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Abstract Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial
Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct
past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom
oozes (LDOs) during glacial periods between 1.85 and 2.25Ma coinciding with high fluxes of opal and total
organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial
periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization
events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the
Southern Ocean. In contrast, glacial periods after 1.85Ma are characterized by enhanced dust transport of
finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar
responses to the high productivity recorded during glacial periods before and after 1.85Ma, which suggests
that the transport processes delivering organic matter to the deep sea also changed. Different depositional
processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone
(ITCZ). Before 1.85Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition
of dust. After 1.85Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating
upwelling in the EEP. The glacial period at 1.65Ma with the most intense LDOs supports a rapid southward
migration of the ITCZ comparable to those glacial periods before 1.85Ma.

1. Introduction

The Early Pleistocene climate evolution ismarked by the progressive strengthening of theNorthern Hemisphere
glaciation (NHG), and it has been argued that this situation strengthened trade winds, inducing a cooling in
tropical sea surface temperatures (SSTs) by enhanced upwelling activity [Marlow et al., 2000]. Meanwhile, land
records indicate an enhanced aridity along the tropical belt with consequences on African faunal evolution
[deMenocal, 1995, 2004; Feakins et al., 2005; Trauth et al., 2007]. The obliquity imprint upon tropical proxy
records further supports the high-latitude control over tropical regions during this period [Liu and Herbert,
2004; Herbert et al., 2010].

The eastern equatorial Pacific (EEP) is known by its highly productive upwelling system, which has operated
with varying intensity across glacial-interglacial cycles [Lyle et al., 1988; Weber and Pisias, 1999; Murray et al.,
2000]. During the early Pleistocene, 400 kyr eccentricity cycles seem to have ultimately controlled major
changes of SST in the EEP, with abrupt and intense cooling events at 1.7 and 2.1Ma [Herbert et al., 2010].

Nevertheless, several records from the EEP reveal a rather complex link between SST and primary productivity
across the Pleistocene [Dekens et al., 2007; Lawrence et al., 2006;Ma et al., 2015]. In particular, a remarkable period
of enhanced EEP primary productivity between 1.6 and 2.9Ma was reflected in unusually high-alkenone
concentrations [Lawrence et al., 2006] without any clear expression of colder SST. Such signal decoupling
has been attributed to EEP fertilization due to an increase in nutrient availability finally driven by changes in
nutrient utilization in the Southern Ocean [Lawrence et al., 2006; Etourneau et al., 2013]. Nitrogen isotopes
support a sharp increase in EEP denitrification but starting later, after 2.1Ma, which is attributed to an enhanced
upwelling activity due to strengthened Walker circulation [Liu et al., 2008]. This situation is consistent with a
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major atmospheric reorganization including an intensification of the Walker circulation and the onset of a
strong equatorial west-east gradient at 1.5–2Ma, as indicated by SST and isotopic records from both western
equatorial Pacific (WEP) and EEP [Ravelo et al., 2004; Wara et al., 2005; Etourneau et al., 2010; Ravelo et al.,
2014]. This time period also appears to be critical in Southern Atlantic Ocean where a reinforcement of trade
winds and the strengthening of the associated upwelling have been noticed [Etourneau et al., 2009].

Nevertheless, this atmospheric reorganization has been questioned by new longmultiproxy records that suggest
a relatively constant E-W equatorial Pacific SST gradient since the Pliocene and, consequently, an essentially
rather constant and continuously active EEP upwelling system [e.g., Zhang et al., 2014;O’Brien et al., 2014]. The
debate is far from being settled [Ravelo et al., 2004; Wara et al., 2005; Ravelo et al., 2014].

Thus, several records support the occurrence of EEP productivity and atmospheric changes during the early
Pleistocene, but their occurrence is not always apparently synchronous and their coupling is still puzzling.
The lithic fraction of deep-sea sediments is a proxy that could shed light on atmospheric changes in the EEP.
It has been used to track the location of the Intertropical Convergence Zone (ITCZ), which would have migrated
southward from the late Miocene to present [Hovan, 1995; Hyeong et al., 2006]. Unfortunately, these studies
lack the temporal resolution to evaluate rapid changes that might have occurred during the early Pleistocene.
Short-term reconstructions of changes in the average ITCZ location have concentrated on glacial-interglacial
cycles of the late Pleistocene and Holocene and are mostly based on SST marine records, humidity terrestrial
records, ormodel assimilations [Koutavas and Lynch-Stieglitz, 2004; Peterson and Haug, 2006; Broccoli et al., 2006;
McGee et al., 2014; Schneider et al., 2014].

Elucidating the link between any early Pleistocene atmospheric reorganization and productivity changes in the
EEP upwelling requires using parallel records of proxies sensitive to both atmospheric and marine conditions.
In this paper we present a novel very high resolution multiproxy study over the 1.56–2.26Ma time interval in
the EEP, resulting from the detailed analysis of biogenic and lithogenic components in deep-sea sediments.
The study focuses on Ocean Drilling Program (ODP) Site 1240, located at the northern edge of the equatorial
cold water tongue (Figure 1) and thus, made this site potentially sensitive to changes in the atmospheric-ocean
coupled system [Hovan, 1995; Mix et al., 2003]. Previous results for this ODP site have shown major changes
in the sediment composition occurring along the early Pleistocene, which were linked to shifts in the regional

Figure 1. Regional oceanography and net primary production (NPP) from the eastern equatorial Pacific (EEP). Surface and
subsurface currents in the EEP, Equatorial Undercurrent (EUC), North Equatorial Current (NEC), North Equatorial Countercurrent
(NECC), Peru-Chile Current (PCC), and South Equatorial Current (SEC). NPP in the surface waters of modern EEP is based on
the standard VGPM algorithm [Behrenfeld and Falkowski, 1997]. Data were downloaded from the Ocean Productivity site.
Northern Hemisphere summer and winter positions of the ITCZ have been marked with blue and red bands. ODP Sites 1240
and 1238 are labeled with yellow dots.
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atmosphere-ocean system [Mix et al., 2003]. Moreover, ODP Site 1240 contains sequences of laminated diatom
oozes (LDOs), which become a valuable paleoproductivity indicator. In order to ground truth our results and
achieve a broader evaluate the geographical extension, the data obtained from ODP Site 1240 have been
compared with data from ODP Site 1238, located further south and closer to the South American coastline.
Thus, this study offers an exceptional time resolution for the early Pleistocene and demonstrates that the
observed changes occurred as rapid transitions related to glacial-interglacial cycles, rather than as progressive
long-term change.

