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Abstract

We present the mathematical derivation and the computational implementation of the an-

alytical geometry derivatives for a polarizable QM/MM model (QM/MMPol). In the adopted

QM/MMPol model, the focussed part is treated at QM level of theory, while the remaining

part (the environment) is described classically as a set of fixed charges and induced dipoles.

The implementation is performed within the ONIOM procedure, resulting in a polarizable

embedding scheme which can be applied to solvated and embedded systems and combined

with different polarizable force fields available in the literature. Two test cases characterized

by strong hydrogen-bond and dipole–dipole interactions, respectively, are used to validate the

method with respect to the non-polarizable one. Finally, an application to geometry opti-

mization of the chromophore of Rhodopsin is presented to investigate the impact of including

mutual polarization between the QM and the classical parts in conjugated systems.
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1 Introduction

Nowadays multiscale approaches represent one of the most effective computational strategies to

study complex systems made of many interacting moieties. Among the multiscale approaches, one

largely used combines a quantum-mechanical description of a specific part of the whole system,

whose properties are the object of the research, and a classical approach for the remainder, which

is generally indicated as the “environment”. This hybrid QM/classical approach can be formulated

in many different ways, depending on the selected classical formulation and the interactions be-

tween the two parts that are included. Generally speaking, we can identify two different classical

formulations, namely that introducing a continuum description in terms of macroscopic properties

of the environment, and that treating it as classical particles interacting through MM force fields.

The resulting QM/continuum1–7 and QM/MM8–15 methods represent very popular approaches in

different research fields, ranging from chemistry, to physics, material science and biology, just

to quote the main ones. In particular, QM/classical formulations are largely adopted to describe

properties and processes which cannot be treated with fully classical models, such as chemical and

biochemical reactivity, electronic processes, as well as spectroscopic properties. Their success in

these applications is mostly related to the accuracy with which the interactions between the QM

and the classical parts are treated, as well as to the availability of analytical derivatives of such in-

teractions with respect to various internal and external perturbations. The derivatives, for instance,

are necessary to determine reactant, product and transition state structures and the corresponding

(free) energies for chemical reactivity, to calculate the response properties required for simulating

spectra, as well as to determine excited-state structures and properties.

Analytical derivatives have been available for both QM/continuum and QM/MM models for

many years; however, in the latter case they are usually limited to non-polarizable MM descrip-

tions, although derivatives have been formulated for polarizable QM/MM schemes adopting fluctuating-

charges16,17 or Drude oscillators.18

This alternative and very effective way to introduce polarization effects using MM force fields

adopts a strategy based on fixed classical charges (or multipolar expansions) and induced dipoles.19–25
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The latter are generally obtained in terms of atomic isotropic polarizabilities even if more refined

descriptions using the full tensorial character of the polarizability have been proposed.24 While the

charges (or the multipoles) are fixed in magnitude, the polarizabilities allow the classical part to

respond to the electric field of the solute, generating induced dipole moments, which in turn affect

the solute electron density. Such a response represents the mutual polarization between the envi-

ronment and the solute, and is the key difference between polarizable and non-polarizable discrete

models.

As far as we know, no analytical derivatives have been presented so far for polarizable QM/MM

approaches based on the induced dipole model (from now on indicated as QM/MMPol approaches).

Here in particular, we shall focus on the QM/MMPol model which has been recently pro-

posed within the framework of the Gaussian code23 to investigate both ground and excited state

properties, and processes including electronic energy transfer (EET) between chromophoric moi-

eties,26,27 and can also be used together with the Polarizable Continuum Model28 for a two-layer,

fully polarizable, discrete/continuum description of the environment.

This work is concerned with the extension of the QM/MMPol model to evaluate analytical

derivatives of the energy with respect to nuclear and MM coordinates, in order to allow for geom-

etry optimizations of embedded systems. The mathematical derivation is presented in Section 2,

while the computational implementation into Gaussian29 is introduced in Section 3. Calculations

on test systems are reported in the same Section to verify the performances of the polarizable

QM/MMPol treatment when applied to strongly interacting systems, such as hydrogen-bonded

and dipole–dipole dimers. Finally (in Section 4), the model is applied to the Rhodopsin system. In

that case geometry optimizations at QM/MMpol level are presented and discussed in comparison

with crystal data and non polarizable results. All the presented applications show the applicability

and the stability of the implemented derivatives as well as their impact in the determination of

geometries of systems of increasing complexity.
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2 The mathematical derivation

In a very general framework, the energy derivative of a QM/MM system with respect to a generic

geometrical parameter λ can be obtained by means of the chain rule, exactly as for a full QM

system, namely:

Eλ

QM/MM(PPP) =
∂

∂λ
EQM/MM +

∂EQM/MM

∂PPP
∂PPP
∂λ

(1)

where PPP refers to the QM density matrix, whose elements are Pµν , being µ and ν functions of

the basis set used. The term involving the derivatives of the density matrix gives rise to the usual

energy-weighted density matrix contribution which is non zero only if λ represents the position of

a QM-described nucleus.

The other term, ∂

∂λ
EQM/MM, which is the partial derivative of the energy with respect to the

position of either a QM or a MM site, can be formulated as:

∂

∂λ
EQM/MM =

∂

∂λ
EQM +

∂

∂λ
EMM +

∂

∂λ
Eint (2)

where the first two terms indicate the energy of the QM and of the MM part of the system, whereas

the last term is the interaction between the two parts. In the following we shall not consider the

QM dervatives, ∂

∂λ
EQM, as they are completely identical to those of a full QM system. We note

instead, that in non-polarizable MM approaches ∂

∂λ
EMM are completely decoupled from the QM

part and their derivatives are exactly the same involved in a full MM system. However, this is

not the case for a polarizable MM, as we shall show in the following sections. For such a reason

the last two terms will be considered together and will be indicated as derivatives of an effective

interaction energy. In particular, from now on, the coordinates of nuclei, MM sites and electrons

will be referred to as rrr, RRR and ρρρ , respectively, while indices n and k will be used to label nuclei

and MM sites. When dealing separately with charged and polarizable MM sites, the indices c and

p will be used instead of the generic k. The coordinate component will be generically indicated

as ζ = {x,y,z}. Derivatives will be either written explicitly, or as a superscript with the derivation
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variables in brackets.

