can be separated into two groups: 

inorganic and organic compounds. The first group is composed of orthophosphates, which have 

discrete PO43- ions, and condensed phosphates.[4] Orthophosphates have three possible ion 

forms which depend on the pH (PO43-, HPO42-, H2PO4-). These P anions can be bounded with 

calcium cation and form apatites Ca5(PO4)3X. Depending on what anion is X, different 

orthophosphate minerals can be formed, such as chlorapatite (X=Cl), fluorapatite (X=F) 

or hydroxylapatite (X=OH) which builds animal bones and teeth. Orthophosphate minerals are 

used in agriculture activities. Other salts can be formed by the previous P anions such as 

ammonium and calcium phosphates which have applications as fertilizers.[1]   

Condensed phosphates (metaphosphates and polyphosphates) are the result of the 

condensation of two or more orthophosphates anions making tetrahedral chains 

(polymerization). Metaphosphates are cyclic anions with a (PO3)nn- composition and 

polyphosphates are linear. Condensed phosphates have many applications such as Pb removal 
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treatments, detergency, water softening, descaling pipes and boilers, food technology, make 

toothpaste and preventing corrosion, among others.[5]   

The second group is the organophosphates, which are formed with P and carbon chain. 

Organic P compounds are an important part of the total dissolved P compounds in waters. Also, 

phosphates are important compounds because they are a component of ATP and DNA. There 

are more applications of organic P compounds like for manufacturing medicines, biomaterials 

catalysts, compound, batteries among others. But these organophosphates may have a 

negative impact because they can be employed as nerve agents or pesticides. Besides, P is a 

persistent pollutant and the excessive loading of P causes the eutrophication of 

freshwaters.[3][6] 

3.2. EUTROPHICATION AND ITS CONSEQUENCES 

The global phosphorus cycle is in a constant change because of human activity, such as the 

exploitation of phosphorus mineral extraction, production by farming practices or the use in 

detergents and fertilizers. Therefore, the phosphorus fluxes have doubled, which is considered 

a potential hazard for the ecosystems.[1] The elevated concentration of P in superficial and 

wastewaters causes freshwaters contamination. Phosphorus is essential for photosynthetic 

water microorganisms, but if there is an excess of P in waters, an overgrowth of the 

phytoplankton and marine microalgae can occur. After their death, the plants rot, consuming 

oxygen. That oxygen decreases in the water, affects the marine ecosystems due to a macro 

aquatic life decrease. Other animals such as mammals or birds are also affected by the bacteria 

produced in the waters. This process is known eutrophication and it has become a widespread 

environmental problem with health and economic consequences. Eutrophication in the USA, for 

example, is costing over $2·1012 by year.[2][3]    

In Europe, 53% of lakes and dams are eutrophicated. In the rest of the continents, the 

percentage is similar (except in Africa that is 28%). More than half of the P comes from water 

treatment plants. The principal sources of P in wastewaters are the human excretion and the 

use of detergents. For this reason, new laws for decreasing the phosphorus levels in the 

industrials and municipal residual waters have been created.[7] For example, the U.S.EPA has 
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established maximum contaminant levels so that the phosphorus level is <20 ppm in the 

summer station.[8]  

Moreover, in Spain, according to the Royal Decree 509 of 15 March 1996, of development 

of the Royal Decree 11 of 28 December 1995, which the regulations applicable to urban 

wastewater treatment are established, the determined P limit for the treatment plants effluents 

of urban wastewaters is 2 ppm P for sensitive or eutrophicated water areas between 10000 and 

100000 acres and 1 ppm P for water areas more extensive than 100000 acres (published in 

Spanish Official State Gazette (BOE)).[9]  

Nowadays, the solution is to decrease more the P levels, which are between 5 and 20 ppm 

in urban residual waters. There are treatments in wastewater plants that decrease the P level 

from 8-15 ppm to 6-11 ppm. In Europe, for example, the P levels in residual and superficial 

waters are decreasing between 30-60% since the 1980’s. [10]  

3.3. TREATMENTS TO ELIMINATE PHOSPHORUS 

Wastewater treatment is a process to reduce or eliminate the water pollutants, such as P. 

This process has 4 stages: pretreatment, primary treatment with the primary sedimentation of 

biologic precipitates, secondary treatment with activated sludge and tertiary treatment wherein P 

removal occurs. The conventional treatments are the most used techniques to eliminate P in 

wastewaters which can be carried out by two forms: biologic via with microorganisms or by 

precipitation with coagulants (Fe and Al salts or Ca2+). [1]  

The process with calcium ions:  

Calcium ions are included in the process with Ca(OH)2. This hydroxide reacts with the 

alkaline wastewater and forms CaCO3 (1). The rest calcium ions react with phosphate to form 

hydroxyapatite (2). Finally, the waters end with high alkalinity which can be decreased adding 

CO2 to continue with the following step. [11]  

Ca2+(aq) + 2 HCO3-(aq) + Ca(OH)2 (aq) ↔  2 CaCO3 ↓+ 2 H2O(l)                                               (1)  

5 Ca2+(aq) + 3 PO43-(aq) + OH-(aq) ↔ Ca5(PO4)3(OH) ↓                                                           (2)  

The process with iron (Fe) and aluminum (Al) salts:  

On the one hand, the aluminum sulfate is usually used to precipitate the aluminum 

phosphates (Eq. 3). With concentrations between 50 and 200 ppm of aluminum salts, 80-90% of 
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the phosphorus can be eliminated. On the other hand, the iron sulfate is also employed to 

reduce phosphorus concentration, with reactions like that described for Al in Equation 3. 

Sometimes, Ca(OH)2 is added to increase the pH and to facilitate the reaction. [11]  

Al3+(aq) + HnPO43-n(aq) ↔ AlPO4↓ + nH+(aq)                                                                                         (3)  

The two precipitation treatments have three types of processes that depend on the 

treatment stage where the salts (coagulants) are added, as shown in Figure 1. Firstly, the 

reagents can be included in the residual waters before the primary sedimentation. In this 

treatment, the P is eliminated with a 90% efficiency and concentrations lower than 0.5 ppm may 

be achieved. Secondly, the salts can be introduced in the primary sedimentation effluent. This 

process is achieved the highest phosphorus elimination efficiency (95%). With this type of 

precipitation treatment, the final phosphorus concentration is 0.5 ppm and is reached a purer 

product than the previous type process. However, this treatment has disadvantages like an 

elevated cost for the large precipitation tanks and sometimes, a diluted effluent. Finally, the salts 

can be also included in the secondary sedimentation effluent. This treatment is useful for the 

wastewater plants which are working with activated sludge. For this process, smaller 

precipitation tanks are necessary and thus, the costs are lower than the previous. However, in 

this treatment, the P removal efficiency is the lowest (less than 85%).[1][11] 

 

Figure 1. Scheme which indicates where the coagulant can be added depending on the precipitation 
process. [11] 
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According to the second conventional method, microorganisms are employed to make 

aerobic or anaerobic function to remove P. The advantages of this treatment are the cost 

reduction and the lower sludge production compared to that the precipitation process creates. 

