
 
Tutora 

Dra. Lourdes Mestres Vila 
Departament de Química Inorgànica i 

Química Orgànica 

Secció de Química Inorgànica 

 

 

Treball Final de Grau 

Field-assisted sintering: flash sintering 

 

Sinterització assistida per camp elèctric: flash sintering 

Lluís Vilella Piqué 
         June 2020 

 





 

 

 Aquesta obra està subjecta a la llicència de: 
Reconeixement–NoComercial-SenseObraDerivada 

 
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ 





 

 

 

 

 

Nothing in life is to be feared, it is only to be 
understood. Now is the time to understand more, 
so that we may fear less. 

Marie Curie 

 

 

Foremost, I would like to express my sincere gratitude to Dra. Lourdes Mestres who 

encouraged me to my highest potential and her exemplary guidance and support helped me 

throughout the whole project. Besides, I would like to thank the rest of lab partners working in 

the QES group for their assistance and insightful comments. 

 
 
  
 





 

 

REPORT 





Field-assisted sintering: flash sintering    1 

 

CONTENTS 

1. SUMMARY 3 

2. RESUM 5 

3. INTRODUCTION 7 

4. OBJECTIVES  7 

5. BIBLIOGRAPHIC SEARCH 8 

5.1. Methods 8 

5.2. Sintering 8 

5.2.1. Sintering methods (I): pressure-assisted sintering 9 

5.2.1.1. Hot pressing (HP) 9 

5.2.1.2. Hot isostatic pressing (HIP) 9 

5.2.2. Sintering methods (II): electric current assisted sintering 9 

5.2.2.1. Spark plasma sintering 9 

5.2.2.2. Flash sintering 10 

5.3. Flash sintering 10 

5.3.1. Experimental setup 10 

5.3.2. Electrical response 12 

5.3.3. Mechanisms 12 

5.3.4. Stages 13 

5.3.5. Parameters adjustment 15 

5.3.6. Prediction of sample temperature from furnace temperature 17 

5.3.7. Tonset prediction model 18 

5.3.8. Grain size resulting from flash sintering 19 

5.3.9. Stoichiometry variations due to volatile compound losses 19 

5.3.10. Flash sintering effects 20 

 

 



2                  Vilella Piqué, Lluís 

 

6. EXPERIMENTAL PART 21 

6.1. Introduction 21 

6.1.1. Pyrochlore structure 21 

6.1.2. ZrO2-Nd2O3 phase diagram 23 

6.1.3. X-ray diffraction (XRD) 23 

6.2. BaTiO3 conventional and flash sintering 26 

6.2.1. BaTiO3 conventional sintering 26 

6.2.2. BaTiO3 flash sintering 27 

6.3. Nd2Zr2O7 conventional sintering 29 

6.3.1. X-ray diffraction (XRD) discussion 30 

6.3.2. Density determination 30 

6.3.3. Impedance spectroscopy (IS) 31 

7. CONCLUSIONS  33 

8. REFERENCES AND NOTES  35 

9. ACRONYMS 41 

APPENDICES 43 

Appendix 1: Conventional and flash sintering conditions 45 

 



Field-assisted sintering: flash sintering    3 

 

1. SUMMARY 

Flash sintering is a novel technique used for ceramics densification by means of heating 

and applying an electric field. Its advantages over conventional sintering have been discussed 

in the present work, amongst which, the following advantages are displayed: energy savings, 

shorter sintering times and preparation of ceramic materials with complex compositions by 

controlling abnormal grain growth and stoichiometry, as the loss of volatile compounds is 

avoided. 

The setup for flash sintering has been constantly developing since the introduction of the 

technique and sophisticated setups have been designed in order to collect all the required data 

during the same analysis. 

Moreover, the electrical response has been reviewed during this process where power, 

applied field and current are controlled. 

Flash sintering mechanisms have also been discussed as various authors proposed 

different mechanisms to explain this phenomenon such as Joule heating, nucleation of Frenkel 

pairs and electrochemical reduction. 

Furthermore, an extensive list of parameters controlling flash sintering have been studied 

and its optimization have been discussed; for instance, applied electric field, current density, 

initial particle size, green density, addition of sintering aids and the atmosphere. 

In this work, a comprehensive study of different prediction models have been made. These 

models have been created to predict sample temperature from furnace temperature, and onset 

temperature depending on the applied field. 

The last bibliographic section exhibit new materials sintering by flash sintering. Dwelling 

time and temperature are compared with the conventional sintering of the same materials. 

Useful information can be extracted from this analysis in order to prepare dense ceramics as a 

few studies about materials’ properties show similar results to conventionally sintered materials. 

However, flash sintering have been shown to substantially reduce onset temperatures and 

dwelling times. 
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Concerning the experimental part, conventional sintering and flash sintering experiments of 

a commercial sample of BaTiO3 have been performed but relative densities and characterization 

methods have not been carried out due to the pandemic. Regarding the study of a previously 

prepared Nd2Zr2O7, conventional sintering was performed and the resulting relative density was 

calculated. X-ray diffraction analysis was carried out and the resulting diffractometer was 

analyzed. Impedance spectroscopy was carried out, but results were not analyzed as a full set 

of measurements was not performed. 

Keywords: flash sintering, ceramic materials, pyrochlore, X-ray diffraction. 
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2. RESUM 

El flash sintering és una innovadora tècnica que permet la densificació de ceràmiques 

mitjançant tractament tèrmic i l'aplicació d'un camp elèctric. En aquest treball es mostren els 

seus avantatges respecte a la sinterització convencional: estalvi en l’energia i en el temps de 

sinterització, possibilitat de preparar materials ceràmics amb composicions complexes, bon 

control del creixement de gra així com de l'estequiometria, ja que s'eviten les pèrdues de 

compostos volàtils.  

El muntatge experimental pel flash sintering s'ha anat desenvolupant de forma constant des 

de la introducció de la tècnica i s'han dissenyat muntatges cada vegada més complexos que 

permeten obtenir totes les dades experimentals en un sol anàlisi. En tots els casos es controla 

la potència, camp aplicat i la intensitat de corrent i s'analitza la resposta elèctrica del material i 

la contracció que experimenta.  

En la bibliografia s'han trobat propostes de diferents autors sobre els mecanismes que 

permeten explicar el flash sintering, com són l'efecte Joule, la nucleació de parells de Frenkel i 

la reducció electroquímica.  

Altrament, s'ha estudiat una llista extensa de paràmetres que controlen el flash sintering; 

per exemple, el camp elèctric aplicat, la densitat de corrent, la mida de partícula inicial, la 

densitat inicial de la pols compactada, incorporació d’additius i l'atmosfera en la qual es duu a 

terme la sinterització.  

En aquest treball també es presenten els diferents models que permeten predir la 

temperatura de la mostra, partint de la temperatura del forn, i la temperatura de l'inici del flash, 

en funció del camp elèctric aplicat.  

