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A B S T R A C T   

The alkenones C37:2 and C37:3 are produced exclusively by some haptophyte species. Their relative proportion 
(Uk’

37 index) may be used to infer the water temperature where the synthesising haptophyte lived. Alkenones 
have been analysed in sediments, planktonic communities and in the low trophic level, filter-feeding fin whales. 
However, it is unclear whether they can be detected in animals exploiting high trophic levels and used to infer 
the water temperature in which they live. Alkenones were analysed in blubber samples from three Mediterranean 
predatory species: the striped dolphin, an epipelagic species; the Risso’s dolphin, a deep diver; and the bottlenose 
dolphin, a coastal species. Alkenones were detected in all striped dolphin samples and in most of the Risso’s 
dolphin samples, but they were below detection limits in the bottlenose dolphin samples. The inferred tem-
perature for the striped dolphins (16.4 ± 3.3 ◦C) was similar to the average water temperature of the region 
(16.9 ± 3.9 ◦C), but that for the Risso’s dolphins was lower than expected (12.7 ± 4.4 ◦C). The small sample sizes 
and the large variance in the Uk’

37 index make it difficult to ascertain if the dissimilarity between the two oceanic 
species is real. Although further research is needed to calibrate this bio-indicator, we can conclude that alkenones 
are transferred through the trophic web and are found in oceanic cetaceans situated at a high trophic level.   

1. Introduction 

Alkenones are a group of molecules used in palaeoceanography to 
estimate past sea surface temperatures (Prahl et al., 1988; Sikes and 
Sicre, 2002). The two most commonly used alkenones are C37:2 and 
C37:3, which consist of chains of 37 carbons with one ketone group in the 
second carbon and two and three double bonds, respectively. These two 
molecules are synthesised exclusively by some haptophyte species, with 
Emiliana huxleyi being the major producer in most cases (Marlowe et al., 
1984). When haptophytes die, alkenones are deposited on the sea 
sediment (Volkman et al., 1980a), where they remain relatively unal-
tered for thousands of years. Paleoceanographers have for long identi-
fied alkenones in sediments and used them to infer the temperature of 
the water at the time of alkenone deposition (Caissie et al., 2010; 
Knudsen et al., 2012; e.g. Kristjánsdóttir et al., 2017). Estimated tem-
peratures are calculated based on the Uk’

37 index (i.e., the proportion of 
C37:2 concentration over the sum of the C37:2 and C37:3 concentrations; 
Prahl and Wakeham, 1987), which is strongly correlated with sea sur-
face temperature (Prahl and Wakeham, 1987; Conte et al., 2006). 

Despite the extensive use of these molecules, the fate of alkenones 

when haptophytes are ingested by animals is unclear. There is evidence 
of coastal shrimp grazing on haptophytes (Ding and Sun, 2006), and 
alkenones have been detected in the excrements of anchovies and co-
pepods (Volkman et al., 1980b; Wakeham et al., 1984; Harris, 1994; 
Grice et al., 1998). However, the occurrence of these molecules in the 
tissues of vertebrates has only been investigated in one species, the fin 
whale (Balaenoptera physalus) (Rita et al., 2020). Two factors may have 
contributed to the detection of alkenones in the tissues of this cetacean. 
First, fin whales feed at a low trophic level; therefore, the low number of 
trophic steps between molecule synthesizers and whales reduces the 
chances of alkenone degradation (McCaffrey et al., 1990; Conte et al., 
1992). Second, fin whales obtain their food by filtering out small or-
ganisms from the water and, in doing so, they may incorporate alke-
nones directly from the water instead of through ingested krill, their 
main prey. Conversely, odontocetes are active predators and largely 
obtain the water they require from the prey consumed; seawater intake 
in these animals is low and mostly limited to occasional fasting periods 
(Hui, 1981; Costa, 2009; Ridgway and Venn-Watson, 2010). Thus, it was 
unclear whether alkenones could be found in odontocete species situ-
ated at the top of complex food webs. 
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Most odontocetes are long-lived, resident though highly-mobile, top 
predators. Because of these traits, they integrate the heterogeneity of 
small-scale geographical variations and seasonal shifts and, conse-
quently, some well-known species have been used as bioindicators of the 
environmental characteristics of the large water masses in which they 
live (Borrell and Aguilar, 2007; Bossart, 2011; Borrell et al., 2018). 
When determined in their tissues, the Uk’

37 index based on the C37 
alkenones may be indicative of long-term, wide-scale temperature shifts 
in the oceans. However, at the same time, some species are elusive and 
difficult to study in the wild, and information on their biology and 
habitat may remain still unclear. For these species, alkenones can again 
be useful by providing information on the oceanographic characteristics 
of their habitat, such as the sea surface temperature. 