The P of residual waters is incorporated into the biomass cell which is eliminated into the 

process as a result of the sludge deposition. The P is accumulated preferably on the bacteria 

PAO (Phosphorus Accumulator’s Organisms) with advantage over other bacteria. The reactor 

has an anaerobic tank and an activated sludge tank. At first, the PAO organisms accumulate 

polyphosphates that give energy. With this energy, they assimilate the acetate which is formed 

through the organic material fermentation. Hence, the PAO produce polyhydroxybutyrate (PHB) 

and the polyphosphates decrease. Also, orthophosphates, magnesium, iron, potassium and 

calcium ions are liberated. In the aerobic zone, the storage products are oxidized and the PHB 

is metabolized. Because of that, energy is produced and is used to form polyphosphate bounds 

in the cells. However, the orthophosphates are eliminated from the solution and are 

incorporated into the polyphosphates. Because of these previous processes, the cells grow and 

when this new biomass with polyphosphates is eliminated, the accumulated P is also eliminated 

by the bioreactor. [11] 

 

Figure 2. Scheme of the bioprocess to eliminate phosphorus into the bioreactor. [22] 

  

For several years, the objective has been to improve the treatments achieving better P 

adsorptions on a large-scale. To do that, non-conventional processes with P adsorption in a 

fixed-bed column were studied. These treatments use different materials which can be gels, ion-

exchange resins, bauxite extraction residues, manufactured aluminum or iron oxides and 

residues of the acid mine drainage, among others.[1] Al and Fe oxides have been used as 
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phosphate adsorbents with better results than conventional treatments in column experiments, 

but P adsorption has not used on a large-scale yet. In a laboratory scale, Genz et al. (2004) an 

effluent concentration of 50 ppb P was reached after a throughput of 4000 bed volumes for 

activated Al oxide. [12]  

Kofinas and Kioussis (2003) studied one of the non-conventional treatment materials to 

remove P from aquaculture. They used a polymeric hydrogel, achieving more than 98% 

phosphate removal, decreasing from 16 ppm PO43- to 1 ppm PO43- after 120 minutes. Hydrogel 

binds selectively P into the polymeric matrix. Besides, this material can be easily regenerated. 

Moreover, ion-exchange resins were studied by Zarrabi et al. (2014) with 94.5, 96.3 and 98.7 % 

of P removal for 20, 30 and 40 mg/L P, respectively, after 150 minutes. Ion-exchange resins had 

good efficiency at short-time, but P removal efficiency was decreasing as time went by. Liu et al. 

(2008) with a synthesized mesoporous ZrO2 resin only removed 58% of phosphorus after one 

day. These findings demonstrate that these treatments work well on a laboratory scale and at 

short-time.[13][14][15] 

 

3.4. ACID MINE DRAINAGE 

Acid sulfate waters are formed by the sulfide minerals oxidation like the pyrite (FeS2) (Eqs. 

(4)(5)(6)). Human activities, such as mining, enhance this spontaneous process due to the 

major exposure of the minerals to water and air. Thus, groundwater contains a considerable 

amount of dissolved iron, aluminum and sulfate.[16] The oxidation also causes proton formation 

which gives the acidity to water. However, this acidity is neutralized by the carbonate rocks, like 

a buffer. The problem comes when the carbonate rocks presence is not enough, and acid 

production is higher than the neutralization. Besides, toxic elements like arsenic or uranium are 

transported too and thus, Acid Mine Drainage (AMD) contaminates lakes or rivers, and the 

biodiversity is affected.[17]  

2 FeS2 (aq)+ 2 H2O(l) + 7 O2 (g) ↔ 2 Fe2+(aq) + 4 SO42-(aq) + 4 H+ (aq)                                                      (4)   

4 Fe2+(aq) + 4 H+(aq) + O2 (g) ↔ 4 Fe3+(aq) + 2 H2O(l)                                                               (5)  

FeS2 (s) + 14 Fe3+(aq) + 8 H2O(l) ↔ 15 Fe2+(aq) + 2 SO42−(aq) + 16 H+(aq)                                 (6)  
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AMD is one of the earth pollutions responsible for decreasing water quality in rivers, streams 

or groundwater. It has become a worldwide and long-lived environmental problem and thus, it 

needs a long-term solution. AMD frequently appears in abandoned mines and the passive 

treatments (a kind of AMD treatment) can be used in this case to neutralize the acidity. The 

passive processes may be built with a permeable and reactive substrate to better react with 

AMD. Some of these acid mine drainage treatments are compost or anaerobic wetlands, which 

are the most used and have low operational maintenance. This system uses a limestone layer 

with compost. Also, the precipitation, oxidation and water hydrolysis of the iron and aluminum 

hydroxides occur in other treatments. Conventional aerobic wetlands are used to remove the 

water pollutants. The Anoxic Limestone Drain (ALD) is also used, a process that consists on 

alkalinizing the acid waters with calcite and limestone bed. This system is used to AMD’s with 

very low Fe and Al salts concentrations. ALD is not used for high concentrations because the 

limestone reacts with Fe and decreases the dissolution rate of the limestone bed. Also, ALD 

could fail when Al obstructs the pore spaces between limestone rocks (clogging) losing 

reactivity.[18]  

Compost wetlands can solve the clogging issues. Thus, the water is forced to flow down 

through the layers of limestone and compost. This new treatment is Reducing and Alkalinity-

Producing System (RAPS). RAPS mixes compost wetlands and ALD systems. The purpose of 

the compost layer of this system is to eliminate the oxygen in the water. This causes the 

reduction of the iron and the limestone layer cannot react with them. However, Al cannot clog 

the RAPS limestone as the ALD. RAPS are used in AMD’s with high pollution. It is also more 

efficient than the ALD for waters with high Fe and Al salts concentrations. But even then, RAPS 

can be passivated (loss of reactivity by coating). [18][19]   

To solve the loss of reactivity against waters with high metal concentrations and/or high 

acidity loads, Disperse Alkaline Substrate (DAS) was developed. DAS is composed of alkaline 

reagent as calcite sand and coarse inert matrix as wood chips. Limestone sand has small size 

grains that are dissolved before the coating and thus, this composition gives a high reactive 

surface and high porosity to solve the clogging and passivation problems. Moreover, DAS 

achieves a high acidity removal by the metal accumulation (Al, Fe, among others). Therefore, 

DAS has more reactivity than the other explained passive systems and removes the acidity of 
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AMD four times more efficiently than the other passive treatments on a laboratory scale.  Thus, 

this treatment has been implemented on a larger scale in affected zones by AMD.[20]  

Specifically, the Iberian Pyrite Belt (IPB) is a zone in the Southwest of Spain where around 

100 abandoned mines drain acid waters, affecting the Odiel and Tinto watersheds, two of the 

most important rivers in Huelva region. In order to minimize the environmental impact, RAPS 

and ALD systems were applied, but poor results were achieved because high polluted AMD is a 

problem for these treatments. Nowadays, DAS is used with a pool with CaCO3 and a limestone 

bed with a good performance. The AMD is canalized to the pool and then, the calcium 

carbonate dissolves and wastewater pH increases. The reaction causes sequential precipitation 

of schwertmannite (Fe8O8(SO4)(OH)6) (3), basaluminite (Al4(SO4)(OH)10·4H2O) (2) and calcite-

gypsum (1), as shown the Figure 3. [21] The iron salt is formed first because it needs lower pH 

than the aluminum salt, which precipitates at approximately pH=4,5.[22] The first aluminum 

hydrolysis constant is 5.0. When the pH of acid aluminosulphate waters is less than that 

constant, the equilibrium is controlled by geochemical reactions. However, when the pH is 

higher, the aluminum salt precipitates.[17][18]  

