

Tutor/s

Dra. Anna Maria Costa Arnau
Departament de Química Inorgànica i

Orgànica

Dr. Jaume Vilarrasa i Llorens
Departament de Química Inorgànica i

Orgànica

Treball Final de Grau

Theoretical study of the relative stability of pyrrolidine

enamines and their nitro derivatives in α, β, γ and δ positions.

Estudio teórico de la estabilidad relativa de enaminas de la

pirrolidina y de sus derivados nitrados en α, β, γ y δ.

Pol Sanz Berman
July 2020

 Aquesta obra està subjecta a la llicència de:
Reconeixement–NoComercial-SenseObraDerivada

http://creativecommons.org/licenses/by-nc-
nd/3.0/es/

“A computer once beat me at chess, but it was no
match for me at kick boxing.”

Emo Phillips

Me gustaría dedicar este apartado a las personas que me han prestado apoyo durante esta

etapa de mi vida. En primer lugar, a mis amigos David y Fran, por su consejo y guía. A Laura,

por su calor y soporte incondicional, en especial durante estos últimos meses. A mi familia, por

confiar en mí, hasta cuando yo no lo hacía. Y finalmente a mis tutores Anna M y Jaume, por su

enorme paciencia conmigo, el gran trabajo que realizan, y por hacerme sentir afortunado de que

mi primer contacto con el mundo académico sea tan agradable. A todos os deseo lo mejor.

REPORT

CONTENTS

1. SUMMARY 3

2. RESUMEN 5

3. INTRODUCTION

3.1. Computational chemistry and model chemistries 7

3.2 Nitro-Michael reactions 12

4. OBJECTIVES 14

5. EXPERIMENTAL SECTION 16

6. RESULTS AND DISCUSSION

6.1 Initial Geometries 21

6.2 Calculation of ΔE, ΔG and ΔH for the equilibria studied 22

6.3 Results and discussion 28

7.CONCLUSIONS 30

8. REFERENCES AND NOTES 31

9. ACRONYMS 33

APPENDICES 35

Appendix 1: Additional in vacuo results 37

Appendix 2: Additional in water results 38

Appendix 3: Raw code from the scripts used 39

Appendix 4: Script output 51

Theoretical study of the relative stability of pyrrolidine... 3

1. SUMMARY

The chemistry of enamines has gained importance in recent years due to the increased

popularity of asymmetric organocatalysis using chiral secondary amines. The main goal of this

dissertation is to gain insight, from a theoretical point of view, of the position of the equilibrium

involved in the catalytic cycle of nitro-Michael reactions between the product enamine, containing

a nitro group, and the starting aldehyde enamine.

To do so, the energies of the species involved in the equilibria shown below were calculated,

at different levels of theory. The calculations were performed with the Gaussian computational

chemistry package and some scripts in Bash command language and in Python programming

language were written to assist in the automatization of the process.

Theoretical study of the relative stability of pyrrolidine... 4

Keywords: organocatalysis, ab initio calculations, enamines, nitroalkenes, Python, Bash,
scripting, cheminformatics.

Theoretical study of the relative stability of pyrrolidine... 5

2. RESUMEN

La química de las enaminas ha ganado importancia los últimos años debido al aumento de

la popularidad de la organocatálisis asimétrica con aminas secundarias quirales. El objetivo

principal de este TFG es comprender mejor, desde un punto de vista teórico, la posición del

equilibrio involucrado en el ciclo catalítico de las reacciones nitro-Michael entre la enamina

producto, que contiene un grupo nitro y la enamina del aldehído inicial.

Para logar esto se calcularon a diferentes niveles de teoría las energías de las especies

involucradas en los equilibrios que se muestran a continuación. Los cálculos se llevaron a cabo

con el paquete de cálculos químicos Gaussian. Además, se escribieron algunos scripts en el

lenguaje de comandos Bash, y el lenguaje de programación Python que nos ayudaron a

automatizar el proceso.

Theoretical study of the relative stability of pyrrolidine... 6

Palabras clave: organocatálisis, cálculos ab initio, enaminas, nitroalquenos, Python, Bash,

scripting, cheminformatics.

Theoretical study of the relative stability of pyrrolidine... 7

3. INTRODUCTION

The chemistry of enamines has gained importance in recent years due to the increased

popularity of organocatalysis.1,2 For a long time, catalysis in chemistry focused almost completely

in two groups of catalysts: metal-containing inorganic products and enzymes. Lately this approach

has started to change, as completely organic catalysts, known as organocatalysts, are appearing

as a third category with lots of potential for various applications. Organocatalysts tend to be less

toxic and damaging to the environment. Some organocatalysts interact with the substrate via non-

covalent interactions, such as hydrogen bonding, while others form a covalent adduct between

catalyst and substrate, such as the formation, in several steps, of enamines from aldehydes and

secondary amines, something that we will discuss in more detail later.3 From all of the types of

organocatalysis, enamine catalysis is, probably, one of the most important methods in this field.

It usually involves an enamine intermediate that reacts with an electrophile or undergoes a

pericyclic reaction. Several works from our group have studied the formation of enamines from

secondary amines and carbonyl compounds.4,5 In some cases, a theoretical study with

calculations based on different density functional theory (DFT) methods was carried out to predict

the ΔG° for exchange equilibria between these compounds. The goal of this project is to apply a

similar methodology to improve our understanding of the reactions and intermediates involved in

nitro-Michael reactions. To do so, an in-silico approach will be used, using the Gaussian software

package to determine the relative stabilities for the above-mentioned compounds at different

levels of theory.

3.1. COMPUTATIONAL CHEMISTRY AND MODEL CHEMISTRIES

During this project, one of our interests was to predict the relative energies of molecular

systems. For this reason, computational chemistry methods were the perfect match, as reliable

results can be obtained and there are many approaches available within a wide range of robust

options with different computational cost.

Theoretical study of the relative stability of pyrrolidine... 8

Two types of methods can be used for the tasks of computing energy, optimizing geometry

or calculating vibrational frequencies: molecular mechanics or electronic structure methods. The

former uses the laws of classical mechanics to calculate properties of molecules, using force

fields, each one modeling a certain type of system and therefore yielding good results in a non-

expensive manner, but limited to the molecules for which the force field was parameterized. The

latter, discussed in more depth in the following paragraphs, uses the laws of quantum mechanics

as the basis for calculations. For our calculations, we used electronic structure methods such as

DFT or Moller-Plesset perturbation theory (MP2). Unlike molecular mechanics, these methods

don’t make use of experimental parameters, as their calculations are based only on the laws of

quantum mechanics and a few physical constants. So, they aren’t limited to any specific system,

but they have a much higher computational cost.6

According to quantum mechanics, particles can behave both as particles and as waves. The

state of a system (and therefore its energy and many other properties), comprised by these

particles can be defined by a wave function. This wave function can be described by the

Schrödinger Equation:6

{
−ℎ2

8𝑚𝜋2
∇2 + 𝑉} Ψ(𝑟, 𝑡) =

𝑖ℎ

2𝜋

𝛿Ψ(𝑟, 𝑡)

𝛿𝑡
 (1)

On equation 1, Ψ is the wave function, and in a molecule, it would be a function of the

coordinates of the particles in the system and time. V is the potential field in which the particle

can move. If our system is independent of time, the Schrödinger equation can be simplified using

separation of variables:6

𝐻Ψ(𝑟) = 𝐸Ψ(𝑟) (2)

Where E is the energy of the particle and H the Hamiltonian operator. This operator is made by

kinetic and potential energy terms:

𝐻 = 𝑇 + 𝑉 (3)

The kinetic energy term (T) is a summation of the del-squared operator (it is a Laplacian

operator, i.e., partial differentiation with respect to x, y and z) applied to all molecules of the system

and the potential energy term (V) is given by the Coulomb repulsion between each pair of charged

entities:6

V=
1

4πϵ0
(− ∑

i

electrons

∑
I

nuclei

(
Z I e

2

ΔriI
)+∑

j

elec.

∑
j<i

elec .

(
e

2

Δrij
)+∑

I

nucl .

∑
J<I

nucl .

(
Z I Z J e

2

ΔRij
)) (4)

Theoretical study of the relative stability of pyrrolidine... 9

Where R and r refer to the positions of nuclei and electrons, respectively. Zk is the atomic

number for the atom indicated by the sub-index and e is the charge for each particle, the first term

corresponds to electron-nucleus attraction, the second to repulsion between electrons and the

last to nucleus-nucleus repulsion.

