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A B S T R A C T   

Skin fibroblasts were obtained from four patients with Williams-Beuren syndrome (WBS) carrying the typical 1.5 Mb or 1.8 Mb deletion at the 7q11.23 genomic 
region. Induced pluripotent stem cells (iPSCs) were generated by retroviral infection of fibroblasts with polycystronic vectors. The generated iPSC clones ESi059A, 
ESi060B and ESi068A had the 1.5 Mb deletion of 7q11.23 and ESi069A the 1.8 Mb, with no novel additional genomic alterations, stable karyotype, expressed 
pluripotency markers and could differentiate towards the three germ layers in vitro via embryoid body formation and in vivo by teratoma formation. WBS patient’s 
lines are a valuable resource for in vitro modelling of WBS.   

Resource Table  

Unique stem cell lines 
identifier 

ESi059A 
ESi060B 
ESi068A 
ESi069A 

Alternative names of stem 
cell lines 

SWB FiPS-4F-1-1, FiPS-4F-1-1, 1.1, (ESi059A) 
SWB FiPS-4F-5-1, FiPS-4F-5-1, 5.1, (ESi060B) 
SWB FiPS159-R4F-4, 159-4 (ESi068A) 
SWB FiPS344-R4F-2, 344-2 (ESi069A) 

Institution Regenerative Medicine Programme, Institut 
d’Investigació Biomèdica de Bellvitge, IDIBELL, 
L’Hospitalet de Llobregat, Barcelona, Spain 
Centro de Investigación Biomédica en Red (CIBERER 
and CIBER-BBN). Universitat Pompeu Fabra. 
Barcelona. Institució Catalana de Recerca I Estudis 
Avançats (ICREA) 

Contact information of 
distributor 

Anna Veiga: aveiga@idibell.cat 
Ivon Cuscó: icusco@vhebron.net 

Type of cell lines iPSC 
Origin Human (Table 1) 
Cell Source Skin fibroblasts 
Clonality Clonal 

(continued on next column) 

Resource Table (continued ) 

Method of reprogramming Retrovirus 
Multiline rationale Same disease, different patients 
Gene modification NO 
Type of modification NO modifications 
Associated disease Williams-Beuren syndrome (WBS), OMIM #194050 
Gene/locus 7q11.23 deletion [arr[hg18]7q11.23(72,338,350- 

73,816,391)x1] 
Method of modification No modification 
Name of transgene or 

resistance 
Not Applicable 

Inducible/constitutive 
system 

Not Applicable 

Date archived/stock date 19.01.2017; 12.06.2018 
Cell line repository/bank https://eng.isciii.es/eng.isciii.es/QueHacemos/Servic 

ios/BIOBANCOS/BNLC/Paginas/LineasiPS.html 
https://hpscreg.eu/search?q=SWB 

Ethical approval Patient’s parents informed consent obtained/ Ethics 
Review Board-competent authority approval obtained 
(Comité de Ética e Investigación Clinica-CEIC-CMRB) 
and by the Catalan Authority for Stem Cell Research 
(Approval number: 05/2011 and 03/2015)   

E-mail address: icusco@vhebron.net (I. Cuscó).  
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1. Resource utility 

Williams-Beuren Syndrome (WBS) is a multisystemic neuro
developmental disorder caused by a 26–28 genes microdeletion at 
7q11.23. Patients present craniofacial dysmorphic features, cardiovas
cular alterations and behavioral-cognitive defects. iPSC lines allow to 
study the functional mechanisms disrupted, specific alterations caused 
during development and overcome the inability to access the primary 
tissues affected. 

2. Resource details 

The iPSC lines were generated from fibroblasts derived from skin 
biopsies from patients with WBS, carrying the typical 1.5 Mb or 1.8 Mb 
hemizygous deletions at chromosome 7q11.23 (Table 1). WBS is a rare 
genetic neurodevelopmental disorder [OMIM #194050] caused by a 
heterozygous deletion of multiple contiguous genes at chromosome 
band 7q11.23, affecting approximately 28 genes (Pérez-Jurado et al., 
1996; Morris and Mervis, 2000). The clinical characteristics of the pa
tients include severe supravalvular aortic stenosis (SVAS), hypertension, 
hyperacusis, distinct facial appearance, and intellectual disability. The 
1.5 Mb deletions had occurred de novo in the paternal (SWB FiPS-4F-5-1) 
or maternal (the other lines) chromosomes and were confirmed by 
molecular karyotype (Fig. 1A) and microsatellites marker typing (Bayés 
et al., 2003) (Table 2). 