  

Figure 3. Stratification of the treatment product into the pool. [18]  
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3.5. BASALUMINITE 

A white/yellow mineral was discovered forming 5 mm diameter crystals in an oxidation zone 

in Felsőbánya, Hungary (nowadays Baia Sprie, Romania). This mineral was named 

as Felsőbányaite for the locality. Subsequently, Kenngott (1853) was the first scientist who 

studied this salt. Haidinger (1854) was gave the first description and the molecular formula 

Al4(SO4)(OH)10·4H2O with the help of K. v. Hauer, who performed chemical analysis. On the 

other hand, Bannister and Hollingworth (1948) identified and 

described basaluminite and hydrobasaluminite for the first time in Northampton Ironstone (UK). 

They described these aluminum salts as a white plastic claylike mineral with water. In 1969, 

Brydon and Singh observed that when basaluminite was with clay minerals, it was precipitated 

with a more crystalline structure. Hence, the salt structure was a clay and basaluminite mixture. 

Many years later, Clayton (1980) made a study of them with chemical analysis, XRD data, 

among other studies. He described the basaluminite unit cell parameters and its structure such 

as octahedral Al layers with sulfate ions in the interlayer space. Later years, Weiszburg and 

Papp (1990) established that felsőbányaite and basaluminite could be the same minerals. 

Farkas and Pertlik (1997) with the structural data and crystal structure determination of the two 

minerals, established that they were the same because they had the same composition, 

structure, physical properties and morphology. They also determined the basaluminite structure: 

eight crystallographically different Al atoms surrounded by oxygens forming 

AlO8 distorted octahedral similar to Al(OH)3 structure polymorphs. These octahedrals were 

making Al8O22 layers that are interconnected between themselves with hydrogen bridges by 

SO4 and H2O molecules as is shown in Figure 4. Moreover, Adams and Rawajfih (1997) 

described basaluminite as non-crystalline material. Also, the International Mineralogical 

Association (IMA) does not consider the basaluminite as a mineral. 

[23][24][25][26][27][28][29][30][31]   
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Figure 4. Nanocrystalline basaluminite structure with AlO6 octahedral forming Al8O22 layers, 

SO4 tetrahedra and H2O molecules shown as single balls made by ChemDraw. [29]  

3.6. STATE OF THE ART 

The non-conventional treatment to remove the P wastewaters used in this study is the P 

adsorption with residues of acid mine drainage. The motivation to use this treatment is those 

good results of P adsorptions registered in previous studies. Sibrell et al. (2008) applied the 

AMD sludge with results of P adsorption capacities of 20000 mg P/kg sludge at a solution 

concentration of 1 ppm P. Moreover, at the long-term, process with simulate wastewater with 

0,13 ppm P, the AMD sludge removed 60% of P. Also, other long-term tests demonstrated that 

the sludge can remove 76% of P. Furthermore, the advantages of non-conventional treatments 

are the non-implantation of larger tanks, which are necessary for conventional treatments, and 

the simplicity of operation which reduces costs. However, the long-term sustainability of the new 

technology used in non-conventional treatments has not been demonstrated yet.[32][33]  

Technically, adsorption is accumulation of compound (adsorbate) on an adsorbent surface. 

Adsorption mechanism depends on the surface capacity which is based on the available surface 
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sites. These adsorption sites limit compound options to accumulate in the adsorbent. The 

adsorption process could be also based on ion exchange where one ion displaces another one 

with a lower affinity for the adsorbent. Violante et al. (1996) studied phosphate and oxalate 

adsorption with Al hydroxysulphate complex. They could not determine the exact mechanisms 

between the sulfate removal and the other ions sorption. But Genz et al. (2004) determined in 

their P removal study using activated alumina that the adsorption could be produced by direct 

competition of anions. Concretely, phosphate and sulfate compete for the activated alumina 

sites.[34][12]  

In wastewaters, the P form is the orthophosphate ion which can be exchanged by the sulfate 

ion of the Al compound. For the practical part of this study, the adsorbent has been 

synthetic basaluminite. At first, the phosphorus (phosphates) must access to into 

the basaluminite interlayer spaces in the adsorption process. These interlayer spaces are 

occupied by the sulfates (Figure 3), hence there is a competition between the sulfates and 

phosphates to fill them. According to Rietra et al. (1999), in this competition, the best adsorption 

is expected for phosphates. [35][12]   

Aluminum hydroxysulphate and AMD sludge studies, previously commented, have 

remarkable P adsorption results. Therefore, basaluminite could be a good P adsorbent. But the 

difference between other non-conventional treatments is that basaluminite is not a 

manufactured material, because it is a residue formed by acid conditions. Also, the studies with 

AMD sludge suggest that it can have a good P adsorption at large-time. Therefore, basaluminite 

might potentially have a better adsorption capacity than conventional treatments at longer 

contact-time. 

But, will the synthetic basaluminite be a good adsorbent as it is expected both in the short 

and long term? Will the synthetic basaluminite compete with the other P adsorbents? The 

experiment at the practical part was prepared in order to answer these questions. 
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4. INITIAL AIM 
This year, an exceptional situation has occurred in all over the world. Coronavirus has 

forced a lockdown, which started in March, and thus the scheduled experimental study was 

stopped. The initial aim was to compare the phosphorous adsorption capacity of 

the basaluminite and the aluminum oxide. To reach this purpose, two fixed-bed columns filled 

with these both adsorbents were made as described in Appendix 2.  

Just one day after the experiments started, the Spanish state declared the confinement due 

to COVID-19 pandemic. Therefore, the investigation laboratories closed preventing the 

development of the original study. With this situation and without knowing when the 

normalization would come back, this work was reoriented. Thus, in order to finish the TFG the 

laboratory provided experimental results of a fixed-bed column filled with synthetic basaluminite 

in order to calculate its phosphorus sorption capacity and discuss the results with other 

sorbents. 
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5. OBJECTIVES 

In this research, the main objective is to test the P sorption capacity of 

synthetic basaluminite, a mineral of AMD sludge. To reach this principal purpose and to carry 

out the project step by step, some more specific goals have been considered: 

• To determine a tracer test which will provide the porosity of the column and the 

residence time of the pollutant influent. Both parameters are two specific capacities of the 

column system. Determinate these capacities are important to know how the adsorbent will 

adsorb and to compare with others.  

• To determine a breakthrough curve for the fixed-bed column, which will help to 

determine the P adsorption capacity of the synthetic basaluminite.    

• To compare the calculated sorption capacity in synthetic basaluminite with that 

considered in other potential commercial adsorbents. 