2. Oceanographic and Atmospheric Setting

The EEP is one of themost productive upwelling areas in theworld controlled by the tradewind systems [Chelton
et al., 2001]. This atmospheric convergence near the equator and the ascending branch of the Hadley cell define
the position of the ITCZ and control the surface ocean properties [Koutavas and Lynch-Stieglitz, 2004]. Surface
ocean circulation in the EEP is characterized by the north-south asymmetry of the surface currents, as a conse-
quence of the trade winds intensity [Wyrtki, 1974]. ODP Sites 1240 and ODP 1238 locations are both influenced
by the South Equatorial Current (SEC), which is the continuation of the Peru-Chile Current (PCC), centered at
about 5°S under the southeast trade winds [Wyrtki, 1967; Kessler, 2006]. During the Southern Hemisphere
winter, when SE trade winds are strengthened, the SEC is more intense [Wyrtki, 1967]. In the subsurface, the
Equatorial Undercurrent (EUC) flows eastward along the equator, and replaces surface water driven westward
by the trades [Kessler, 2006], providing nutrients to the EEP that are sourced in the polar regions, mainly from
the Southern Ocean [Calvo et al., 2011; Sarmiento et al., 2004; Pena et al., 2013] (Figure 1). Recent studies
suggest that Galapagos Islands could influence the flow of EUC east of 95°W, acting as a topographic barrier,
although its influence has not been fully characterized yet [Karnauskas et al., 2007, 2010].

The strong southeasterly winds that cross the equator induce an Ekman divergence zone, which allows the
upwelling of nutrient-rich and cold waters from the EUC, particularly during the Southern Hemisphere winter
(Figure 1) [Wyrtki, 1981]. The extent of the cold tongue created by the upwelling is limited by the equatorial
front (EF), the position of which varies seasonally. The EF reaches its most northerly position during the
Northern Hemisphere summer [Pak and Zaneveld, 1974; de Szoeke et al., 2007]. In the modern EEP, biological
activity does not consume all the macronutrients upwelled to the surface due to limitations in the supply of
iron and silicic acid [Brzezinski et al., 2008]. Iron is a micronutrient that limits macronutrient utilization, and
thus, it can ultimately control the primary production of the upwelling system [Jickells et al., 2005; Mahowald
et al., 2005]. Since the EUC is typically iron depleted by the time it reaches the EEP [Kaupp et al., 2011], the
main iron contribution occurs through eolian dust deposition. This induces a strong connection between dust
fluxes, iron input, and primary productivity in the EEP [Martin, 1990; Jickells et al., 2005].

At present, the mean ITCZ position is shifted toward the Northern Hemisphere as a consequence of a north-
ward heat transport across the equator by ocean circulation [Marshall et al., 2014]. ITCZ migrations can also
be the result of changes in the interhemispheric temperature contrast [Broccoli et al., 2006], responding
to seasonal changes in insolation and atmosphere-ocean interactions [Xie and Philander, 1994]. During
Northern Hemisphere summer, when the southeasterly trades are stronger [Chelton et al., 2001; Koutavas
and Lynch-Stieglitz, 2004], the ITCZ is positioned at about 10°N and both maximum upwelling and significant
eolian deposition of dust from South America occur in the EEP [Molina-Cruz, 1977]. The ITCZ migrates
southward when the southeasterly trades are weaker [Chelton et al., 2001], between February and April,
reducing the dust input and weakening upwelling. Paleoclimate records and numerical models suggest that
the southward migration may have been greater during colder phases of the Northern Hemisphere on a
variety of time scales, such as the Little Ice Age (LIA), shifting the ITCZ well south of its most southern present
position [Koutavas and Lynch-Stieglitz, 2004; Chiang and Bitz, 2005; Broccoli et al., 2006; Sachs et al., 2009].

3. Materials and Methods

ODP Site 1240 (0°01.31′N, 86° 27.76′W; 2921mwater depth) and ODP Site 1238 (1°52.310′S, 82°46.934′W; 2203m
water depth) were retrieved in the EEP, from the northern and southern flank of the Carnegie Ridge, respectively,
in the Panama Basin during the ODP Leg 202, by JOIDES Resolution in 2002 (Figure 1) [Mix et al., 2003].

The recovered sedimentary sequence of ODP Site 1240 is a fossil-rich mud with variable composition [Mix et al.,
2003]. Three subunits (1A, 1B, and 1C) were defined according to their dominant sedimentological characteristics
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[Mix et al., 2003]. In this work we focus on subunit 1B, in the depth interval from 135.34 to 225.94 meters com-
posite depth (mcd), between 1.65 and 2.1Ma, which presents higher reflectance (a*) values (Figure 2). It was
initially proposed to reflect an intensification of atmospheric circulation, based on the preliminary results of
grain density, biogenic silica, total organic carbon (TOC) content, and the shipboard stratigraphic description
presented in Mix et al. [2003]. Eleven LDOs were described mainly within subunit 1B (1.65–2.2Ma) [Mix et al.,
2003] (see section 5.1). They are composed largely of pennate diatoms, such as Thalassiothrix spp., that tend
to form large grids of strongly intertwined cells.