For the solution of the Schrödinger equation to be practical to calculate, even in computers,

several approximations must be made. The Born-Oppenheimer approximation simplifies the

general problem by separating the motions of nuclei and electrons, due to the latter being many

times smaller than the former. Electronic motion can be therefore described as taking place in a

field of fixed nuclei. This allows to rewrite the Hamiltonian operator as an electronic Hamiltonian

(Helec) which excludes the nuclei kinetic energy. Solving the Schrödinger equation using this

operator instead will yield the effective nuclear potential function (Eeff), which describes the

potential energy surface for the system. The nuclear Hamiltonian (Hnuc) can be deduced from Eeff

which will describe the states of the nuclei.6

An additional approximation which can be done to ease the calculations cost is decomposing

the wave function into a combination of orthonormal molecular orbitals (ϕn), forming the Hartree

product. This function, however, is not anti-symmetric because swapping orbitals does not

produce a sign change, which is a requirement of an electronic wave function. Due to the Pauli

exclusion principle, any spin orbital wave function of any number of electrons must change sign

when two electrons are swapped (as electrons are fermions, particles which exhibit anti-symmetry

and a half-integral quantum number). Hence, we need to account for electron spin in our function,

resulting in the inclusion of spin orbitals, a function which encompasses the electron’s position

and spin. Using spin orbitals, a determinant including all the possible orbitals of the electrons can

be defined (known as Slater determinant), showing that the electron can be anywhere and

therefore defining the wave function. A closed shell system can be built by defining n/2 molecular

orbitals for a system with n electrons and then assigning them in pairs of opposite spin (α and

β):6,7

Ψ(𝑟) =
1

√𝑛! |

|

𝜙1(𝑟1)𝛼(1)𝜙1(𝑟1)𝛽(1) 𝜙2(𝑟1)𝛼(1)𝜙2(𝑟1)𝛽(1) ⋯ 𝜙𝑛
2

(𝑟1)𝛼(1)𝜙𝑛
2

(𝑟1)𝛽(1)

𝜙1(𝑟2)𝛼(2)𝜙2(𝑟2)𝛽(2) 𝜙2(𝑟2)𝛼(2)𝜙2(𝑟2)𝛽(2) ⋯ 𝜙𝑛
2

(𝑟2)𝛼(2)𝜙𝑛
2

(𝑟2)𝛽(2)

⋮ ⋮ ⋱ ⋮
𝜙1(𝑟𝑛)𝛼(𝑛)𝜙1(𝑟𝑛)𝛽(𝑛) 𝜙2(𝑟𝑛)𝛼(𝑛)𝜙2(𝑟𝑛)𝛽(𝑛) ⋯ 𝜙𝑛

2
(𝑟𝑛)𝛼(𝑛)𝜙𝑛

2
(𝑟𝑛)𝛽(𝑛)

|

|
(5)

Theoretical study of the relative stability of pyrrolidine... 10

Another useful approximation consists of representing the molecular orbitals as linear

combinations of a set of functions for one electron (basis functions). A molecular orbital is defined

as:

Where χn are the normalized basis functions and cμi the molecular orbital expansion

coefficients. For an open shell system, the alpha and beta electrons should be in different orbitals.

This is used in the unrestricted Hartree-Fock (HF) methods. The use of primitive Gaussian orbitals

and its combination leads to contracted Gaussian orbitals, which can be used in the molecular

orbital expression. After this, only the orbital expansion coefficients are left to be calculated, and

using the variational principle, which states that the ground state of any anti-symmetric normalized

electronic function will always have a greater energy than the exact wave function, the problem

changes into finding the coefficients that minimize the function, getting as close as possible to the

exact wave function. The orbital expansion coefficients can be described by the Roothaan-Hall

equations:

∑ (𝐹𝜇𝜈 − 휀𝑖𝑆𝜇𝜈)𝑐𝜈𝑖

𝑁

𝑣 = 1

(7)

𝐹𝐶 = 𝑆𝐶휀 (8)

Equation 8 shows the matrix form of the Roothaan-Hall equation, where each element is a

matrix. ε is a matrix comprised of orbital energies, F is the Fock matrix, which represents an

average of all the electrons field on each orbital and contains the two-electron repulsion integrals.

Under Hartree-Fock theory each electron sees all the other electrons as an average electron

distribution, which is a limiting factor for this level of theory. S is the overlap matrix, showing the

overlap between orbitals. Both sides of the equation depend on the molecular orbital expansion

coefficient, therefore the equation must be solved iteratively. The procedure for doing so is known

as the Self-Consistent Field (SCF) method. When the solution converges, the energy is at a

minimum. The solution provides a set of orbitals, both occupied and unoccupied (virtual orbitals).

Higher theory levels, which go beyond SCF to include electronic correlation effects for

electrons of opposite spin are known as Electron Correlation Methods. The most exhaustive

method is the Full Configuration Interaction method. Configuration interaction methods (CI) add

additional determinants instead of only using one as in HF theory. These determinants are formed

ϕi=∑
μ=1

N

c
μ iχμ (6)

Theoretical study of the relative stability of pyrrolidine... 11

by substituting occupied orbitals with virtual ones, equivalent to exciting an electron to a higher

energy orbital. When the wave function is a linear combination of all the possible determinant

substitutions the method is Full CI. This method allows for the most complete treatment of the

system, only limited by the basis set chosen. However, it is very expensive and impractical for

complex systems, so Limited Configuration methods are commonly used instead. If we wanted to

solve the Schrödinger equation for a multi-body system, say, a diamond crystal with a unit cell

volume of 50 Å, formed by points spaced by 0.2 Å, the resulting point grid will be comprised by

6250 points. If there were two atoms per cell, with four valence electrons each, the combination

would give 625010 = 9·1036 possible complex numbers. With arrays of this size, performing

calculations is impossibly costly. That is why approximations are needed for all but the most trivial

of systems.7

Other electron correlation methods employ the Møller-Plesset Perturbation Theory. Here, the

Hamiltonian is divided in two parts:6

Here λV is a perturbation added to the Hamiltonian, small in comparison to it, being V the

perturbation and λ a product which multiplies the perturbation. Expanding this expression and

substituting into the Schrödinger equation, a solution for E(0), E(1) and E(2) can be found. E(0) is the

lowest energy eigenvalue of the unperturbed system. Adding E(0) and E(1) will yield the Hartree-

Fock Energy (EHF). E(2) will be the first perturbation to the EHF, which will always be negative.

The last method for Electron Correlation we will discuss are Density Functional Theory (DFT)

methods, that model electron correlation by employing functionals of the spatially dependent

electron density. By applying these functionals the electronic energy can be now described by:6

Where ET is the electronic kinetic energy, EV the potential energy of nucleus-electron

attraction and nucleus-nucleus repulsion, EJ is the electron-electron repulsion and EXC the

exchange-correlation term, which amounts for the rest of the electron-electron interactions

(exchange energy from the anti-symmetry of the wave function and dynamic correlation in the

motions of electrons). EXC is usually approximated as an integral which treats spin density and

optionally its gradients, and can be split in two terms, the exchange and the correlation terms.

Exchange and correlation functionals can be defined for describing the two terms of the EXC

H=H0+λV (9)

Etot=ET
+EV

+EJ
+EXC

(10)

Theoretical study of the relative stability of pyrrolidine... 12

expression and they can be of two types, which can be local functionals (only depend of the

electron density ρ) and gradient-corrected functionals (which depend on both ρ and its gradient).

Various functionals have been formulated, some including a mixture of the exchange included

in HF and DFT theory and adding DFT correlation, being classified as hybrid functionals. In our

work most of the functionals we will use will be hybrid functionals, for example the Becke-style

three-parameter functional (B3LYP).8

For calculations, a model chemistry should be chosen according to its practicality and what is

needed. A model chemistry includes the theoretical procedure (or method) to be used and the

basis set. How the models are used will be discussed in the experimental section. The models

employed during this project are shown in Table 1.

Internal name Method name Basis set

DFTmin B3LYP 6-31G(d)

MP2mina MP2 6-31G(d)

M06min M06-2X 6-31G(d)

M06max M06-2X 6-311+G(d,p)

a using geometries optimized at the DFTmin level

Table 1. Model chemistries employed during our project. The internal name will be used for quick

reference.