2.1 The effective interaction energy

The effective interaction energy EMM +Eint is composed of an electrostatic term, Ees, and a polar-

ization term, Epol:

Ees =Ues
q +Ues

n +Ues
e (3)

Epol =
1
2

[
Upol

en +Upol
ne +Upol

ee +Upol
nn

]
(4)

The electrostatic terms account for the interaction between MM charges and the potential in-

duced by the other MM charges (Ues
q ), the nuclei (Ues

n ), and the electron density (Ues
e ):

Ues
q =

1
2 ∑

c

∗

∑
c′

qcqc′

|RRRc−RRRc′|
(5)

Ues
n = ∑

c
∑
n

qcZn

|RRRc− rrrn|
(6)

Ues
e = tr(PPPhhhes) = ∑

µν

Pµν ∑
c

qcV µν
c = ∑

c
qc ∑

µν

Pµν 〈µ|
−1

|RRRc−ρρρ|
|ν〉 (7)

where {qc} are the MM charges, {Zn} the nuclear ones, µ and ν indices labelling the basis func-

tions, and Pµν , and V µν
c are the (µ,ν) elements of the electronic density and of the electrostatic

potential on the charged site c.

The star symbol over the summation in Eq. (12) indicates that the index c′ does not run over

all MM charges, but only over those that are allowed to interact with the charge c. The star symbol

will be used throughout the following text, for both charges and induced dipoles, with the same

meaning. Indeed, not all MM sites (charged or polarizable) are in general allowed to interact

with each other. This is because polarizable models can be divided into additive and nonadditive,

also called interactive, models.22 In additive models, only intermolecular polarization interactions

are explicitly accounted for. In nonadditive models, however, all charges and dipoles are allowed

to interact intra- and intermolecularly. Because the true diffuse charge distribution is described by
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point polarizabilities, nonadditive models can lead to the so-called polarization catastrophe at short

distances. This can be avoided, for instance, turning off polarization interactions among 1–2 and

1–3 neighbours, a scheme adopted in Amber polarizable force fields. Another possibility is to use

Thole’s smeared dipole tensor, which prevents the polarization catastrophe at short distances by

introducing appropriate screening functions. We have implemented several polarization models,

both based on additive and nonadditive schemes, Table 1 reports the different treatments among

different MMPol models, for what concerns the charge–charge, charge–dipole and dipole–dipole

interactions.

The polarization terms of Eq. (4) account for the interaction between the induced dipoles and

the electric fields generated by charges, nuclei and electrons; the dipoles induced by these terms

are here labelled µµµchg, µµµnuc and µµµele. The interaction between induced dipoles is explicitly ac-

counted for during the calculation of the dipoles themselves: since they mutually polarize, they are

calculated self-consistently. The four polarization terms are:

Upol
en = tr(PPP jjjpol) =−∑

µν

Pµν ∑
pζ

µ
nuc+chg
pζ

Eµν

pζ
(8)

Upol
ne = tr(PPPyyypol) =−∑

µν

Pµν ∑
pζ

µ
µν

pζ
Enuc+chg

pζ
(9)

Upol
ee = tr(PPPXXXpol(PPP)) =−∑

µν

Pµν ∑
pζ

µ
ele
pζ

Eµν

pζ
(10)

Upol
nn =−∑

pζ

µ
nuc+chg
pζ

Enuc+chg
pζ

(11)

In the previous equations, the electric fields calculated at the positions of the polarizable sites,

RRRp, are:

Enuc+chg
pζ

= Enuc
pζ

+Echg
pζ

= ∑
n

Zn(ζp−ζn)∣∣RRRp− rrrn
∣∣3 +

∗

∑
c′

qc′(ζp−ζc′)∣∣RRRp−RRRc′
∣∣3 (12)

Eµν

pζ
= 〈µ|

(−)(ζp−ζ )∣∣RRRp−ρρρ
∣∣3 |ν〉 (13)

and the corresponding induced dipoles on the polarizable sites are obtained through the MMPol
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matrix DDD:

µ
x
pζ

= (DDDEEEx)pζ
, x = {chg,nuc,ele}. (14)

Table 1: Polarization–polarization, polarization–charge and charge–charge interactions allowed in
the MMPol models used. (a): Using Thole smeared dipole tensor, linear version: AL Model, Table
3, in Wang et al.;30 screening factor a = 2.5874. (b): Interaction scaled by 1

1.2 . (c): Using standard
dipole interaction tensor. (d): Using Thole smeared dipole tensor, linear version: Eq. 9c in van
Duijnen and Swart;31 screening factor a = 1.7278. (e): These Pol–Chg interactions can also be
included in a Thole scheme if the dipole-induced self-polarization of the molecule is accounted for
in the charge fitting.32

Model Atom connectivity Pol–Pol Pol–Chg Chg–Chg

Amber12

1–2 neighbours: Excluded Excluded Excluded
1–3 neighbours: Excluded Excluded Excluded
1–4 neighbours: Included(a) Included Included
Others: Included(a) Included Included

Amber

1–2 neighbours: Excluded Excluded Excluded
1–3 neighbours: Excluded Excluded Excluded
1–4 neighbours: Included(c) Included Included(b)

Others: Included(c) Included Included

Thole
Within same group: Included(d) Excluded(e) Included
In different groups: Included(d) Included Included

Groups
Within same group: Excluded Excluded Included
In different groups: Included(c) Included Included

2.2 First derivatives with respect to the MM coordinates

In this section the electrostatic and polarization terms of Eq. (5) to Eq. (7) and Eq. (8) to Eq. (11) are

derived with respect to the coordinates of the MM sites, RRRk, in order to obtain analytical expressions

for the forces acting upon them.