6. EXPERIMENTAL SECTION 

6.1. SYNTHESIS OF SYNTHETIC BASALUMINITE  

The fixed-bed column adsorbent was basaluminite synthesized by a drop-by-drop addition 

of 214 mL 0.015 M Ca(OH)2 to 30 mL 0.05 M Al2(SO4)3·18H2O using the EE-1000R (100 µL-

1000 µL) electronic pipette. The mix of these commercial reagents was stirred at room 

temperature until reach a 2.14 OH:Al molar ratio. Basaluminite was precipitated with 

CaSO4·2H2O. The co-precipitated solid was removed washing three times the Al salt. Finally, 

the product was dried 48 h at 40ºC with the Memmert oven 100-800. [36] 
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6.2. MATERIALS AND METHODS  

6.2.1. Column setup  

  
Figure 5. Experimental assemblage design which shows the used instruments interconnected with tubes.  

The experimental design is composed of various instruments interconnected as shown in 

the Figure 5. The volumetric flask (1) contains the solution which will pass through the column. 

Gilson Minipuls-3 Peristaltic Pump (2) is the instrument that applies the correct solution flow. 

There is a fixed-bed column (3) which is constructed with a methacrylate tube with 4.20 cm 

diameter and 0.50 cm thickness. The pink tube relates to the column using a three-way valve 

(4) which is employed to collect samples (5) for the P analysis. The solution passes through the 

column from top to bottom and connects to the Schlumberger CTD Diver (6) which collects 

sample data. After the solution passes through the diver, it ends into a residual flask (7). 

Table 1. The tubes measures of the experimental assemblage. 

 

Fixed-bed column was filled with wood chips (inert matrix) and synthetic basaluminite, as 

granular adsorbent, like the setup column of a DAS system but only with basaluminite. The aim 

is to simulate the end of a passive treatment, where the limestone has been dissolved and 

the basaluminite with the wood chips are filling the gaps.[20]  

Dimension Red tube Yellow tube Green tube Pink tube 

Longitude (cm) 90 40 70     60 

Diameter (mm) 0.80 3.17 0.80  0.80 
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Hence, 5 g of synthetic basaluminite were weighed on an analytical balance. Then, the salt 

was mixed in a beaker with the pine chips previously sieved for giving the same chip size and 

washed to eliminate some organic matter. There was 30 g of the wood chip because 1:6 ratio 

between the aluminum salt and the wood is desired. This rate was chosen to perform these 

experiments because it was desired not to lengthen the operation time too much.  

  
Figure 6. Experimental fixed-bed column scheme that shows the different used compounds.  

Firstly, two centimeters of silica pearls were added in the column. Secondly, the mixture 

of basaluminite and wood was added to the column, ensuring the mixture was compacted 

making pressure with hands. The column had 12 centimeters of reagent and with the silica 

pearls, 13.50 cm altogether. The function of these silica balls was to homogenize the superior 

surface of the mixture and avoid preferred fluxes. Then, the column was saturated with MilliQ® 

ultrapure water adding 3 cm plus (supernatant) to the total height as shown the Figures 6 and 7. 

Thus, the total height of the column is 16.50 cm. 
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Figure 7. Experimental assemblage in the laboratory wherein only one column and one driver were used 

for this study.  

6.2.2. Tracer test  

The tracer test provides the porosity of the column, which is the ratio of pore volume and 

total volume of the column, and the average residence time of the solution, which is the 

meantime that the P solution pass through the column. The porosity and the average residence 

time are two specific attributes of the column which help to describe it. 

 With the volumetric inflow, the volume of liquid inside the column can be known and with 

this, the porosity can be calculated. The porosity is a parameter of the column which depends 

on how much the mineral is compacted. A column with lower compaction has more pores and 

thus, a bigger porosity than another column more compacted. With the porosity value and the 

pore volume, the average residence time is calculated. 

The experimental determination of porosity and residence time is carried out experimentally 

by means of techniques where the system is disturbed at the input with a tracer. This causes a 

response at the output which is function of the mode of flow through the column. A tracer, NaCl 

solution, is injected into the input current, while the response is the representation of the tracer 

conductivity in the output current versus time. There is not adsorption of the NaCl 

by basaluminite because the tracer is a compound that does not react with the adsorbent. The 



Study of the phosphorus adsorption capacity of synthetic basaluminite using a fixed-bed column.  23 

 

type of stimulus to be studied is the step type which is the introduction of a constant tracer flow 

rate into the fluid stream.  

 To carry out the tracer test 2L of NaCl (sodium chloride 99% ACS REAGENT, SIGMA 

ALDRICH) solution 0.013M was prepared. Thus, 2.09 g of NaCl was weighed and after that the 

solid was added with MilliQ® ultrapure water in a 2L flask. This tracer solution had 2 mS/cm 

conductivity which was measured with the Thermo-scientific Orion Dual Star pH-meter and 

subsequently, was added to the column by the Gilson Minipuls-3 Peristaltic Pump with a flow of 

2.5 mL/min. Throughout the experiment, the CDT Diver Schlumberger was measuring the 

solution conductivity (mS/cm) of outflow at the bottom of the column every minute. The device is 

immersed in a 50 mL flask with water and it is employed to regulate the liquid level in the 

column placing both vessels on the same level. When the solution level of the column increase, 

the water level in the diver flask decreases until the levels are balanced. With this data, a growth 

curve of relative conductivity is constructed. Subsequently, 1L of MilliQ® ultrapure water was 

added to the column to clean it and restore the starting conditions. Similarly, with this data, a 

decline curve is made to complete the tracer test graph.  

6.2.3. Breakthrough curve  

A critical aspect of the design of a fixed-bed adsorption column involves the characterization 

of the effluent concentration profile as a function of the volume processed or the operating time. 

The dynamic behavior of a fixed-bed adsorption column can be visualized in the active mass 

transfer zone moving through the bed as a function of the displacement produced by the 

saturation of the adsorbent.[37]  

The mass transfer zone is the bed zone where adsorbate is transferred from the fluid to the 

adsorbent. The breakthrough point is observed when the front of the mass transfer zone 

appears in the effluent. Moreover, when the effluent and the influent concentrations are equals 

is called the exhaustion point where the bed is not capable to remove more adsorbate. The 

breakthrough curve (BTC) shape relies on the properties of the adsorbent and adsorbate, the 

bed depth and the flow velocity of the process. BTC data of the fixed-bed column is analyzed 

and used to optimize the performance and operation of the column.[37]  
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The BTC is used to determine the basaluminite P adsorption capacity. For this study, a 

H2PO4 (potassium phosphate monobasic SIGMA-ALDRICH) solution (1.13 ppm P) was injected 

to the column using the same flow as the tracer test. Using the three-way valve connected with 

the column, 5 mL solution samples were collected two times every day using the EE-1000R 

(100 µL-1000 µL) electronic pipette. Thei P concentrations were measured weekly using the 

Murphy and Riley method to make a BTC as shown in the Figure 8.  

 
Figure 8. BTC scheme where the breakpoint and the exhaustion point are located.  