Skin derived fibroblasts were reprogrammed using two polycystronic 
retroviruses encoding the four factors (pMXs-OCT4-VP16-SOX2-mOr
ange; pMXs-KLF4-MYC-GFP). The morphology of the colonies was the 
typical of iPSCs. Two independent clones per patient were selected for 
characterization. Integration of retroviruses was determined by PCR 
(Supplementary Fig. S1C) and silencing of the transgenes was confirmed 
by quantitative RT-PCR (Supplementary Fig. S1E) using specific primers 
(Table 3). Expression of pluripotency markers was confirmed by 
immunocytochemistry with antibodies against human OCT4, SOX2, 
NANOG, TRA-1-60, TRA-1-81, SSEA-3 and SSEA-4 (Fig. 1B, scale bars 
50 μm). The mRNA expression of endogenous human factors OCT4, 
SOX2, KLF4 and c-MYC was confirmed by qRT-PCR (Fig. 1C) and all 
clones showed positive alkaline phosphatase (AP) activity (Supple
mentary Fig. S1F). The capacity of in vitro and in vivo differentiation 
towards the three germ layers was determined by embryoid body (EB) 
formation and differentiation and teratoma formation, respectively, 
followed by immunofluorescence analyses demonstrating the expression 
of definitive endoderm (AFP and FOXA2), ectoderm (TUJ1 and GFAP, or 
MAP2, PAX6, or Neurofilament) and mesoderm (ASMA and ASA) 
markers (Fig. 1D, E, scale bars 50 μm). Sections of iPSC derived tera
tomas were stained with Hematoxylin/Eosin (H/E). Representative 
pictures of differentiation to endoderm, ectoderm and mesoderm are 
shown (Supplementary Fig. S1D). The normal 46, XX, or 46, XY kar
yotype of the iPSC lines were confirmed by G-banding analysis (Sup
plementary Fig. S1A). The genomic integrity of the iPSC lines and the 
presence of the 1.5 Mb or 1.8 Mb 7q11.23 deletion was confirmed by 
SNP-array (Fig. 1A). Additionally, a 16p13.11 microduplication 
(chr16:15–16.2 Mb) in patient SWB FiPS159-R4F-4 was defined in iPSCs 
and fibroblasts. The iPSC identity was confirmed by short tandem repeat 
analysis and compared with the patientś fibroblasts (Supplementary 
Table S1). 

3. Materials and methods 

Dermal fibroblasts at passage 4 were reprogrammed by retroviral 
infection. Retroviruses were produced in Phoenix Amphotrophic cells 
following transfection with pMX-OCT4_Flag-VP16-PTV-Sox2_HA- 
Orange or pMX-KLF4-cMYC-GFP polycistronic vectors. Retrovirus con
taining medium was collected 48 h post-transfection, 0.45 µm filtered, 
supplemented with Polybrene (4 µg/ml) and used to transduce 1x105 

cells by spin infection. After 3 days, transduced human fibroblasts were 
trypsinized and seeded onto irradiated human foreskin fibroblasts in hES 
medium (Knockout DMEM with 20% Knockout serum replacement, 2 
mM Glutamax, 1% penicillin–streptomycin, 0.1 mM β-mercaptoethanol, 
1% non-essential amino acids (NEAA) (all Gibco), and 10 ng/ml bFGF 
(Millipore)) until iPSC colonies appeared. Colonies were picked manu
ally for expansion. From passage 5 on, colonies were adapted to feeder 
free conditions. 

For integration analysis, genomic iPSC DNA was isolated using the 
DNeasy-blood-&-tissue kit (Qiagen). Standard PCR reaction was per
formed (BioTaq) with specific primers (Table 3). Products were visual
ized in 1.5% agarose gels. Fibroblasts were used as negative controls. 