We first derive the electrostatic terms of Eq. (5), Eq. (6) and Eq. (7); as shown, the resulting
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force on each of the MM sites is zero if the site is not charged (qk = 0):

∂

∂Rkζ

Ues
q =−

∗

∑
c

qkqc

|RRRk−RRRc|3
(ζk−ζc) =−qkEchg

kζ
(15)

∂

∂Rkζ

Ues
n =−qk ∑

n

Zn

|RRRk−RRRn|2
(ζk−ζn) =−qkEnuc

kζ
(16)

∂

∂Rkζ

Ues
e = qk ∑

µν

Pµν 〈µ|
(−)(ζ −ζk)

|ρρρ−RRRk|3
|ν〉=−qkEele

kζ
(17)

We now calculate the derivatives of the polarization terms (Eq. (8) to Eq. (11)). These terms

contain a product between the induced dipole moments and the electric field generated by nuclei,

charges and electron density at the polarizable sites’ positions. The dipoles themselves are induced

by nuclei, electron density and MM charges, according to the relation in Eq. (14); their derivatives

are:
∂

∂Rkζ

µ
x
p′ζ ′ ≡ µ

x(kζ )
p′ζ ′ =

∂

∂Rkζ

(DDDEEEx)p′ζ ′ =
(

DDD(kζ )EEEx +DDDEEEx(kζ )
)

p′ζ ′
(18)

where x = {nuc, chg, ele}, DDD(kζ ) indicates the derivative of the MMPol matrix DDD with respect to

the MM sites’ positions (calculated later), and EEEx(kζ ) is the shorthand for the derivatives of the

electric fields due to x.

The derivatives of the polarization terms are:

∂

∂Rkζ

Upol
en =−∑

µν

Pµν ∑
p′ζ ′

(
µ

nuc+chg(kζ )
p′ζ ′ Eµν

p′ζ ′+µ
nuc+chg
p′ζ ′ Eµν(kζ )

p′ζ ′

)
=

=−
(

EEE†nuc+chgDDD†(kζ )EEEele +EEE†nuc+chg(kζ )DDD†EEEele +EEE†nuc+chgDDD†EEEele(kζ )
)

(19)

∂

∂Rkζ

Upol
ne =−

(
EEE†eleDDD†(kζ )EEEnuc+chg +EEE†ele(kζ )DDD†EEEnuc+chg +EEE†eleDDD†EEEnuc+chg(kζ )

)
(20)

∂

∂Rkζ

Upol
ee =−

(
EEE†eleDDD†(kζ )EEEele +EEE†ele(kζ )DDD†EEEele +EEE†eleDDD†EEEele(kζ )

)
(21)

∂

∂Rkζ

Upol
nn =−

(
EEE†nuc+chgDDD†(kζ )EEEnuc+chg +EEE†nuc+chg(kζ )DDD†EEEnuc+chg +EEE†nuc+chgDDD†EEEnuc+chg(kζ )

)
(22)

and the derivatives of the electric fields, Ex(kζ ), are calculated from Eq. (12) and Eq. (13) as
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follows:

∂

∂Rkζ

Enuc
p′ζ ′ ≡ Enuc(kζ )

p′ζ ′ = ∑
n

Znδkp′

[
δζ ζ ′∣∣RRRp′− rrrn

∣∣3 − 3(ζ ′p′−ζ ′n)(ζp′−ζn)∣∣RRRp′− rrrn
∣∣5

]
(23)

∂

∂Rkζ

Echg
p′ζ ′ ≡ Echg(kζ )

p′ζ ′ =
∗

∑
c′′

qc′′(δkp′−δkc′′)

[
δζ ζ ′∣∣RRRp′−RRRc′′

∣∣3 − 3(ζ ′p′−ζ ′c′′)(ζp′−ζc′′)∣∣RRRp′−RRRc′′
∣∣5

]
(24)

∂

∂Rkζ

Eele
p′ζ ′ ≡ Eele(kζ )

p′ζ ′ =−∑
µν

Pµν 〈µ|δkp′

[
δζ ζ ′∣∣RRRp′−ρρρ

∣∣3 − 3(ζ ′p′−ζ ′)(ζp′−ζ )∣∣RRRp′−ρρρ
∣∣5

]
|ν〉 (25)

In the MMPol implementation, the MMPol matrix DDD is obtained by inverting a matrix, which

we will call D̃DD, that only depends on the polarizability, geometry and connectivity of the MM sites,

and whose expression in terms of such data is known. Therefore, in order to calculate the derivative

of DDD, we make use of the relation ∂

∂RRRAAA−1 =−AAA−1 ∂AAA
∂RRRAAA−1, so that it is possible to write:

∂DDD
∂Rpζ

≡ DDD(pζ ) =−DDD
∂ D̃DD

∂Rpζ

DDD =−DDDD̃DD(pζ )DDD (26)

Matrix D̃DD is defined in terms of the dipole tensor; different MMPol models (Amber12, Amber,

Thole, Groups) use slightly different definitions for D̃DD. In general, D̃p′ζ ′,p′ζ ′ = α
−1
p′ , where αp′ is

the isotropic polarizability of the p′-th MM site; D̃p′ζ ′,p′′ζ ′′ = 0 (p′ = p′′, ζ ′ 6= ζ ′′); and

D̃p′ζ ′,p′′ζ ′′ = S(3)p′p′′
δζ ′ζ ′′

r3
p′p′′
−S(5)p′p′′

3(ζ ′p′−ζ ′p′′)(ζ
′′
p′−ζ ′′p′′)

r5
p′p′′

(27)

when p′ 6= p′′. In the last equation, S(3) and S(5) are screening terms, introduced in the linear

version of Thole smeared dipole tensor (for those models employing it — see Table 1) and are

defined in terms of a parameter a (also tabulated) and distance parameters sp′p′′ = a 6
√

αp′αp′′ and

νp′p′′ =
rp′p′′
sp′p′′

. Refer to Table SI.1 for an expression of S(3)p′p′′ and S(5)p′p′′ .