5.2.4. Murphy and Riley method  

Phosphate analyses are dominated by methods which utilize the reaction between the 

phosphate and molybdate ions. Among them, the most used method for natural waters and 

employed in this work is described by Murphy and Riley. They used an acidified 

(with sulfuric acid 95-97% MERCK) solution of ammonium molybdate tetrahydrate SIGMA-

ALDRICH with antimony (gives by potassium antimonyl tartratetrihydrate SIGMA-ALDRICH) 

and ascorbic acid 99% ACROS ORGANICS. This reagent reacts rapidly with the phosphate ion-

producing a blue-purple compound (named phosphomolybdenum) with an atomic ratio of 1:1 of 

antimony and phosphorus. The complex is very stable and follows Beer's law up to 2 μg/mL P 

concentration. Thus, a calibration curve that relates the P concentration in water and the 

intensity received by the spectrophotometer is made with P solutions with known 
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concentrations. Then, this calibration gives the P concentration value of the samples analyzed 

which are known as Soluble Reactive Phosphorus (SRP), Molybdate Reactive Phosphorus 

(MRP) or Dissolved Reactive Phosphorus (DRP).[3][38]  

This method of analysis consists of a mixture of 10 mL of the sample, which is filtered with a 

0.45 μm nylon filter, and 10 mL of the standard solutions with 1 mL of the reagent 1 and 0.2 mL 

of the reagent 2 recollected using the EE-1000R (100 µL-1000 µL) electronic pipette. The 

sample solutions are placed in the dark for 45 min. Then, SP-830 Metertech Plus 

spectrophotometer is calibrated with the blank solution. Finally, standard and sample solutions 

are analyzed using a wavelength of 880 nm.  

Reagent 1: 0.2 g C4H4O7SbK·3H2O(s) (antimony potassium tartrate trihydrate SIGMA-

ALDRICH) are transferred to a 1L volumetric flask and 500 ml of MilliQ® ultrapure water are 

added. When the solid is dissolved, 111 mL concentrated H2SO4 (l) and 11.2 g 

(NH4)6Mo7O24·4H2O(s) (ammonium molybdate tetrahydrate SIGMA-ALDRICH) are added to the 

solution which must be cooled because the process is exothermic. When the temperature 

decreases, the flask is made up to volume with MilliQ® ultrapure water. This reagent should be 

kept in the refrigerator.  

Reagent 2: 27 g C6H8O6 (s) (ascorbic acid 99% ACROS ORGANICS) are dissolved in 500 

mL of MilliQ® ultrapure water. This reagent should be kept in the refrigerator with a packaging 

which does not allow light to pass through because UV light can degrade the reagent. 
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7. TRACER TEST 
 

Figure 9 shows the conductivity of the outflow which has passed through the column along 

the time during the tracer test. In this graph, two types of curves can be distinguished: firstly, the 

growth curve shows the NaCl solution passing through the column (the 50 mL flask where the 

diver is placed measures the solution conductivity). Secondly, a decreasing curve is displayed 

after 1 L of MilliQ® ultrapure water is added, and thus the initial conditions are restored (the diver 

measures the conductivity decrease as the MilliQ® ultrapure water leaves the column). In the 

growth curve, when the tracer solution has passed through the column after 3h approximately, 

the tracer measures the maximum conductivity of the NaCl solution. Moreover, in the decline 

curve, the tracer measures less and less conductivity because the NaCl solution has been 

replaced by the water in the 50 mL flask. This process has taken 4 h. Bubbles in the column, 

which were formed where the column was filled for the first time, can cause irregularities in the 

growth curve. When NaCl solution passes through the column, the bubbles were removed and 

thus, the decline curve came up with a better form.   
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Figure 9. Tracer test graph which represents the conductivity (mS/cm) vs the time (min). 

With the equations (7)(8)(9)(10) and (11), the porosity and the average residence time of the 

column have been determined. To calculate these values, the decline curve of the tracer test is 

used because is clearer than the growth curve. Specifically, the curve used was created with the 

division between the conductivity values of the decline curve and the initial conductivity (y-axis) 

versus the time (x-axis) as shown in Figure 10. A vertical line has been drawn trying to divide 

the curve symmetrically, where the surface below the curve is equal to the surface above, as 

shown in Figure 10.  
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Figure 10. Decline curve graph where the relative conductivity (C/Co) and the mean time (t) are located 

with the intersection between the line and the curve   

P= Vpores/Vcolumn                                                                                                                          (7)  

 

Vpores= Q·t·C/Co                                                                                                                          (8) 

 

Vcolumn= h ·a                                                                                                                                (9) 
  
A=π·r2                                                                                                                                       (10) 
 
Rt=Vpores/P                                                                                                                                 (11)
  

Where: V= volume, P= column porosity, Q= input flow, t= mean time, C/Co= relative 
conductivity, A= column area, h= column height, r= column radio, Rt= Average residence time.  

 
Table 2. Comparison of the tracer tests results with another basaluminite study [39] 

Basaluminite 

type(a) 

Relative 
conductivity  

Mean time 
(min) 

Pores 
volume 
(cm3) 

Column 
porosity(b)  

Average 
residence 
time (min) 

Synthetic 0.52 60.00 78.00 0.34 31.20 

Natural 0.45 115.00 129.38 0.57 51.75 

     (a) Both studies made the tracer test with a 2.5 mL/min input flow and a 228.60 cm3 column volume. 

(b) The porosity value of a column with spheres bed is considered 0,4. [40] 
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As Table 2 shows, the column porosity value is 0.34 and the average residence time is 31.2 

min for the study with synthetic basaluminite. These values can be compared 

with Marqués study (2020) which made a tracer test under the same conditions but using a 

natural basaluminite as adsorbent.[39] The studies with natural and synthetic basaluminite have 

similar porosity and average residence time results as might be expected because both 

experiments and adsorbents are practically identical. Though, the column with 

natural basaluminite has a bit bigger porosity value than the column with synthetic basaluminite 

because of the compaction of the column reagents. The column with synthetic basaluminite had 

greater compactness obtaining a lower porosity than the column with natural adsorbent. 

Moreover, the average residence time of the natural basaluminite column is bigger than the 

other column because it has more pores volume.  
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8. BREAKTHROUGH CURVE 
 

As discussed before, basaluminite adsorbs phosphate (P) present in the solution which 

passes through the column. Aqueous samples at the column outflow were taken for almost four 

months to study how much P can be retained. Figure 11 shows the P concentration (mg/L) of 

the samples respect to time (hours). The rise of the curve is relatively slow because P sorption 

occurs in basaluminite at the beginning of the experiment. The breakthrough point was reached 

in 52 days and the exhaustion point took a total of 104 days with more than 70% of P adsorbed. 

There are regions of ups and downs in the curve, which is probably produced by the 

experimental error.  

 

Figure 11. BTC graph which represents the effluent solution concentration (mg/L) vs the time (h).  

The basaluminite adsorption capacity is calculated with the following equation: [41]  

qt =[(Co-Ct)·V]/m                                                                                                                (12)  



Study of the phosphorus adsorption capacity of synthetic basaluminite using a fixed-bed column.  31 

 

Qt represents the time-dependent adsorption efficiency expressing as adsorbate adsorbed 

(mg)/adsorbent used (g). C (ppm) represents the initial (Co) (1.13 ppm P) and time-dependent 

(Ct) concentration of the analyte dissolved in a solution volume (V(L)) which is passed through 

the column with a 2.5 mL/min flow. Finally, m represents the adsorbent mass (g). With qt and 

the reaction time (t), a graph (Figure 12) is plotted to study the P adsorption capacity of 

the basaluminite.  