En la part final de la cerca bibliogràfica es mostren els diferents materials sinteritzats per 

flash sintering i es comparen temps i temperatura del procés amb els valors corresponents als 

dels mateixos materials sinteritzats de forma convencional. Aquesta informació pot resultar molt 

interessant de cara a preparar ceràmiques denses mitjançant flash sintering per l'estudi de les 

seves propietats, ja que els pocs estudis que hi ha mostren que s'obtenen propietats molt 
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semblants a les ceràmiques sinteritzades de forma convencional, però amb una reducció molt 

important de la temperatura i del temps de sinterització.  

Respecte a la part experimental, s'han fet experiments de sinterització convencional i de 

flash sintering de BaTiO3 comercial. Malauradament no s'ha pogut fer la caracterització de les 

ceràmiques obtingudes a causa de la pandèmia. S'ha iniciat l'estudi de la sinterització del 

Nd2Zr2O7. De les mostres resultat de la sinterització convencional s'ha determinat la densitat i 

s’han caracteritzat per difracció de raigs X. S'ha realitzat també espectroscòpia d'impedàncies 

però no es presenten els resultats, ja que no es disposa del conjunt complet de les mesures 

que permeti l'anàlisi global. 

Paraules clau: flash sintering, materials ceràmics, piroclor, difracció de raigs X. 
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3. INTRODUCTION 

Dense ceramic bodies are traditionally produced by sintering green powder compacted at 

high temperatures and can take several hours. Electric field-assisted sintering (flash sintering) is 

a new sintering technique that allows to obtain high-density polycrystalline materials at 

processing times and temperatures dramatically lower than the conventional method, thus 

reducing energetical and environmental costs. There are a number of variables associated with 

this technique, such as current and electric field, temperature, processing time, and more. 

Monitoring these variables during processing allow  a thorough control over the microstructure, 

densification and, as a consequence, an improvement in the functional properties of sintered 

materials is observed. 

The purpose of this work is to study the flash sintering process since flash sintering is at a 

very early stage, and it seems very promising for the production of materials in an 

environmentally friendly way with improved properties, hence, improving their applications. 

4. OBJECTIVES 

The main objective of this essay is to study a ceramic densification method called flash 

sintering and to explore its application in Nd2Zr2O7 sintering, which is an anionic conductor 

interesting for solid oxide fuel cells (SOFC) applications. 

To achieve this purpose, the following points must be fulfilled: 

- A bibliographic search to acquire a thorough knowledge about flash sintering 

characteristics and its possibilities. 

- An experimental part. Firstly, flash sintering methodology must be learnt by sintering a 

commercial compound (BaTiO3) so then, Nd2Zr2O7 densification can be carried out. 

Nd2Zr2O7 is previously prepared in ‘Química de l’Estat Sòlid’ (QES) group. 
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5. BIBLIOGRAPHIC SEARCH  

 

5.1. METHODS 

A bibliographic search was performed from April to June in different data bases, such as 

SciFinder, Reaxys and Web of Science. 

 The followed criteria was firstly based on flash sintering advantages over conventional 

sintering, which developed into a large list of studied materials. Then, flash sintering process 

was understood by its electrical response, mechanisms, stages and controlling parameters. 

Additional information about prediction models and experimental setups was found during the 

searching.  

 

5.2. SINTERING 

In order to study materials’ electrical properties, highly dense ceramics must be obtained. 

Powder densification occurs by a combination of a powder-pressing operation and a heating 

operation in which the formed piece shrinks and experiences a reduction of porosity and an 

improvement in mechanical integrity. As seen in Fig. 1, these changes occur by the 

coalescence of the powder particles into a denser mass in a process termed sintering. [1] 

 

Figure 1. For a powder compact, microstructural changes that occur during heating. (a) Powder particles 
after pressing. (b) Particle coalescence and pore formation during first sintering moments. (c) As sintering 

continues, the pores change size and shape. 

 

Sintering phenomenon is due to a solid-state diffusion, which transports grain boundaries 

matter to the neighbouring grain pores. Currently, it is been mostly performed in a furnace 

requiring temperatures up to 1500 ºC and many hours. Moreover, it is always accompanied by a 



Field-assisted sintering: flash sintering    9 

 

grain growth which slows the sintering process and a possible modification of initial 

stoichiometry which is caused by the loss of volatile compounds. [2] 

5.2.1. Sintering methods (I): pressure-assisted sintering 

Pressure-assisted sintering techniques have been developed to optimize properties of 

sintered materials. Temperature and pressure are the traditional means to refine the 

microstructures of densified ceramics. 

5.2.1.1. Hot pressing (HP) 

Hot pressing is the synchronous utilization of uniaxial pressure and heat. Due to uniaxial 

nature of the procedure, just basic shapes are made by this technique. Further, the application 

is much more typical in ceramic processing, maybe due the more substantial variety of 

processing options open to metals or due to particular applications, for example, transparent 

polycrystalline ceramics, that need fine grain size and high density. [3] 

Rangasamy [4] and Sharafi [5] found an application of this technique by densifying 

Li7La3Zr2O12, which is a polycrystalline material used as an electrolyte. The previously 

mentioned technique produced a highly dense material with a relatively low sintering time. 

5.2.1.2. Hot isostatic pressing (HIP) 

Hot isostatic pressing simultaneously applies hydrostatic pressure and heat in order to 

densify a powder sample. The process is comparable to cold isostatic pressing, although 

elevated temperature and an inert gas transmitting the pressure to the green part are required. 

Sample powder is generally densified in a container, which operates as a deformable barrier 

between the green part and the transmitting gas. [3] 

5.2.2. Sintering methods (II): electric current assisted sintering 

More recently though, field-assisted sintering techniques use electrical fields in combination 

with previously used temperature and time have been shown to enhance sintering rate. Spark 

plasma sintering (SPS) and flash sintering (FS) are the more widespread techniques. [6] 

5.2.2.1. Spark plasma sintering (SPS) 

Spark plasma sintering (SPS) is also known as plasma activated sintering, pulse discharge 

pressure sintering and pulse electric current sintering. Sintering by this technique is performed 
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by submitting the green sample to arc discharge generated by a pulsed electric current. An 

electric discharge phenomenon on a microscopic level promotes material diffusion. The heating 

rate of SPS is 100-1000 °C/min and the applied pressure is usually 30-200 MPa. [7] 

5.2.2.1. Flash sintering (FS) 

Flash sintering is an electrical current assisted sintering technique. It has been seen that 

over an applied field threshold value, sintering might be performed at relatively low 

temperatures in a few seconds (flash). A great amount of energy and time is saved due to 

inferior sintering temperatures, obtained when an electric field is applied. This important 

enhancing phenomenon may be explained as a consequence of Joule effect in grain boundaries 

where diffusion is promoted, and grain growth is retrained. 