Alkenones can also provide useful information on habitat because 
different types of alkenones are linked to different groups of haptophytes 
producers (I, II and III) that live in water masses with distinct salinity 
ranges (Weiss et al., 2020). Depending of their length (from C35 to C39), 
configuration and saturations, the detected alkenones can indicate 
feeding in fresh (group I), marine (group III) or brackish and hypersaline 
waters (group II) (Theroux et al., 2010). This may be especially useful 
for those species that inhabit the boundaries of the above-mentioned 
types of water masses, such as estuaries. 

The present study aimed to investigate the presence of alkenones in 
three top predator odontocetes from the Balearic Sea (north-western 
Mediterranean) and investigate their potential use as water temperature 
indicators. The three species studied were the bottlenose dolphin (Tur-
siops truncatus), the striped dolphin (Stenella coeruleoalba) and the Ris-
so’s dolphin (Grampus griseus). In the Mediterranean, the three species 
live in similar temperature conditions but exploit different ecosystems. 
The bottlenose dolphin lives near the coast or over the continental slope 
(Gómez de Segura et al., 2008); it is a generalist species that feeds 
mainly on demersal fish and cephalopods (Giménez et al., 2018), and its 
diet widely varies according to area and season (Blanco et al., 2001; 
Bearzi et al., 2008). The striped dolphin is an oceanic species with 
adaptive feeding behaviour that in the Balearic Sea preys preferably on 
sardines (Sardina pilchardus) (Gómez de Segura et al., 2008; Gómez- 
Campos et al., 2011; Cardona et al., 2015). However, when sardines are 
scarce, striped dolphins can feed on a wide range of fish and cephalopod 
species from the epi- and mesopelagic zones (Gómez-Campos et al., 
2011). Finally, the Risso’s dolphin lives over the continental slope 
(Blanco et al., 2006), even though it may distribute further offshore to 
zones up to 1500 m deep (Gómez de Segura et al., 2008). The Risso’s 
dolphin is the most specialist of the three species and feeds on squids of 
the meso- and bathypelagic zones (Blanco et al., 2006; Bearzi et al., 
2011). 

2. Materials and methods 

Alkenones were analysed in the blubber tissue of dead stranded 
dolphins: 10 bottlenose dolphins, 10 striped dolphins and 10 Risso’s 
dolphins. All were collected during the period 1993–2018 and they 
belong to the population that inhabits the Balearic Sea, this is, the mass 
of waters located between the eastern coast of the Iberian Peninsula and 
the Balearic archipelago. During necropsy, full-thickness blubber sam-
ples were excised from the dorsal region and were kept frozen at − 20 ◦C 
until analysis. Because alkenone concentrations are known to differ 
among different layers of whale blubber (Rita et al., 2020), in the cur-
rent study the entire section of the blubber – from the epidermis to the 
muscle – was collected. Approximately 3 g of sample was freeze-dried 
for 42 h and, at the moment of the analysis, cut into small pieces and 
homogenized. 

The extraction of alkenones from the blubber homogenate was car-
ried out using established techniques (Rita et al., 2020). Briefly, 50 µl of 
internal standard (2-pentatriacontanone; 20 ng⋅µl− 1 in n-hexane; 
commercially available) was added to 1 g of dry weight samples. Then, 
samples were saponified in methanolic KOH solution (4 ml H2O:MeOH, 

1:9; 3 M KOH) for 60 min at 80 ◦C. The nonsaponifiable lipids were 
extracted three times using n-hexane (4 ml) each time. The n-hexane 
(from the three extractions) was combined with water KOH solution (12 
ml H2O; 3 M KOH), the mix was vortexed and centrifuged, and the n- 
hexane phase was separated. Afterwards, clean n-hexane (12 ml) was 
added to the KOH/H2O vials to remove any remaining nonsaponifiable 
lipids and separated. The two n-hexane extractions were mixed and 
passed through Na2SO4 for the elimination of possible water remains. 
The n-hexane was evaporated under an N2 stream down to 1–2 ml. This 
volume was further purified using solid-phase extraction (Supelclean 
LC-NH2 SPE tubes; 3 ml). Two fractions of increasing polarity, i.e., hy-
drocarbons and ketones, were obtained by elution with n-hexane (4 ml) 
and n-hexane:DCM 3:1 (v/v; 6 ml), respectively. The first fraction was 
discarded, and the second was dried under an N2 stream and dissolved in 
50 μl n-hexane before gas chromatography (GC). 