The derivative of Eq. (27) with respect to the coordinate of the MM site p — D̃(pζ )
p′ζ ′,p′′ζ ′′ —

is detailed in the Supporting Information. Here we only note that the derived matrix is non-zero

only when p′ 6= p′′, and, most importantly, only along the p-th row and the p-th column, since

it contains a (δpp′ − δpp′′) term. This makes the calculation and handling of the matrix quite
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inexpensive computationally.

Summing all the electrostatic and polarization terms, we obtain an expression for the total

force on each MM site:

Fkζ =
∂E

∂Rkζ

=
∂

∂Rkζ

(
Ues +Upol

)
=

=−qkEkζ −
1
2

(
EEE†(kζ )DDD†EEE +EEE†DDD†(kζ )EEE +EEE†DDD†EEE(kζ )

)
(28)

where EEE = EEEchg +EEEnuc +EEEele.

Employing the definition of induced dipole µµµ = DDDEEE, the symmetry property of the MMPol

matrix (DDD† = DDD) and Eq. (26), this expression can be simplified as follows:

Fkζ =−qkEkζ −
1
2

(
EEE†(kζ )DDDEEE +EEE†(−DDD†D̃DD†(kζ )DDD†)EEE +EEE†DDD†EEE(kζ )

)
=

=−qkEkζ −µµµ
†EEE(kζ )+

1
2

µµµ
†D̃DD†(kζ )

µµµ (29)

2.3 First derivatives with respect to the nuclear coordinates

In this section the derivatives are carried out with respect to the nuclear coordinates, in order to

obtain additional forces due to the presence of the classical polarizable environment.

Firstly, we calculate the derivatives of the electrostatic terms. Note that the charge-charge

interaction term, Ues
q , does not depend on rrr:

∂

∂ rnζ

Ues
q = 0 (30)

∂

∂ rnζ

Ues
n = ∑

c
qcZn

(ζc−ζn)

|RRRc− rrrn|3
= ∑

c
qcV

nuc(nζ )
c (31)

∂

∂ rnζ

Ues
e = ∑

c
qc ∑

µν

Pµν

[〈
∂ µ

∂ rnζ

∣∣∣∣ −1
|ρρρ−RRRc|

|ν〉+ 〈µ| −1
|ρρρ−RRRc|

∣∣∣∣ ∂ν

∂ rnζ

〉]
= ∑

c
qcV

ele(nζ )
c (32)

Secondly, we recall that the MMPol matrix DDD does not depend on the nuclear coordinates rrr,
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and therefore:
∂

∂ rnζ

µ
x
p′ζ ′ ≡ µ

x(nζ )
p′ζ ′ =

(
DDDEEEx(nζ )

)
p′ζ ′

(33)

It is now possible to derive the four polarization terms:

∂

∂ rnζ

Upol
en =−∑

µν

Pµν ∑
p′ζ ′

(
µ

nuc+chg(n,ζ )
p′ζ ′ Eµν

p′ζ ′+µ
nuc+chg
p′ζ ′ Eµν(n,ζ )

p′ζ ′

)
=

=−
(

EEE†nuc(nζ )DDD†EEEele +EEE†nuc+chgDDD†EEEele(nζ )
)

(34)

∂

∂ rnζ

Upol
ne =−

(
EEE†ele(nζ )DDD†EEEnuc+chg +EEE†eleDDD†EEEnuc(nζ )

)
(35)

∂

∂ rnζ

Upol
ee =−

(
EEE†ele(nζ )DDD†EEEele +EEE†eleDDD†EEEele(nζ )

)
(36)

∂

∂ rnζ

Upol
en =−

(
EEE†nuc(nζ )DDD†EEEnuc+chg +EEE†nuc+chgDDD†EEEnuc(nζ )

)
(37)

where the derivatives of the electric fields due to x (MM charges, nuclei and electron density),

with respect to the nuclear coordinates, have been indicated with Ex(nζ ). Note that the charge-

induced electric field does not depend on the nuclear coordinates rrr. Moreover, the derivatives of

the electronic electric field, Eele, do not involve the electric field operator as before, since the latter

does not depend on rrr (compare with Eq. (25), but act on the basis functions instead:

∂

∂ rnζ

Enuc
p′ζ ′ =−Zn

[
δζ ζ ′∣∣RRRp′− rrrn

∣∣3 − 3(ζ ′p′−ζ ′n)(ζp′−ζn)∣∣RRRp′− rrrn
∣∣5

]
≡ Enuc(nζ )

p′ζ ′ (38)

∂

∂ rnζ

Echg
p′ζ ′ ≡ Echg(nζ )

p′ζ ′ = 0 (39)

∂

∂ rnζ

Eele
p′ζ ′ = ∑

µν

Pµν

[〈
∂ µ

∂ rnζ

∣∣∣∣ (−)(ζ ′p′−ζ ′)∣∣RRRp′−ρρρ
∣∣3 |ν〉+ 〈µ| (−)(ζ

′
p′−ζ ′)∣∣RRRp′−ρρρ
∣∣3

∣∣∣∣ ∂ν

∂ rnζ

〉]
≡ Eele(nζ )

p′ζ ′ (40)

Summing all the contributions from the electrostatic and polarization terms, we obtain the total
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forces acting on the nuclei due to the polarizable environment:

Fnζ =
∂E

∂ rnζ

=qqq†VVV (nζ )− 1
2

(
EEE†(nζ )DDD†EEE +EEE†DDD†EEE(nζ )

)
=qqq†VVV (nζ )−µµµ

†EEE(nζ ) (41)

3 Computational implementation

3.1 Derivatives within the ONIOM scheme

The calculation of analytical derivatives in QM/MMPol has been implemented in a locally modi-

fied version of Gaussian.29 Such implementation makes use of the ONIOM scheme.13,14,33–35 The

advantage of the implementation of QM/MM geometry optimizations in a polarizable environ-

ment within the ONIOM scheme relies on the fact that all non-electrostatic contributions to the

forces (bonded and non-bonded ones) are available, and the additional force terms generated by

the presence of the MM electrostatic and polarization interactions can be added independently.

