
GRAU DE MATEMÀTIQUES - GRAU
D’ENGINYERIA INFORMÀTICA

Treball final de grau

Using Deep Learning for Food
Recognition

Autora: Ling Zhu

Directores: Dra. Petia Radeva i Bhalaji Nagarajan

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, September 13, 2020

Abstract

Image recognition is a very challenging and important problem in the com-
puter vision field. And food image classification is one of the most challenging
branches of this field.

In real-world scenarios, it is more common for a food image to have more than
one food item. As a result, the multi-label classification problem has generated
significant interest in recent years. However, multi-label recognition is a much
more difficult object recognition task compared to single-label recognition. In
this work, we will study the multi-label food recognition problem by using deep
learning algorithms, specifically Convolutional Neural Networks. We will show
how redefining the loss function as well as augmenting the training dataset can
leverage the multi-label food recognition problem. Extensive validation will be
presented to show the strengths and limitations of multi-label food recognition.

Resum

El reconeixement d’imatges és un problema molt desafiant i important en el
camp de la visió per computador. I la classificació d’imatges alimentàries és una
de les branques més difícils d’aquest camp.

En els escenaris del món real, és més freqüent que una imatge alimentària tin-
gui més d’un aliment. Com a resultat, el problema de classificació multietiquetes
ha generat un interès significatiu en els darrers anys. Tanmateix, el reconeixement
de diverses etiquetes és una tasca de reconeixement d’objectes molt més difícil que
el reconeixement d’una sola etiqueta. En aquest treball, estudiarem el problema
del reconeixement d’aliments amb etiquetes múltiples mitjançant l’ús d’algoritmes
d’aprenentatge profund, específicament Convolutional Neural Networks. Mostra-
rem com la redefinició de la funció de pèrdua i l’augment del conjunt de dades
d’entrenament poden ajudar en el problema de reconeixement d’aliments de múl-
tiples etiquetes. Es presentarà una àmplia validació per mostrar els punts forts i
les limitacions del reconeixement d’aliments multietiqueta.

Resumen

El reconocimiento de imágenes es un problema muy desafiante e importante
en el campo de la visión por computadora. Y la clasificación de imágenes de
alimentos es una de las ramas más desafiantes de este campo.

En escenarios del mundo real, es más común que una imagen de comida tenga
más de un alimento. Como resultado, el problema de la clasificación de múltiples
etiquetas ha generado un interés significativo en los últimos años. Sin embargo, el
reconocimiento de múltiples etiquetas es una tarea de reconocimiento de objetos
mucho más difícil en comparación con el reconocimiento de una sola etiqueta. En
este trabajo, estudiaremos el problema del reconocimiento de alimentos de múlti-
ples etiquetas mediante el uso de algoritmos de aprendizaje profundo, específica-
mente redes neuronales convolucionales. Mostraremos cómo la redefinición de la
función de pérdida y el aumento del conjunto de datos de entrenamiento pueden
ayudar en el problema del reconocimiento de alimentos de múltiples etiquetas. Se
presentará una validación extensa para mostrar las fortalezas y limitaciones del
reconocimiento de alimentos de múltiples etiquetas.

Acknowledgements

Firstly, I am very thankful for all the support that the supervisor of this project,
Dra Petia Radeva, has offered during this period of the work. I always wanted to
do a final project on Computer Vision, and she suggested the Food Recognition
problem which I am very interested in, so I decided to start my research on that
topic. She has helped me a lot with the structure of the project and, after the early
stages of research, to define some clear goals. The door of her office was always
open whenever I needed or had a question about my research.

I also want to thank the support received from Bhalaji Nagarajan, doctoral
student at UB specializing in the food recognition domain, who has helped me
with the technical details of the implementations and has given suggestions to
improve my results.

Talking about the personal aspect, I want to express my very profound grat-
itude to my family and friends for providing me with unfailing support and en-
couragement in overwhelming times.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 4
1.4 Planning of the project . 4
1.5 Organization of the memory . 5

2 Related work 7
2.1 Single-label Food Recognition . 7

2.1.1 Food Recognition Using Classical Approach 8
2.1.2 Food Recognition Using Deep Learning Approach 9

2.2 Multi-label Food Recognition . 10

3 Methodology 13
3.1 Deep Learning . 13
3.2 Convolutional Neural Networks . 14

3.2.1 Layers . 14
3.2.2 Optimizers . 17
3.2.3 Normalization . 18
3.2.4 Loss Function . 18

4 Implementation of Multi-label Food recognition 21
4.1 Single-label vs Multi-label recognition 21

4.1.1 Main difference . 22
4.2 Transfer Learning to the Multi-label Food Recognition 22
4.3 CNN Learning with Partial Labels . 23

4.3.1 New loss function: partial Binary Cross-Entropy 23
4.4 Feature Extraction and Architecture to Analyse 24

4.4.1 Architectures used . 25
4.5 Over-fitting Problem . 27

iii

4.5.1 Data Augmentation . 27
4.5.2 Regularization . 29

4.6 Visualization of Food Recognition . 30
4.6.1 Visualizing heatmaps of class activation in an image 31
4.6.2 Visualizing Feature Extraction 31

5 Validation of Multi-label Food Recognition 35
5.1 Experimental Settings . 35

5.1.1 Environment . 35
5.1.2 Dataset . 36
5.1.3 Evaluation Criteria . 37

5.2 Find the best model architecture . 38
5.2.1 Results . 40

5.3 Overfitting problem handling . 41
5.3.1 Result . 45

5.4 Train with new data . 55
5.4.1 Results on the Augmented Dataset with Partially Labeled

Images . 57

6 Conclusions and Future Lines 61

Food-201 i

Partial Binary Cross-entropy iii

Bibliography v

List of Figures

1.1 Single Label vs Multilabel . 3

2.1 Classical Approach . 7
2.2 Deep Learning Approach . 7

3.1 Artificial Intelligence, Machine Learning and Deep Learning 13
3.2 Convolutional Layer . 14
3.3 Max Pooling Layer . 15
3.4 Fully Connected Layer . 16
3.5 ReLu Function . 16
3.6 Sigmoid function . 16

4.1 Feature Extraction . 25
4.2 Adding layers to convolutional base model 25
4.3 Resnet50 Architecture [33] . 26
4.4 InceptionResnetV2 Core Architecture [43] 26
4.5 A deep DenseNet with three dense blocks.[18] 26
4.6 Architecture of EfficientNetB0 . 27
4.7 Example of the data augmentation images: (A) original, (B) rotation,