Chromatographic analysis was carried out on a Shimadzu GCMS- 
QP2010 equipped with a 30 m Sapiens-X5MS silica capillary column 
(0.25 mm ID, 0.25 µm film thickness) and a mass spectrometer (MS) 
detector. Helium was the carrier gas with a flow rate of 1 ml/min. The 
GC temperature program was as follows: injection at 60 ◦C; 1 min 
isothermal; 60 ◦C to 310 ◦C at 40 ◦C⋅min− 1; and 28 min isothermal with 
a total run-time of 36 min. Peak identification of C37 alkenones was 
based on retention time and the comparison of the ion spectrum with 
those of pure alkenone standards. The concentrations of both alkenones 
were quantified using the area of the ion with m/z 81 (Fig. 1). 

Uk’
37 was calculated as: 

Uk’

37 =
[C37:2]

[C37:2] + [C37:3]

where [C37:2] and [C37:3] are the concentrations of each alkenone in 
the sample (Prahl and Wakeham, 1987). Uk’

37 was later transformed to 
temperature (T) using the Conte et al. (2006) equation for the Atlantic 
region: 

T = 48.673(Uk’

37)
3
− 94.569

(
Uk’

37

)2
+ 80.716

(
Uk’

37

)
− 5.977 

Normality and homoscedasticity were checked with the Shapiro test 
and the Bartlett-test, respectively. Because the alkenone concentrations 
were not normal, they were log-transformed. T-student tests were used 
to establish the statistical significance of the difference between the two 
species in which alkenones were detected. The statistical analysis was 
performed with the program R (R Core Team., 2020). 

3. Results and discussion 

The habitat preferences of the odontocete species appeared to affect 
the presence of alkenones in their tissues. While alkenones were detec-
ted in the oceanic odontocetes (in 8 out of the 10 Risso’s dolphin samples 
and in all the striped dolphin samples), they were below the detection 
limit in the bottlenose dolphin samples (Fig. 2). The concentrations of 
the alkenones were similar in the two oceanic dolphins (t-value =
− 0.036, d.f. = 17, p-value = 0.971) but more variable in the Risso’s 
dolphin (mean ± SD: 581.7 ± 683.2 ng⋅g− 1) than in the striped dolphins 
(406.5 ± 283.2 ng⋅g− 1dw) (Fig. 2). C35, C36, C38 and C39 alkenones 
were not detected in these species, possibly due to the overall low 
concentration of alkenones and that all the samples came from the 
marine environment, where C37 alkenones are predominant (Prahl and 
Wakeham, 1987). For further details on the results, see the Supple-
mentary Table S1 online. 

The difference between the bottlenose dolphin and the other two 
dolphin species may be explained by the fact that bottlenose dolphins 
live much closer to the coast than the other two species. While some 
coastal haptophytes can produce alkenones (Rontani et al., 2004), the 
major current alkenone producer, i.e., Emiliana huxleyi, is, mainly, an 
oceanic species (Ausín et al., 2018). The low abundance of coastal 
haptophytes (Baumann et al., 2005) likely produced low concentrations 
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of alkenones in the environment that could not be detected in the tissues 
of predators. Thus, the lack of alkenones in bottlenose dolphins may be 
reflecting the exploitation of a trophic web with scarce alkenone- 
producing haptophytes in its base. If true, alkenones could be used to 

differentiate species exploiting oceanic ecosystems, which are more 
likely to contain abundant alkenone-producing haptophytes, from the 
coastal ones. 

Unexpectedly, the concentrations of alkenones in the striped dolphin 

Fig. 1. Partial m/z 81 chromatograms of pure alkenone standard (A), Risso’s dolphin (B), striped dolphin (C) and bottlenose dolphin (D). The peaks corresponding to 
the internal standard (IS; 2-pentatriacontanone) and the two alkenones (C37:3 and C37:2) are also indicated. 
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and the Risso’s dolphin were higher than those detected in the fin whale 
(Rita et al., 2020). The concentrations of alkenones in the fin whale were 
higher in the stomach content than in the blubber, which suggested that 
either the alkenones had been partially degraded (McCaffrey et al., 
1990; Conte et al., 1992) or that they had not been completely absorbed 
by the whale’s intestinal tract. In high trophic level species, alkenones 
have to go through many trophic steps, and the time from the synthesis 
of alkenones to their accumulation in the tissue is longer than in species 
situated at a low trophic level, thus increasing the chances of alkenone 
degradation. The unexpected finding of a higher concentration of alke-
nones in top predators as compared to those in low trophic level species 
may be explained by at least two reasons: the production of alkenones 
may be higher in the Mediterranean region where these odontocetes had 
fed than in the feeding grounds used by the fin whales, or there may 
have been alkenone biomagnification from prey to dolphin, contrary to 
what appeared to happen in fin whales, where biodilution was appar-
ently observed (Rita et al., 2020). 