3.2 NITRO-MICHAEL REACTIONS

The equilibria that will be studied in the following sections are derived from two steps from the

catalytic cycle of a nitro-Michael reaction. A Michael reaction consists of the addition of a

nucleophile (donor) to an acceptor, normally an α, β-unsaturated carbonyl compound (enone), or

an enoate.9

During the reaction, two asymmetric centers are generated. Using chiral catalysts, such as

certain secondary amine organocatalysts, it is possible to control the stereochemistry of the newly

formed stereocenters and carry out enantioselective Michael additions. This is very useful in a

wide range of fields, for instance, in specialized pharmaceutical compound synthesis. Usually,

these catalysts are derived from proline.10

Theoretical study of the relative stability of pyrrolidine... 13

In a nitro-Michael reaction (see Figure 1) a carbon nucleophile adds to the β position of an α,

β-unsaturated nitro compound.

Figure 1. Schematic catalytic cycle of a nitro-Michael reaction.

In nitro-Michael reactions catalyzed by proline derivatives, the donor is the in-situ generated

enamine, prepared from the aldehyde or ketone and the catalyst. This enamine then reacts with

the nitro compound, yielding (in several steps) the desired product enamine.

Depending on the starting materials and reactions conditions, some nitro-Michael reactions

don’t work well under catalysis with secondary amines. To gain insight into why it is sometimes

necessary to use a stoichiometric amount of the catalyst for the reaction to complete, we decided

to study, computationally, the equilibrium shown in Figure 2, corresponding to steps I+III of the

catalytic cycle. Water is released during the formation of the starting enamines (step I), while

water is required during the last step(s), see eq III, to hydrolyze the final enamines (product

enamines); for a successful catalytic cycle, the following equilibria must be shifted to the right.

Figure 2. Equilibria to be studied.

Although only enamines with nitro groups in the position are relevant for the outcome of

nitro-Michael reactions, we decided to extend our study to enamines and aldehydes containing

nitro groups also in positions α, β, and γ.

Theoretical study of the relative stability of pyrrolidine... 14

4. OBJECTIVES

The main goal of this project is to assess the ease of formation of several pyrrolidine enamines

derived from carbonyl compounds containing a nitro group in different positions, as well as the

reverse reactions (the hydrolyses of the resulting enamines) to improve our understanding of the

underlying reaction mechanisms in nitro-Michael reactions. To do this, several equilibrium

reactions were defined (see Figure 8), and for each compound the goal was to:

• Obtain geometry coordinates for its global minimum. In molecules with several possible

conformations, a conformational search was sometimes needed.

• Calculate the energy for each compound at different levels of theory:

o B3LYP/6-31G(d)

o MP2/6-31G(d)//B3LYP/6-31G(d)

o M06-2X/6-31+G(d)

o M06-2X/6-311+G(d)

• Calculate ΔGº for each reaction

• Repeat the calculations using water as implicit solvent.

To fulfill these objectives, the following sub-goals appeared:

• To compare the results of conformational searches obtained using Avogadro and

MacroModel programs to check if the results obtained with Avogadro are as reliable as

with MacroModel.

• To compare the results obtained using different levels of theory for our systems, as the

accuracy of the results may vary between methods.

• To write several scripts for automatically obtaining key parameters of our molecules in

bulk, such as the planarity of an amine nitrogen, dihedral angles, etc.

Theoretical study of the relative stability of pyrrolidine... 15

• To design a fast and reliable result gathering script with the capability of automatically

sending computed results in formatted tables including software-drawn molecule

depictions.

• To create a software repository for helping with version control of the different scripts.

Theoretical study of the relative stability of pyrrolidine... 16

5. EXPERIMENTAL SECTION

The starting geometries of the different conformers of each molecule were built using several

software packages. It is important to locate the lowest energy conformation of every molecule, in

order to then obtain reliable energies of the equilibria shown in Figure 2. For the simplest

compounds the starting geometries were entered manually using GaussView 6.0.11 Gaussian job

files (GJF) were used as inputs for the calculations, by specifying the main options and other

parameters. A GJF file includes three main parts: the route line near the top of the document

where model chemistries and job types are stated, a title and finally the molecule specifications,

where the molecular system is defined. With larger molecules a conformational search using

Maestro12 was performed. The settings for the search were as follows: the OPLS_2005 force field

was used, with water as solvent in some cases. The PRCG minimization method was used, with

2500 maximum iterations. Because of the COVID-19 epidemic, consistent access to our regular

software tools was not possible, so open-source software alternatives were studied. The new

packages used were Avogadro,13 as the molecule editor, and Open Babel 3.0.014 for

conformational searches. Both software utilities were useful for building the structures of the

compounds, but we found the Open Babel conformational search to be somewhat limited in

comparison to Maestro’s. The 3D coordinates of the different molecules were stored as “.pdb”

(protein data base files) files for compatibility, which later are converted to “.gjf” (Gaussian job

files) using Open Babel and scripts written by our team. The scripts will be discussed later in this

section. For the energy calculations, the Gaussian 16 software was used.15

Henceforth, the standard notation to specify the level of theory and basis set will be: "level1

/basis1 // level2 /basis2”, when two different levels are used. This notation comprises two parts. The

one to the left of the "//", which gives information of the level of theory and basis set used to

calculate the energy and the one to the right, which shows the level of theory and basis set used

in the geometry optimization. This separation is due to the smaller sensitivity of geometry to lower-

level theory levels, allowing to use less expensive methods for this part of the calculation.16

Theoretical study of the relative stability of pyrrolidine... 17

Calculations were initially performed at the B3LYP/6-31G(d) level (DFTmin_opt), as it allows

for much more accurate results than HF methods, for a fraction of the cost of an MP2 method. It

uses B3LYP, a hybrid functional which yields good geometry results in most cases. However, in

previous works of our group17 it was found that the energies of enamines weren't described

accurately using this method. Better energies are obtained at the MP2/6-31G(d)//B3LYP/6-31G(d)

(MP2min) level of theory.

Next, calculations were also performed at the M06-2X/6-31G(d) (M06min) and M06-2X/6-

311+G(d,p) (M06max) levels of theory. M06-2X is a more modern hybrid functional than B3LYP,

it has been extensively used with good results in previous works by our group.4,17

For the free energy calculations, frequency jobs were run at the M06-2X/6-311+G(d,p)

(M06max) level.

All the previous calculations were carried out without solvent and were repeated using water

as the implicit solvent. This was done by employing Gaussian's self-consistent reaction field

(SCRF) implementation, using the PCM solvation model, which creates a cavity where the solute

goes by placing spheres in a simulated area filled with solvent and has a set of parameters for

water, which can be called by adding "scrf=(pcm, water)" to the route line.

The whole set of calculations amount for the generation of many GJF files, so a script was

utilized for easing the preparation of the calculation. This script, written in bash, helps converting

the molecule depiction format to the GJF format, and then writes the route line and other specific

options:

Figure 3. Diagram depicting the functioning of the various calculation scripts.

An additional script was written to calculate the distance of the enamine nitrogen to the plane

formed by the three surrounding carbon atoms, as shown in Figure 4. This allowed us to further

Creates directories
for each theory
level, converts
“.pdb” files to
“.gjf” and copies
them over to the
starting folder.

For a level of
theory, the route
lines are edited
with all of the
desired commands
and each molecule

is added to a
queue file.

The queue is ran and
when calculations
are done, results
are copied to next
folder and step 2 is
repeated for next

level.

After finishing,a
script made for
gathering and

sending results is
called.

Calculations are
finished, and data is
stored in the final

files.

Theoretical study of the relative stability of pyrrolidine... 18

characterize the nitrogen hybridization, as its distance to said plane depends on the atoms

bonded to it.

Figure 4. Schematic representation of the plane (in blue) formed by the enamine nitrogen and the three

surrounding atoms. The distance to the plane is shown in the third step as a thin blue line.

The code for this program was written in Python 3.7 and is available in Appendix 3 near the

end of the document. Its operation, in a simplified way, can be summarized by the flow diagram

in Figure 5.

Figure 5. Diagram depicting the functioning of the script “amine_planar_distance.py”.

In Python, classes are a means of grouping functions and data together that allows creating

different objects. The objects can then have their attributes modified by using methods that are

Output: Prints
results

Program Starts:
Import Libraries

Define class:
AmineDistance()

Define function
__init__

Runs all the below
functions when an

AmineDistance() object is
created and defines which
variables are transferred

between functions.

Define function
atom_index_finder

Searches for any .xyz or
.pdb files, finds any
enamine nitrogen in the

molecule and for it and the
surrounding carbon atoms
gathers their index and

coordinates.Define function
pyramid_calculato

r

Gets data from the last
function, defines the plane
formed by the three carbon

atoms, calculates the nitrogen
distance to the plane and
prints and saves the final

results.

Main body: Define
an object with

class
AmineDistance()

Theoretical study of the relative stability of pyrrolidine... 19

built inside of the classes when created.18 The script was chosen to be written in this way, as

classes can be expanded upon and modified when needed, without altering significantly how the

entire program works. Additional functions could be defined inside of the “AmineDistance()” class

to gather results from additional file formats or improve detection of enamines using the SMILES

identifiers, for example.