For silencing analysis, total mRNA was isolated from iPSCs following 
the Trizol-based procedure and treated with DNAase. cDNA was syn
thesized by SuperScript II reverse transcriptase protocol (Thermo Fisher 
Scientific). The qRT-PCR reactions were performed using the Power 
SYBR Green PCR Master Mix in an ABI-Prism7900 thermocycler 
(Applied Biosystems). Ct values were normalized with GAPDH as 
housekeeping gene and data were analyzed with the 2-ΔΔCt method. 
mRNA expression levels of virus derived trans OCT4/SOX2 and trans 
KLF4/cMyc and endogenous pluripotency markers OCT4, SOX2, KLF4 
and c-MYC were analyzed in WBS iPSCs (Supplementary Fig. S1E and 
Fig. 1C). 

Genomic integrity of iPSCs was confirmed by G-banded metaphase 
karyotype analysis (Ambar, Barcelona). Briefly, 70% confluent feeder 
free iPSC colonies were treated with colcemid (KaryoMax, Gibco), 
trypsinized, incubated with hypotonic solution, fixed in Carnoy fixative 
(75% methanol, 25% acetic acid), and karyotypes performed following 
standard procedures. 

To detect AP activity, iPSCs were fixed with 4% paraformaldehyde 
for 1 min, washed with PBS and incubated with AP staining solution 
(Sigma) until colonies turned blue. 

To identify pluripotency markers, immunocytochemistry was per
formed (Marti et al., 2013). iPSCs were fixed with 4% paraformaldehyde 
(PFA), blocked and permeabilized with TBS + 0.5% Triton X-100 + 6% 
donkey serum. Primary antibodies (Table 3) were incubated overnight 
in TBS + 0.1% Triton X-100 + 6% donkey serum. Secondary antibodies 
(Table 3) were incubated for 2 h at 37 ◦C. Nuclei were stained with 4′,6- 
diamino-2-fenilindol (DAPI). 

In vitro differentiation was promoted by EB formation. iPSC colonies 
were lifted manually and incubated in ultra-low attachment plates in 
mTeSR1 medium. After 24 h, medium was changed to differentiation 
medium for additional 24–48 h. Ectoderm medium: 50% Neurobasal 
medium, 50% DMEM/F12, 1% N2, 1% B27, 1% Glutamax and 1% 
Penicillin-Streptomycin; Endoderm medium: Knockout-DMEM, 10% 
FBS, 1% NEAA, 0.1% β-mercaptoethanol, 1% Glutamax and 1% 
Penicillin-Streptomycin (all Gibco); Mesoderm medium: Endoderm 
medium supplemented with 0.5 mM ascorbic acid. EBs were seeded on 
matrigel-coated slide flasks and cultured in differentiation media for 

Table 1 
Summary of lines.  

iPSC line names Abbreviation in figures Gender Age Ethnicity Genotype of locus Disease 

SWB FiPS-4F-1-1 (ESi059A)  1.1 Female 15 Caucasian 1.5 Mb deletion Williams-Beuren Syndrome 
SWB FiPS-4F-5-1 (ESi060B)  5.1 Female 15 Caucasian 1.5 Mb deletion Williams-Beuren Syndrome 
SWB FiPS159-R4F-4, 159-4 (ESi068A)  159.4 Male 14 Caucasian 1.5 Mb deletion Williams-Beuren Syndrome 
SWB FiPS344-R4F-2, 344-2 (ESi069A)  344.2 Male 7 Caucasian 1.8 Mb deletion Williams-Beuren Syndrome  
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Fig. 1. Characterization of WBS iPSC lines. A. SNP-arrays of lines showing the presence of the typical 1.5 Mb or 1.8 Mb deletion at the 7q11.23 genomic region. B. 
Confocal images showing immunodetection of pluripotency markers. Scale bars: 50 mm. C. mRNA expression levels of endogenous pluripotency markers. 2-ΔΔCt 
values normalized to GAPDH. D. In vitro differentiation of embryoid bodies using specific antibodies against the endodermal markers a-fetoprotein (AFP) and 
forkhead box A2 (FOXA2), ectodermal markers paired box protein Pax-6 (PAX6), microtubule-associated protein 2 (MAP2), Neurofilament, bIII-tubulin (TUJ1) and 
Glial fibrillary acidic protein (GFAP) and mesodermal marker α-smooth muscle actin (ASMA) and α-sarcomeric actin (ASA). Nuclei were stained with DAPI. Scale 
bars: 50 mm. E. In vivo differentiation and teratoma formation using specific antibodies against the endodermal markers AFP and FOXA2, the ectodermal marker 
TUJ1 and the mesodermal marker ASMA. Nuclei were stained with DAPI. Scale bars: 50 mm. 
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15–20 days. Cells were analyzed by immunocytochemistry as described 
above. Confocal images were taken using Leica TSC SPE/SP5 
microscopes. 