Here, we quickly review the ONIOM scheme, in order to justify our approach. According

to such a scheme, the total system, which in the ONIOM jargon is indicated as real system, is

partitioned into an inner region, generally indicated as model system, and an outer or embedding

region. The energy of the total system is calculated following a subtractive scheme:

EQM/MM = EMM
real +EQM

model−EMM
model (42)

where the superscripts QM or MM refer to the level of accuracy used in the three different calcu-

lations. This general expression further differentiates depending on the type of interaction present

between inner and outer regions, namely which embedding scheme is used. The so-called me-

chanical embedding schemes account for such interaction only at MM level. In the electronic

embedding, the electrostatic interaction between the QM region and the MM charges enters into

the QM description, thus polarizing the electron density. Our approach extends the model to a
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polarizable embedding scheme, whereby the QM region is polarized both by the MM charges and

by the MM induced dipoles; moreover, the dipoles themselves respond to the QM electron density,

and they mutually polarize.

In our implementation, such electrostatic and polarization interactions between the two regions

have been added to the standard interactions computed within a mechanical embedding ONIOM.

Since atomic charges and polarizabilities must be defined and treated consistently, according to

the various MMPol models available (see Table 1), we have preferred not to use the standard

electrostatic embedding of ONIOM, but to take care of both electrostatic and polarization terms

directly in the QM step of the calculations.

Following such a scheme, the total energy of the system is still obtained in terms of three

separate calculations but it needs to be reformulated as:

EQM/MMPol = E(I)+E(II)−E(III) = EMM/noele
real +

[
EQM

model +Ees
real +Epol

real

]
−EMM/noele

model (43)

where in both the first step on the real and the third one on the model MM system, the electrostatic

interactions are switched off as they are calculated for the full system in the second QM/model

step.

The calculation of energy derivatives is also partitioned into the three steps. Here, the sym-

bols XXXm and XXXemb are used to indicate the generic inner (model) and outer (embedding) region
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coordinates, respectively:

∂E(I)
∂XXXemb =

∂ (Ebond
real +EvdW

real )

∂XXXemb (44)

∂E(II)
∂XXXemb =

∂ (Ees
real +Epol

real)

∂XXXemb (45)

∂E(III)
∂XXXemb = 0 (46)

∂E(I)
∂XXXm =

∂ (Ebond
real +EvdW

real )

∂XXXm (47)

∂E(II)
∂XXXm =

∂EQM
model

∂XXXm +
∂ (Ees

real +Epol
real)

∂XXXm (48)

∂E(III)
∂XXXm =

∂ (Ebond
model +EvdW

model)

∂XXXm (49)

The procedure followed for the actual implementation of geometry optimization is first to run

a mixed ONIOM/MMPol calculation where a polarizable embedding is performed by the MMPol

routines; and then to calculate the MMPol force terms of Eq. (29) and Eq. (41) and add them

to the ONIOM forces. In those cases where the inner and outer regions are bonded, the atom

connecting them is defined link atom,14 and is treated differently in the three ONIOM steps. The

QM/MMPol optimization has been implemented consistently. Link atoms are assigned neither

charge nor polarizability. The analytical gradients have been checked against numerical finite–

difference results and found dicrepancies below the numerical accuracy. A further analysis has

been done on computational times: as expected, we observe a general increase in the time needed

to compute the forces, which scales linearly with the number of induced dipoles. Of this increase,

the most expensive step is the computation of the dipole-induced force on the nuclei, which is

responsible of ∼65% of the total (the full analysis is reported in the Supporting Information).

3.2 Preliminary tests

In this Section we present the QM/MM geometry optimization of two simple molecular systems,

to test our approach before applying it to larger systems. The test systems have been selected so to
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represent two prototypical cases of two of the main intermolecular interactions, namely hydrogen-

bonding (here represented by a Guanine–Cytosine pair), and dipole-dipole interactions (here rep-

resented by a Merocyanine dimer). The aim of these test studies is to compare the QM/MMPol

optimizations to those obtained from a full-QM and a well established non-polarizable QM/MM,

in order to check whether a polarizable QM/MM approach is appropriate for the determination of

geometries and provides reasonable results.

Before applying the polarizable QM/MM scheme, it is necessary to define the charge model

used in the MM part of the system. In AMBER polarizable force fields, parameterization of the

permanent point charges depends on the polarization model.30,32,36 The standard procedure for de-

riving point charges for non-polarizable force fields is to perform an ab initio calculation, evaluate

the electrostatic potential on a grid placed around the molecule, and derive the ESP charges with a

(possibly restrained) fitting procedure so that they reproduce the QM potential.37,38 When a polar-

izable model is used, a set of atomic polarizabilities is included in addition to the set of charges, and

the sum of the potential induced by both sets on the grid points must now reproduce the calculated

QM potential. We followed the method developed by Cieplak et al.,32 where the dipole-induced

self-polarization of the molecule is taken into account by iteratively fitting the atomic point charges

to the difference of the QM potential and that generated by the induced dipoles.

The Guanine–Cytosine system is characterized by three strong hydrogen bonds between the

two bases. Their lengths, labelled r1, r2 and r3, and shown in Figure 1, will be used as parameters

to compare the optimized structures.

N

N

N

O

N

N H

H

H

H

O

N

NH

H

N

H

r

r2

r3

ine Cytosine

*

*

Figure 1: Geometry of the Guanine–Cytosine model pair used in the calculations. The three hy-
drogen bonds analysed in the text are labelled r1, r2 and r3.
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The parameters used for the system are the standard ones of Amber94 force field39 for the

non-polarizable MM, while we employed the atomic polarizabilities and polarization-consistent

charges of Amber ff02 force field32 for the MMPol. In both cases, the charges were reported for

the nucleosides, including the sugar, which we do not include in our system (see Figure 1). We

proceed by removing the sugar, saturating the N∗ atom, and assigning a charge to the saturation

hydrogen so that the whole system is neutral.