(C) width shift, (D) height shift, and (E) horizontal flip images. [34] 28
4.8 ImageDataGenerator . 28
4.9 Some transformations of Albumentations 29
4.10 Neural Network with Dropout . 30
4.11 Original Image . 31
4.12 Heatmap . 31
4.13 Final Image . 31

5.1 Visualization of the splits . 36
5.2 Food-201 dataset . 36
5.3 Method of F1-score . 37
5.4 F1-score of Model1 . 39

v

5.5 Loss of Model1 . 39
5.6 Per-class Validation F1-score . 41
5.7 How we get the heatmap . 44
5.8 How we compute the mask . 44
5.9 How we get the final image . 44
5.10 How we get the last dense layer to extract features 44
5.11 Activation map of some images . 48
5.12 Activation map of some images . 49
5.13 Some binary masked images . 50
5.14 Some binary masked images . 50
5.15 PCA visualization of C2 . 51
5.16 T-sne visualization of C2 . 51
5.17 PCA visualization of C3 . 52
5.18 T-sne of C3 . 52
5.19 T-sne of C3: Spinach . 53
5.20 PCA visualization of C4 . 53
5.21 T-sne of C4 . 54
5.22 T-sne of C4: Spinach . 54
5.23 Validation F1-score vs Train Support 55
5.24 Support . 57
5.25 Test F1-score of the sub-experiments 59

1 Class Support of training set . i
2 Class Support of validation set . ii
3 Class Support of test set . ii

4 New Loss Function [13] . iii

List of Tables

5.1 Architecture of trained models . 40
5.2 F1-score of the Sub-experiment 1 . 45
5.3 F1-score of the Sub-experiment 2 . 45
5.4 F1-score of the Sub-experiment 3 . 45
5.5 F1-score of the Sub-experiment 4 . 46
5.6 F1-score of the Sub-experiment 5 . 46
5.7 F1-score of the Sub-experiment 6 . 46
5.8 F1-score of the Sub-experiment 7 . 47
5.9 F1-score of the Sub-experiment 8 . 47
5.10 Description of the sub-experiments . 57
5.11 Global F1-score of the sub-experiments 58
5.12 Global F1-score of the sub-experiments 58
5.13 Per-class F1-score of the sub-experiments 58
5.14 Per-class F1-score of the sub-experiments 59

vii

Chapter 1

Introduction

In this chapter, we are going to introduce the project, starting with the context
and the motivation, following with the goals and the planning and, finally we give
the description of the contents.

1.1 Context

Very recently, COVID-19 has been looked as one of the most serious global pan-
demic. The World Health Organization (WHO [50]) has declared the COVID-19
outbreak to be a public health emergency of international concern. As of Septem-
ber 1st of 2020, over 23 million people around the world have been known to be
infected. People of all ages can be infected. However, older people and people
with pre-existing medical conditions (such as diabetes, heart disease, obesity and
asthma) appear to be more vulnerable to becoming severely ill with the COVID-19
virus, which gives prime importance to better management of health conditions.

Looking at the statistics, according to the International Diabetes Federal [48],
in 2019, approximately 463 million adults (20-79 years) were living with diabetes;
and by 2045, this will rise to 700 million. It is notable that 1 in 2 (approx. 232
million) people with diabetes were undiagnosed and diabetes has been the cause
of approx. 4.2 million deaths.

The amount of people who are overweight is also increasing rapidly, and as a
result, these people are more prone to acquire chronic diseases such as respiratory
disease, heart disease, etc. According to the World Health Organization [51], the
worldwide prevalence of obesity nearly tripled between 1975 and 2016. In 2016,
more than 1.9 billion adults aged 18 years and older were overweight. Moreover,
38 million children under the age of 5 were overweight or obese in 2019. The

1

2 Introduction

principal cause of obesity and overweight is an energy imbalance between calories
consumed and calories expended.

In both cases, Diabetes and Obesity can be prevented at some point with just
changing the diet. So getting adequate nutrition every day with some physical
activities are essential for our healthy well-being. In the last decade, diet is turning
to be one of the most significant factors in human day-to-day life. The traditional
way for people with some chronic diseases is to find a professional such as a
dietitian or a nutritionist (who advise people on what to eat to lead a healthy
lifestyle or achieve a specific health-related goal.) to help them with food selection
and quantity intake. The healthcare professionals often ask their patients to fill in
a food questionnaire where they note down all the food that they consume during
the day. The process of answering the questionnaire is very long and boring.
This gave birth to digital diaries. With the digital Diaries such as My Fitness
Pal (www.myfitnesspal.com), people can use these apps to track their food intake
more easily by logging the food on their mobile phones.

The process of noting down the list of food taken during the day is still not the
easiest way. What happens when the user goes to a restaurant or when there is
a different set of ingredients on a dish. It would be much easier to take a picture
of the plate, with some algorithm behind, constructing the food list automatically.
With automatic food recognition systems, we take a picture of what we consume
during the day and let the app track our food intake automatically. The high
demand in today’s society has given rise to many apps such as "Mama Calorie"
and "Bite IA", which aims to record and analyze the food intake automatically.

1.2 Motivation

Food image analysis includes several Computer Vision problems such as food
detection, food recognition, food image segmentation, quantity estimation, etc. In
this project, we are primarily interested in the food recognition problem.

Can we automatically recognize food? People do it relatively easy because all
their life, they have been seeing and eating food which gives them innate ability to
recognize food. However, from a computational point of view, the detection and
classification of every instance of a dish in all its variants, shapes, and positions
with a large number of images is not an easy task. Most methods proposed for
automatically analyzing food images include the step of recognition. Food recog-
nition is probably one of the most popular topics in the literature about automatic
diet monitoring [11] [41].

www.myfitnesspal.com

1.2 Motivation 3

Image-based food recognition has made substantial progress thanks to ad-
vances in deep learning in the past few years. But food recognition remains a
difficult problem for a variety of reasons. The main problems that we must face
on are:

• Complexity and variability of the data.

• Huge amounts of data to analyze.

We know that the diversity of types of food is enormous. Even within the
same food category, there is significant diversity (intra-class variation). There are
thousands of ways to take a photo of a single dish changing the angles (viewpoint
variation), the brightness (illumination conditions), etc. So, it is hard to do a food
item recognition.