The sedimentary sequence from ODP Site 1238 is mostly formed by diatom nannofossil ooze and bioturbated
nannofossil oozes with a variable abundance of clay and foraminifera [Mix et al., 2003]. The analyzed sequence
is centered from 79 to 99mcd, in interval of 1.6–1.75Ma.

3.1. Oxygen Isotope Record

In order to establish robust chronology, we measured benthic foraminifer δ18O from ODP Site 1240, which was
based in the analysis of two different species of benthic foraminifera,Uvigerina spp. and Cibicidoides wuellerstorfi.

b

c

d

e

f

a

Figure 2. Chronological framework for ODP Site 1240. (a) Global benthic δ18O stack (LR04 stack) [Lisiecki and Raymo, 2005].
(b) Oxygen isotope difference (Globigerinoides sacculifer) between ODP Site 851 (Eastern Pacific) [Cannariato and Ravelo,
1997] and ODP Site 806 (Western Pacific) [Berger et al., 1993; Jansen et al., 1993]. (c) ODP Site 1240 reflectance (a*) for the last
2.7Ma [Blum et al., 2005] shows abrupt variations in sediment composition for the studied interval. (d) ODP Site 1240 reflec-
tance (a*) for the studied period [Blum et al., 2005], showing three subunits clearly marked and represented as a white and
gray bar (1A, 1B, and 1C). (e) Age model from ODP Site 1240, developed by comparison of high-resolution ODP Site 1240
benthic δ18O and global benthic δ18O stack. (f) Tie points and linear sedimentation rates from ODP Site 1240 for the studied
interval. The gray shaded vertical bars indicate the position of the observed and the interpreted LDOs, labeled as L1–L9 and IL,
respectively. Marine isotopic stages (MISs) 56, 78, and 82 are also shown.
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Each measurement of Uvigerina spp. was made on eight to ten individuals. Measurements of C. wuellerstorfi
were performed on four to five individuals (>212μm). Samples were crushed to open the foraminiferal
chambers and then cleaned with reagent grade methanol in order to remove attached clay particles. All mea-
surements were made with a Finnigan-MAT252 mass spectrometer fitted with a Kiel Carbonate Device I in the
Scientific and Technological Center of the University of Barcelona (CCiT-UB). Values are reported as per mille
with respect to the Vienna Peedee belemnite standard. For the duration of the analyses, external reproducibility
was always better than 0.06‰ for δ18O. In order to produce the composite δ18O record, the C. wuellerstorfi
results were corrected to the Uvigerina scale by adding 0.64‰ [Shackleton and Hall, 1984].

3.2. Biogenic Fraction: Total Organic Carbon, Nitrogen Content, Opal Content, and Uvigerina
spp. Abundance

EEP biogenic fractions (TOC, total nitrogen (TN), opal, and Uvigerina spp. abundance) were analyzed to monitor
past changes in the ocean productivity system. TOC and total nitrogen (TN) content were analyzed at the
CCiT-UB using an elemental organic analyzer Thermo EA Flash 1112. TOC was measured in 25% HCl-treated
sediment samples [Fabres et al., 2002].

Biogenic silica concentrations were measured in 200mg samples of bulk sediment. The extraction method is
modified from Povea et al. [2015] and includes a two-step leachingwith a 1.5M NaOH solution. Si concentration
in both leachates was determined through inductively coupled plasma optic spectrometer (ICP-OES), using a
PerkinElmer model Optima 3200 RL at the CCiT-UB. Biogenic opal concentrations were determined from Si
concentrations multiplying the obtained values by 2.4 [Mortlock and Froelich, 1989].

The main benthic foraminifera genera present in the samples were counted to identify any major change in the
assemblage, which could be indicative of changes in the deep ocean nutrient content and oxygen concentra-
tion. The principal benthic foraminiferal assemblage is formed by Giroydina spp., Uvigerina spp., Melonis spp.,
Cibicides wuellerstorfi, and Cibicides kullenbergi in order of abundance. After a preliminary low-resolution counting
(107 samples with a 6.5 kyr average time resolution) considering these five genera, Uvigerina spp. was selected
to generate high-resolution counts over the whole sequence because it showed the greatest variability.

3.3. XRF Core Scanner Measurements

XRF core scanner was used in order to achieve at high resolution the elemental composition of the EEP sediments.
Sampling for XRF core scanner analyses was done at the Gulf Coast ODP repository at Texas. U-channels were col-
lected by pushing rigid u-shaped plastic liners (2×2 cm cross section, 1.5m in length) into the core sections to
collect narrow continuous samples of core. XRF core scanner analyses were done at the University of Bremen
(Germany). The XRF analyzes the very top of the sediment surface over 1 cm2 area, using 30 s count time, 20 kV
X-ray voltage, and an X-ray current of 0.087mA to obtain statistically significant Fe counts. A detailed description
of the applied X-ray fluorescence analysis and the system configuration of the XRF core scanner at the University
of Bremen are given in Jansen et al. [1998] and Röhl and Abrams [2000]. The resulting data represent element
intensities in counts per second, and all the intensities are above the detection limits [Richter et al., 2006].
Intensity values were converted to concentrations through calibration with absolute elemental concentrations
obtained from 30 sediment samples selected along this section (see section 5.5). Sediment samples were analyzed
by ICP-OES at the CCiT-UB after total digestion of 50mg of dried bulk sediment material in a pressure digestion
system with a mixture of 3mL HNO3 65%, 2mL HF 40%, and 2mL HCl 32%. After decomposition, the samples
were heated to dryness, redissolved in 5mL of 6.5% HNO3, and homogenized in the microwave. Fe element
was analyzed by ICP-OES in a PerkinElmer Optima 3300 RL with a precision better than 2%. The accuracy of ele-
ment determinations was checked using standard reference materials. The ICP-OES obtained values were used to
transform the XRF data into concentration values (mg/g). Correlation equations with r2 =0.79 indicate a high cor-
relation between both methods, thus allowing the data conversion (Figure S1 in the supporting information).