 
Figure 12. Representation of the basaluminite adsorption capacity (mg/g) vs the time (h).  

The P adsorption capacity of the basaluminite along the time is observed in Figure 12. As 

time goes by, the adsorption capacity increases until it reaches the maximum adsorption 

capacity (qmax) after almost 60 days. At this point, qmax value is 46.0 mg P/g basaluminite. After 

surpassing qmax, the basaluminite P adsorption capacity decreases because the adsorbent 

starts to become saturated.  

The calculated qmax value is comparable with that obtained in Marqués study, 40.5 mg P/g 

natural basaluminite, experiment carried out in a similar fixed-bed column setup and with the 

same P concentration inflow.[39] Thus, the value of the natural basaluminite is similar to the 

46.0 mg/g raised with the synthetic salt under similar conditions. García (2017) also studied the 

P adsorption capacity of the synthetic basaluminite with a batch experiment raising a qmax value 

of 82.0 mg P/g synthetic basaluminite using a Langmuir isotherm model. [42] This value is 

higher than the obtained in this study probably because the experimental conditions, as the pH, 
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the solid-liquid ratio and the initial P concentration, were different in comparison that developed 

in this study. 

Deliyanni et al. (2007) studied P sorption onto activated aluminum oxide and aluminum 

hydroxide gel which reached P adsorption capacities of 13.8 and 28.0 mg P/ g adsorbent, 

respectively.[43]. Although the adsorbents are Al salts, presents P sorption capacities lower 

than basaluminite, which may suggest that this residue is a promising P sorbent. 

The basaluminite qmax can be also compared with the results presented by Sibrell et al. 

(2009) for P adsorption of AMD sludges (a mix of Al and Fe oxyhydroxides). The AMD 

sludge presented a qmax of 24.0 mg P/g of sorbent (with 1 ppm P solution).[32] Wei et al. (2008) 

were also studied the P adsorption capacity of the AMD sludge with a maximum sorption 

capacity of 3.0 mg P/g sorbent.[44] Thus, basaluminite has a better adsorption capacity than the 

AMD sludge. 

Schwertmannite is a common mineral that precipitates as AMD sludge and its P sorption 

capacity could be also comparable with that of basaluminite. The schwertmannite capacity as P 

adsorbent has been studied by Arellano (2017), obtaining qmax values of 46.9 mg/g and 28.3 

mg/g for synthetic and natural schwertmannite, respectively. In this case, there is an important 

difference in sorption capacity between synthetic and natural mineral. Despite this, the value of 

the synthetic schwertmannite is almost equal to that calculated in the present work for synthetic 

basaluminite. Besides, Arellano (2017) studied sorption capacity through breakthrough curve 

experiments. The results of these experiments with synthetic and natural schwertmannite 

reached 600 and 1200 bed volumes, respectively, until the exhaustion point. [45] The bed 

volumes, which indicates the number of times a pore volume of water passed through the 

column, were calculated with Equation 13 for the basaluminite column presented in this work:  

BV=(Q·t)/Vpores                                               (13) 

Where the product between the input flow (Q) and the experiment time (t), which is the total 

volume of the solution that was passed through the column for this time is calculated. And then, 

dividing this volume by the pore volume, the number of bed volumes passed through the column 

is obtained as shown in Figure 13. 
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Figure 13. Representation of the P concentration (mg/L) vs the bed volume capacity of the column. 

As Figure 13 shows, 4800 bed volumes had passed through the column at the exhaustion 

point. This value of bed volumes is higher than those calculated by Arellano (2017) for 

schwertmannite columns, which could indicate higher load of treatment. However, the P 

concentration of the input solution was different between basaluminite and schwertmannite 

columns, so in order to better compare its efficiency, the amount of P treated was calculated. 

 

 Table 3. Comparison of the mass balance results with the Arellano study with schwertmannite. [45]  

 

As Table 3 shows, even having similar P sorption capacities, basaluminite column has been 

able to treat higher load of P. Thus, the Al salt column is better for the P removal than the 

schwertmannite column.   

Adsorbent type Total treated 
volume (L) 

Input flow 
(mL/min) 

P concentration 
(mg/L) 

Mass of 
P (g) 

Synthetic 
basaluminite 

370.40 2.50 1.13 423.07 

Synthetic 
schwertmannite 

39.17 0.80 5.00 195.84 

Natural 
schwertmannite 

66.82 0.80 5.00 334.10 
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Literature has reported other different kind of P adsorbents. Hence, a synthesized magnetic 

iron oxide (MIO) studied by Choi et al. (2016) obtained a maximum sorption capacity of 15.2 mg 

P/g MIO.[46] Nguyen et al. (2016) used volcanic ash soil (VAS) as P adsorbent obtaining qmax of 

2.9 mg P/g VAS for batch studies and 5.6 mg P/g VAS for column studies.[47] Shanableh et al. 

(2016) studied bentonite, an aluminum phyllosilicate clay. They added Fe3+ and Al3+ to improve 

its P adsorption capacities. The maximum sorption capacities obtained was ranged from 5.6-

11.3 mg P/g sorbent.[48] Bone charcoal (BC) has also been studied as a possible sorbent of P. 

Concretely, Ghaneian et al. (2014) have obtained a maximum sorption capacity of 30.2 mg P/g 

BC.[49]  

Finally, Carrero et al. (2017) also studied the As adsorption in basaluminite as adsorbent, 

obtaining a maximum sorption capacity of 52.7 mg As/g basaluminite.[50] Fukushi (2003) 

calculated an As adsorption capacity in schwertmannite of 33.5 mg/g. These results indicate 

that P and As have similar sorption capacities in these minerals.[51] Thus, these elements could 

compete for the adsorbent because they have similar chemical properties in aqueous medium.  
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9. CONCLUSIONS 

After this project has come to its end, the main three conclusions mentioned below have 

been reached:  

1. The column with synthetic basaluminite has 0.34 of porosity and 31.2 min of average 

residence time. The column with natural basaluminite has a bit bigger porosity value 

because the column with the synthetic adsorbent was more compact. Similarly, the column 

with natural basaluminite has a bigger average residence time than the column with the 

synthetic salt because the natural adsorbent has more pores volume. 

2. Once this study has been completed, synthetic basaluminite can be considered as a 

remarkable P adsorbent with a maximum adsorption capacity of 46.0 mg P/g basaluminite. 

The results of most of the studies mentioned show lower levels of P sorption capacity at 

short-time than the study carried out with synthetic basaluminite. For example, the 

activated aluminum oxide and the aluminum hydroxide gel, two commercial reagents, or 

other P adsorbents such as VAS, MIO, BC among others that obtained lower P adsorption 

values than synthetic basaluminite. These comparisons determine that this AMD residue is 

one of best P adsorbents with a one of the highest P adsorption capacities. 

3. The comparison of P sorption in fixed-bed columns of 

basaluminite and schwertmannite, indicates that both residues are remarkable adsorbents 

but for their experimental conditions, basaluminite column has been able to treat higher 

load of P, suggesting that, this AMD residue is better than the Fe salt for P adsorption. 