Recently, Neural Networks have revolutionized the object recognition tasks [15]
[7] [21]. However, to achieve a good recognition performance, we need extensive
amounts of data because of the number of parameters to be tuned by a Neural
network algorithm. The problem with deep learning is that its training starts with
an unfavorable initial state. Then, it uses some gradient-based optimization algo-
rithm to converge the network to an optimal solution, which might not necessarily
be the global optimum. Hence, the process requires a lot of data.

Generally, food recognition algorithms can be divided into the two categories
based on the nature of images: single-label and multi-label food recognition. Fig.
1.1 shows the difference between single-label food images and multi-label food
images.

• Single-label food recognition targets food images with only one food item in
an image.

• Multi-label food recognition and detection of food images analyze multiple
food items in a single image.

Figure 1.1: Single Label vs Multilabel

4 Introduction

1.3 Goals

The main objective of this project is to explore Deep learning algorithms, in our
case "Convolutional Neural Network" (explained in the chapter 3.2) for Multi-label
Food Recognition Problem. More specifically, we want to find a model that results
in high performance of multi-label food recognition on a multi-label dataset. We
will therefore study in detail, the effectiveness of Convolutional neural networks in
multi-label food recognition problems by training different deep learning models.

To study the main objective of this project, we will dive into: To study the main
objective of this project, we will dive into:

1. Exploration of the multi-label food recognition problem.

2. Exploration of the dependence problem on the number of trained datasets.

3. Consideration of a new loss function to improve the classification

4. Realization of an extensive validation of the multi-label food recognition
problem.

Why we choose Multi-label Food Recognition problem instead of Single-label
Classification? As we all know, in the real world scenario, the proportion of dishes
with more than one type of food is higher than single class dishes. In general we
know that a single-label classification problem is simpler to solve than a multi-
label one due to the use of a softmax layer that forces the algorithm to give a
solution. Besides, we know that the multi-label annotations are more complicated
than the single label annotations because multi-label annotations might have more
annotator errors, confusion of classes, partial annotations, etc. For these reasons, it
is more useful but challenging to focus on the Multi-label Classification Problem.

During the course of the memory, we will explain the necessary concepts and
explore the classification of multiple labels using the Convolutional Neural Net-
work.

1.4 Planning of the project

This project took about a year to complete. My first meeting with my supervi-
sor was on 02/08/2019. Our planning is as follows:

• During the first months: the principal tasks are searching useful information,
reading articles about Food Recognition, and learning necessary theories and
technologies.

1.5 Organization of the memory 5

• During the next three months: Developing deep learning models for multi-
label food recognition using Google Colab Pro.

• In the following months: trying to improve our model developed previously
and solve the overfitting problem.

• In the last phase: the tasks are continuing with our experiments, cleaning
codes, getting conclusions after comparing the result, and elaborating the
project memory and defense presentation.

1.5 Organization of the memory

The rest of the memory is organized as follows:

• Related works chapter: discusses recent work in the area of Food recogni-
tion using deep learning.

• Methodology chapter: explains the concepts required to address the Con-
volutional Neural Networks.

• Implementation of Multi-label Food Recognition chapter: explains the con-
cepts required and implementations to address the Multi-label Food Recog-
nition problem.

• Validation of Multi-label Food Recognition chapter: exposes the results of
all the experiments.

• Conclusions and future lines chapter: concludes the project with an analy-
sis of the work as well as considers the future work.

• Bibliography chapter: websites, articles and literature consulted.

6 Introduction

Chapter 2

Related work

In this chapter, we will present some previous work done in the field of Food
Recognition. We will discuss the area of Single-label Food Recognition and Multi-
label Food Recognition to get a notion of the tendencies in this field.

2.1 Single-label Food Recognition

The main application of Food analysis is to improve people’s lives, more clearly,
to improve people’s diet. One of the main tasks of Food Analysis is Food Recogni-
tion. Most research in the food recognition area considers that each image sample
contains only one class food. So, we can assume food recognition as an image clas-
sification problem. For all the existing works in the food recognition area, there
are two different approaches:

Figure 2.1: Classical Approach

Figure 2.2: Deep Learning Approach

7

8 Related work

2.1.1 Food Recognition Using Classical Approach

The seminal paper on food recognition done by Bossard et al. [22] proposed
a significant work in the area of Food Recognition. They created a new food
database called Food-101. This dataset contains 101 food categories, and for each
class, there were 1000 images. They achieved a 58% accuracy on the test set. The
steps that they followed were:

1. Firstly, they extracted the color SURF [3] features for super-pixels on each
image.

2. Then, they clustered all the super-pixels into groups using Random Forest
based on their respective Fisher vector [38] encoded feature vectors to obtain
discriminative components across all the images.

3. Finally, they trained a binary SVM using the top N mined components of
each category.

Joutou et al. [46] proposed a Multiple Kernel Learning (MKL) method com-
bining different features: SIFT-based bag-features, color histogram, and Gabor
Texture features (it is a linear filter used for texture analysis). They created a new
Japanese food dataset with 50 classes (100 images of each one). The accuracy of
their new dataset was 61.3%. A follow-up study by Hoashi et al. [17] achieved
an accuracy rate of 62.5% using the same method mentioned previously on an
extended dataset of 85 classes.

Chen et al. [10] created the Pittsburgh food database which contained 101
classes of American fast food images taken in a controlled environment. The
researchers benchmarked the dataset using two standard approaches, color his-
togram and bag of SIFT features in conjunction with a discriminative classifier.
Yang et al. [57] proposed a new representation for food items that calculates
pairwise statistics between local features computed over a soft pixel-level segmen-
tation of the image sample into eight ingredient types. They tested on the subset
of Pittsburgh dataset [10] and they achieved an accuracy rate of 28.2%.

Bettadapura et al. [4] proposed to leverage the context of where the picture
was taken (in their case, with additional information about the restaurant). They
combined 6-feature descriptors (2 color-based and 4 SIFT-based) and SMK-MKL
Sequential Minimal Optimization to train an SVM classifier. They tested on a
dataset consisting of 3750 food images of 75 categories (50 images per category)
and achieved an accuracy of 63.33%.

2.1 Single-label Food Recognition 9

2.1.2 Food Recognition Using Deep Learning Approach

Recently, Convolutional Neural Networks [2] have been widely used for fea-
ture extraction in object recognition and have achieved much better performance
than the classical ones. This fact can be observed also for the food recognition
problem.