3.4. Grain Size and Mineralogical Analyses

Grain size analysis and mineralogical description have been conducted to characterize the lithic fraction that
reached the eastern equatorial Pacific. Prior to the grain size analysis, samples were processed with a protocol
specifically designed to ensure the complete removal of all the biogenic (organic matter, carbonate, and
biogenic silica) and authigenic components (diagenetic oxides), leaving only the lithogenic components
[Povea et al., 2015]. After this procedure, smear slides were prepared for each sample using a UV curing adhesive
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and dried under an ultraviolet light [Backman and Shackleton, 1983; Rothwell, 1989]. They were then observed
with a microscope to ensure the quality of the procedure as well as to determine the percentages of the main
mineralogical components of the lithic fraction [Povea et al., 2015]. Mineral abundance was estimated using
the comparison chart for visual percentage estimation [Terry and Chilingar, 1955]. Grain size distributions
were determined using a Coulter LS 230 on the lithic fraction. In addition, the lithic percentage was calculated
for the studied interval (1.56–2.26Ma). Bulk dry samples were weighed before the removal of the biogenic
fraction. After the application of the biogenic removal procedure, the samples were lyophilized and weighed.
The difference between these weights gives the biogenic fraction removed. Thus, the lithic percentage was
obtained after subtracting the biogenic percentage from the total percentage (lithic percentage = 100%�%
biogenic fraction).To aid in the interpretation of the large grain size data set, a statistical method using a
k-means clustering algorithmwas applied [Povea et al., 2015]. This method divides the data set into n clusters,
which are represented by its centroid and formed by the data for which the centroid is the nearest [Hastie
et al., 2001]. The degree of representation of each cluster in each sample is obtained by calculating the
Euclidean distances between each cluster centroid and the N data.

4. Chronological Framework

The age model is based on visual alignment of the high-resolution benthic δ18O isotopic record from ODP Site
1240 with the LR04 stack [Lisiecki and Raymo, 2005], including tie points every ~27 kyr on average (r2 = 0.76;
Figure 2). Our sequence corresponds to the time interval between 1.56 and 2.26Ma, comprising the early
Pleistocene from marine isotopic stage (MIS) 52 to MIS 86. Sedimentation rates vary through this interval,
with values oscillating between 7.7 and 20.9 cm/ka. These sedimentation rates are relatively high for this area
and can be attributed both to the high particle flux from the equatorial upwelling system and to the basin
morphology, an abyssal valley which acts as natural sediment trap [Mix et al., 2003]. The studied interval provides
a time resolution of 4 kyr on average for the lithic and biogenic records and 170 years for the XRF scanner data.

Mass accumulation rates for the biogenic and lithic records were calculated based on linear sedimentation
rates and dry bulk density (DBD). This density has been estimated from a linear correlation (r2 = 0.92) between
gamma ray attenuation bulk density and the available DBD discretemeasurements (Figure S2 in the supporting
information) [Mix et al., 2003].

5. Results
5.1. Laminated Diatom Oozes

Lithology from ODP Site 1240 is mostly dominated by diatom-nannofossil ooze or diatom-bearing nannofossil
ooze. The identification of the laminated diatom oozes is based on the visual identification of centimeter-thick
color bands from dark olive to olive and dark olive brown. In contrast, the sediment color in the nonlaminated
intervals alternates between pale olive and light olive gray and presents frequent bioturbation marks of
Zoophycos burrowing [Mix et al., 2003]. Diatom assemblage during the laminated layers is dominated by
Thalassiothrix spp. and Thalassionema spp., while the nonlaminated layers are dominated by Azpeitia nodulifera
(Figure S3 in the supporting information). The observed LDOs (labeled as L1 to L9) have been defined based on
the visual identification due the dark olive brown color. The interpreted LDOs (labeled as IL) have been deter-
mined since exhibiting the same pattern of the observed LDOs, based on the highest concentrations of
biogenic silica and lithic contents, albeit its visual identification is not so clear.

5.2. Oxygen Isotope Record

The benthic δ18O record has values that range from 3.2 to 4.5‰ with oscillations corresponding to glacial/
interglacial cycles (Figure 2). The data reveal very sharp transitions between interglacial and glacial phases.
Three remarkable glacial periods are recorded as presenting the highest δ18O values and the longest durations,
MIS 56 (1.65–1.67Ma), MIS 78 (2.07–2.09Ma), and MIS 82 (2.15–2.17Ma).

5.3. Grain Size Distribution and Clustering Analysis

Particle size distributions reveal that most of samples are trimodal, with one initial mode around 0.5 μm,
followed by a principal mode centered at 6–7μm. After this principal mode, a high variability of grain size
modes is observed between 100 and 400μm (Figure 3). However, in certain time intervals, mainly before
1.85Ma, the main mode is displaced to coarser grains (>60μm) and the samples are overall poorly sorted.
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According to the obtained modal distribution, k-means clustering analysis characterizes the grain size data set
into six clusters (cluster A to cluster F), previously presented in Povea et al. [2015]. Clusters A, B, and C are the
most dominant patterns, reaching almost 69% of the frequency (Figure 3c). These clusters show a well-defined
main mode around 6–7μm, a finer mode around 0.5μm, and a more variable last mode. Clusters E and F are
less abundant, with a combined frequency of 15%, and clearly different from the rest, presenting a main mode
shifted to coarser sizes (Figure 3c). Cluster D seems to be the intermediate and transitional pattern between the
well-sorted (clusters A, B, and C) and the poorly sorted and coarser (clusters E and F) clusters (Figure 3c), with the
mode around 6–7μm less defined and a terminal mode more abundant.