As calculations progress “*.log” files are generated, which contain all information regarding

our molecules, thus results must be manually extracted. This takes time, so work was put into

creating a small script to automatically extract the data, classify and organize it. This script was

once again written in Python 3.7 and its operation can be seen in the scheme of Figure 6.

Figure 6. Diagram depicting the functioning of the script “energy_data_collector.py”.

An example of a file generated by the script can be found in Appendix 4, showing gathered

results and a few depictions.

Another script was written to automatically calculate the dihedral angle between two planes

defined by 4 atoms in a set of molecules. Although not directly related to this project, the script

will be useful to the group in other studies.

Output: Text table
with results

Program Starts:
Import Libraries

Define class:
EnergyDataCollector

Define function
__init__()

Runs all the below functions
when an EnergyDataCollector()
object is created and defines

which variables are transferred
between functions.

Define function
get_energies_file() Gathers results from all .log

files by using regular
expressions (regex) to search
for the values, and stores
them for ease of use in the

next sections.
Define function

print_energies_file()

Arranges all previous values
in a table and using the
molecular coordinates file
draws a quick depiction of
it, then everything is sent
by mail to a choosen e-mail

adress.

Main body: Define
an object with

class
EnergyDataCollector

Output: Molecule
depictions

Theoretical study of the relative stability of pyrrolidine... 20

Also, an additional simple script was written to find the minimal energy molecule from a given

set of results and calculates their proportions in an equilibrium following a Boltzmann distribution.

All the scripts developed for this project have been compiled in a GitHub repository, so all the

files can be downloaded and used by everyone. The repository is found at the following URL

(https://github.com/tetsuo420/cognitive-episode/releases) or by scanning the QR Code shown in

Figure 7.

Figure 7. QR code for the repository containing all the scripts.

https://github.com/tetsuo420/cognitive-episode/releases

Theoretical study of the relative stability of pyrrolidine... 21

6. RESULTS AND DISCUSSION

6.1 INITIAL GEOMETRIES

Figure 8 shows the aldehydes and enamines used in this work. The geometry of the reagents

was obtained using both GaussView and Avogadro interchangeably, as we found no differences

between results.

Figure 8. Summary of the reactions and compounds studied in this work.

For the simplest compounds, the lowest energy minimum (global minimum) was obtained

manually. However, aldehydes and enamines with longer chains required a conformational

search. This search was initially done with Maestro, but use of Avogadro’s conformational search

tool, which is a part of the Open Babel chemical toolbox was also examined.

Eventually it was found that, when optimized at the DFTmin level, minimum energy values

obtained with Maestro were better than the ones obtained with Avogadro, so the rest of the work

was done making use of Maestro. While more intricate, the command-line tool that Avogadro

Theoretical study of the relative stability of pyrrolidine... 22

makes use of to calculate the energy minima has a wide range of options that might prove useful,

so further exploration of the software is encouraged.

For the enamines, the planarity of the nitrogen was evaluated using our script

amine_planar_distance.py (described in the experimental section) with the geometries of the

enamines obtained after optimization at the M06-2X/6-311+G(d,p) level of theory. The results

obtained are shown in the next table and a clear tendency is evident: the less substituted the

enamine, the more planar is the N, indicating an interaction between the enamine double bond

and the lone electron pair from the nitrogen that has a hybridization close to sp2.

 Enamine Distance between enamine nitrogen and plane [A] (a)

en-1 0,00205

en-6 0,03910

en-2 0,16928

en-3 0,24453

en-5 0,26382

en-4 0,28944
(a) Calculations obtained from our script amine_planar_distance.py. The script first searches for the nitrogen position,
then finds the surrounding C atoms and finds their coordinates, which then uses to calculate the plane equation, from
which the d(Nitrogen-Plane) is obtained by trigonometry calculations. See the experimental section for a more in depth
look at the code.

Table 2. Results from planar distance calculations made by the script amine_planar_distance.py.

6.2 CALCULATION OF ΔE, ΔG AND ΔH FOR THE EQUILIBRIA STUDIED

Once the global energy minimum for each compound in Figure 8 was located, its geometry

was optimized, and its energy calculated at different levels of theory (see Experimental Section).

Then E for the reactions shown in Figure 8 could be computed. Table 3 shows the results

obtained at different theory levels. The rest of the results can be found in Appendices 1 and 2.

We know, from previous works, that B3LYP/6-31G(d) energies are not reliable to study these

systems. Better results are usually obtained with energies computed at the MP2/6-

31G(d)//B3LYP/6-31G(d) level. We also used the more modern M06-2X functional. As can be

seen in Table 3, the results vary depending on the level of theory used. Because the calculation

time involved in the M06max calculations (M06-2X/6-311+G(d)) was reasonable we decided to

use this more accurate, higher level of theory. For this reason, from now on only these results

will be shown here. Complete results can be found in Appendices 1 and 2.

Theoretical study of the relative stability of pyrrolidine... 23

Figure 9. Reactions shown in Table 3.

Table 3. ΔE for the reactions, without solvent.

Two different sets of equilibria have been studied. They differ in the enamine that equilibrates

with the nitro-substituted aldehydes. The first set of reactions involve the equilibrium of the

pyrrolidine enamine of propanal ((E)-1-(prop-1-en-1-yl)pyrrolidine, en-1) with nitro compounds 2

to 5 to yield propionaldehyde (propanal, 1) and a nitro-containing enamine (en-2 to en-5). The

latter set of reactions employ 1-(2-methylprop-1-en-1-yl)pyrrolidine (en-6) as a starting reagent.

The results for all the equilibria studied, at the M06-2X/6-311+G(d) level of theory are

summarized in the following tables.

Level of theory
ΔEvacuum (kcal/mol)

R = NO2 R = CH2NO2 R = CH2CH2NO2

DFTmin –11,4 –1,4 –0,4

MP2min –8,5 –0.8 –1,4

M06min –10,2 –1,2 –4,6

M06max –9,2 –0,9 –0,7

Theoretical study of the relative stability of pyrrolidine... 24

Reaction 1

M06max en-1 (Ha) 2 (Ha) 1 (Ha) en-2 (Ha) Total
(kcal/mol)

E vacuum −329,22733 −397,59514 −193,10903 −533,72807 −9,2

Ho
gas −329,02614 −397,49834 −193,01805 −533,52050 −8,8

Go
gas −329,06932 −397,53839 −193,05116 −533,56969 −8,2

E water −329,23075 −397,60586 −193,11545 −533,74439 −14,6

Ho
water −329,02993 −397,50924 −193,02455 −533,53721 −14,2

Go
water −329,07309 −397,54919 −193,05756 −533,58614 −13,4

(a) 1 and en-1 were drawn and optimized with Avogadro software. 2 and en-2 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search.

Table 4. Summary of results for reaction 1.

Reaction 2

M06max en-1 (Ha) 3 (Ha) 1 (Ha) en-3 (Ha) Total
(kcal/mol)

E vacuum −329,22733 −436,90376 −193,10903 −573,02356 −0,9

Ho
gas −329,02614 −436,77660 −193,01805 −572,78627 −1,0

Go
gas −329,06932 −436,82050 −193,05116 −572,84061 −1,2

E water −329,23075 −436,91586 −193,11545 −573,03540 −2,7

Ho
water −329,02993 −436,78879 −193,02455 −572,79844 −2,7

Go
water −329,07309 −436,83297 −193,05756 −572,85218 −2,3

(a) 1 and en-1 were drawn and optimized with Avogadro software. 3 and en-3 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search. All calculations done with Gaussian 16
software.

Table 5. Summary of results for reaction 2.

Theoretical study of the relative stability of pyrrolidine... 25

Reaction 3

M06max en-1 (Ha) 4 (Ha) 1 (Ha) en-4 (Ha) Total
(kcal/mol)

E vacuum −329,22733 −476,20512 −193,10903 −612,33053 −4,5

Ho
gas −329,02614 −476,04793 −193,01805 −612,06317 −4,5

Go
gas −329,06932 −476,09645 −193,05116 −612,11873 −2,6

E water −329,23075 −476,22008 −193,11545 −612,34024 −3,0

Ho
water −329,02993 −476,06309 −193,02455 −612,07331 −3,0

Go
water −329,07309 −476,11123 −193,05756 −612,12945 −1,7

(a) 1 and en-1 were drawn and optimized with Avogadro software. 4 and en-4 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search. All calculations done with Gaussian 16
software.