The reference geometrical parameters (indicated as Full-QM in Table 2) were taken from Sza-

lay et al.,40 who obtained them at MP2/aug-cc-pVDZ level imposing a planarity constraint. Then,

two models were used for the QM/MM optimization calculations, differing by which base was

treated quantum-mechanically and which classically. These models are named (GQM, CMM) and

(CQM, GMM). Furthermore, for each model two different schemes were adopted: one, named

Frozen-MM scheme, where the internal coordinates of the MM subsystem were not optimized, but

were kept fixed at the values obtained from the monomer QM optimization; and another, Free-MM

scheme, where no contraints were imposed on the coordinates.

Finally, for each model and each scheme, the MM subsystem was either optimized using a stan-

dard non-polarizable method (labelled QM/MM in Table 2), or following the polarizable method

under testing (QM/MMPol). The results are reported in Table 2.

Table 2: Full-QM, QM/MM and QM/MMPol results on the Guanine–Cytosine pair. Distances are
reported in Å.

Full-QM scheme Frozen-MM scheme Free-MM scheme
Model Parameter MM MMPol MM MMPol

GQM, CMM
r1 1.712 1.788 1.785 1.805 1.800
r2 1.869 1.865 1.847 1.874 1.854
r3 1.873 1.783 1.741 1.769 1.727

CQM, GMM
r1 1.712 1.761 1.730 1.766 1.737
r2 1.869 1.855 1.840 1.868 1.850
r3 1.873 1.823 1.829 1.833 1.844

As it can be seen from the results reported in Table 2, the behaviour of QM/MMPol is very

similar to that of the non-polarizable QM/MM and they both satisfactorily reproduce the ab initio

intermolecular distances. The addition of the induced dipoles seems to lead to a generalized slight

decrease of the H-bond distances with respect to the parallel approach with charges only, but in all
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cases the differences are below 5%. Even when we allow for a complete relaxation of the classical

unit (Free-MM scheme) a similar agreement is found between polarizable and non-polarizable

MM on one side, and between QM/MM and full-QM approaches on the other side.

The second test system, a dimeric H-aggregate of Merocyanine dyes, is characterized by a

strong dipole–dipole interaction between the monomers.41 The monomer, shown in Figure 2(a), is

roughly planar. In the dimeric structure, two monomers are stacked face to face, lying on parallel

planes. The dimer structural parameters, α , θ and R, defined consistently with Rösch et al.,41 are

illustrated in Figure 2(b).

N

O

N

O

CN

a)

b)

P

M

Q

α

θ

M1

M2

R

Figure 2: (a) Geometrical structure of the Merocyanine monomer. Points M, P and Q have been
arbitrarily chosen for the calculation of the structural parameters. P and Q define the molecular
axis, while M is half-way between the two carbon atoms. (b) structural parameters α , θ and R of
the Merocyanine dimer. The rotational angle α is that between the monomer axes, the slipping
angle θ is that between the M1–M2 line and the axis of the QM monomer, and R the distance
between M and the plane of the other monomer. Two additional angles, θ‖ and θ⊥, named parallel
and perpendicular slipping angles, not shown in the figure, have been defined similarly to θ , but
considering the parallel and perpendicular components of M1–M2 with respect to the QM molecular
axis.

The parameters for the MM subsystem were taken from the General Amber Force Field.42

The atomic charges were calculated using the standard RESP procedure for the non-polarizable
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MM calculation at HF/6-31G∗ level (consistently with the GAFF procedure), while those for the

polarizable MM calculations were derived consistently with the ff02 force field, using the iterative

approach presented above32 (at B3LYP/cc-pVTZ level).

In the Full-QM optimization scheme, the whole dimeric system was optimized at MP2/6-

31G(d,p) level, imposing the Ci symmetry, consistently with the study of Rösc et al. The op-

timized geometry was then used as a starting point for QM/MM and QM/MMPol optimizations,

both in the Frozen-MM scheme, where the internal coordinates of the MM region are not modified.

The resulting structural parameters are reported in Table 3 and the three geometries are shown in

Figure 3.

As for the H-bonded dimer, also in this case the QM/MMPol and the QM/MM schemes give

very similar results and both of them are in agreement with the full ab initio structure even if both

QM/MM schemes give a larger interplane distance, a smaller shift along the main axis (i.e. a

smaller θ‖) and a larger shift perpendicular to that (i.e. a larger θ⊥ ). This different packing is

graphically shown in Figure 3, where the three structures optimized at the three different levels of

description are superimposed. These results can be explained by noting that, in the full-QM calcu-

lation, possible dispersion effects are taken into account at a quantum-mechanical level, while they

are included in the QM/MM approaches through the empirical Lennard-Jones terms. Apparently

the addition of polarization does not significantly change this picture.

These two simple systems clearly show that the QM/MMPol derivatives give reasonable results

if compared with the standard QM/MM scheme, showing exactly the same pros and cons. We now

move to a more challenging test, i.e., the geometry optimization of Rhodopsin.

Table 3: Geometrical parameters of the Merocyanine dimers studied. Parameters α , θ and R are
defined consistently with Rösc et al.41 Distances are reported in Å and angles in degrees. The
full-QM optimization has been performed at Ci symmetry.

Full-QM scheme Frozen-MM scheme
Parameter QM/MM QM/MMPol

α 0.000 1.6 0.2
θ‖ 73.1 67.7 66.5
θ⊥ 68.5 80.6 82.2
θ 63.5 66.2 65.5
R 3.134 3.477 3.474
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Figure 3: Graphical representation of the three optimized structures of the Merocyanine dimer:
full-QM (black), QM/MM (red), QM/MMPol (green).