In order to better understand the time distribution of these distinct clusters, cluster E distance is estimated. This
value reflects the degree of similarity between each sample and this cluster, where the lower value (close to 0)
means the greater similarity to cluster E. Cluster E has been chosen for its most distinct modal distribution,

Figure 3. Clustering analysis of ODP Site 1240 particle size distribution. (a) Particle size distribution of the entire studied
period. (b) Proportion and distribution of six clusters along the studied period; note that each color corresponds to each
cluster of the next caption. (c) Cluster classification based on their particle size distribution [Povea et al., 2015]. Frequency
distribution is noted for each cluster. Marine isotopic stages (MISs) 56, 60, 62, 78, and 82 are also shown.
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displaying a coarser main mode, and its frequent presence during colder phases, especially during LDO deposi-
tion (Figure 4e). The comparison with the abundance of the coarse fraction represented by the silt + sand/total
ratio (Figure 4d) shows a generally good agreement between these two parameters that both peak during
glacial periods. However, cluster E practically disappears during glacial times without LDOs. While the silt-clay
parameter does not differentiate between these two groups of glacial periods, the absence of cluster E indi-
cates that the lithic fraction during the non-LDO glacial phases had a distribution closer to A, B, C, and D clusters
(e.g., MIS 58 and MIS 60 in Figures 3 and 4).

5.4. Paleoproductivity Proxies

TOC and TN records show substantial variability over the studied time interval, with generally higher values during
the glacial intervals when LDOs occurred (Figure 4a). These records exhibit three distinct intervals, consistent
with previously defined subunits [Mix et al., 2003], with higher TOC and TN mean values during subunit 1B
(Table 1) and very sharp boundaries between subunits. The upper part (1.56–1.65Ma) presents the minimum
values of all the sequence, while the middle interval (1.65–2.09Ma) shows the maximum values of TOC,
TN, and opal (Table 1). The biogenic fluxes of TOC and opal also show the highest values during subunit 1B
(Figures 5e and 5g), with maximum values during the LDO intervals.

Figure 4. Biogenic and lithogenic fraction characterization from eastern equatorial Pacific (ODP Site 1240). (a) TOC (solid line)
and TN (gray triangles) contents (%). (b) Uvigerina spp. abundance (counts/g); note that the green dark line shows the running
average of five points. (c) Opal (%). (d) Grain size parameter shown as (silt + sand)/total. (e) Euclidean distance of cluster E
to each sample. (f) XRF core scanner Fe (mg/g) and lithic content (%). The gray shaded vertical bars indicate the position of the
observed and the interpreted LDOs, labeled as L1–L9 and IL, respectively. The white and gray bar on the top shows the
three sedimentological units (1A, 1B, and 1C). The vertical dashed line marks the 1.85Ma transition. Marine isotopic stages
(MISs) 56, 58, 60, 66, and 78 are also presented.
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Uvigerina spp. abundance oscillates from 0 to 80% of the total benthic assemblage (Figure 4b). High Uvigerina
spp. abundances typically occur in phases of relatively high TOC percentages with some exceptions, when
peaks in TOC% correspond to low Uvigerina spp. abundance, and these events mostly correspond to the
LDOs (Figures 4a and 4b).

5.5. Lithic Fraction and Iron

The record of lithic percentage mimics, at lower resolution, the iron content profile measured by the XRF
scanner for the whole studied period (Figure 4f). This relationship (r2 = 0.63), together with the absence of
fluvial runoff to the studied basin, supports their common origin and thus the eolian deposition of the mea-
sured iron. In contrast to the biogenic proxies, these terrigenous source proxies do not differentiate the three
sediment subunits (Figure 4f) but show a general increasing trend toward the top of the studied period
also shown in the lithic and iron fluxes (Figures 4f, 5j, and 5k and Figure S5 in the supporting information).
Interestingly, the higher values occurred during the glacial periods between 1.68 and 1.85Ma, when the cluster
E and silt + sand/total parameter did not agree. On the contrary, the minimum values occurred during the
glacial periods previous to 1.85Ma when cluster E was better represented. The pronouncedminimum in both
iron and terrestrial content associated with MIS 56, corresponding to the last and very pronounced LDOs (L1).

The mineralogical composition of the lithic fraction is dominated by six main mineral phases that remain
constant in composition over the studied period (1.56–2.26Ma; Figure S6 and Table S1 in the supporting
information). The most abundant phases are feldspar (42.15%), opaques (25.45%), and quartz (19.43%),
and the minor mineral components are epidote (6.50%), volcanic glass (4.52%), and amphibole (1.95%).

6. Discussion
6.1. Changes in Atmospheric Transport

Since terrigenous sediment comes to the studied location primarily through the atmosphere, its characteristics
should reflect the ITCZ position and intensity of the wind belt system, as well as changes in the aridity of the
source area. Previous studies have found that eolian dust in the EEP comes from the arid areas of western
South America [Nakai et al., 1993], mostly from the Atacama desert [Molina-Cruz, 1977] or from the Andean
region [Janecek and Rea, 1985; Chuey et al., 1987; Rea, 1990]. Moreover, Atacama desert became hyperarid
in the Pliocene as a consequence of a global climate cooling [Hartley and Chong, 2002]. This episode of
hyperaridity produced a sedimentary hiatus in the Atacama region from 3.37Ma, which would be coeval
to a major development of Antarctica ice sheets and to an enhancement of the cold ocean upwelling in
the eastern Pacific during the Pliocene-Pleistocene transition [Sáez et al., 2012]. Thus, these cooling stages
could trigger the extreme hyperarid conditions in the Atacama region with an absence of sediment production
and accumulation [Sáez et al., 2012].