Kagaya et al. [22] trained convolutional neural network for food recognition
and also non-food detection. They created a food database of 170,000 images
containing 10 popular food items. They used 6-fold cross-validation to get the op-
timal hyperparameters. To test the performance they used their own dataset and
they showed that CNN outperformed all the other baseline classical approaches
by achieving an accuracy rate of 73.7% for 10 classes.

Kawano et al. [24] proposed the idea of using CNN. In this case, AlexNet
proposed by Krizhevsky et al. [26] was used as a feature extractor. The authors
achieved an accuracy of 72.3% on the UEC-FOOD100 dataset (contains 100 classes
of Japanese food: http://foodcam.mobi/dataset.html).

Yanai et al. [56] examined the effectiveness of the Alexnet network (which was
pretrained on 2000 categories of the ImageNet dataset including 1000 food-related
categories) for food recognition task by fine-tuned the AlexNet. They achieved
the best results on public food datasets so far (with a top-1 accuracy of 78.8% for
UEC-FOOD100 [28] dataset and 67.6% for UEC-FOOD256 [23]).

Wu et al. [54] proposed a visual food recognition framework that integrates
the inherent semantic relationships among fine-grained classes.

Martinel et al. [27] proposed a new CNN structure that combines slice convo-
lution block to capture specific information with extracted visual features from the
Wide Residual Networks (WRNs), proposed by Sergey et al. [58]). They achieved
the highest Top-1% and Top-5% on Food-101 (90.27%, 98.71%), UECFood-256 [23]
(83.15%, 95.45%), and UECFood-100 [28] (89.58%, 99.23%).

Most recently, Myers et al. [31] proposed the Im2Calories system for food
recognition using CNN-based approaches. They used the GoogleLeNet [44] as a
base architecture and fine-tuned the pre-trained model on Food101. They achieved
top-1 accuracy rate of 79% on the Food-101 test set.

http://foodcam.mobi/dataset.html

10 Related work

2.2 Multi-label Food Recognition

In real-world scenarios, the proportion of the multi-food images is higher than
one item food images. Marsuda et al. [30] proposed the first work of multiple
food recognition from food images. They proposed a new method with two steps:

1. Detect several candidate regions by fusing outputs of region detectors. In
the paper they used four kinds of candidate region detection method:

• Whole image: this method assumes that one image contains only one
food item.

• Deformable part model method (DPM): this model was proposed by
Felzenszwalb et al. [14]. The DPW contains a global root filter and
several part models. Each part model specifies a spatial model (defines
allowed placements for a part relative to a detection window and its
cost). Both root and part filters are scored by computing the dot product
between a set of weights and HoG features [12].

• Circle detector: detects regions of dishes by extracting circular contours
(using Canny Edge Detector [9]) from an image.

• JSEG region segmentation: divide an image into several pieces of re-
gions using JSEG Algorithm (proposed by Deng et al. [55]) as a region
segmentation algorithm.

2. Apply a feature-fusion-based food recognition method for bounding boxes
of the candidate regions with various kinds of visual features, such as his-
togram of oriented gradient (HoG [12]).

They used trained SVM classifiers by multiple kernel to compute the evalua-
tion values of each region belonging to all the given classes. These values were
sorted and the system only outputs the top 10 classes for the user to choose.

Matsuda et al. [29] proposed a method to recognize multiple-food meal images
which include multiple food items considering co-occurrence statistics of food
items.

As representative work, Aguilar et al. [1] proposed a semantic food detection
framework, which consists of three parts, namely food segmentation, food detec-
tion, and semantic food detection. Food segmentation uses the fully CNNs to
produce the binary image and then adopts the Moore-Neighbor tracing algorithm
to conduct boundary extraction. Food detection consists of retraining YOLOv2

2.2 Multi-label Food Recognition 11

(Redmon et al. [35]). Semantic food detection removes errors from object de-
tection by combining results of segmentation and detection to obtain final food
detection results.

Zhang et al. [60] presented a new mobile food recognition system which is
capable to do multiple-food recognition of 15 food categories on the phone. The
photo taken by users will be uploaded to the server. On the server side, the food
image was firstly segmented into possible salient regions, and these regions were
further grouped based on the similarity of their color, HOG and SIFT feature vec-
tors. Then they trained a linear multiple-class SVM classifier for each class using
the Fisher vector encoded feature vectors (including SIFT and color features) of
salient regions. They have achieved an accuracy rate of 85% in their experiments.

In the Im2Calories [31] system mentioned earlier, the researchers proposed a
new multi-label dataset (known as Food-201) which contained 201 food items.
They developed a new multi-label classifier by replacing the last softmax layer to
a multiple-label classifier named logistic nodes. An average top1 accuracy rate of
50% were achieved.

There is also some work done on the area of multi-label ingredient recognition.
For example, Pan et al. [32] proposed a deep learning method for automatic multi-
class classification of food ingredients.

Zhou et al. [61] proposed a novel approach to exploit ingredient and label
relationships through bipartite-graph labels, and then combined that with a Con-
volutional neural network in a unified framework for multi-label ingredient recog-
nition and dish recognition.

Marc Bolaños et al. [5] proposed a deep multi-ingredients recognition method.
They used Inception-V3 [45] and ResNet-50 [16] as basic deep architectures. For
these models, they modified the last layer to apply multi-label classification over
N possible outputs to predict the list of ingredients in a food image.

12 Related work

Chapter 3

Methodology

In this chapter, we will explain the concepts required to address the Convolu-
tional Neural networks. And then, we will present some relevant explanations for
better understanding.

3.1 Deep Learning

Artificial Intelligence (AI) is a general field that encompasses Machine Learn-
ing (ML) and deep learning. We can define it as an academic discipline devoted
to the theory and development of computer systems able to perform tasks requir-
ing human intelligence. And referring to machine learning, it is a subfield of AI
that uses algorithms to learn from data and enables machines to improve with
experience.

Figure 3.1: Artificial Intelligence, Machine Learning and Deep Learning

Deep Learning (DL) is a subfield of ML algorithms that permits software to
train itself to perform tasks, such as image recognition, by exposing multilayered
neural networks to cast amounts of data. Most modern DL models base on arti-
ficial neural networks, specifically, Convolutional Neural Networks (explained in
section 3.2).

13

14 Methodology

3.2 Convolutional Neural Networks

The Convolutional Neural Networks are a type of Artificial Neural Networks
(ANN: based on neural networks that make up the nervous system of the human
being), which have become a research focus in the field of image analysis and
recognition.