Flash sintering studies are in a very early stages as it is a very novel technique. Ceramics, 

polymers and metals are some of the materials which are being investigated. This technique 

allows to sinter complex composition materials, it is relevant when working with low melting 

temperature or low volatility temperature oxides. In addition, nanostructured high-density 

specimens can be obtained as flash sintering avoids abnormal grain growth. [2] 

 

5.3.  FLASH SINTERING 

5.3.1. Experimental setup 

Flash sintering setup consists of various components. A tubular furnace is responsible for 

heating up the sample to onset temperatures for flash sintering. The connection between the 

sample and the power source is made with Pt wires and a Pt paste spread over part of the 

sample, which will conduct current throughout it. A computer allows to control electrical 

parameters that a power source supplies and allows to process images captured by a camera. 

These images display the sample shrinkage during the flash event due to sample’s 

densification, which can be analyzed posteriorly. Optical filters or lenses are required between 

to furnace and the camera by means of focusing the recording image. Conventional flash 

sintering setup can be seen in Fig. 2. 
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Figure 2. Field-assisted sintering apparatus. Adapted from [8] 

 

More sophisticated setups have been created. In Fig. 3, flash sintering apparatus is coupled 

together with a dilatometer so shrinkage versus temperature plots are obtained. Consequently, 

a camera and optical filters are unneeded. Furthermore, the furnace is coupled to an impedance 

analyser, so impedance spectroscopy data is collected. A power supply is present as in a 

conventional flash sintering apparatus. 

 
 

Figure 3. Sketch of the experimental setup for dilatometric measurements, application of voltage and 

impedance spectroscopy data collection of green ceramic pellets. [9] 

Parameter control 
and image processing 
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5.3.2. Electrical response 

At the first part of flash sintering, a constant electric field (V/cm) is applied to the sample 

while temperature increases. No current passes throughout the sample as it is non-conductive 

at low temperatures. As temperature keeps rising, necking between the grain occurs and it 

creates conduction paths for a small current which result in a slight shrinkage of the sample. 

 As sample shrinks, apparent electric field increases, and along with increased conductivity 

due to densification and heating, an exponential rise in current is produced. The abrupt current 

increase provokes a power dissipation while a constant voltage is applied. At that instant, most 

of the densification occurs together with pore closure. The sudden current increase needs a pre-

set current limit to prevent thermal runaway, hence, the power supply switches from voltage 

control to current control, which causes steady voltage to decline in order to maintain a constant 

current. Besides, the power dissipation decreases and approaches a steady state. Plots for 

power, applied field and intensity during flash sintering process can be seen in Fig. 4a, 4b and 

4c respectively. [10] [11] 

 

Figure 4. a) Power (W/cm) during flash sintering process, b) Applied field (V/cm) during flash sintering 

process, c) Current intensity (A) during flash sintering process. 

5.3.3. Mechanisms 

There is an extensive debate in which is the prevalent mechanism in flash sintering process, 

a few mechanisms regarding this topic have been discussed: Joule heating, nucleation of 

Frenkel pairs and electrochemical reactions due to applied voltage. 
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Joule heating 

Electrical current through the specimen can produce Joule heating resulting in a 

temperature in the specimen that is above the furnace temperature. The higher temperature will 

enhance the rate of grain boundary diffusion. The flash event is thus recognized to be an effect 

of runaway Joule heating under voltage control produced by the rapid reduction of resistivity 

while increasing sample temperature. [12] [13] 

Joule heating of the specimen is a mechanism which explains a simultaneous increase in 

electrical conductivity and mass transport kinetics. [11] 

Nucleation of Frenkel pairs 

A defect avalanche in the form of Frenkel pairs is precipitated into charge neutral defects 

and electron-hole pairs. The defects enhance diffusion while the electron-hole pairs induce high 

conductivity and photoemission. Nucleation is a precursor to the flash onset, and therefore, 

takes place at the furnace temperature. [14] 

Electrochemical reduction due to applied voltage 

When working with fuels cells, the applied voltage should not surpass the electrochemical 

reduction potential. If it does, the ionic conductivity declines while the electronic one increases. 

The transition from ionic to electronic conductor occurring in flash sintering can also be seen as 

an effect caused by the electrochemical reduction. 

In direct current mode, ionic conductors or mixed ionic conductors follow this sequence of 

events: (i) the electrochemical reduction initiates from the cathode to the anode, where a 

significant amount of oxygen ions are released at the anode; (ii) due to the increase of oxygen 

ions, the conductivity of the sample increases progressively while the electrochemical reduction 

progresses; (iii) when the material becomes sufficiently conductive for flash sintering and its 

conductivity becomes essentially electronic a flash event occurs. [6] 

5.3.4. Stages 

Flash sintering process involves three fundamental stages (Fig. 5) when a constant electric 

field is applied: 
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Stage I: incubation 

 Under a constant electric field, the current density (j) remains low, with a moderate 

evolution for a lead time (Δt) before the flash event. This current value remains low compared to 

the current densities reached during flash onset but, significantly greater that the initial current 

values. Incubation stage is explained by Joule heating and the formation of oxygen vacancies in 

oxides. 

Stage II: flash current increase 

After this incubation time, the current density (j) suddenly increments. The onset of the 

sample densification is coordinated with the abrupt current density increase. Over this 

momentary period, the large current upsurge results in a power spike, which would cause to a 

device breakdown and sample damage. The sharp increase results from the migration of 

oxygen vacancies in oxides to form different charged defects that have an electrostatic 

interaction between them. 

Stage III: current limited stage 

When a predefined current density (Imax), is reached, the power supply is therefore either 

switched from voltage to current control, so that the current density is kept steady during a 

predefined period or switched down to zero. It is worth noting that densification can progress 

during a brief period, even after the field is cut off. [15] [16] 

Figure 5. Schematic view of the evolution of current density and shrinkage during the three stages of flash 

sintering where an electric field is applied at t=0 and the temperature is constant. Adapted from [15] 
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5.3.5. Parameters adjustment 

A variety of factors control flash sintering stages and must be taken into consideration 

depending on the electrical parameters, bulk properties of the sample and effect of the 

atmosphere. 

The appropriate choice of electric parameters such as applied electric field and current 

density are important for the event of a flash across the sample to be sintered. Bulk properties 

of the sample include parameters like the initial particle size, green density and the increase of 

sample’s initial conductivity and their importance is based on the capacity of the electrical power 

to be delivered to the sample as well on the available route for the electrical current throughout 

the sample. The atmosphere in which the sample is experimenting flash sintering is also a factor 

which is determining during flash sintering process. 

All the above-mentioned parameters must be controlled in order to achieve a successful 

sintering. [9] 

Applied electric field 

Soleimany et al. [17] reported that increasing applied electric fields lead to a nearly constant 

linear shrinkage for low applied electric field values at a constant current density. However, an 

increase in the electric field when already at high enough values provokes a tremendous 

decrease in linear shrinkage which is a measure of enhanced densification. 