Table 6. Summary of results for reaction 3.

Reaction 4

M06max en-1 (Ha) 5 (Ha) 1 (Ha) en-5 (Ha) Total
(kcal/mol)

E vacuum −329,22733 −515,51198 −193,10903 −651,63742 −4,5

Ho
gas −329,02614 −515,32479 −193,01805 −651,33999 −4,5

Go
gas −329,06932 −515,37504 −193,05116 −651,39616 −1,9

E water −329,23075 −515,52614 −193,11545 −651,64578 −2,7

Ho
water −329,02993 −515,33915 −193,02455 −651,34883 −2,7

Go
water −329,07309 −515,38952 −193,05756 −651,40505 0,0

(a) 1 and en-1 were drawn and optimized with Avogadro software. 5 and en-5 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search. All calculations done with Gaussian 16
software.

Table 7. Summary of results for reaction 4.

Theoretical study of the relative stability of pyrrolidine... 26

Reaction 5

M06max en-6 (Ha) 2 (Ha) 6 (Ha) en-2 (Ha) Total
(kcal/mol)

E vacuum −368,53008 −397,59514 −232,41391 −533,72807 −10,5

Ho
gas −368,29953 −397,49834 −232,29328 −533,52050 −10,0

Go
gas −368,34563 −397,53839 −232,32979 −533,56969 −9,7

E water −368,53305 −397,60586 −232,42007 −533,74439 −16,0

Ho
water −368,30293 −397,50924 −232,29954 −533,53721 −15,4

Go
water −368,34910 −397,54919 −232,33594 −533,58614 −14,9

(a) 6 and en-6 were drawn and optimized with Avogadro software. 2 and en-2 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search.

Table 8. Summary of results for reaction 5.

Reaction 6

M06max en-6 (Ha) 3 (Ha) 6 (Ha) en-3 (Ha) Total
(kcal/mol)

E vacuum −368,53008 −436,90376 −232,41391 −573,02356 −2,3

Ho
gas −368,29953 −436,77660 −232,29328 −572,78627 −2,1

Go
gas −368,34563 −436,82050 −232,32979 −572,84061 −2,7

E water −368,53305 −436,91586 −232,42007 −573,03540 −4,1

Ho
water −368,30293 −436,78879 −232,29954 −572,79844 −3,9

Go
water −368,34910 −436,83297 −232,33594 −572,85218 −3,8

(a) 6 and en-6 were drawn and optimized with Avogadro software. 3 and en-3 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search.

Table 9. Summary of results for reaction 6.

Theoretical study of the relative stability of pyrrolidine... 27

Reaction 7

M06max en-6 (Ha) 4 (Ha) 6 (Ha) en-4 (Ha) Total
(kcal/mol)

E vacuum −368,53008 −476,20512 −232,41391 −612,33053 −5,8

Ho
gas −368,29953 −476,04793 −232,29328 −612,06317 −5,6

Go
gas −368,34563 −476,09645 −232,32979 −612,11873 −4,0

E water −368,53305 −476,22008 −232,42007 −612,34024 −4,5

Ho
water −368,30293 −476,06309 −232,29954 −612,07331 −4,3

Go
water −368,34910 −476,11123 −232,33594 −612,12945 −3,2

(a) 6 and en-6 were drawn and optimized with Avogadro software. 4 and en-4 were drawn by GaussView and their
lowest energy conformer was found by Maestro’s software conformational search. All calculations done with Gaussian 16
software.

Table 10. Summary of results for reaction 7.

Reaction 8

M06max en-6 (Ha) 5 (Ha) 6 (Ha) en-5 (Ha) Total (kcal/mol)

E vacuum −368,53008 −515,51198 −232,41391 −651,63742 −5,8

Ho
gas −368,29953 −515,32479 −232,29328 −651,33999 −5,6

Go
gas −368,34563 −515,37504 −232,32979 −651,39616 −3,3

E water −368,53305 −515,52614 −232,42007 −651,64578 −4,2

Ho
water −368,30293 −515,33915 −232,29954 −651,34883 −3,9

Go
water −368,34910 −515,38952 −232,33594 −651,40505 −1,5

(a) 6 and en-6 were drawn and optimized with Avogadro software. 5 and en-5 were drawn by GaussView and its
lowest energy conformer was found by Maestro’s software conformational search.

Table 11. Summary of results for reaction 8.

Theoretical study of the relative stability of pyrrolidine... 28

6.3 RESULTS AND DISCUSSION

Figure 10. Summary of the ΔGº results (in kcal/mol) obtained to date.

Figure 10 summarizes the Gº results obtained for the set of equilibria studied to date.

Inspecting the results obtained for all the calculations it can be observed that most of the free

energy values are negative, indicating that for our compounds the formation of the nitro-containing

enamine is favored over the enamines with no nitro groups. This might be unfavorable because,

in a nitro-Michael reaction, to complete the cycle, the product enamine, containing a nitro group,

must equilibrate with the starting aldehyde to yield the product aldehyde, freeing the catalyst, so

that the starting aldehyde enamine can be formed again in step I of the catalytic cycle (Figure 1).

This could explain why some of these reactions need stoichiometric quantities of catalyst to reach

completion or an excess of the starting aldehyde, to drive the equilibrium to the formation of the

product aldehyde.

Upon further inspection of the results, the equilibria using en-6 as a reagent always are more

exergonic than the ones with en-1, possibly indicating that, the more substituted the starting

aldehyde, the less favored the initial enamines and the worse the overall process will work.

Theoretical study of the relative stability of pyrrolidine... 29

For the α-nitroaldehydes the equilibrium is more shifted to the substituted enamine containing

the nitro group. This agrees with what is known about the destabilizing interaction between a nitro

group and a carbonyl group and the stabilizing effect of the conjugation between a nitro group

and an enamine.

For the remaining nitro derivatives (β, γ, and δ), apart from the inductive or field effect (which

is expected to decrease from α- to δ-NO2 derivatives), the expected favorable through-space

electrostatic interaction between the nitroalkyl moiety (a strong electron-withdrawing group) and

the enamine substructure (with a strong electron-donating character) relatively stabilize the

enamines of the products (the final enamines) in folded conformations. In short, the β-, γ-, and δ-

nitroenamines examined in this work are relatively more stable and less prone to hydrolysis than

it could be expected at first sight.

Theoretical study of the relative stability of pyrrolidine... 30

7. CONCLUSIONS

The study of the viability of the Michael and nitro-Michael reactions is an interesting area of

research not only from the perspective of organocatalysis, but also in the context of the

enantioselective synthesis of new compounds, or of the search for alternative synthetic routes,

thanks to the low cost of the catalysts used. The use of computational techniques to predict the

outcome of a reaction, to compute valuable properties, and to observe the trends that arise by

easily modifying the structure of the species involved in a less expensive and laborious way is a

very important technique that we have been able to take advantage of in this work.

Thus, a set of equilibria were chosen to gain insight into the mechanism of the nitro-Michael

reactions. For each species its minimum energy conformation was located and its thermodynamic

parameters, Gº and Hº were computed at different levels of theory in vacuum and in water using

Gaussian 16. From these values, Gº was estimated or obtained for each equilibrium. These

values predict that most of the reactions are exergonic, indicating that the formation of the

enamine that contains the nitro group is favored over the enamine without a nitro group. As stated

in the discussion, the β-, γ-, and δ-nitroenamines examined in this work are relatively more stable

and less prone to hydrolysis than it could be expected at first sight.

 This fact can be counterproductive for the catalytic cycles of these nitro-Michael reactions to

turn over. This could explain the requirement, in some cases, of stoichiometric amounts of catalyst

or an excess of initial aldehyde, to favor the formation of the product and to assure that the cycle

proceeds forward.

The degree of substitution of the starting aldehyde seems to have a notable effect on the

position of the equilibria studied, as the reactions become more exergonic when a more

substituted initial aldehyde is used, possibly indicating that the starting enamines are less favored.

Also, as a secondary objective, attempts have been made to automate as far as possible

parts of the computational protocols. With the use of Python programming languages and the

preparation of Bash scripts, we have been able to streamline processes in a remarkable way.

Therefore, I highly recommend implementing any of these tools (or similar ones) for projects like

this one. A software repository of the different scripts written was created.

Theoretical study of the relative stability of pyrrolidine... 31

8. REFERENCES AND NOTES

1. MacMillan, D. W. The Advent and Development of Organocatalysis. Nature 2008, 455,

304.
2. Reetz, M; List,B.; Jaroch, S. H. Organocatalysis, 2nd Ed; G. Stock and M. Lessl, Eds.;

Springer: Berlin, 2008.
3. Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric Enamine Catalysis.