Therefore, most of the objectives proposed at the beginning of the project have been 

accomplished. The good adsorption capacity of the synthetic basaluminite, as expected, has 

been confirmed. As a conclusion, this non-conventional material, which was a residue at first, 

has proved to be a remarkable P adsorbent both short-term and long-term operation. For the 

next studies with basaluminite, it could be interesting to study the possibility to reuse this 

adsorbent more than one time. Besides, the adsorption capacity of the basaluminite could be 
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tested in a solution with other anions such as chlorides, sulfates or nitrates, which simulates 

marine waters. It would have be interesting to know how effective is the adsorbent if there is a 

competence between phosphates and the other anions which could decrease 

the basaluminite adsorption capacity. 
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11. ACRONYMS 

P: Phosphorus 

BOE: Spanish Official State Gazette 

PAO: Phosphorus Accumulator’s Organisms 

PHB: Polyhydroxybutyrate 

AMD: Acid Mine Drainage 

ALD: Anoxic Limestone Drain 

RAPS: Reducing and Alkalinity-Producing Systems 

DAS: Disperse Alkaline Substrate 

IPB: Iberian Pyrite Belt 

XRD: X-Ray Powder Diffraction 

IMA: International Mineralogy Association 

BTC: Breakthrough curve 

SRP: Soluble Reactive Phosphorus  

MRP: Molybdate Reactive Phosphorus 

DRP: Dissolved Reactive Phosphorus  

V: Volume 

P: Column porosity 

Q: Input flow 

t: Mean time 

C/Co: Relative conductivity 

A: Column area 

h: Column height 

r: Column radio 
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Rt: Average residence time 

qt: Time-dependent adsorption efficiency 

Co: Initial concentration 

Ct: Time-dependent concentration 

m: Adsorbent mass 

qmax: Maximum adsorption capacity 

B: Bed volume 

MIO: Magnetic Iron Oxide  

VAS: Volcanic Ash Soil  

BC: Bone Charcoal 
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APPENDIX 1: RESULTS DATA TABLES 
 

Table 4: Relevant data to plot the decline curve of the tracer test.  

 

Time(min)  Relative conductivity 
18:04:00  1  
18:05:00  1  
18:06:00  0,9980582524  
18:07:00  0,9980582524  
18:08:00  0,9980582524  
18:09:00  0,9980582524  
18:10:00  0,9961165049  
18:11:00  0,9961165049  
18:12:00  0,9961165049  
18:13:00  0,9941747573  
18:14:00  0,9941747573  
18:15:00  0,9941747573  
18:16:00  0,9941747573  
18:17:00  0,9941747573  
18:18:00  0,9941747573  
18:19:00  0,9922330097  
18:20:00  0,9941747573  
18:21:00  0,9922330097  
18:22:00  0,9922330097  
18:23:00  0,9922330097  
18:24:00  0,9922330097  
18:25:00  0,9922330097  
18:26:00  0,9922330097  
18:27:00  0,9922330097  
18:28:00  0,9922330097  
18:29:00  0,9922330097  
18:30:00  0,9922330097  
18:31:00  0,9922330097  
18:32:00  0,9922330097  
18:33:00  0,9922330097  
18:34:00  0,9941747573  
18:35:00  0,9941747573  
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18:36:00  0,9941747573  
18:37:00  0,9922330097  
18:38:00  0,9941747573  
18:39:00  0,9941747573  
18:40:00  0,9922330097  
18:41:00  0,9941747573  
18:42:00  0,9922330097  
18:43:00  0,9941747573  
18:44:00  0,9922330097  
18:45:00  0,9922330097  
18:46:00  0,9922330097  
18:47:00  0,9922330097  
18:48:00  0,9902912621  
18:49:00  0,9902912621  
18:50:00  0,9902912621  
18:51:00  0,9902912621  
18:52:00  0,9902912621  
18:53:00  0,9883495146  
18:54:00  0,9883495146  
18:55:00  0,9883495146  
18:56:00  0,9883495146  
18:57:00  0,9883495146  
18:58:00  0,9883495146  
18:59:00  0,9883495146  
19:00:00  0,9883495146  
19:01:00  0,986407767  
19:02:00  0,9883495146  
19:03:00  0,986407767  
19:04:00  0,986407767  
19:05:00  0,9883495146  
19:06:00  0,986407767  
19:07:00  0,986407767  
19:08:00  0,986407767  
19:09:00  0,986407767  
19:10:00  0,986407767  
19:11:00  0,9883495146  
19:12:00  0,9883495146  
19:13:00  0,986407767  
19:14:00  0,9883495146  
19:15:00  0,986407767  
19:16:00  0,986407767  
19:20:00  0,986407767  
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19:21:00  0,9825242718  
19:22:00  0,9825242718  
19:23:00  0,9786407767  
19:24:00  0,9766990291  
19:25:00  0,9747572816  
19:26:00  0,9708737864  
19:27:00  0,9650485437  
19:28:00  0,959223301  
19:29:00  0,9514563107  
19:30:00  0,9436893204  
19:31:00  0,9359223301  
19:32:00  0,9281553398  
19:33:00  0,9203883495  
19:34:00  0,9106796117  
19:35:00  0,9009708738  
19:36:00  0,8912621359  
19:37:00  0,8834951456  
19:38:00  0,8757281553  
19:39:00  0,867961165  
19:40:00  0,8621359223  
19:41:00  0,8563106796  
19:42:00  0,8466019417  
19:43:00  0,8368932039  
19:44:00  0,8252427184  
19:45:00  0,8155339806  
19:46:00  0,8058252427  
19:47:00  0,7980582524  
19:48:00  0,7922330097  
19:49:00  0,7883495146  
19:50:00  0,786407767  
19:51:00  0,7805825243  
19:52:00  0,7747572816  
19:53:00  0,7689320388  
19:54:00  0,7611650485  
19:55:00  0,7553398058  
19:56:00  0,7475728155  
19:57:00  0,7378640777  
19:58:00  0,732038835  
19:59:00  0,7145631068  
20:00:00  0,6932038835  
20:01:00  0,6776699029  
20:02:00  0,6660194175  
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20:03:00  0,6524271845  
20:04:00  0,6446601942  
20:05:00  0,6330097087  
20:06:00  0,6213592233  
20:07:00  0,6116504854  
20:08:00  0,6019417476  
20:09:00  0,5922330097  
20:10:00  0,5825242718  
20:11:00  0,572815534  
20:12:00  0,5611650485  
20:13:00  0,5514563107  
20:14:00  0,5398058252  
20:15:00  0,5300970874  
20:16:00  0,5203883495  
20:17:00  0,5106796117  
20:18:00  0,5029126214  
20:19:00  0,4951456311  
20:20:00  0,4854368932  
20:21:00  0,4796116505  
20:22:00  0,4737864078  
20:23:00  0,467961165  
20:24:00  0,4601941748  
20:25:00  0,4524271845  
20:26:00  0,4446601942  
20:27:00  0,4368932039  
20:28:00  0,4291262136  
20:29:00  0,4233009709  
20:30:00  0,4213592233  
20:31:00  0,4058252427  
20:32:00  0,3961165049  
20:33:00  0,3902912621  
20:34:00  0,3844660194  
20:35:00  0,3805825243  
20:36:00  0,3747572816  
20:37:00  0,3650485437  
20:38:00  0,3572815534  
20:39:00  0,3436893204  
20:40:00  0,332038835  
20:41:00  0,3281553398  
20:42:00  0,3165048544  
20:43:00  0,3067961165  
20:44:00  0,3009708738  
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20:45:00  0,2951456311  
20:46:00  0,2854368932  
20:47:00  0,2776699029  
20:48:00  0,2699029126  
20:49:00  0,2640776699  
20:50:00  0,2601941748  
20:51:00  0,2601941748  
20:52:00  0,2504854369  
20:53:00  0,2427184466  
20:54:00  0,240776699  
20:55:00  0,2349514563  
20:56:00  0,227184466  
20:57:00  0,2252427184  
20:58:00  0,2194174757  
20:59:00  0,2155339806  
21:00:00  0,2116504854  
21:01:00  0,2116504854  
21:02:00  0,2077669903  
21:03:00  0,2077669903  
21:04:00  0,2038834951  
21:05:00  0,2  
21:06:00  0,2  
21:07:00  0,1980582524  
21:08:00  0,1980582524  
21:09:00  0,1961165049  
21:10:00  0,1961165049  
21:11:00  0,1941747573  
21:12:00  0,1922330097  
21:13:00  0,1902912621  
21:14:00  0,1883495146  
21:15:00  0,186407767  
21:16:00  0,1825242718  
21:17:00  0,1805825243  
21:18:00  0,1747572816  
21:19:00  0,1689320388  
21:20:00  0,1631067961  
21:21:00  0,1631067961  
21:22:00  0,159223301  
21:23:00  0,1533980583  
21:24:00  0,1495145631  
21:25:00  0,1436893204  
21:26:00  0,1378640777  
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21:27:00  0,1339805825  
21:28:00  0,132038835  
21:29:00  0,1281553398  
21:30:00  0,1262135922  
21:31:00  0,1242718447  
21:32:00  0,1223300971  
21:33:00  0,1203883495  
21:34:00  0,1184466019  
21:35:00  0,1184466019  
21:36:00  0,1165048544  
21:37:00  0,1145631068  
21:38:00  0,1126213592  
21:39:00  0,1106796117  
21:40:00  0,1106796117  
21:41:00  0,1087378641  
21:42:00  0,1087378641  
21:43:00  0,1087378641  
21:44:00  0,1087378641  
21:45:00  0,1106796117  
21:46:00  0,1106796117  
21:47:00  0,1106796117  
21:48:00  0,1126213592  
21:49:00  0,1145631068  
21:50:00  0,1145631068  
21:51:00  0,1145631068  
21:52:00  0,1145631068  
21:53:00  0,1145631068  
21:54:00  0,1145631068  
21:55:00  0,1126213592  
21:56:00  0,1126213592  
21:57:00  0,1126213592  
21:58:00  0,1126213592  
21:59:00  0,1106796117  
22:00:00  0,1087378641  
22:01:00  0,1067961165  
22:02:00  0,1029126214  
22:03:00  0,1009708738  
22:04:00  0,09708737864  
22:05:00  0,09514563107  
22:06:00  0,0932038835  
22:07:00  0,09126213592  
22:08:00  0,08932038835  
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22:09:00  0,08932038835  
22:10:00  0,08737864078  
22:11:00  0,0854368932  
22:12:00  0,0854368932  
22:13:00  0,08349514563  
22:14:00  0,08349514563  
22:15:00  0,08155339806  
22:16:00  0,08155339806  
22:17:00  0,07961165049  