Shrinkage strain-temperature plots are clear indicators of the difference between flash 

sintering and field assisted sintering. These plots show two different behaviours depending on 

the electric field applied. At low applied electric fields, shrinkage strain occurs gradually as 

temperature is increased while, at higher applied fields, shrinkage strain occurs at a constant 

temperature. Therefore, at lower applied fields, the sintering rate enhances gradually with 

applied field resembling field-assisted sintering while above higher fields, sintering occurs in a 

few seconds which is characteristic of flash sintering. [18] 

Effect of current density 

Soleimany et al. [17] observed that a current density increase leads to an increase of the 

specimen temperature because the power increase, so the dissipation of power in form of heat 

is greater. Moreover, current density has a more pronounced effect on microstructure that 

voltage has. 
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Initial particle size 

Francis et al. [19] reported that smaller sizes of the initial particles result in a lower 

temperature for the onset of flash sintering and in a higher densification. 

Green density 

Du et al. [20] observed that the onset temperature of flash sintering is reduced by increasing 

green specimens’ initial density (powder density) because of higher current densities, resulting 

in increased Joule heating and faster densification. This agrees with a previous study by Todd 

et al. [13] who reported that by increasing green specimens’ initial density, the applied field 

required to produce the flash onset was reduced for a given temperature. 

Addition of sintering aids 

Cologna et al. [8] observed that doping does not influence on sintering kinetics at low fields. 

However, at high fields, the doped material exhibited flash sintering. One possibility that 

explains this effect is that the dopant creates local amplifications in the electrical fields which 

enhance the probability for the nucleation of Frenkel pairs hence, increasing conductivity. 

Muccillo et al. [21] evidenced the enhancement of densification by introducing carbon 

nanotubes (CNTs) in addition to the enhancement due to the application of an electric field. This 

phenomenon might be explained by a pulse current generation in the presence of CNTs when 

the applied voltage oscillates. CNTs intermittently react with oxygen, resulting in a carbon 

dioxide release. 

Shomrat et al. [22] observed that flash sintering onset temperatures are determined by the 

resistance-temperature relation in the sample. Apart from depending on the applied field, it was 

seen that by enhancing dopant concentration in an oxide sample leads to a conductivity and 

oxygen vacancy concentrations increase. Onset temperature reduction is proposed as the result 

of oxygen vacancy concentrations increase since a significant modification of grain size or 

shape was not observed. 

Effect of atmosphere 

The dependence of the onset temperature on the atmosphere can be explained by means 

of increased specimens’ initial conductivity in reducing atmospheres. [23] 
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5.3.6. Prediction of sample temperature from furnace temperature 

Flash sintering onset temperature is given by furnace temperature. Although sample 

temperature is the same as furnace temperature when no current passes through the sample, 

after current passes through, sample experiments an increment in temperature due to Joule 

heating. 

On one hand, Cologna et al. [2] proposed black-body radiation as a model to estimate 

temperature differences between the furnace and the sample by assuming that the difference in 

black-body radiation are equivalent to the heat dissipated by the sample. This assumption can 

only be considered if the specimen is a monolithic body, meaning that it has a uniform heating. 

Moreover, losses by conduction and convection are assumed to be negligible due to the fact 

that black-body radiation is predominant over convection losses at high temperatures, and 

conduction losses cannot be evaluated normally. The estimation leads to Eq. 1. 

 

                                                  𝑇1 =  [𝑇0
4 +  

𝑊

𝐴𝜎
]

1/4

                                    (1)   

 

Where 𝑇1  stands for the sample temperature; 𝑇0  is then furnace temperature, which is 

equal to the samples temperature before heating electrically; 𝐴 is sample’s total surface area; 

𝑊  is Joule dissipation of electrical energy and 𝜎  which stands for the Stefan-Boltzmann 

constant (5.67 · 10-8 W·m2/K4). Eq. 1 assumes the emissivity of the ceramic to be 1; indeed, for 

most oxides its value is >0.9. Later, the discrepancy between theory and experiment is tied to 

this assumption: a true emissivity that is less than one would give higher specimen 

temperatures than calculated. [11] 

On the other hand, other researchers have pursued to fully understand and model the 

relation between furnace temperature and sample temperature since Cologna et al. [2] 

explained this phenomenon by means of black-body radiation. 

 Schmerbauch et al. [24] fitted a linear function to predict sample temperature during its 

heating and while current is flowing through. Their work led to an equation which is used to 

calculate specimen temperature, which depends on furnace temperature, two thermal 

expansion coefficients which are specific for each specimen, specimen length when current 
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passes through the sample and the sample is heating, and specimen length when the sample is 

non-conductive. Eq. 2 describe the previously mentioned prediction. 

 

                 𝑇1 =  −
𝑛

𝑚
+ √(

𝑛

𝑚
)

2

+ 𝑇0
2 +  

2𝑛

𝑚
𝑇0 −

2 ln (
𝐿(𝑇0)

𝐿(𝑇)
)

𝑚
              (2) 

 

Where 𝑇1  stands for the sample temperature; 𝑇0  is then furnace temperature, which is 

equal to the samples temperature before heating electrically; 𝐿(𝑇0) is sample length before 

switching on the current; 𝐿(𝑇)  is the sample length after flash sintering; and 𝑛  and 𝑚  are 

coefficients related to thermal expansion, both are specific of each compound. 

Temperature difference between furnace and sample may increase moderately in field-

assisted sintering techniques (FAST) while in flash sintering, temperature increment is more 

abrupt for instance reaching differences up to 1000 °C. Moreover, it was observed that current 

density and specimen temperature follow a linear relationship at various electric fields. 

5.3.7. Tonset prediction model 

A prediction model to calculate onset temperature for flash sintering at a determined applied 

field was developed by Dong et al. [25] [26] in order to minimize the experiments needed to 

reach adequate experimental conditions for each specimen. The prediction model is based on 

Joule heating mechanism. 

As predicted with their analysis, the inverse of onset temperature data (1 𝑇𝑜𝑛⁄ ) follow a 

linear dependence with the Napierian logarithm of the squared applied field [ln(𝐸2 𝑇𝑜𝑛
4

⁄ )] at 

a constant voltage and a constant heating rate as seen in Eq. 3. 

 

                               ln ( 
𝐸2

𝑇𝑜𝑛
4 ) =  

𝐸𝑎

𝑘𝐵𝑇𝑜𝑛
+  ln (

𝜀𝜎𝑆𝑑2𝑅0

𝛽
)                        (3) 

 

Where 𝑇𝑜𝑛 is the onset temperature, 𝐸 is the applied field, 𝐸𝑎  is the activation energy, 𝑘𝐵 

is the Boltzmann’s constant, 𝜀  is the emissivity, 𝜎  is the Stefan-Boltzmann constant,  𝑆  is 

sample’s surface area, 𝑑 is sample’s length, 𝑅0 is a preexponential factor for resistance, 𝛽 is a 

numerical constant. 
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5.3.8. Grain size resulting from flash sintering 

Flash sintering technique enhances densification of the sample, and at the same time 

inhibits grain growth by reason of the current flash passing through the ceramic sample in a 

short period of time. [9] 

Francis et al. [19] reported that smaller grains than in conventionally sintered samples are 

formed in flash sintering after the flash onset. An explanation for this phenomenon might be a 

dash of mass into the pores which result in the formation of new smaller grains by nucleation. 