4 Geometry optimization of Rhodopsin

Rhodopsin is the retinal-protein system involved in the primary events of the complex machinery

of vision in the vertebrates. It is able to absorb photons hitting the eye retina and it uses such

energy to activate a cascade of chemical reactions responsible for signal transmission.43,44 The

chromophore of Rhodopsin is the protonated Schiff base 11-cis Retinal (PSB11), that is covalently

bound to the Lys-296 Nitrogen of the protein. The electronic excitation of the PSB11 promotes the

photochemical isomerization converting the 11-cis isomer into the full-trans isomer (PSBT).45–47

The structure of the 11-cis retinal Schiff base is reported in Figure 4.

N+

Lys

H

Cδ

Cε

NZ

C15

C14

C13

C12

C11

C10

C9

C8

C7

C6

C5

Figure 4: Structure of PSB11. The atoms of the conjugate skeleton involved in the BLA calcu-
lations are labelled and numbered; the Cε Carbon, linked to the NZ Nitrogen, is the link atom
between high-level/low-level ONIOM layers. The dotted line separates the atoms allowed to move
during the geometry optimization (left) to the fixed ones (right).
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The retinal is embedded in a pocket located at the centre of the protein barrel and surrounded

by a hydrogen-bond network, consisting of functional groups and water molecules. The protein

environment modulates the absorption maximum of the chromophore because of its high electronic

polarizability and structural flexibility.48 It is possible to recognize two different effects of the

protein environment on the absorption energies: i) a structural effect related to the conformation of

the chromophore which is constrained in the protein binding pocket; ii) an electrostatic effect due

to the interaction between the chromophore electronic density and the protein electric field.

The spectral tuning of the retinal can be properly explored using hybrid QM/MM approaches.

They are capable of including the protein effects both on the structures and on the excited state

properties, by combining a quantum-mechanical description of the chromophore with a classical

description of the environment.49–57

In this section we aim to explore the protein effects on the structural properties of the retinal

chromophore, using our hybrid approach that also includes polarization effects. We first present the

computational strategy adopted, and then we compare our geometry results with the most recent

non-polarizable QM/MM ones.

4.1 Computational details

The initial structure of Rhodopsin was taken from the X-ray resolved structure available for the cis

conformer (PDB code: 1U19, resolution = 2.2 Å).58 The input structures were prepared from the

crystallographic data selecting the A chain of the protein dimer. All the residues are considered in

their standard protonation state except the Glu-122 and the Asp-83, that are considered neutral, and

the three Histidines His-65, His-100 and His-278, that are considered protonated. Such changes

were carried out according to the recently reported Rh181(-) structure of Garavelli and cowork-

ers.55 The total charge of the system is −1. Hydrogen atoms were added and their positions were

optimized using AMBER suite of programs.

The low-level calculations, on both the real system and the model subsystem, follow the sub-

tractive scheme of Eq. (42). The model subsystem includes the chromophore plus the N-H and Cε
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with its hydrogens of Lys-296, Cδ being the link atom between the inner and outer regions. The

atoms in the inner subsystem are described at QM level of theory, using DFT with B3LYP and

cam-B3LYP functionals and the 6-31G(d) basis set. During the geometry optimization, the protein

environment and the water molecules were kept frozen to limit the computational requirements.

In the non-polarizable MM calculations a standard ONIOM scheme with electrostatic embed-

ding was employed. The MM parameters used for standard residues were those of the Amber94

force field.39 For the (non-standard) model part the charges were derived with a RESP calculation

on the whole PSB11 plus Lys-296, at HF/6-31G* level. The charge of the Cδ link atom was set

to zero and the remaining charge that completes the overall charge of the model system to −1 was

distributed over the Cε atom and its hydrogens with a ratio of 1:2 for H:C, following the same

strategy of Altun et al.50 For what concerns the Lys-296 atoms not included in the model system,

the standard charges were adjusted in a similar way by setting the Cδ charge to zero and distribut-

ing the remaining charge over the Cδ hydrogens, and the Cγ carbon and attached hydrogens. The

missing Amber bond parameters for PSB11 and its connection to Lys-296 were derived from the

General Amber Force Field.42

For the polarizable calculation (following a polarizable embedding scheme as detailed in the

previous Sections), we used the same parameters, with the exception of charges, which were de-

rived consistently with the polarization scheme, as described above. The atomic isotropic polar-

izabilities (model AL) of Wang30 were used, which are based on Thole’s linear model. The envi-

ronment was partitioned into a polarizable region around the chromophore and a non-polarizable

region further. All the environment atoms within 15 Å from any of the chromophore atoms were

assigned a charge and a polarizability, while the rest of the environment atoms were only assigned

a charge.

4.2 Results and discussion

The optimized PSB11 structure was analysed taking into account three geometrical parameters:

two dihedral angles (γ , determining the orientation of the β -ionone ring with respect to the retinal
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Figure 5: Chain A of Rhodopsin, as used for QM/MMPol calculations. The PSB11 atoms are
represented as spheres; the polarizable outer region (within 15 Å from the PSB11) is coloured
yellow, while the non-polarizable one is coloured red.

chain, and φ , related to the torsional orientation of the 11-cis double bond), and the Bond Length

Alternation (BLA), which is computed as follows:

BLA =
1
Ns

Ns

∑
s=1

rs−
1

Nd

Nd

∑
d=1

rd

where Ns and Nd are the number of single and double bonds considered and rs and rd their lengths.

The results are reported in Table 4 for the non-polarizable QM/MM and polarizable QM/MMPol

structures using both B3LYP and cam-B3LYP functionals. In Figure 6 a comparison with the two

available crystal structures58,59 is also reported.

As shown in Figure 6, the QM/MMPol optimized structures present the typical “zig-zag”

bond length variation along the conjugate chain, in qualitative agreement with both crystal struc-

tures.58,59 A more detailed comparison with the measured bond lengths is however not possible

because, in one case, the crystal resolution is too low (2.2 Å), and, in the other case, both the
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Table 4: Structural parameters for PSB11 computed at different levels of theory. Dihedral angles
are reported in degrees and bond lengths and BLA in Å. The atom numbering is that reported in
Figure 4.