Deposition of lithic material, including iron, was relatively low during the time interval prior to 1.85Ma
(Figures 5j and 5k). During this period, the grain size distribution results at Site 1240 show the dominance
of giant (>60μm) and relatively poorly sorted coarse grains (Figure 3c, clusters E and F). In some extreme
cases, within the period previous to 1.85Ma, the fine dominant mode between 4 and 6μm completely
disappears or become very scarce. These are the samples represented by a low cluster E distance, which means
a higher similarity with this cluster (Figure 5h), and happen particularly during glacial periods and coinciding
with LDOs and also during the strong event at MIS 56. In contrast, after 1.85Ma, the samples displayed a char-
acteristic trimodal distribution with a principal mode between 6 and 7μm, indicating the dominance of better
sorted fine grains and low variance, particularly during the glacial times (MISs 58, 60 and 62; Figures 3a, 5j and 5k
60 and 62; Figure 3a). These glacial intervals also record an increased arrival of lithic grains and iron.

Table 1. Biogenic Contents From Eastern Equatorial Pacific (TOC, TN, and Opal)a

Unit 1A Unit 1B Unit 1C

Record (wt %) Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

TOC 0.5 1.5 0.86 0.84 3.5 2.16 0.5 2.15 1.2
TN 0.04 0.11 0.069 0.06 0.27 0.15 0.03 0.17 0.09
Opal 4.41 9.19 6.24 7.81 43.03 21.12 3.02 17.10 6.51

aDivided in the three sedimentological subunits (1A, 1B, and 1C).
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Figure 5. Interpreted ITCZ migrations and distinctive fertilization mechanisms associated to atmosphere-ocean connections
over the eastern equatorial Pacific during the studied period. (a) Benthic δ18O record (0/00). (b) SST (°C) ODP Site 846
[Herbert et al., 2010]. (c) Oxygen isotope difference (G. sacculifer) between ODP Site 851 (eastern Pacific) [Cannariato and
Ravelo, 1997] and ODP Site 806 (western Pacific) [Berger et al., 1993; Jansen et al., 1993]. (d) δ15N (0/00 v/air) [Etourneau et al.,
2013]. (e) Opal flux (gm�2 ka�1). (f) Sibio/TOC ratio. (g) TOC flux (gm�2 ka�1) and Uvigerina spp. abundance (expressed
as counts/grams dry bulk weight). (h) Cluster E distance. (i) Eccentricity [Laskar et al., 2004]. (j) Lithic flux (gm�2 ka�1). (k) Fe
flux (gm�2 ka�1). The dark gray shaded bars indicate the position of the observed and interpreted glacial LDOs, labeled
as L1–L9 and IL, respectively. The light gray shaded vertical bars indicate the glacial periods without LDOs. The white and
gray bar on the top shows the three sedimentological units (1A, 1B, and 1C). The vertical dashed line marks the 1.85Ma
transition. Marine isotopic stages (MISs) 56, 78, and 82 are also shown.
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The size of dust particles transported over hundreds of kilometers is generally below 10μm [Tegen et al., 1996].
However, the presence of eolian giant particles (>10μm) has also been documented in previous studies
[Glaccum and Prospero, 1980; Betzer et al., 1988; Moreno et al., 2001; Jeong et al., 2013]. These particles can
be transported over long distances if strong upward advection of air masses lifts these dust particles to higher
altitudes [Windom, 1985; Pye, 1995] or a midtroposheric wind belt induces a rapid dust transport [Jeong et al.,
2013]. An additional factor controlling grain size distribution is the relative contribution of wet and dry
deposition [Guerzoni et al., 1997]. The range of grain size particles of dust deposition by a wet event has been
explored through the analysis of a series of Saharan dust samples collected in Iberia during rain events (mean
Saharan dust wet deposition; Figure S7 in the supporting information), showing that a wide size range of
particles can be transported and deposited but always with a strong presence of the coarser mode.

These observations would suggest that most of the samples result from a mixture of wet and dry deposition
processes. Nevertheless, when samples get closer to the cluster E, deposition is dominated by wet deposition,
consistent with the proximity to the particle size distribution from the Saharan dust (wet deposition; Figure S7
in the supporting information). These changes in the grain size distribution reflect the position of the ITCZ.
Strong southeasterly trade winds occur south of the ITCZ, while within the ITCZ, the trade winds become
weaker and wet deposition dominates [Hovan, 1995]. Consequently, it appears that during glacial periods
with the occurrence of the LDOs, mostly before 1.85Ma, the ITCZ was located at its southernmost position,
just above ODP Site 1240. The presence of coarser grains, even giant particles (>200μm), and scarcity of lithic
and iron contents, indicates the dominance of weak southeasterly winds and increased rainfall or wet deposi-
tion events. The lithic fraction presents a coherent trend with eccentricity [Laskar et al., 2004], with minimum
values at eccentricity minima (Figures 5i–5k). Low eccentricity in the glacial periods previous to 1.85Ma
would have reduced seasonal contrast, and thus ITCZ seasonal migration, anchoring it in a southerly position.
This is particularly evident in glacial stages MIS 78 and 56 when intense and long glacial conditions are
observed, highlighting the previously proposed relevance of the 400 kyr eccentricity cycle in the EEP for this
time period [Herbert et al., 2010]. In contrast, when eccentricity was higher (with an upward increase after
1.85Ma), Earth’s seasonality increased causing greater latitudinal migration of the ITCZ. Thus, the ITCZ may
have been located further north, closer to its current position, with a reinforcement of the local winds and
decreased rainfalls. This situation would have allowed a higher lithic input, including iron, well sorted around
a finer mode. Furthermore, the overall increase in lithic contributions across the studied period, with a greater
content from 1.85Ma, also indicates more arid conditions of the source regions. This enhanced aridity has
been also detected in other regions like the African continent during this time period [deMenocal, 2004].
Finally, the invariant mineralogical composition along the whole record, including glacial and interglacial
phases (Figure S6 and Table S1 in the supporting information), suggests that there were no noticeable
changes in the source area of the lithic material in relation to these ITCZ migrations.