Chem. Rev. 2007, 107, 5471.
4. Castro-Alvarez, A.; Carneros, H.; Sánchez, D.; Vilarrasa, J. Importance of the Electron

Correlation and Dispersion Corrections in Calculations Involving Enamines,
Hemiaminals, and Aminals. Comparison of B3LYP, M06-2X, MP2, and CCSD Results
with Experimental Data. J. Org. Chem. 2015, 80, 11977.

5. Castro-Alvarez, A.; Carneros, H.; Costa, A. M.; Vilarrasa, J. Computer-Aided Insight
into the Relative Stability of Enamines. Synthesis 2017, 49, 5285.

6. Foresman, J., Frisch, Æ. Exploring Chemistry with Electronic Structure Methods, 2nd.
Ed; Gaussian Inc: Pittsburgh, 1996.

7. Giustino, F. Materials Modelling using Density Functional Theory; Oxford University
Press: Oxford, 2014.

8. Becke, A. A new mixing of Hartree-Fock and local density-functional theories. J. Chem.
Phys. 1993, 98, 1372.

9. Reyes-Rodríguez, G. J.; Rezayee, N. M.; Vidal-Albalat, A.; Jørgensen, K. A.;
Prevalence of Diarylprolinol Silyl Ethers as Catalysts in Total Synthesis and Patents.
Chem. Rev. 2019, 119, 4221.

10. Halland, N.; Hansen, T.; Jørgensen, K. A. Organocatalytic Asymmetric Michael
Reaction of Cyclic 1,3-Dicarbonyl Compounds and α,β-Unsaturated Ketones - A Highly
Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin
Anticoagulant. Angew. Chem. Int. Ed. 2003, 42, 4955.

11. Dennington, R.; Keith, T.; Millam, J. (2019). GaussView Version 6.
12. Schrödinger, LLC. Maestro. New York, NY.
13. Hanwell D. M.; Curtis E. D.; Lonie C. D; Avogadro: An advanced semantic chemical

editor, visualization, and analysis platform. J. Cheminformatics 2012, 4, 17. Retrieved
from http://avogadro.cc/.

14. O'Boyle, N. M.; Bank, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G.
R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3, 33.

15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
J. R.; Scalmani, G. V.; Barone, G. A; Petersson, H; et al. (2016). Gaussian 16, Revision
C.01.

Theoretical study of the relative stability of pyrrolidine... 32

16. Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: Hoboken,
2006.

17. Castro-Alvarez, A.; Carneros, H.; Calafat, J.; Costa, A. M.; Marco, C.; Vilarrasa, J. NMR
and Computational Studies on the Reactions of Enamines with Nitroalkenes That May
Pass through Cyclobutanes. ACS Omega 2019, 4, 18167.

18. Python Software Foundation. Python Language Reference, version 3.7. Available at
http://www.python.org.

Theoretical study of the relative stability of pyrrolidine... 33

9. ACRONYMS

B3LYP: 3-Parameter hybrid Becke exchange/Lee-Yang-Parr correlation functional

CCSD(T): Coupled Cluster with Single and Double (and perturbative Triple) excitations

CI: Configuration Interaction

GJF: Gaussian Job File

DFT: Density Functional Theory

HF: Hartree–Fock

M06-2X: Hybrid functional of Truhlar and Zhao, Minnesota 2006

MP2: Moller-Plesset 2nd order perturbation

PCM: Polarizable Continuum Model

PDB: Protein Data Bank

PRCG: Polak-Ribiere Conjugate Gradient

SCF: Self-Consistent Field

SCRF: Self-Consistent Reaction Field

Theoretical study of the relative stability of pyrrolidine... 35

APPENDICES

APPENDIX 1: ADDITIONAL IN VACUO RESULTS

Molec.
Name (a) (Ha) (b) (Ha) (c) (Ha) (d) (Ha) (e) (Ha) (f) (Ha)

1 −193,14534 −192,51365 −193,04740 −193,04740 −193,10903
Gº: −193,05116

Hº: −193,01805

2 −397,63870 −396,51816 −397,46878 –397,46878 −397,59514
Gº: −397,53839

Hº: −397,49834

3 −436,95532 −435,68727 −436,76540 –436,76540 −436,90376
Gº: −436,82050

Hº: −436,77660

4 −476,26710 –474,85068 −476,05613 –476,05613 −476,20512
Gº: −476,09645

Hº: −476,04793

5 −515,58051 −514,01878 −515,35076 −515,35076 −515,51198
Gº: −515,37504

Hº: −515,32479

6 −232,45934 −231,68115 −232,34149 –232,34148 −232,41391
Gº: −232,32979

Hº: −232,29328

en-1 −329,30152 −328,13200 −329,13508 −329,13508 −329,22733
Gº: −329,06932

Hº: −329,02614

en-2 −533,81305 −532,15001 −533,57270 −533,57270 −533,72807
Gº: −533,56969

Hº: −533,52050

en-3 −573,11379 −571,30692 −572,85493 −572,85493 −573,02356
Gº: −572,84061

Hº: −572,78627

en-4 −612,42395 −610,47127 −612,15108 −612,15108 −612,33053
Gº: −612,11873

Hº: −612,06330

en-5 −651,74089 −649,64594 −651,44159 −651,44159 −651,63742
Gº: −651,39616

Hº: −651,33999

en-6 −368,61332 −367,29843 −368,42796 −368,42796 −368,53008
Gº: −368,34563

Hº: −368,29953
(a) 1-DFTmin_opt
(b) 2-MP2min_sp
(c) 3-M062Xmin_opt
(d) 4-M062Xmax_sp
(e) 5-M062Xmax_opt
(f) 6-freq_calc_test

APPENDIX 2: ADDITIONAL IN WATER RESULTS

Molec.
Name (a) (Ha) (b) (Ha) (c) (Ha) (d) (Ha) (e) (Ha) (f) (Ha)

1 −193,15041 −192,51842 −193,05255 −193,11536 −193,11545
Gº: −193,05756

Hº: −193,02455

2 −397,64733 −396,52607 −397,47770 −397,60565 −397,60586
Gº: −397,54919

Hº: −397,50924

3 −436,96514 −435.69631 −436,77554 −436,91541 −436,91586
Gº −436,83297

Hº: −436,78879

4 −476,27915 −474,86179 −476,06855 −476,21987 −476,22008
Gº: −476,11123

Hº: −476,06309

5 −515,59197 −514,02920 −515,36236 −515,52586 −515,52614
Gº: −515,38952

Hº: −515,33915

6 −232,46423 −231,68575 −232,34644 −232,41999 −232,42007
Gº: −232,33594

Hº: −232,29954

en-1 −329,30412 −328,13476 −329,13798 −329,23068 −329,23075
Gº: −329,07309

Hº: −329,02993

en-2 −533,82736 −532,16269 −533,58622 −533,74421 −533,74439
Gº: −533,58614

Hº: −533,53721

en-3 −573,12358 −571,31585 −572,86510 −573,03513 −573,03540
Gº: −572,85218

Hº: −572,79844

en-4 −612,43406 −610,48072 −612,15551 −612,33617 −612,34024
Gº: −612,12945

Hº: −612,07331

en-5 −651,74572 −649,64745 −651,44943 −651,64066 −651,64578
Gº: −651,40505

Hº: −651,34883

en-6 −368,61548 −367,30070 −368,43045 −368,53296 −368,53305
Gº: −368,34910

Hº: −368,30293

(a) 1-DFTmin_opt_water
(b) 2-MP2min_sp_water
(c) 3-M062Xmin_opt_water
(d) 4-M062Xmax_sp_water
(e) 5-M062Xmax_opt_water
(f) 6-freq_calc_test

APPENDIX 3: RAW CODE FROM THE SCRIPTS USED
import math as m

import numpy as np

import os

import pprint as pp

import subprocess

from zenlog import log

class amine_distance():

 def __init__(self):

 result_dict = self.atom_index_finder()

 dist = self.pyramid_calculator(result_dict)

 def atom_index_finder(self):

 temp_file_list = [file for file in os.listdir() if file.endswith('.xyz')]

 result_dict = {}

 for file in temp_file_list:

 filename = file[:-4]

 result_dict[filename] = {}

 subprocess.call([f'obabel -i xyz {file} -O {filename}.pdb'], shell=True,

stdout=subprocess.DEVNULL,stderr=subprocess.STDOUT)

 with open(f'{filename}.pdb', 'r') as f:

 for line in f:

 if ' N ' in line and ' O ' not in next(f):

 nitrog_temp_list = line.strip()

 nitrog_temp_list = nitrog_temp_list.split()

 nitrogen_coords = [float(coordinate) for coordinate in

nitrog_temp_list[5:8]]

 nitrog_posc = nitrog_temp_list[1]

 f.seek(0)