 
 

Table 5: Data for the breakthrough curve experiment.  

  

Time (h)  P (mg/L)  
627,5  0,000  
651,5  0,001  
659,5  0,000  
675,5  0,001  
699,5  0,000  
890,6  0,008  
983,1  0,005  

1104,6  0,005  
1248,6  0,015  
1272,6  0,020  

1414,47  0,048  
1419,6  0,050  
1425,6  0,115  
1490,1  0,229  
1548,6  0,305  
1565,1  0,328  
1619,1  0,389  
1632,6  0,647  
1643,1  0,656  

1645,25  0,640  
1703,1  0,640  
1725,6  0,647  
1776,6  0,734  
1800,6  0,746  
1802,1  0,743  
1829,6  0,701  

1847,75  0,713  
1925  0,727  
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1945  0,715  
1989  0,757  
1999  0,750  
2050  0,774  
2060  0,775  
2125  0,811  
2150  0,821  
2230  0,820  
2245  0,818  
2300  0,843  
2310  0,876  
2365  0,875  
2378  0,876  
2398  0,887  
2450  0,915  
2475  0,915  
2508  0,925  
2548  0,889  
2600  0,945  
2608  0,931  
2650  0,925  
2670  0,930  
2690  0,950  
2748  0,965  
2750  1,150  
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APPENDIX 2: PROCEDURE OF THE PREPARATION OF 

BASALUMINITE AND ALUMINUM OXIDE COLUMNS 

Hence, 5 g of the salts were weighed on an analytical balance. 5.0116 g of aluminum oxide 

and 5.6444 of basaluminite were weighed. Then, the salts were mixed in two beakers with the 

pine chips previously sieved for giving the same chip size and washed to eliminate some 

organic matter. In the baker which had the basaluminite, the mixture weighed 146.21 g. In the 

other, the mixture with aluminum oxide and pine weighed 130.00 g. Approximately, in both 

bakers, there was a 1:6 grams ratio between the aluminum salts and the wood. 

Firstly, two centimeters of silica pearls were added in both columns. Secondly, the mixture 

of aluminum oxide and wood was added to the blue marked column and the other to the yellow 

marked column, bit by bit. Hence, when the mixture was added, it could be compacted with 

pressure. The mixtures were added completely to their respective columns. 

The basaluminite column had 12 centimeters of the mixture and the aluminum oxide column 

had 11 cm. Finally, one centimeter of silica pearls was included in both columns another time.   

Then, the solution of phosphates was prepared. The objective was to prepare a solution 

which simulates wastewater. First, the following salts were weighed with an analytical balance: 

0.2224 g of KH2PO4 (for 10 ppm P), 0.7746 g of NaHCO3 (for 155 ppm), 0.1421 g of 

MgCl2·6H2O (for 25 ppm), 0.2146 g of CaCl2·2H2O (for 37 ppm). Then, these salts were added 

with MilliQ® ultrapure water into a 5 L flask. The solution pH measured with the Thermo-

scientific Orion Dual Star pH-meter was 7.227.   

Once the 10 ppm phosphorus solution passed through the column, using the three-way 

valve solutions sample was recollected. Only 2 samples of each column were collected. The 

same day in which the solution was added to the column, the pH of basaluminite column was 

4.171 and the pH of the Al oxide column was 4.667. The following day the pH was 4.315 and 

6.684 respectively.  
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On the first day, the pH solution decreased in two cases when it passes through the column. 

On the second day, the pH solution increases in both columns. Specifically, basaluminite has a 

lower impact on the solution pH than the Al oxide. However, these results are not significant 

because there are only two samples. 
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