QM/MM QM/MMPol QM/MM QM/MMPol
Bond B3LYP cam-B3LYP

C5–C6 1.359 1.359 1.348 1.348
C6–C7 1.470 1.472 1.477 1.477
C7–C8 1.362 1.360 1.347 1.347
C8–C9 1.449 1.450 1.460 1.459
C9–C10 1.384 1.381 1.366 1.363
C10–C11 1.423 1.429 1.433 1.440
C11–C12 1.384 1.382 1.368 1.365
C12–C13 1.426 1.434 1.433 1.443
C13–C14 1.405 1.401 1.392 1.386
C14–C15 1.395 1.407 1.396 1.410
C15–NZ 1.333 1.326 1.322 1.314
BLA 0.062 0.070 0.082 0.092
γC5−C6−C7−C8 −16.7 −14.7 −13.5 −12.7
φC10−C11−C12−C13 −43.3 −46.0 −46.9 −48.0

conformation and the environment are different, being the data obtained for the trans conformer

in retinylidene iminium salt. It is therefore more interesting to focus on the differences between

computational models. In particular, the B3LYP/MM structure is characterized by a BLA of 0.062

Å, similar to the value obtained by Morokuma and coworkers at the same level of theory (0.064

Å), although they allowed all the protein atoms to move during the optimization.60 Such values of

BLA correspond to a more delocalized structure than that of the two crystals (0.098 and 0.109 Å).

When the QM/MMPol scheme is employed, the structure becomes more localized resulting in

an higher BLA value of 0.070 Å (B3LYP/MMPol). This trend is maintained when cam-B3LYP

was employed, as a comparable increase in the BLA (from 0.082 to 0.092 Å) was observed moving

from cam-B3LYP/MM to cam-B3LYP/MMPol. The last results are in good agreement with the

BLA obtained by Tomasello et al.55 using CASPT2//CASSCF (BLA = 0.110 Å). As expected, the

absolute values of the BLA are strongly dependent on the DFT functional and the cam-B3LYP

structures are more localized than the corresponding B3LYP ones. However, it is important to

stress that a consistent increase in the BLA is observed when moving from MM to MMPol with
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Figure 6: Bond lengths in Å along the conjugate chain of PSB11, resulting from QM/MMPol
optimizations at different levels of theory. Crystal structures refer to: (a) PSB11 in Rhodopsin, 2.2
Å resolution;58 (b) PSBT in retinylidene iminium salt, mÅ resolution.59 The atom numbering is
that reported in Figure 4

both functionals. This shows that the effect of polarization is almost independent on the level of

calculation.

Moving to dihedral angles, the optimized structures differ from the crystal data available for

the same conformer, in particular for what concerns the orientation of the β -ionone ring, but no

significant differences were found between the optimized structures at different levels of theory.

The polarization effects can be further investigated by analysing the interaction energy between

the QM system and the induced dipoles (Epol of Eq. (4)). Such quantity is partitioned into contri-

butions due to individual aminoacidic residues surrounding the Retinal. The results are displayed

in Figure 7 using different colours to indicate different interaction energies. Epol ranges from about

−2 to 2 Kcal/mol; negative values indicate that the QM energy is stabilized by the polarization of

the residue, whereas positive values indicate that the opposite is true.

The highest absolute values are observed for those residues that are closer to the NH+ group of

PSB11; residues located on the opposite side of the β -ionone ring have a stabilization contribution,

whereas closer residues show positive values of Epol.

To conclude, it appears that using a polarizable MM environment induces small but not negli-
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Figure 7: Graphical representation of the Epol interaction energy partitioned on the residues sur-
rounding PSB11 in Rhodopsine computed at B3LYP/MMPol level. Residues in grey contribute
little; Lys296 is characterised by a stabilization energy of −1.9 Kcal/mol; residues in green and
orange belong to the [−0.6, −0.3] and [0.3, 0.6] Kcal/mol ranges, respectively; Thr94 and Ser186
show large 1.9 and 1.2 Kcal/mol contributions. Similar values are obtained at cam-B3LYP/MMPol
level.

gible effects, particularly on the bond lengths along the conjugated chain. This is indeed a delicate

structural aspect that can largely affect the position and the nature of excited states in lon and highly

conjugated systems: even small differences in the BLA values can modify the relative energies of

the lowest excited states and induce important mixing in their character.61

5 Conclusion

We have formulated analytical derivatives for the polarizable QM/MMPol model based on induced

dipoles and implemented them into Gaussian to allow for geometry optimization. The implemen-

tation was performed within the ONIOM procedure, resulting in a new ONIOM-polarizable em-

bedding scheme. The method is applicable to many polarizable force fields adopting different

schemes for the interactions between 1-2 and 1-3 neighbours.

The results on two test molecules characterized by strong hydrogen-bond and dipole–dipole

interactions show a general good agreement between the QM/MMPol and the non-polarizable
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QM/MM models, revealing, for such systems, a very small effect induced by the inclusion of

polarization in the picture. On the other hand, the comparison of QM/MMPol and QM/MM opti-

mized parameters with the crystal structure for the Retinal molecule in Rhodopsin suggests that a

small but quite marked effect is played by the polarizability, resulting in a more “localized” struc-

ture of single and double bonds along the conjugation skeleton. This example shows that structural

issues of embedded systems require careful handling as they can be affected by the environment

in various ways, including through mutual polarization effects. As a matter of fact, we expect that

these effects can become even more important when moving to electronically excited states. It

is in fact well known that polarizable force fields have a strong influence on the electronic spec-

tra of embedded chromophores (including Retinal56) due to the less “compact” electronic density

characterizing the excited states: we can therefore expect that the presence of a polarizable envi-

ronment will be significantly reflected in the relaxed geometries as well as in emission properties

and excited-state processes.
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