In vivo differentiation was induced by intratesticular injection of 
iPSCs into Severe Combined immunodeficient mice. PFA-fixed tera
tomas were paraffin embedded and analyzed by immunocytochemistry 
as described above and sections stained with Hematoxylin and Eosin (H/ 
E). 

The deletions at 7q11.23 and the absence of novel rearrangements 
were confirmed by SNP-array (Illumina Infinium Human Core-24 
BeadChip, IMPPC or CEGEN) using 0.5 µg of iPSC genomic DNA. Line 
identities were corroborated by microsatellites genotyping (STRs- 
study). 

Table 2 
Characterization and validation.  

Classification Test Result Data 

Morphology Photography Normal Not shown but 
available with 
author 

Phenotype Immunocytochemisty OCT4, SOX2, 
NANOG, TRA-1- 
60, TRA-1-81, 
SSEA-3 and SSEA- 
4 

Fig. 1 panel B 

Gene expression (qRT- 
PCR) 

endo-hOCT4, 
endo-hSOX2, 
endo-KLF4, endo- 
c-MYC, trans- 
OCT4/SOX2, 
trans-KLF4/c- 
MYC 

Fig. 1 panel C 
Supplementary 
Fig. S1 panel E 

Integration PCR Integration of 
retroviral OCT4, 
SOX2, KLF4 and 
c-MYC 

Supplementary 
Fig. S1 panel C 

AP staining positive Supplementary 
Fig. S1 panel F 

Genotype Karyotype (G- 
banding) and 
resolution 

ESi059A, 46XX, 
resolution 500 
ESi060B, 46XX, 
resolution 500 
ESi068A, 46XY, 
resolution 500 
ESi069A, 46XY, 
resolution 500 

Supplementary 
Fig. S1 panel A 

Identity STR analysis 
(microsatellite Study) 

Performed 
(10 markers 
tested, all 
matching) 

Submitted in 
archive with 
journal 

Mutation 
analysis (IF 
APPLICABLE) 

Molecular Karyotype Molecular 
karyoype 
Illumina Infinium 
Human Core-24 
BeadChip, IMPPC 
or CEGEN 

Fig. 1 panel A 

Microbiology 
and virology 

Mycoplasma Mycoplasma 
testing by PCR: 
Negative 

Supplementary 
Fig. S1 panel B 

Differentiation 
potential 

Embryoid body 
formation and 
Teratoma formation 

(1) Embryoid 
body formation: 
AFP, FOXA2, 
TUJ1, GFAP, 
ASMA, ASA 
(2) Teratoma 
formation: 
AFP, FOXA2, 
Neurofilament, 
MAP2, PAX6, 
TUJ1, GFAP, 
ASMA, ASA 
Hematoxylin/ 
Eosin staining 

Fig. 1 panel D   

Fig. 1 panel E   

Supplementary 
Fig. S1 panel D 

Donor 
screening 
(OPTIONAL) 

N/A N/A N/A 

Genotype 
additional 
info 
(OPTIONAL) 

N/A N/A N/A  

Table 3 
Reagents details.  