Convolutional neural networks are very similar to ordinary neural networks:
they are composed of neurons with learnable weights and biases. Each neuron
receives some input and then performs dot product. The entire neural network
still represents a differential score function: mapping from the original image pixel
to the class score. In the last layer (the fully connected layer) there is also a loss
function (explained in the section 3.2.4) that assures the optimization of the model
in terms of training from a pre-annotated training dataset.

3.2.1 Layers

We can say that a convolutional neural network (also known as convnet), con-
sists of an input, multiple hidden layers, and an output layer. And importantly, it
takes as input tensors of shape (image Height, image width, image channels).

The hidden layers of a convnet typically consist of a series of convolutional
layers. The activation function is commonly a ReLu layer, and subsequentially it
follows by additional convolutions such as pooling layers, fully connected layers,
and normalization layers.

Convolutional Layer

A Convolutional Layer: consists of a set of learnable filters. Every filter is
spatially small in width and heights. We apply the filters to the original image or
other feature maps in convnets.

Figure 3.2: Convolutional Layer

3.2 Convolutional Neural Networks 15

The convolution layers learn the local pattern. So, this key characteristic gives
convnets two interesting properties:

• The patterns that they learn are translation invariant: after learning a cer-
tain pattern in the top right corner of a picture, a convnet can recognize it
anywhere.

• They can learn spatial hierarchies of pattern: a first convolution layer will
learn small ones such as edges, a second convolution layer will learn larger
ones made of the features of the first layers, and so on.

Pooling Layer

The pooling Layer: also known as a subsampling layer, is used to reduce the
dimensions of the feature maps. So, it reduces the number of parameters to learn
and the amount of computation performed in the network.

These layers are needed because the number of features obtained from a con-
volution layer can be very high. For example, an RGB image convoluted with a
mask of size HxWxC would have HxWxC (Number of Filters) features and would
increase significantly the output of the convolution. Training on such a high num-
ber of features would result in problems like over-fitting.

Figure 3.3: Max Pooling Layer

Fully-connected layer

The fully-connected layer: uses the feature information to reach a final class
label. Every neuron in one layer connects to every neuron in another layer.

The nodes in the last layer of fully-connected layers have a specific activation
function that will generate a probabilistic result for each label. In the case of a
multi-label classification problem, the activation function is generally a Sigmoid
function.

16 Methodology

Figure 3.4: Fully Connected Layer

Activation Layer

The activation layer: is an activation function that decides the final value of a
neuron. So we can say that it is a function used in a layer of a neural network to
define the output of that node given as input the result of applying all previous
layers. There are numerous activation functions. We will only explain some of
them used in this project:

• ReLu: is the abbreviation of the rectified linear unit, which removes nega-
tive values from an activation map by setting them to zero. It applies the
following non-saturating activation function

ReLu(x) = max(0, max) (3.1)

Figure 3.5: ReLu Function

• Sigmoid: limits the output to a range between 0 and 1. This function is used
in the prediction of probabilities. The formula is as follows:

S(x) =
1

1 + e−x (3.2)

Figure 3.6: Sigmoid function

3.2 Convolutional Neural Networks 17

3.2.2 Optimizers

In the learning of the model, we also need to specify optimizers that define how
the network will be updated based on the loss function. We will now explain the
ones that we will use in our project: Stochastic Gradient Descent (SGD), Adaptive
Moment Estimation (Adam), and AdaDelta.

• Stochastic Gradient Descent: is an iterative optimization method based on
Gradient Descent. We can define the gradient descent like a first-order op-
timization algorithm used to find a local minimum of a function, so all we
have to do is find all the points where the derivative goes to 0.

To find a local minimum using gradient descent, we have to take steps
(known as learning rate) proportional to the negative of the gradient of the
function at the current point. In this case, it uses the entire dataset to calcu-
late the gradient.

We can define Stochastic Gradient Descent as a stochastic approximation
of Gradient descent, where instead of using the actual gradient, it uses an
estimated gradient calculated from a randomly selected subset of the data.

• Adaptive Moment Estimation (Adam): was published for the first time in
2014 by Diederik P. Kingma[25]. It is a first-order gradient-based optimiza-
tion algorithm of stochastic objective functions. It combines the advantages
of the following two extensions of stochastic gradient descent:

– Adaptive Gradient Algorithm (AdaGrad): it maintains a per-parameter
learning rate instead of a fixed value.

– Root Mean Square Propagation (RMSProp): it maintains a per-parameter
leaning rate that is adapted based on the average of the last magnitudes
of the gradients for the weight.

This method computes individual adaptive learning rates for different pa-
rameters from estimates of first and second moments of the gradients.

Moreover, it calculates an exponential moving average of the gradient and
squared gradient, and the parameters β1 and β2 control the decay rates of
these averages.

• AdaDelta: was proposed for the first time in 2012 by Matthew D.Zeiler[59].
It is an extension of Adagrad that adapts learning rates based on a moving
window of gradient updates.

18 Methodology

Adagrad has the following two drawbacks:

1. It has a continually decaying learning rate throughout the training.

2. It requires a manual selection of the global leaning rate.

With these two drawbacks in mind, Adadelta implements two new ideas:

1. Accumulates the sum of squared gradients over a restricted time win-
dow rather than overall time.

2. Corrects the mismatch in units that exist in most gradient descent based
algorithms.

3.2.3 Normalization

Generally, the datasets used in deep learning are massive, so the input of the
network can vary significantly. For this reason, we usually need some techniques
like data normalization and batch normalization.

We can define normalization as a method that makes different samples look
more similar to each other in the machine learning model, which helps the model
learn and generalize well to new data.

There are different forms of data normalization. The most common one is:
centering the data on 0 by subtracting the mean from the data, and giving the
data a unit standard deviation by dividing the data by its standard deviation.

In 2015, Ioffe and Szegedy[20] introduced the new concept of "Batch normaliza-
tion". This layer can normalize data during the training. It works by maintaining
an exponential moving average of the batch-wise mean and variance of the data
during training. Many architectures use this new layer, such as ResNet50 [16].

3.2.4 Loss Function

We can define the loss function as the quantity that will be minimized during
training. It represents a measure of success for the task at hand, in other words,
how well are the classifiers doing the recognition task.

Choosing the right loss function for the right problem is extremely important:
the network will try everything to minimize the loss; so if the loss does not fully
correlate with success for the task at hand, sometimes the network will end up
doing unexpected things.