Half of the mass forming the grains moves during flash sintering when the onset occurs. The 

brevity of the onset prevents crystal growth and forces the flow of matter to create new grains, 

hence increasing the densification of the sample. Contrarily, in conventional sintering the 

process, since the process takes longer periods of time, the inflow of mass that is accumulating 

on the pore surfaces can be implanted on the crystal surfaces leading to crystal growth rather 

than creating new smaller grains. 

Karakuscu et al. [27] outlined that the average grain size for flash sintered specimens is 

small and has a narrow grain size distribution, accompanied by a minor far-flung population of 

larger grains. However, in conventionally sintered specimens, a wider grain size range is 

observed. Besides, average size is larger as a result of longer sintering times and higher 

temperatures. Their work led to the conclusion that flash sintering prevents abnormal grain 

growth, which is more frequently observed in conventionally sintered specimens. Abnormal 

grain growth prevention with flash sintering technique allows to enhance the sintering process 

compared to the conventional sintering technique in which grain growth slows the process. 

5.3.9. Stoichiometry variations due to volatile compounds losses 

Compounds with a complicated synthesis are preferably prepared by the novel method due 

to the fact that flash sintering operates at lower temperatures which helps to prevent the 

volatilization of low volatile oxide compounds or melting of low melting temperature specimens. 

Shomrat et al. [28] remarked one of the advantages of the flash sintering technique over 

conventional sintering with regard to potassium niobate ceramics (KNbO3). In KNbO3 synthesis, 

the problem arises from potassium oxide (K2O) volatilization above 800 °C which does not 

maintain stable the stoichiometry of KNbO3. Flückiger et al. [29] evidenced that the weight loss 

of sample due to K2O evaporation is increased gradually with temperature. 
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Contrasted to other ceramic powders which can be fully sintered using the conventional 

method, applying flash sintering on this compound reduces the volatility of potassium oxide 

resulting in a high density ceramic due to a rapid sintering process and also resulting in a 

stoichiometric ratio of K/Nb that remains constant during the whole process. [28] 

5.3.10. Flash sintering effects 

Materials with new properties are developed by controlling grain size, stoichiometry and by 

achieving high density samples. These properties must be studied in order to shed a light on 

flash sintering advantages. 

Regarding electrical properties, they might be improved as a result of flash sintering 

process. In order to characterize samples, impedance spectroscopy is performed. The 

impedance spectroscopy technique is considered for the analysis of the electrical behaviour of 

ceramics and has absolute importance in the evaluation of the bulk and interfaces (mainly grain 

boundaries) electrical resistivities. [9] 

Clemenceau et al. [30] observed that the lithium-ion conductivity measured with impedance 

spectroscopy was 0.5 mS · cm−1 at room temperature, and the activation energy was 0.35 eV, 

similar to the values reported in the literature with conventional or hot-pressing techniques. For 

similar conductivities, flash sintering was performed at 850 °C in a few seconds, while Murugan 

et al. [31] densified the same specimen at 1230 °C in 36 hours by conventional sintering. 

Therefore, flash sintering supposes an advantage when compared to conventional sintering as 

densification can be achieved at lower temperatures much faster. 

Sun et al. [32] noted that the conductivity of La0.8Sr0.2Ga0.8Mg0.2O3-δ (LGSM) samples 

sintered at 0.9 A are 0.049 σ·cm-1 at 800 °C, which is comparable to the value of conventional 

sintered LSGM samples at 1370 °C in 36 hours by Huang et al. [33]. Once again, flash sintering 

will save energy and time in the sintering of this compound, and the similar electric properties 

will be obtained. 

Gil-González et al. [34] synthesized phase-pure BiFeO3 by reaction flash sintering of Bi2O3 

and Fe2O3 powders in a few seconds at 625 °C. Sintering is performed jointly with the reaction. 

Contrarily, Jeon et al. [35] prepared and sintered the compound in two separate stages. 

Preparation was performed mixing powders by ball milling and posterior calcination. Sintering at 

800 °C for 12 hours, which allowed to reach high densities. Therefore, flash sintering not only 
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proved to be an efficient technique for achieving improved densifications in a short time, but 

also showed that can avoid extended sample preparations through contributing to the reaction. 

A comparative table between conventional and flash sintering conditions can be seen in 

Appendix 1, in which lower onset temperatures and shorter dwell times for flash sintering than in 

conventional sintering are displayed. 

6. EXPERIMENTAL PART 

 

6.1. INTRODUCTION 

6.1.1. Pyrochlore structure 

Pyrochlore structure is named after the mineral pyrochlore which has the approximate 

composition (CaNa)Nb2O6F. Pyrochlore compounds represent an isostructural phase family to 

the mineral pyrochlore. [36] Concerning applications, pyrochlore structured materials are used 

in methane reforming [37], photocatalysis [38], photoluminescence [39], dielectric materials 

[40][41], magnetic materials [42][43], giant magnetoresistances [44][45] and superconductors 

[46][47]. 

Pyrochlore compounds’ general formula is A2B2O6O’ with four crystallographically non-

equivalent kinds of atom [48], where A is a divalent or trivalent large cation with an octahedral 

coordination (e.g.: lanthanides) and B is typically a pentavalent or tetravalent high-field transition 

metal with an hexagonal coordination, respectively (e.g.: Zr, Nb, Ti) [49]. Its structure derives 

from a fluorite-type structure (CaF2), nevertheless the cationic sub-lattice is well-organized and 

there is an anion vacancy in an eighth of the total number of tetrahedral holes. Pyrochlore 

structure shown in Fig. 6, belongs to a space group Fd-3m and it contains eight formula units for 

each unit cell (Z=8) [50]. Fig. 7 exhibits an eighth of a pyrochlore unit cell. 

The structure may be described as an A2O framework interpenetrating the B2O6 octahedral 

framework which is justified by the appreciable distances between A-6O and A-2O in the 

coordination group around A. [36] 
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Regarding Wyckoff positions, A3+ cations are located at 16d site while B4+ cations are 

located at 16c site. Two types of oxygen anions (O2-) are found in 48f and 8b sites. The inherent 

oxygen vacancy in 8a site is responsible for the high mobility of oxide anions, thus creating a 

mechanism to modulate conductivity through the defects’ concentration in the pyrochlore 

structure. [50] 

Electrical properties in pyrochlore-type oxide-ion conductors are related to the degree of 

structural disorder which is governed by the ionic radius ratio (RA/RB). For an ionic radius ratio 

below 1.46, the disorder in the ionic sub-lattices is complete and this might render a fluorite-type 

defect structure. For ionic radius above 1.78 laminar perovskites are rendered. Pyrochlore 

structure is obtained for ionic radius values ranging from 1.46 to 1.78. [51] 

Figure 6. Pyrochlore structure. [153227-ICSD] 

 

Figure 7. Partial unit cell of pyrochlore (Fd-3m), blue spheres represent A3+ cations, yellow spheres 

B4+ cations and red spheres O2- anions, the arrow indicates an additional ionic vacancy. [153227-ICSD] 
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6.1.2. ZrO2-Nd2O3 phase diagram 

The ZrO2–Nd2O3 binary system phase diagram acquired using high temperature X-ray 

analysis [52] is shown in Fig. 8. The fluorite-type structure (F) is stabilized at a low-temperature 

range by adding Neodymium (Nd). Nevertheless, the increase of neodymium oxide (Nd2O3) 

composition in the mixture leads to the appearance of the pyrochlore structure (Pyr). 