In order to better characterize the geographical impact of the discussed ITCZ displacements, ODP Site 1238,
located further southeast (1°52.310′S, 82°46.934′W) in the EEP, was also examined for the time period of the
most intense LDOs (1.6–1.79Ma), which occurred during glacial MIS 56. If these events occurred during a
weakening of the southeasterly trade winds, it should also be reflected in Site 1238. Thus, the recorded signal
in Site 1238 with high fluxes of opal, coarse grains with a similar distribution to cluster E (Figure 6), even with
an increased signal due to the shorter transport distance for the lithic material, supports this southward shift
of the ITCZ and illustrates the wide geographical extension of the L1.

6.2. Atmosphere-Ocean Coupling

Primary productivity in the EEP is controlled by the availability of nutrient inputs in the systemwhich in turn is
influenced by the atmosphere-ocean coupled system. Thus, it is also sensitive to the ITCZ or equatorial front
(EF) migration and the associated equatorial upwelling system. Highest values of export production occurred
during glacial periods between 1.85 and 2.1Ma and glacial time located at 1.65Ma (MIS 56; Figures 5e–5g),
when the LDOs were formed. The lithic fraction data (section 6.1) suggest that during these glacial periods,
the ITCZ was located over the equator (ODP Site 1240 location) likely at its most southward position over the
entire record. The dominance of the cluster E occurred primarily during periods when opal and TOC were
high; thus, the interpreted weak trade winds could not stimulate this high-productivity system (Figure 5).
In addition, this high productivity could not be explained through an iron fertilization process as could
be expected in an iron-limited ocean region [Martin, 1990; Jickells et al., 2005], since iron values are relatively
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low before 1.85Ma. A comparisonwith a sedimentary δ15N isotope record from the samemarine core [Etourneau
et al., 2013] also reveals low δ15N values specially during this interval prior to 1.85Ma transition (Figure 5d).
Etourneau et al. [2013] interpreted this as a reflection of enhanced nitrate availability in the eastern equatorial
Pacific system, suggesting that nutrient consumption was low relative to nutrient supply. Thus, the low δ15N
values when export production was high indicate a significant supply of nutrients, including silicic acid and
nitrate [Billups et al., 2013], to the eastern equatorial Pacific between 1.85 and 2.1Ma. Since the EEP is Si and iron
colimited [Brzezinski et al., 2008, 2011], diatoms tend to deplete surface waters of silicic acid before nitrate,
reducing the Si(OH)4:NO3 ratio in the surface ocean [Hutchins and Bruland, 1998]. This major silicic acid uptake
promotes more silicified diatoms, with heavier and larger frustules [Franck et al., 2000; Beucher et al., 2007], thus
allowing for faster sinking and the formation of the LDOs during these periods prior to 1.85Ma. The
Thalassiothrix spp. diatoms, typical of these LDOs, have been associated to the dominance of stratified surface
waters in the vicinity of the EF [Kemp et al., 2000, 2006; Pike and Stickley, 2007]. The occurrence of these lamina-
tions has also been associated to major cooling events in the eastern equatorial Pacific [Kemp et al., 1995]. This
seems to be confirmed by excursions toward cooler SST during LDO deposition as evidenced by alkenone-
derived SST record (Figure 5b) [Liu and Herbert, 2004; Herbert et al., 2010]. This is not true for two laminations
(L3 and L8) that record higher SSTs. This may be explained by the seasonality of the coccolithophorid population.
The inferred stratified conditions are consistent with the interpreted ITCZ location over equator. But, the stimu-
lated diatom productivity also requires an extra arrival of silicic acid to the EEP, likely through advection of

Figure 6. The imprint of a major southward ITCZ migration during L1 (1.6–1.79Ma), registered further south over ODP Site
1238. (a) ODP Site 1240 benthic δ18O record (0/00; blue line), ODP Site 1240 Neogloboquadrina dutertrei δ18O record (0/00;
blue diamonds), and ODP Site 1238 N. dutertrei δ18O record (0/00; dark gray circles). (b) Opal flux (gm

�2 ka�1) from ODP
Site 1240 (green line) and ODP Site 1238 (dark gray line). (c) Cluster E distance from ODP Site 1240 (yellow line) and ODP
Site 1238 (dark gray line). (d) Luminescence (L*) from ODP Site 1240 (dark blue line) and ODP Site 1238 (light blue line)
[Blum et al., 2005]. The gray shaded bar shows the locations of L1 and MIS 56.
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nutrient-rich intermediate waters feeding the EUC. Previous studies have identified strong connections between
high and low latitudes, mainly through advection of Southern Ocean intermediate water to the Equatorial
Undercurrent (EUC) [Kessler, 2006; Pena et al., 2013]. This Antarctic component would have provided Si-rich waters
to the tropical thermocline [Calvo et al., 2011], stimulating diatom production (Figure 5e) and a consequent
increase in nitrate availability [Sarmiento et al., 2004]. This high-latitude forcing is confirmed by the strong obli-
quity signal on the opal record during the interval previous to 1.85Ma (Figure S8 in the supporting information).
Consequently, prior to the 1.85Ma transition, we interpret that the fertilization of the EEP occurred through an
enhanced EUC nutrient supply, potentially of Southern Ocean origin, as also published in Etourneau et al. [2013].