It exists different loss functions and the chose of the loss function depends on
the learning problem. Now, we will explain some of them:

3.2 Convolutional Neural Networks 19

• Softmax Loss: is a commonly used loss function which is essentially a com-
bination of multinomial logistic loss and softmax.

Given a training set {(x(i), y(i); i ⊆ 1,, N, y(i) ⊆ 1,, C} , where x(i) is the
i-th input image patch, and y(i) is its target class among the C classes. The
prediction of j-th class for i-th input is computed with softmax function:

p(i)j =
ez(i)j

∑C
l=2 e(zl)i (3.3)

The softmax loss is defined as:

Lso f tmax = − 1
N
[

N

∑
i=1

N

∑
j=1

1yi = j log (pj)
i] (3.4)

• Binary cross-entropy: this loss is commonly used for multi-class problems.
It calculates a loss between two distributions:

L(p, q) = −
n

∑
i=0

pi ln qi (3.5)

where p is the target distribution and q is the predicted distribution(com-
puted by the neural network).

20 Methodology

Chapter 4

Implementation of Multi-label
Food recognition

In this chapter, we will introduce some useful concepts and implementations
to address the Multi-label Food Recognition Problem. We will first explain the
difference between single-label recognition and multi-label recognition. Then, we
will dive into the common techniques used in the multi-label recognition problem.

4.1 Single-label vs Multi-label recognition

Multi-label image classification is a classification task where each input sample
can be assigned multiple labels. The number of labels per image is usually vari-
able. And for a single-label classification task, each sample can only be labeled as
one class.

Besides the challenges shared with single-label image classification (e.g., large
intra-class variation caused by viewpoint, scale, occlusion, illumination), multi-
label classification is more difficult because both the input images and output
label spaces are more complex. Multi-label datasets usually have many features
that do not exist in single-label datasets such as high dimensionality, unbalanced
data, and the correlation between labels.

Furthermore, collecting a multi-label dataset is more difficult and less scalable
than collecting a single-label dataset, because collecting a consistent and exhaus-
tive list of labels for every image requires significant effort.

21

22 Implementation of Multi-label Food recognition

4.1.1 Main difference

To compute the loss we need two inputs, the true labels for the images and
the predicted labels. Cross-entropy is the default loss function to use for multi-
class classification problems. We understand cross-entropy as the difference be-
tween two probability distributions for a given variable or set of events. The
cross-entropy H(p, q) of the distribution "true labels"(q) relative to a distribution
"predicted labels"(p) over a given set is defined as:

H(p, q) = −Ep[log q] (4.1)

where Ep[∗] is the expected value operator with respect to the distribution p.

In the single-label classification model, we use a softmax activation function
in the last layer. For each image, we want to maximize the probability of a single
class. As the probability of one class increases, the probability of the other class
decreases. So, we can say that the probability of each class is dependent on the
other classes.

In our case, we focus on the multi-label food classification problem. The input
can be classified into one or more classes. Using the softmax as the activation func-
tion will not be appropriate because we want the probabilities to be independent
of each other to avoid obtaining, 0, 1, or many recognized classes. Instead, we
can use the sigmoid activation function. This will predict the probability of each
class independently. So by using sigmoid, we will turn a multi-label classification
problem into several binary classification problems. Since we have converted it
into several binary classification problems, we will use the binary_cross-entropy
as our loss function.

In Keras, there are different types of losses available (all losses are available via
a class handle and via a function handle) such as probabilistic losses and logistic
losses. We have used the binary_cross-entropy loss.

4.2 Transfer Learning to the Multi-label Food Recognition

A common approach to deep learning on a small dataset is to use a pre-trained
model on a bigger dataset although from a different domain, know as fine-tuning.
This process is called Transfer learning and presents one of the main advantages
of deep learning. In this context, we get a pre-trained network as a saved network
trained previously on a different big dataset, typically on a large-scale generic
image-classification task.

4.3 CNN Learning with Partial Labels 23

The majority of the pre-trained networks are trained on a subset of the Im-
ageNet database, which is used in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC [37]). These networks have been trained on more than a mil-
lion images and can classify images into 1000 object categories.

The main reasons that we opted the pre-trained model were:

• By using a pre-trained model, we will save more training time and compu-
tation cost than train a new model from scratch.

• All pre-trained models have been trained with more data: in our case, we
have limited data.

• Better performance of neural networks (in most cases).

There are two ways to use a pre-trained network: feature extraction and fine-
tuning. We will cover the technique used in our project: feature extraction.

4.3 CNN Learning with Partial Labels

We also need to address the concept of partially-labeled multi-class classifica-
tion. A partially-labeled food recognition dataset contains image samples where
some of the images are fully labeled while other images are only partially labeled.

During the development of this project, we have seen the necessity of collecting
new image samples for the Food-201 dataset. Due to the complexity of multi-
label annotations, we only have single-labeled them. Training convnets by treating
missing labels as negatives [6] [42] results in a significant performance drop as
many ground-truth positive labels are falsely labeled [19].

4.3.1 New loss function: partial Binary Cross-Entropy

The most popular loss function to train a model for multi-label classification
is binary cross-entropy (BCE). To be independent of the number of categories, the
BCE loss is normalized by the number of classes.

This becomes a drawback for partially labeled data because the back-propagated
gradient becomes small. So, when partial labeling is considered, the proportion of
false negatives will increase by adding single-labeled images.

In order to solve this problem we have opted for a new loss function, known
as Binary Cross-Entropy (BCE) for partial labels (partial BCE) defined in [13].

24 Implementation of Multi-label Food recognition

The partial BCE normalizes the loss function by the proportion of known la-
bels. Let us consider the following Notation:

– Number of classes: C

– Number of training samples: N

– Training data: D = (I1, y1),, (IN , yN) where Ii is the ith image and
yi = [yi

1,yi
C] ∈ γ ⊆ {−1, 0, 1}C where {-1 = absent, 0 = present and

-1 = unknown}

– Proportion of known labels: Py ⊆ [0, 1]

The new loss function is defined as follows:

`(x, y) =
g(Py)

C

C

∑
c=1

[
1[yc=1] log

(
1

1 + exp (−xc)

)
+ 1[yc=−1] log

(
exp (−xc)

1 + exp (−xc)

)]
(4.2)

As you can observe in the equation above, the partial-BCE loss ignores the cate-
gories for unknown labels (yc = 0). In the standard BCE loss, the normalization
function is g(py) = 1. Unlike the standard BCE, the partial-BCE gives the same
importance to each example independent of the number of known labels, which is
useful when the proportion of labels per image is not fixed. This loss adapts itself
to the proportion of known labels.