The red line in the phase diagram (Fig. 8) indicates the region where a single pyrochlore 

phase with a specific Nd2Zr2O7 composition is constituted. Consequently, it is laborious to obtain 

the pyrochlore phase without secondary phases. 

 
Figure 8. Phase diagram of ZrO2–Nd2O3 binary system where M = monoclinic, T= tetragonal, F= fluorite, 

Pyr = pyrochlore, A= hexagonal at low temperature, H= hexagonal at high temperature, X= cubic. 

6.1.3. X-ray diffraction (XRD) 

XRD diffraction is a technique used to characterize different crystalline materials. This 

technique is based on the scattering of X-ray beams. X-rays are electromagnetic radiation that 

are originated when high-energy charged particles, e.g. electrons, collide with matter. Regarding 

Cu lamp, incident electrons have the enough energy to ionize Cu 1s electrons. Hence, an 

electron of 2p or 3p levels instantly drops down to occupy the vacant 1s level as it shown in Fig. 

9a. The energy released in the transition produces X-rays. 
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Fig. 9.  a) Cu emission spectrum. b) Generation of Cu Kα X-rays 

There are different fixed values of transitions energies. In the case of Cu, the 2p to 1s 

transition is called Kα, which has a wavelength of 1.5418 Å. Transition from 3p to 1s is called Kβ, 

which has a wavelength of 1.3922 Å. Kα transition occurs more frequently than Kβ transition. 

Indeed, the Kα radiation is a doublet (Fig. 9b) that occurs for the two possible spin states (Kα1 = 

1.54051 Å and Kα2 =1.54433 Å) of the 2p level. 

In diffraction experiments that use a Cu lamp, the Kα line is the most energetic and it is 

desired to filter out all other wavelengths. A sheet of Ni foil is an adequate filter, as the required 

energy to ionize a 1s electron of Ni corresponds to a wavelength of 1.488 Å, which is in the 

middle of Kα and Kβ line wavelengths in Cu emission spectrum. Therefore, Kβ is energetically 

able to ionize 1s electron of Ni while Kα is not able to ionize it. [53]  

X-ray beams are diffracted in many directions when colliding with the sample. Bragg’s law 

allows to analyze these beams. This law can be explained with two X-ray beams (Fig.10), A and 

B, which are reflected in a plane with an angle equal to incidence angle and one of these beams 

must travel an extra distance. Besides, Bragg’s law gives the conditions for X-ray beams 

constructive interferences. Then, if Bragg’s law is satisfied, reflected beams are in phase and 

interfere constructively. Contrarily, at incidence angles other than Bragg angle, reflected beams 

are out-of-phase and result in a destructive interference or cancellation. This phenomenon is 

described by Bragg’s law: 2 𝑑 sin 𝜃 = 𝑛 𝜆 , where 𝑑  is the interplanar distance, 𝜆  is the 

incident wavelength, 𝑛 is a whole number (usually n=1) and 𝜃 is the angle. 

 

 

a b 
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Figure 10. Representation of Bragg's law. 

The X-ray powder diffraction pattern is shown by a set of lines or peaks, each of different 

position (d-spacing or Bragg angle, θ) and intensity. Line positions in the diffraction pattern are 

fixed and characteristic for each substance. The intensities can subtly vary for a determined 

substance depending on the preparation method and instrumental conditions. Crystal’s 

symmetry is explained by the number of peaks present in the sample, thus a lot of peaks imply 

low symmetry. Phase determination and crystallographic planes determination is possible with 

XRD due to the fact that each plane has different Miller indexes (hkl). Hence, the determination 

is achieved by comparing the results with reference diffraction patterns from The International 

Centre for Diffraction Data (ICCD). Unit cell parameters (a, b, c, α, β and γ) can be calculated 

once the crystallographic planes have been designated. 

XRD studies were carried out with PAnalytical X’Pert PRO MPD diffractometer. Kα line of Cu 

(1.5404 Å) was used at 30 mA and 40 kV. The diffraction pattern was recorded for 2θ angles 

from 10º to 100º and the scanning speed was 1 ºC/min. X’Pert HighScore Plus software was 

used to interpret the diffraction patterns. 
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6.2. BaTiO3 CONVENTIONAL AND FLASH SINTERING  

Conventional sintering and flash sintering of a commercial BaTiO3 sample (Merck Ref. 

12048) was performed. Sample preparation for the sintering process consisted on mixing 

commercial BaTiO3 with 6 wt.% PVA and molding the mixture into a dog-bone shape by 

applying a uniaxial pressure of 270 MPa, generated by a hydraulic press. The dies used for 

molding and the dog-bone-shape can be seen in Fig. 11 and Fig. 12, respectively. 

 
Figure 11. Picture of the dies used for molding the samples into a dog-bone shape with the application of a 

uniaxial pressure. 

 
Figure 12. Picture of the dog-bone shape and dimensions. 

6.2.1. BaTiO3 conventional sintering 

Sample preparation in conventional sintering is followed by the introduction of the dog-bone 

shaped sample into a furnace where a temperature program is applied as seen in Fig. 13. 

Heating up the sample to high temperatures during a large period of allowed its densification. 
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Figure 13. Scheme of the temperature program for conventionally sintered BaTiO3. 
 

Sintered relative densities were not calculated. Neither do characterization methods were 

performed due to the pandemic. 

6.2.2. BaTiO3 flash sintering 

Sample preparation in flash sintering is followed by the introduction of the dog-bone shaped 

sample into a furnace where a temperature program is applied as seen in Fig. 14. The first 

temperature program is intended to pre-sinter the sample and remove the binder (PVA) added 

during sample preparation. 

Pre-sintered sample’s density of BaTiO3 was measured to be 3.00 g/cm3 and theoretical 

density of BaTiO3 is 6.01 g/cm3 so green density of the sample is 49.9 %. 

 
 

Figure 14. Scheme of the temperature program for pre-sintering BaTiO3. 
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Afterwards, the dog-bone sample was partially painted with a paste of Pt in order to become 

electrically conductive and it was attached to the tubular furnace by Pt wires as seen in Fig. 15. 

Flash sintering setup can be seen in Fig. 16, where the computer controls the voltage, 

current density and other parameters which are supplied by the power supply, the tubular 

furnace heats up the sample, and the lenses and the camera record images of the flash event 

so a further processing can be performed with the computer. 