It is also worth noting that the variability of alkenone concentrations 
was higher in the Risso’s dolphin than in the striped dolphins. The 
reason for this difference is unknown and may be caused by dissimi-
larities in the habitat or in the diet of the two species. Further research is 
needed to elucidate the dynamics of alkenones in trophic webs to better 
understand how alkenones are transported from the producers to the 
final consumers and, thus, to correctly interpret the results of future 
studies. 

The Uk’
37 index was slightly higher in the striped dolphin (0.5 ±

0.12) than in the Risso’s dolphin (mean ± SD: 0.37 ± 0.14) although the 
differences were not statistically significant (t-value = − 2.002, d.f. =
13.8, p-value = 0.065). These index values correspond to temperatures 
of 16.4 ± 3.3 ◦C for the striped dolphins and 12.7 ± 4.4 ◦C for Risso’s 
dolphin (Fig. 3). While the first temperature is consistent with the 
average sea surface temperature of the Balearic Sea (16.9 ± 3.8 ◦C) 
(Idescat, 2018), the estimated temperature for the Risso’s dolphins was 
lower than expected. 

The difference between the estimated temperature in the two dol-
phin species should be considered carefully. The proximity of the 
aforementioned p-value (0.065) to the threshold value (0.05), combined 
with the small sample size and the large data variability, reduced the 
confidence on the statistic. Clearly, given the wide variance observed, 
more samples are required to correctly assign temperatures to species 
and, in this case, to establish whether the Risso’s dolphins estimated 
temperature is indeed lower than the environmental average or the 
dissimilarity is simply caused by limitations in sample size. However, we 
can envision three reasons that may explain the bias. First, although 
alkenones are typically produced in the first meters of water (Ausín 

et al., 2018) and transported vertically (Harris, 1994), they can also be 
produced at or below the thermocline (Prahl et al., 1993; Herbert et al., 
1998; Wolhowe et al., 2014) or produced in a colder water mass and 
transported horizontally (Benthien and Müller, 2000; Häggi et al., 
2015); second, the Uk’

37 index may be biased in top predators due to an 
heterogeneous transfer of alkenones through the trophic web; and third, 
the Risso’s dolphin may physiologically handle alkenones of different 
molecular structures in different ways and preferentially store in its 
blubber one group over the other. 

Another factor that should be taken into consideration is the resi-
dence time of the alkenones in the dolphin’s blubber. The information 
provided by the alkenones may change drastically depending on the 
scale of the residence time. If alkenones are stored in the dolphin 
blubber only for a certain lapse of time, the Uk’

37 index will likely pre-
sent some variation that will be seasonal or interannual depending on 
the length of the lapse. If, on the contrary, alkenones are stored 
permanently, the Uk’

37 index will provide a signal that would average 
the entire life of the individual. Unfortunately, the age of the individuals 
studied was unknown and most of them were of adult size, and it was, 
therefore, impossible to test whether alkenones bioaccumulate or not. 

In conclusion, alkenones are transferred through the trophic web and 
can be detected in the blubber of oceanic, top predator dolphins. This 
opens the possibility of using these molecules as habitat indicators since 
their presence seems to be related to the oceanic habitat. In this pre-
liminary study, the alkenones seem to be able to reflect the environ-
mental water temperature, especially in the case of the striped dolphins, 
although the low sample size prevents reaching firm conclusions. 
Further research should focus on analysing the intermediate trophic 
levels to better understand how alkenones are transferred through the 
trophic web. 

4. Data availability statement 

The data underlying this article are available in the article and its 
online supplementary material. 
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Fig. 2. Total alkenone concentrations in odontocete blubber samples. GGRI 
stands for Grampus griseus (Risso’s dolphin), SCOE for Stenella coeruleoalba 
(striped dolphin), and TTRU for Tursiops truncatus (bottlenose dolphin). 

Fig. 3. Estimated temperatures calculated through Uk’
37 in odontocete blubber 

samples. The dashed horizontal line represents the annual average sea surface 
temperature in the Balearic Sea. GGRI stands for Grampus griseus (Risso’s dol-
phin), SCOE for Stenella coeruleoalba (striped dolphin), and TTRU for Tursiops 
truncatus (bottlenose dolphin). 
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