The function g normalizes the loss function with respect to the label propor-
tion. They proposed the normalization function below which has the same behav-
ior as the BCE loss when all the labels are present i.e. g(1) = 1.

g(Py) = αPγ
y + β (4.3)

According to the paper mentioned previously, for the new loss function, they
introduced several hyper-parameters to their loss function and the default values
are: α = 4.45, β = 5.45 and γ = 1.

4.4 Feature Extraction and Architecture to Analyse

Convolutional neural networks used for image classification comprise two
parts: a series of pooling and convolution layers as the first part, known as a
convolutional base, and a densely connected classifier as a second part.

4.4 Feature Extraction and Architecture to Analyse 25

Feature extraction consists of taking the convolutional base of the previous
network, running the new data through it, and training a new classifier on top of
the output. We only reuse the convolutional base because information learned by
the convolutional base are likely to be more generic.

In this project, we will extend the convolutional base model by adding dense
layers on top and running the whole model end-to-end on the input data. This
technique is slow and expensive but allows us to use data augmentation.

Figure 4.1: Feature Extraction

Figure 4.2: Adding layers to convolutional base model

4.4.1 Architectures used

Different learning models are made available in the literature. Referring to the
image classification, the VGG-16 [39](which was trained for the ImageNet “Large
Visual Recognition Challenge") is one of the most popular pre-trained models for
that. Also, the ResNet50 [16] Inceptionv3 [45] and EfficientNet [47]. We can use
these models for prediction, feature extraction, and fine-tuning.

We have used the following models as the convolutional base models in our
experiments:

26 Implementation of Multi-label Food recognition

• ResNet50 [16]: this model was proposed by Kaiming He et al. who was
the winner of ILSVRC 2015. The model allowed us to train extremely deep
neural networks with 150+ layers successfully. It introduced the concept of
skip connection. On the model there is a heavy use of batch normalization.
And there is no fully connected layer at the end of the architecture.

Figure 4.3: Resnet50 Architecture [33]

• InceptionResNetV2 [43]: this model combines the Inception [44] architec-
ture, with residual connections. In the InceptionResnet block, multiple sized
convolutional filters are combined with residual connections.

Figure 4.4: InceptionResnetV2 Core Architecture [43]

• DenseNet169 [18]:this network connects all layers in such a way each layer
obtains additional inputs from all preceding layers and passes its own feature-
maps to all subsequent layers.

Figure 4.5: A deep DenseNet with three dense blocks.[18]

4.5 Over-fitting Problem 27

• EfficientNetB5 [47] and EfficientNetB7 [47]: Efficient model was proposed
by Mingxing Tan et al. They proposed a new scaling method that uniformly
scales all dimensions of depth, width and resolution of the network. They
used the neural architecture search to design a new baseline network and
scaled it up to obtain the EfficientNet.

Figure 4.6: Architecture of EfficientNetB0

In Keras, there is a module called Keras applications [49]. This module pro-
vides pre-trained models (all pretrained on the ImageNet dataset) like Resnet50
[16] (also it variants), EfficientNet [47] (also it variants) InceptionRestNetV2 [43]
for deep neural networks.

4.5 Over-fitting Problem

The over-fitting problem is a common problem in machine learning. It is a
modeling error that occurs when our neural network fits closely with the training
set, but it might not generalizes and makes predictions for new data correctly. In
other words, we can say that the training accuracy is higher that validation/test
accuracy. So what can we do to reduce the over-fitting problem?

Generally talking, the problem of overfitting can reduce by adding new train-
ing data. But in the case of multi-label image recognition, this process is not easy.
The label annotations and image collections are very challenging due to its com-
plexity. So, instead of collecting new image samples, we can use techniques to
generate images from existing ones.

4.5.1 Data Augmentation

The data augmentation technique consists of generating more training data
from the existing ones by augmenting images via some transformations. The goal
is that at training time, our model will never see the same picture twice. Given
that our network is seeing new data slightly modified versions of the input data,
it can learn more robust features.

28 Implementation of Multi-label Food recognition

Figure 4.7: Example of the data augmentation images: (A) original, (B) rotation,
(C) width shift, (D) height shift, and (E) horizontal flip images. [34]

In our case, we have used ImageDataGenerator from Keras and Albumenta-
tions library from Github[8]:

• ImageDataGenerator: In Keras, we can do random transformations using
ImageDataGenerator. As you can see in the following figure 4.8, we can
apply different geometric changes such as rescale, random horizontal flips,
etc.

Figure 4.8: ImageDataGenerator

• Albumentations: is a flexible image augmentation library based on NumPy,
OpenCV, and Imgaug and is written in Python. This library is widely used

4.5 Over-fitting Problem 29

in deep learning search, machine learning competitions, and open source
projects. We have chosen this library due to its numerous set of transforma-
tions.

Referring to our implementations, we have applied the following transfor-
mations in some of our experiments (you can find the explanation of each
one in their official Github webpage):

Figure 4.9: Some transformations of Albumentations

Notation

To distinguish between both techniques, we use the following notations:

– Type 1: data augmentation using ImageDataGenerator.

– Type 2: data augmentation using Albumentations.

– Type 3: data augmentation using both techniques.

4.5.2 Regularization

The common way to avoid over-fitting is to put constraints on the complex-
ity of a network by forcing its weights to take only small values, which makes
the distribution of weight values more regular. We called this as the weight reg-
ularization, and it is done by adding to the loss function of the network a cost
associated with having large weights. The cost comes in two types:

• L1 regularization: the cost added is proportional to the absolute value of
the weight coefficient(the L1 norm of the weights: W)

Cost = LossFunction + λ
M

∑
j=0
|Wj| (4.4)

• L2 regularization: the cost added is proportional to the square of the value
of the weight coefficients.

Cost = LossFunction + λ
M

∑
j=0

W2
j (4.5)

30 Implementation of Multi-label Food recognition

Dropout

Dropout was presented for the first time in 2014 by Nitish Srivastava et al. [40].
It is one of the most effective and most commonly used regularization techniques
for neural networks. Dropout, applied to a layer, consists of randomly dropping
out some output features of that layer during training. The dropout rate is the
fraction of the features that are drop out and it’s usually set between 0.2 and 0.5.