 # Following section could be improved

 bonded_atoms = [line.split()[1:] for line in f if 'CONECT' in line]

 bonded_atoms = [elements for elements in bonded_atoms if elements[0]

== nitrog_posc]

 for element in bonded_atoms:

 element.remove(nitrog_posc)

 bonded_atoms = bonded_atoms[0]

 f.seek(0)

 atom_coords = []

 for line in f:

 if line.split()[0] not in ['END', 'CONECT'] and line.split()[1]

in bonded_atoms:

 temp_coords = [float(num) for num in line.split()[5:8]]

 atom_coords.append(temp_coords)

 result_dict[filename]['atom_coords'] = atom_coords

 result_dict[filename]['nitrogen_coords'] = nitrogen_coords

 return result_dict

 def pyramid_calculator(self, result_dict):

 for file in result_dict.items():

 n_coord = np.array(file[1]['nitrogen_coords'])

 at_coord = file[1]['atom_coords']

 v1 = np.array(at_coord[1]) - np.array(at_coord[0])

 v2 = np.array(at_coord[2]) - np.array(at_coord[1])

 v3 = np.array(at_coord[0]) - np.array(at_coord[2])

 # Gives a vector with 3 coord. which correspond to ...

 # ... (a,b,c) in plane equation ax+by+cz+d=0

 abc = np.cross(v1,v2)

 d = -

(abc[0]*np.array(at_coord[0][0])+abc[1]*np.array(at_coord[0][1])+abc[2]*np.array(at_

coord[0][2]))

 # Equation was too long to fit in one line

 distance_num =

(abs((abc[0]*n_coord[0])+((abc[1]*n_coord[1])+((abc[2]*n_coord[2])+d))))

 distance_deno = (m.sqrt((abc[0]**2)+(abc[1]**2)+(abc[2]**2)))

 dist = distance_num/distance_deno

 print()

 log.i(f'Results from file \'{file[0]}\': ')

 log.d(f'Plane equation: {abc[0]}x + {abc[1]}y + {abc[2]}z + {d}')

 log.d(f'Coordinates from surrounding atoms: {at_coord}')

 log.d(f'Nitrogen coordinates: {n_coord}')

 log.i(f'Nitrogen planar distance: {dist} (A)\n')

 log.w(f'File \'{file[0]}\' done, proceeding with next file if

possible...')

 subprocess.call([f'rm {file[0]}.pdb'], shell=True,

stdout=subprocess.DEVNULL,stderr=subprocess.STDOUT)

 return dist

at = amine_distance()

Figure 11. Code for the script “amine_planar_distance.py”.

import datetime

import os

import numpy as np

Change the values below to the index of the 4 atoms desired for calculations.

ATOMS = [8, 10, 60, 76]

class dihedral_angle_calculator():

 def __init__(self):

 pos_list = self.get_positions()

 dihedral_list = self.calculate_dihedral(pos_list)

 self.results_to_file(dihedral_list)

 def get_positions(self):

 temp_file_list = [

 file for file in os.listdir() if file.endswith('.xyz')]

 coord_dict = {}

 for file in temp_file_list:

 with open(file, 'r') as f:

 f.readline()

 f.readline()

 text = f.readlines()

 posc_list = [line.split()

 for line in text if len(line.split()) == 4]

 for atom_number, atom in enumerate(posc_list):

 atom[:0] = [atom_number]

 atom_calc_list = [at for at in posc_list if at[0] in ATOMS]

 coord_dict[file] = atom_calc_list

 return coord_dict

 def calculate_dihedral(self, coord_dict):

 dihedral_list = []

 for molecule in coord_dict.items():

 molec_name = (molecule[0]).replace('.xyz', '')

 atom_list = molecule[1:]

 for atom_set in atom_list:

 coord_set = []

 for atom_coords in atom_set:

 atom_coords = [float(num) for num in atom_coords[2:]]

 coord_set.append(np.array(atom_coords))

 vec1 = coord_set[1] - coord_set[0]

 vec2 = coord_set[2] - coord_set[1]

 vec3 = coord_set[3] - coord_set[2]

 n1 = np.cross(vec1, vec2)

 n2 = np.cross(vec2, vec3)

 uvec2 = vec2/(np.sqrt(np.sum(np.square(vec2))))

 m1 = np.cross(n1, uvec2)

 x = np.dot(n1, n2)

 y = np.dot(m1, n2)

 dihedral_rads = np.arctan2(y, x)

 dihedral = np.degrees(dihedral_rads)

 dihedral_list.append([molec_name, dihedral])

 print(f'The dihedral angle between the atoms {ATOMS} of '

 f'{molec_name} is {dihedral:5f}º.')

 return dihedral_list

 def results_to_file(self, dihedral_list):

 time = datetime.datetime.now()

 with open(f'dihedral_results_{time.strftime("%d-%m-%y")}','w+') as f:

 for molecule in dihedral_list:

 line = f'{molecule[0]:30} {round(molecule[1],5):>40}º\n'

 f.write(line)

at = dihedral_angle_calculator()

Figure 12. Code for the script “dihedral_calculator.py”.

import datetime

import math as m

import os

import pprint as pp

from re import sub

import numpy as np

from prettytable import PrettyTable

from zenlog import log

KB = 0.0019872041 # kcal/mol

TEMP = 293.15 # K

class find_molecule_percentage():

 def __init__(self):

 data_list = self.get_data()

 min_value, min_names = self.lowest_energy_molecule(data_list)

 boltz_list, boltz_final = self.boltzmann_distr(data_list, min_value)

 self.save_values_in_file(data_list, min_value, min_names, boltz_list,

boltz_final)

 def get_data(self):

 # Gets energies stored in *.txt files

 file_list = [file for file in os.listdir() if file.endswith('.txt')]

 if len(file_list) > 0:

 for current_file in file_list:

 log.i('Reading \'{}\'.'.format(current_file))

 with open(current_file, 'r') as f:

 text = f.readlines()

 data_list = []

 for line in text:

 line_dict = {}

 line = line.split()

 line_dict['name'] = line[0]

 line_dict['energy'] = float(line[-1])

 data_list.append(line_dict)

 else:

 log.e('ERROR - File error: Wrong file format (must be .txt) or

\'boltzmann.py\' not in same folder as chosen text file. Exiting program...')

 quit()

 print(f'\nPlease select the appropiate units for the results:\n\t(1) Hartree

(Ha)\n\t(2) kJ/mol')

 self.user_input = input('Please input (1) or (2) and press ENTER: ')

 if self.user_input == '1':

 # Orders data list

 ordered_data_list = [None] * (len(data_list)+1)

 for molecule in data_list:

 numer = int(sub("[^0-9]", "", molecule['name']))

 ordered_data_list[numer] = molecule

 data_list = ordered_data_list

 for item in data_list:

 if item is None:

 data_list.remove(item)

 return data_list

 def lowest_energy_molecule(self, data_list):

 if self.user_input == '1':

 # Converts each energy value from Hartree (Ha) to kcal/mol

 for molecule in data_list:

 molecule['energy'] = molecule['energy'] * 627.51

 min_value = min([molecule['energy'] for molecule in data_list])

 min_names = []

 for molecule in data_list:

 molecule_data = list(molecule.values())

 if min_value in molecule_data:

 min_names.append(molecule_data[0])

 molecule['energy'] -= min_value

 if self.user_input == '2':

 # Converts each energy value from kJ/mol to kcal/mol

 for molecule in data_list:

 molecule['energy'] = molecule['energy'] / 4.184

 min_value = min([molecule['energy'] for molecule in data_list])

 min_names = []

 for molecule in data_list:

 molecule_data = list(molecule.values())

 if min_value in molecule_data:

 min_names.append(molecule_data[0])

 molecule['energy'] -= min_value

 if min_names[0] != '':

 log.i('Minimum energy {} was found on molecule(s) {}.'.format(min_value,

min_names))

 else:

 log.i('Minimum energy {} was found.'.format(min_value))

 return min_value, min_names

 def boltzmann_distr(self, data_list, min_value):

 energy_list = [np.float128(molecule['energy']) for molecule in data_list]

 boltz_list = [np.exp((0-en)/(KB*TEMP)) for en in energy_list]

 if self.user_input == '1':