 

 
 

Figure 15. Picture of the dog-bone shape pre-sintered sample attached to the tubular furnace by Pt wires. 
 

 
 

Figure 16. Picture of the setup for the flash sintering process. 
 

Two experiments were performed under different conditions in order to optimize sintering 

process. In all the experiments, an initial fast temperature ramp was set until 600 °C and then a 

slower temperature ramp of 10 °C/min was planned until 1200 °C. 
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The first flash sintering experiment was carried out with a 200 V/cm applied field and a 10 

mA/mm2 current density. Onset temperature of 986 °C was achieved under these conditions. 

Dwell time was set at 10 min after which the voltage at the current limit was 164 V. 

A second experiment was carried out with a 300 V/cm applied field and a 15 mA/mm2 

current density. Onset temperature of 927 °C was achieved under these conditions. Dwell time 

was set at 10 min after which the voltage at the current limit was 240 V. 

Sintered relative densities were not calculated. Neither do characterization methods were 

performed due to the pandemic. 

 

6.3. Nd2Zr2O7 CONVENTIONAL SINTERING  

Conventional sintering of a Nd2Zr2O7 (NZO) product previously synthesized in the Solid-

State Chemistry Group (QES) group was performed. 

The preparation of three NZO pellets was accomplished by applying a uniaxial of 270 MPa 

with a hydraulic press followed by a sintering process in a furnace with the temperature program 

seen in Fig. 17. 

 
 

Figure 17. Scheme for the temperature program of conventionally sintered Nd2Zr2O7. 
 

The pellets were labelled depending on subsequent characterizations: X-ray diffraction 

(XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and 

impedance spectroscopy (IS). 
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6.3.1. X-ray diffraction (XRD) discussion 

When comparing NZO diffractometer with an NZO pattern (PDF card: #00-017-0458), even 

though relative intensity is below 2%, an unusual peak at 2θ=32.5240 ° was visible. This peak 

was associated to a cubic Nd2O3 secondary phase (PDF card: #00-021-0579) as seen in Fig. 

18. Secondary phases might be present in the sample as the pyrochlore structure is only 

obtained at a specific stoichiometry, as seen in phase diagram of the ZrO2–Nd2O3 binary 

system. A slight variation in ZrO2 or Nd2O3 composition in the mixture will result in a biphasic 

system. Therefore, pyrochlore structure is difficult to obtain. 

 

 
 

Figure 18. Diffractogram for NZO conventionally sintered. In red, NZO sample; in green, NZO pattern; in 
blue, cubic Nd2O3 pattern. 

6.3.2. Density determination 

Sample’s density was determined based in Archimedes principle and it was performed using 

a KERN ABJ/ABS analytical balance with the density determination supplementary set as seen 

in Fig. 19. 
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Figure 19. Picture of the KERN ABJ/ABS analytical balance with density determination supplementary set. 

 

Sample’s density is determined with Eq. 4. 

 

                                                   𝜌 =  
𝐴

𝐴 − 𝐵
 𝜌𝑜                                               (4) 

 

Where, 𝜌 is the sample’s density, A is the sample’s mass in air, B is the sample’s mass in 

the measurement liquid and 𝜌𝑜 is water’s density at the working temperature. 

Theoretical density of NZO is 6.41 g/cm3, while sintered sample’s density was 6.30 g/cm3. 

The resulting sintered relative density was 98.4 %. 

6.3.3. Impedance spectroscopy (IS) 

IS pellet was covered in gold by sputtering and the edges were smoothened with glass 

paper in order to obtain two electrodes and a conductive sample. Pellet’s dimensions were 

measured before executing IS measurements. A frequency sweep (0.005-1000 kHz) and 

temperature sweep (350-800 °C) were performed in IS. The characterization was carried out by 

impedance spectroscopy with an impedance analyser HP 4192A from the QES group. Results 

were not analyzed due to the lack of measurements at different atmospheres. 
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7. CONCLUSIONS 

To sum up, the following conclusions are extracted: 

Bibliographic research has allowed to retrieve a relevant amount of information about 

flash sintering basis and working methodology. 

- Flash sintering obtained knowledge will facilitate the experimental design and the 

optimization of experimental conditions for densification. 

- Comparative studies of conventional sintering and flash sintering about densified 

materials’ properties have barely been found. 

Experimental part has been vastly reduced due to COVID19 impact, although: 

- Sample preparation for sintering experiments has been learnt. 

- Some experiments have been carried out, which helped to understand the 

bibliographic information retrieved. 

A final conclusion can be highlighted, a thorough knowledge has been acquired about flash 

sintering technique which will allow to apply it to different materials studied in ‘Química de l’Estat 

Sòlid’ (QES) group and will allow to assess how sintering process modifies materials’ functional 

properties. 
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9. ACRONYMS 

3YSZ: 3 mol% yttria-stabilized-zirconia 

8YSZ: 8 mol% yttria-stabilized-zirconia 

TZP: tetragonal zirconia 

10GDC: 10 mol% gadolinium-doped ceria 

KNN: potassium sodium niobium oxide 

10Sc1CeSZ: zirconia doped with 10 mol% scandia and 1 mol% ceria 

TCP: tricalcium phosphate 
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APPENDIX 1: CONVENTIONAL AND FLASH SINTERING CONDITIONS 
   

Flash-sintering Conventional sintering 

Entry Compound Author Temperature 
(°C) 

Applied 
field 

(V/cm) 

Time (s) Author Temperature 
(°C) 

Time 
(h) 

1 3YSZ Cologna (2010) [2] 850 120 <5 Ji (2017) [54] 1315 1 

2 Ji (2017) [54] 925 150 <30 

3 Carvalho (2018) 
[55] 

1000 200 300 

4 Liu (2020) [56] 700 150 15 

5 20 vol.% Al2O3-3YSZ M'Peko (2020) [57] 815 150 few 
seconds 

Azhar (2009) [58] 1600 4 

6 8YSZ Muccillo (2011) 
[59] 

964 16 60 Dahl (2007) [63] 1150-1300 1 

7 Muccillo (2013) [9] 800 80 few 
seconds 

8 Downs (2013) [60] 390 2250 few 
seconds 

9 Steil (2013) [61] 975 80 165 

10 Muccillo (2014) 
[62] 

800 120 1800 
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11 Co2MnO4 Prette (2011) [64] 325 12.5 few 
seconds 

Prette (2011) [65] 1100 several 
hours 

12 0.25 wt.% MgO-Al2O3 Cologna (2011) [8] 1260 1000 few 
seconds 

Zhao (1987)(1) [66] 1620 3 

13 60 vol.% Al2O3-TZP Bichaud (2015) [15] 1100 200 N/A Bichaud (2015) 
[15] 

1500 no 
dwell 
time 

14 Al2O3 Biesuz (2018) [67] 1200 1000 few 
seconds 

Pulgarín (2015) 
[68] 