Antibodies used for immunocytochemistry/flow-cytometry  

Antibody Dilution Company Cat # and RRID 

Pluripotency 
Markers 

Mouse anti-OCT4 1:25 Santa Cruz, sc-5279, RRID: 
AB_628051 

Goat anti-NANOG 1:25 R&D Systems, AF1997, 
RRID:AB_355097 

Rabbit anti-SOX2 1:100 ABR, PA1-16968, RRID: 
AB_2195781 

Rat anti-SSEA3 1:2 Hybridoma Bank, MC-631, 
RRID:AB_528476 

Mouse anti-SSEA4 1:2 Hybridoma Bank, MC-813- 
70,RRID:AB_528477 

Mouse anti-TRA- 
1-60 

1:100 Millipore, MAB4360, RRID: 
AB_2119183 

Mouse anti-TRA- 
1-81 

1:100 Millipore, MAB4381, RRID: 
AB_177638 

Differentiation 
Markers 

Mouse anti-TUJ1 1:40 Covance, MMS-435P, RRID: 
AB_2313773 

Rabbit anti-GFAP 1:1000 Dako, Z0334, RRID: 
AB_10013382 

Rabbit anti- 
Neurofilament 

1:100 Sigma N4142, RRID: 
AB_477272 

Mouse anti-Map2 1:25 Santa Cruz 32791, RRID: 
AB_627948 

Rabbit anti-Pax6 1:100 Covance PRB-278P, RRID: 
AB_291612 

Mouse anti-ASMA 1:400 Sigma, A5228, RRID: 
AB_262054 

Mouse anti-ASA 1:400 Sigma, A2172, RRID: 
AB_476695 

Rabbit anti-AFP 1:200 Agilent, A0008, RRID: 
AB_2650473 

Goat anti-FOXA2 1:50 R&D Systems, AF2400, 
RRID:AB_2294104 

Secondary 
antibodies 

A488 Goat anti- 
mouse 

1:500 Jackson, 715-545-151, 
RRID:AB_2341099 and 115- 
546-071, RRID: 
AB_2338865 

A488 Donkey 
anti-Rabbit 

1:500 Jackson, 711-545-152, 
RRID:AB_2313584 

CY2, Goat anti-rat 1:200 Jackson, 112-225-075, 
RRID:AB_2338276 

Cy3, Donkey anti- 
rabbit DyLight 

1:200 Jackson, 711-475-152, 
RRID:AB_2340616 

Cy3, Donkey anti- 
mouse 

1:200 Jackson, 715-165-140, 
RRID:AB_2340812 

Cy3, Donkey anti- 
Goat  

Jackson, 705-165-147, 
RRID:AB_2307351  

Primers  

Target Forward/Reverse primer (5’-3′) 

Integration pMXs-OS-Orange GAGCAAGGGCGAGGAGAATAAC/ 
AAGTAGTCGGGGATGTCGGC 

pMX-KM-GFP GCACCATCTTCTTCAAGGACGAC/ 
TCTTTCGCTCAGGGCGGACTG 

Silencing Tg-mcMYC GCTTCGAAACTCTGGTGCAT/ 
CCTACAGGTGGGGTCTTTCA 

Tg-mSOX2 GGCCATTAACGGCACACT/ 
CCTACAGGTGGGGTCTTTCA 

Pluripotency 
Markers (qPCR) 

endo-hOCT4 GGGTTTTTGGGATTAAGTTCTTCA/ 
GCCCCCACCCTTTGTGTT 

endo-hSOX2 CAAAAATGGCCATGCAGGTT/ 
AGTTGGGATCGAACAAAAGCTATT 

House-Keeping 
Gene (qPCR) 

GAPDH GCACCGTCAAGGCTGAGAAC/ 
AGGGATCTCGCTCCTGGAA  
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Supplementary data to this article can be found online at https://doi. 
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Pérez-Jurado, L.A., Peoples, R., Kaplan, P., Hamel, B.C., Francke, U., 1996. Molecular 
definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin 
effects on growth. Am. J. Hum. Genet. 59 (4), 781–792. 

B. Kuebler et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.scr.2020.102087
https://doi.org/10.1016/j.scr.2020.102087
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0005
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0005
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0005
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0010
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0010
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0010
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0015
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0015
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0020
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0020
http://refhub.elsevier.com/S1873-5061(20)30388-3/h0020

	Generation of induced pluripotent stem cells (iPSCs) by retroviral transduction of skin fibroblasts from four patients suff ...
	1 Resource utility
	2 Resource details
	3 Materials and methods
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