 # Only leaves one energy minimum in boltz_list

 no1_count = 0

 for count, number in enumerate(boltz_list):

 if number == 1 and no1_count > 0:

 del boltz_list[count]

 no1_count += 1

 elif number == 1:

 no1_count += 1

 boltz_total = sum(boltz_list)

 boltz_final = [round((bol/boltz_total)*100, 4) for bol in boltz_list]

 return boltz_list, boltz_final

 def save_values_in_file(self, data_list, min_value, min_names, boltz_list,

boltz_final):

 time = datetime.datetime.now()

 file_name = ('min_energy_table-{}.out'.format(time.strftime("%d-%m-

%y_%H:%M")))

 x = PrettyTable()

 x.field_names = ['Molecule Name', 'Energy', '% in equilibrium']

 energy_list = [molecule['energy'] for molecule in data_list]

 name_list = [molecule['name'] for molecule in data_list]

 result_dict_list = []

 for name in name_list:

 molecule_dict = {}

 molecule_dict['name'] = name

 result_dict_list.append(molecule_dict)

 count_min = 0

 for molecule in result_dict_list:

 for energy in energy_list:

 molecule['energy'] = energy

 energy_list.remove(energy)

 count_min += 1

 break

 if self.user_input == '1':

 suma_fin = 0

 for molecule in result_dict_list:

 for percent in boltz_final:

 molecule['percent'] = percent

 suma_fin += percent

 boltz_final.remove(percent)

 break

 elif self.user_input == '2':

 suma_fin = 0

 for molecule in result_dict_list:

 for percent in boltz_final:

 molecule['percent'] = percent

 suma_fin += percent

 boltz_final.remove(percent)

 break

 for molecule in result_dict_list:

 x.add_row([molecule['name'], molecule['energy'], molecule['percent']])

 table_title = ('Relative energies in kcal/mol')

 print(x.get_string(title=table_title))

 with open(file_name, 'w+') as f:

 f.write('Minimum energy: {}\n'.format(min_value))

 f.write(str(x.get_string(title=table_title)))

 print(f'Sum of % in equilibrium: {suma_fin}')

 log.info('Data correctly saved as \'{}\' in \'{}\''.format(file_name,

os.getcwd()))

 return str(x)

aa = find_molecule_percentage()

Figure 13. Code for the script “boltzmann2.py”.

import argparse

import datetime

import getpass

import os

import pprint as pp

import re

import subprocess

import prettytable

from prettytable import PrettyTable

from zenlog import log

DFT_RE = re.compile(r'SCF Done:.*=\s+([^\n]+\d+\.\d+)')

M06_RE = re.compile(r'RM062X.*=\s+([^\n]+\d+\.\d+)')

FRQ_RE = re.compile(r'Free Energies=\s+([^\n]+\d+\.\d+)')

ENT_RE = re.compile(r'Enthalpies=\s+([^\n]+\d+\.\d+)')

USER = getpass.getuser()

class energy_data_collector():

 def __init__(self):

 args = self.command_parser()

 energies, folder_names = self.get_energies_from_files()

 self.print_energies_on_file(energies, folder_names, args)

 def command_parser(self):

 parser = argparse.ArgumentParser(description='Calculate energy results.')

 parser.add_argument('-mail', type=str, nargs='?', default=' ', metavar='m',

dest='mail',

 help='Input mail adress to recieve text results.')

 args = parser.parse_args()

 return args

 def get_energies_from_files(self):

 log.d('Getting energies from files.')

 energies_dict = {}

 folder_names = [folder for folder in next(os.walk('.'))[1] if

folder[0].isnumeric()]

 folder_names.sort()

 for folder_name in folder_names:

 try:

 temp_file_list = [file for file in os.listdir(folder_name) if

file.endswith('.log')]

 except FileNotFoundError:

 continue

 for molecule_name in temp_file_list:

 text = None

 temp_dict = {}

 with open(folder_name+'/'+molecule_name, 'r') as f:

 text = f.read()

 try:

 if 'freq' in folder_name:

 free_energ = round(float(FRQ_RE.findall(text)[-1]), 5)

 enthalp = round(float(ENT_RE.findall(text)[-1]), 5)

 energy_value = 'Free Energy: ' + str(free_energ)

+'\nEnthalpy: ' + str(enthalp)

 temp_dict[folder_name] = energy_value

 elif 'DFT' in folder_name or 'MP2min' in folder_name:

 energy_value = round(float(DFT_RE.findall(text)[-1]), 5)

 temp_dict[folder_name] = energy_value

 elif 'M062X' in folder_name:

 energy_value = round(float(M06_RE.findall(text)[-1]), 5)

 temp_dict[folder_name] = energy_value

 if molecule_name[:-4] not in energies_dict:

 energies_dict[molecule_name[:-4]] = [temp_dict]

 else:

 energies_dict[molecule_name[:-4]].append(temp_dict)

 except IndexError:

 log.e(f'Error on \'{folder_name+"/"+molecule_name}\'.')

 temp_dict[folder_name] = 'missing value'

 log.i(f'Energies from {len(energies_dict.keys())} files recovered.')

 return energies_dict, folder_names

 def print_energies_on_file(self, energy_dict, folder_names, args):

 time = datetime.datetime.now()

 file_name = (f'{USER} - {time.strftime("%d-%m-%y")}.txt')

 x = PrettyTable()

 folder_names.insert(0, 'Molecule Name')

 x.field_names = folder_names

 temp_table = list(energy_dict.values())

 temp_table2 = list(energy_dict.keys())

 err_cont = 0

 for j in temp_table:

 for i in temp_table2:

 cont = 0

 lista1 = [i]

 while cont < len(j):

 try:

 valor = list(j[cont].values())[0]

 except IndexError:

 valor = ' '

 lista1.append(valor)

 cont += 1

 try:

 x.add_row(lista1)

 except Exception:

 if err_cont == 0:

 log.w('There is not the same number of files in all the

directories. Some results might be missing from the table...')

 err_cont += 1

 temp_table2.remove(i)

 break

 x.sortby = 'Molecule Name'

 table_title = (f'{USER} - {time.strftime("%d-%m-%y")} - Gaussian Energy

Calculation Results')

 x.hrules = prettytable.ALL

 print(x.get_string(title=table_title))

 with open(file_name, 'w+') as f:

 f.write(str(x.get_string(title=table_title)))

 image_name = f'{time.strftime("%d-%m-%y")}-molecules.svg'

 subprocess.call([f'obabel -i pdb *.pdb -O {image_name} -d -xC'], shell=True,

stdout=subprocess.DEVNULL,stderr=subprocess.STDOUT)

 log.info(f'Data correctly saved as \'{file_name}\' in \'{os.getcwd()}\'')

 log.info(f'Molecule structure drawn in \'{time.strftime("%d-%m-%y")}-

molecules.svg\' in \'{os.getcwd()}\'')

 if args.mail != ' ':

 full_path = os.getcwd()

 folder_name = os.path.basename(full_path)

 email = args.mail

 subprocess.call(['echo "Calculations from folder \'{}\' done, see

results attached..." | mail -s "Results - {}" -A "{}" -A "{}"

{}'.format(folder_name, folder_name, file_name, image_name, email)], shell=True,

stdout=subprocess.DEVNULL,stderr=subprocess.STDOUT)

 log.info('Results delivery attempted in \'{}\''.format(email))

 return str(x)

at = energy_data_collector()

Figure 14. Code for the script “energy_data_collector.py”.

import os

from zenlog import log

file_names = [filename for filename in os.listdir() if filename.endswith('.txt')]

for file in file_names:

 filename = file[:-4]

 string_table = []

 with open(file, 'r') as f:

 log.d(f'Reading file: \'{file}\'')

 lines = f.readlines()

 for line in lines:

 line = line.strip().split()

 try:

 difference = abs(float(line[1])-float(line[2]))*627.51

 for index1, value in enumerate(line):

 if (value.lstrip('+-').replace('.','')).isdigit():

 line[index1] = str(round(float(value), 5))

 line.append(str(round(difference, 2))+'\n')

 log.i(f'Energy difference in {line[0]} is {difference:.5}')

 line = '\t'.join(line)

 string_table.append(line)

 except IndexError:

 log.e(f'File \'{file}\' has incorrect format. Please make sure you

are in the correct directory, or change the file format.')

 quit()

 with open(f'diff_{filename}', 'w') as diff_text:

 for item in string_table:

 diff_text.write(item)

 log.d(f'File \'{file}\' done.')

Figure 15. Code for the script “energy_data_collector.py”

APPENDIX 4: SCRIPT OUTPUT

Figure 16. Sample of output from energy_data_collector.py, showing the results in Ha from 3 different

example molecules.