1500 2 

15 BaCe0.8Gd0.2O3-δ Muccillo (2012) 
[69] 

910 40 5 Maffei (2004) [70] 1650 10 

16 BaCe0.9Gd0.1O3-δ Muccillo (2018) 
[71] 

1200 200 300 Amsif (2011) [72] 1400 4 

17 BaCe0.9Sm0.1O3-δ Muccillo (2018) 
[71] 

1200 200 300 

18 BaCe0.9Y0.1O3-δ Muccillo (2018) 
[71] 

1200 200 300 He (1996) [73] 1450 40 

19 Ce0.8Gd0.2O1.8 Hao (2012) [74] 545 70 few 
seconds 

Hao (2012) [74] 1570 6 

20 Biesuz (2016) [75] 565 150 60 

21 Jiang (2015) [76] 554 90 600 

22 Spiridigliozzi (2017) 
[77] 

~400 250 30-60 

23 Ce0.9Gd0.1O1.9 Valdebenito (2017) 
[78] 

600 100 300 Glasscock (2013) 
[79] 

1500 no 
dwell 
time 24 Jiang (2015) [76] 635 90 600 

25 Spiridigliozzi (2017) 
[77] 

~450 250 30-60 
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26 Ce0.8Sm0.2O1.9 Jiang (2015) [76] 667 90 600 Park (2010) [81] 1200-1450 4 

27 Li (2018) [80] 578 120 60 

28 Ce0.9Sm0.1O1.9 Spiridigliozzi (2017) 
[77] 

~400 250 30-60 Pawar (2010) [82] 1550 7 

29 1 mol% Li2O-10GDC Spiridigliozzi (2017) 
[77] 

~400 150 30-60 Han (2011)(2) [83] 750 4 

30 1 mol% CoO-10GDC Spiridigliozzi (2017) 
[77] 

~500 250 30-60 Kleinlogel (2001) 
[84] 

840 2 

31 Y2O3 Yoshida (2014) [85] 985 1000 <10 Chen (1996) [86] 1500-1700 12 

32 1 mol% Ni2+-Y2O3 Yoshida (2016) [87] 823 1000 N/A Kodo (2009) [88] 1200-1600 3 

33 ZnO Schmerbauch 
(2014) [25] 

623 300 30 Zuo (2014) [89] 1050 no 
dwell 
time 34 Zhang (2015) [24] 116(3) 1000 ~30 

35 Zhang (2015) [90] 553 300 30 

36 0.5 mol% Bi2O3-ZnO Zhang (2015) [90] 620 300 30 Senda (1990) [91] 1030-1400 1-10 

37 SnO2 Muccillo (2014) 
[92] 

1100 110 300 Park (1984) [94] 1400(4) 12 

38 Muccillo (2014) 
[93] 

900 800 300 

39 1 mol% MnO2-SnO Muccillo (2014) 
[92] 

985 110 300 Luo (2007)(5)[95] 1100 5 

40 BaTiO3 M'Peko (2014) [96] 688 500 <60 Cheng 
(2019)(6)[99] 

1190 0.5-6 

41 Uehashi (2015) [97] 1020 100 60 

42 Nakagawa (2017) 
[98] 

1070 100 5 

43 KNbO3 Shomrat (2015) 
[29] 

750 600 330 Kim (2014) [100] 1020 6 



48 Vilella Piqué, Lluís                 Vilella Piqué, Lluís 

 

44 KNN Corapcioglu (2016) 
[101] 

990 250 30 Feizpour (2014) 
[102] 

950 several 
hours 

45 NaNbO3 Su (2019) [103] 862 700 3 Liu (2013) [104] 1150-1245 4 

46 La0.8Sr0.2Ga0.8Mg0.2O3-δ Sun (2016) [32] 672 120 600 Huang 
(1996)(7)[33] 

1370(8) 36 

47 CaCu3Ti4O12 Jesus (2016) [105] 750 60 N/A Jesus (2016) [105] 1050 N/A 

48 BiFeO3 Pérez-Maqueda 
(2017) [106] 

~400 150 15 Jeon (2012) [35] 800 12 

49 Bi0.98R0.02FeO3 Gil-González (2019) 
[107] 

~650 50 <5 

50 SrTiO3 Shomrat (2017) 
[23] 

850 600 ~1200 Moos (1995) [108] 1400 10 

51 Lemke (2017) [109] 1120 500 ~1800 Yan (2011) [110] 1200 10 

52 SrTi0.97Fe0.03O2.985 Shomrat (2017) 
[23] 

~620 600 N/A Lemke (2016)(9) 
[111] 

1280 2-4 

53 ThO2 Straka (2017) [112] 950 800 10 Ananthasivan 
(2013) [113] 

1800 N/A 

54 10 wt.% Y3Al5O12-SiC Candelario (2017) 
[114] 

900(10) 10 A 50 Borrero-López 
(2007) [115] 

1950(11) 1-7 

55 10Sc1CeSZ Muccillo (2018) 
[116]  

1020 150 120-
300 

Grasso (2013) 
[117] 

1200 2 

56 TiO2 Charalambous 
(2018) [10] 

500 50 60 Chao (2010) [119] 780 12 

57 Jha (2014) [118] 640 1000 few 
seconds 

58 UO2.00 Valdez (2018) [120] 600 188 185 Kang (2010) [122] 1750 N/A 

59 Raftery (2017) 
[121] 

26 ~110 60 
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60 UO2.08 Raftery (2017) 
[121] 

26 ~30 15 

61 UO2.16 Valdez (2018) [120] 600 188 123 

62 Raftery (2017) 
[121] 

26 ~15 <10 

63 TCP Frasnelli (2019) 
[123] 

889 1000 ~2400 Destainville (2003) 
[124] 

900-1100(12) 0.5 

64 5 mol% Mg-TCP Frasnelli (2019) 
[123] 

860 1000 ~2350 Bandyopadhyay 
(2007)(13)[124] 

1250 3 

65 Li5.95La3Zr2Al0.35O12 Avila (2019) [125] 682 50 10 Xue (2018) [126] 1100-1230 10-20 

66 Li6.25La3Zr2Al0.25O12 Clemenceau (2019) 
[30] 

850 40 few 
seconds 

Murugan (2007) 
[31] 

1230 36 

67 Fe2VAl Mikami (2020) 
[127] 

27 1.2 kA 0.5 Mikami (2007) 
[128] 

900-1000 several 
hours 

 
1) 250 ppm MgO-Al2O3, 2) 1.5 mol% Li2O-10GDC, 3) Air + 5 mol% H2, 4) 150 MPa, 5) 5 mol% MnO2-SnO, 6) Ba1.006(Ti1-xNb)O3, 7) La0.9Sr0.1Ga0.8Mg0.2O2.85, 8) 120 MPa, 9) 2 mol% Fe-
SrTiO3, 10) Ar + gas atmosphere, 11) 350 MPa + Ar or N2 atmosphere, 12) 20 MPa, 13) 2.5 wt.% Mg-TCP. 

 





 

 