After 1.85Ma, according to the lithic fraction interpretation, the ITCZ changed its mean position toward a more
northern location, particularly during glacial times. This situation would have triggered enhanced equatorial
upwelling, less stratified surface waters, a thermocline shoaling, and a greater equatorial E-W Pacific gradient
(Figure 5c), consistent with the enhancement in Walker circulation proposed in previous studies [Ravelo et al.,
2004; Wara et al., 2005; Ford et al., 2012]. The productivity proxies indicate a decrease but still relatively high
values in export production (Figures 5e and 5g) and a clear change in the phytoplankton community, supported
by a lowering in the Sibio:TOC ratio and the disappearance of the heavy silicified diatoms that formed the
LDOs (Figure 5f). This evidence and the parallel increase nitrate consumption (Figure 5d) suggest a change in
the Si(OH)4:NO3 ratio consistent with a reduction in the availability of silicic acid and/or enhanced iron fertilization.
The reinforcement of the upwelling systemby southeasterly tradewinds produced SST slightly lower after 1.85Ma
and also increased the atmospheric dust transport as is supported by the relatively high lithic and iron fluxes
(Figures 5j and 5k). The exception to this situation occurred during the glacial MIS 56 (1.65Ma), when conditions
returned to those of glacial previous to 1.85Ma, but with a more extreme expression. This southward displace-
ment of the ITCZ may be a consequence of the extreme glaciation triggered by 400kyr minimum eccentricity
at 1.65Ma, as already seen it in numerical models [Masunaga and L’Ecuyer, 2011]. The ITCZ displacement reached
further south, to the position of Site 1238, confirming the severity of the glacial MIS 56 period. On the other hand,
although the most marked and important changes are observed during glacial periods before and after 1.85Ma,
the interglacial phases also show a different pattern of behavior between these two marked periods, such as TOC
and opal fluxes (Figures 5e and 5g). These evidence support a tight coupling between the atmospheric changes
and the upwelling system and highlight the high dynamism of the equatorial system during the studied period.

6.3. Implications for Carbon Fluxes to the Deep-Sea Floor

The TOC record (Figure 5g) shows the highest fluxes during the period covering lithological subunit 1B
(1.65–2.08Ma), supporting an enhanced C export to the deep ocean. Nevertheless, C fluxes appear to be slightly
higher prior to the 1.85Ma transition and, particularly, during those glacial periods with LDO formation.
Uvigerina spp. is a detritivore and infaunal benthic foraminifera, typical of environments with a high organic
carbon flux and low oxygen content [Seiglie, 1968; Murray, 1991; Rathburn and Corliss, 1994]. In general,
Uvigerina spp. abundances parallel the TOC variability, with maximum percentages of Uvigerina spp. occurring
during maxima in TOC. However, this relationship is not satisfied during most of the LDOs (Figures 4a, 4b,
and 5g). These time intervals of maximum TOC fluxes toward the deep ocean did not stimulate the proliferation
of Uvigerina spp., theoretically prone to high carbon fluxes. This very distinctive response of the benthic system
to two primary productivity scenarios suggests different mechanisms of carbon sinking to the deep ocean. LDO
layers are formed by pennate-type diatoms, such as Thalassiothrix spp. [Mix et al., 2003]. These diatoms tend to
form large grids of twisted cells, which could drag down large amounts of organic carbon and other particles to
the deep-sea floor. These high fluxes of TOC would have occurred in rapid events, probably as seasonal cycles
(especially during fall or early winter) [Kemp et al., 2000] rather than as a continuous and homogeneous rain, and
apparently prevented the development of Uvigerina spp. owing to the extremely high contents of TOC. These
results highlight the role of vertical particle transport controlling the benthic population and also document
the high efficiency of the LDOs in the deep transfer and storage of carbon and their potential to increase the
storage of atmospheric CO2 in the deep ocean [Dugdale and Wilkerson, 2001; Kemp et al., 2000, 2006].

7. Conclusions

The integrated study of both lithic and biogenic components from EEP sediments allows the identification of
coupled changes in atmospheric and oceanic dynamics that occurred along the early Pleistocene (from 1.56
to 2.26Ma) indicating major meridional shifts in the main position of the ITCZ.
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Glacial periods from 1.85 to 2.26Ma present lower iron and lithic contents, dominated by coarse and unsorted
lithic particles, interpreted to reflect a southerly position of the ITCZ, approximately over the equator (ODP Site
1240). This would result in a weakening of the trade winds over the region and increasing wet dust deposition
associated withmore frequent rainfall events below the ITCZ. This situation is consistent with the dominance of
the heavy silicified diatom that formed the LDOs, typical of stratified surface waters in the vicinity of oceanic
frontal zones. The increased N availability (low δ15N values) [Etourneau et al., 2013] and opal fluxes, particularly
after 2.1Ma, support a change in the nutrient availability likely induced by a greater input of silicic acid-rich
waters, potentially from Antarctic origin. The high-latitude origin of these Si-rich waters is supported by the
detected obliquity pacing in the biological Si record. The almost absence of Uvigerina spp., a benthic species
that usually takes advantage of high TOC fluxes, supports a high and rapid flux of carbon toward the deep
ocean that overwhelmed the benthic ecosystem during LDO formation.

Glacial periods after 1.85Ma present higher deposition of finer and better sorted lithic particles and also enhanced
iron fluxes. These conditions could reflect the dominance of eolian dry deposition as a result of a northward
migration of the ITCZ. This interpretation is supported by the evidence of high primary productivity but with
remarkable differences in the nutrient balance (less N availability) consistent with conditions of enhanced
upwelling and iron fertilization in the region. This situation would have enhanced the E-W gradient in the
equatorial Pacific in agreement with the previously proposed strengthening of the Walker circulation after
1.85Ma. The high resolution of the new ODP Site 1240 records at this time frame has allowed to characterize
an abrupt shift in the system located at 1.85Ma rather than a progressive and smooth long trend change.
During this time, carbon flux toward the deep ocean was also high but occurred as a more homogeneous rain
that efficiently stimulated the development of Uvigerina spp.

The glacial period centered at 1.65Ma (MIS 56) was an exception to this 1.85Ma boundary and became amajor
breakdown to this northward shift of the ITCZ. MIS 56 and also MIS 78 are characterized by the best developed
LDOs and also the coldest glacial phases coincident with eccentricity minima paced by the 400kyr cycle. The
seasonal changes derived from this distinctive astronomical configuration combined with the growing ice of
the North Hemisphere ice sheets are suggested to have lead the recorded migrations in the ITCZ position.
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