Figure 4.10: Neural Network with Dropout

We have used ’SpatialDropout2D’ [52] from Keras that performs the same func-
tion as Dropout. However, it drops entire 2D feature maps instead of individual
elements.

4.6 Visualization of Food Recognition

It is often said that deep-learning models are "black boxes" because the learning
representations are difficult to extract in a human-readable form.

Fortunately, Convolutional Neural Networks have inputs (images) that are vi-
sually interpretable by humans so we have various techniques for understanding
what do they learn, how they work, and why they work in a given manner while
for other deep neural network architectures visualizations are very more difficult.
In this project we used heatmaps as a technique to visualize the results:

• Visualizing heatmaps of class activation in an image: very useful for un-
derstanding which parts of an image were identified as belonging to a given
class.

4.6 Visualization of Food Recognition 31

4.6.1 Visualizing heatmaps of class activation in an image

This technique is useful for understanding which parts of a given image led
a convnet to its final classification decision, and also for debugging the decision
process of a convnet.

This general category of techniques is called class activation map visualization.
It consists of producing heatmaps of class activation over input images. A heatmap
is a 2D grid of scores associated with a specific output class, computed for every
location in any input image indicating how important it is for that class.

The activation heatmaps may differ for different layers in the network, as all
layers view the input image differently, creating a unique abstraction of image
based on their filters. In this project, we have focused on the final layer of model,
as the class prediction label will largely depend on it.

We computed the heatmaps by using the one describe in “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-based Localization" [36].

Figure 4.11:
Original Image

Figure 4.12:
Heatmap

Figure 4.13: Final
Image

4.6.2 Visualizing Feature Extraction

In machine learning, feature extraction starts from an initial set of measured
data(images) and builds derived values (features) intended to be informative, fa-
cilitating the subsequent learning and leading to better human understandings.
We have followed the steps below:

1. Generate features for each class from activation maps.

• Create the activation maps.

• Convert the activation map to a binary mask and multiply with the
original image.

32 Implementation of Multi-label Food recognition

• Use the masked image on the classifier and extract features from the
last but one Full-Connected layer.

2. Apply visualization techniques as PCA and t-SNE (see bellow) to visualize
the features.

Principal Component Analysis

Principal component analysis (known as PCA) is a method that projects a
higher-dimensional space into a lower-dimensional space by maximizing the vari-
ance of each dimension. It is one of the most important methods of dimensionality
reduction for visualizing data.

For visualization, the first and second component can be plotted against each
other to obtain a two-dimensional representation of the data that captures most
of the variance (most of the relevant information), useful to analyze and interpret
the structure of a data set.

T-distributed stochastic neighbor embedding

T-distributed stochastic neighbor embedding, known as t-SNE, is a nonlin-
ear dimensionality reduction algorithm that uses the local relationships between
points to create a low-dimensional mapping. It was developed by Laurens van der
Maaten and Geoffrey Hinton in 2008 [53].

The algorithm creates a probability distribution using the Gaussian distribu-
tion that defines the relationships between the points in high-dimensional space
and then uses the Student t-distribution to recreate the probability distribution in
low-dimensional space. This technique finds clusters in data by making sure that
an embedding preserves the meaning in the data.

Embedding Projector

Embedding Projector is a web application for interactive visualization and
analysis of high-dimensional data. We used the standalone version at projector.
tensorflow.org, where users can visualize their high-dimensional data without
the need to install and run TensorFlow. The Embedding Projector offers three
methods of reducing the dimensionality of a dataset:

• PCA: the Embedding Projector can computes the top 10 principal compo-
nents.

projector.tensorflow.org
projector.tensorflow.org

4.6 Visualization of Food Recognition 33

• T-SNE: the Embedding Projector offers two-dimensional and three-dimensional
t-SNE views.

• Custom: users can construct specialized linear projections based on text
searches.

34 Implementation of Multi-label Food recognition

Chapter 5

Validation of Multi-label Food
Recognition

In this chapter, we begin discussing the experimental part of this project. First,
we will introduce our experiment settings. Then we will describe our experiments.
Finally, we will dive into the results of each of them.

5.1 Experimental Settings

In this section we will discuss about the environment, dataset used and evalu-
ation criteria.

5.1.1 Environment

We have implemented all the experiments using Keras 2.0 with TensorFlow 1.0
as the back-end and have run all of the experiments on Google Colab Pro.

Keras is a deep-learning framework written in Python that provides a conve-
nient way to create and train a deep-learning model. We have picked up Keras as
it has a user-friendly API that makes it easy to prototype deep-learning models
and it has built-in support for convolutional networks.

TensorFlow is an end-to-end open source platform for machine learning by
Google. It is based on data flow graphs where each edge is a multidimensional
array, and each node represents an operation with this array. We have used Ten-
sorFlow backend using Keras for our model creation.

Google Colab Pro is a free Jupyter notebook environment that requires no
setup and runs entirely in the cloud. We have used Google Colab Pro instead of

35

36 Validation of Multi-label Food Recognition

Google Colab (free version one) because Colab Pro provides faster GPUs, longer
run-times, and more memory.

5.1.2 Dataset

The dataset Food-201 [31] is provided with a total size of 2.58GB (with 50374
images and annotation files). We have split the whole dataset into training, val-
idation, and testing sets. There are 31718 images for training, 15132 images for
validation, and 3524 images for testing. (you can find for more detail about the
dataset in 6).

Figure 5.1: Visualization of the splits

The dataset represents 201 different food classes. For each image sample, re-
mind that it might contain more than one category (multi-labeled).

Figure 5.2: Food-201 dataset

5.1 Experimental Settings 37

5.1.3 Evaluation Criteria

To evaluate the performances of our model, we use the following metrics:

• Micro F1-score: we can interpret as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0. In
this case, it shows the global performance:

F1 = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(5.1)

• Per-class precision: is defined as the number of true positives over the num-
ber of true positives plus the number of false positives:

Precision =
True Positives

(True Positives + False Positives)
(5.2)

• Per-class recall: is defined as the number of true positives over the number
of true positives plus the number of false negatives:

Recall =
True Positives

(True Positives + False Negatives)
(5.3)

• Per-class F1-score: shows the F1-score of each class.

Another important thing that we want to point out is that in our implementa-
tions, we have adapted the F1-score function to evaluate the model in each epoch
because it is not available in Keras.

Figure 5.3: Method of F1-score

38 Validation of Multi-label Food Recognition

The reason for this selection is that in the Food-201 dataset, there are imbal-
anced classes and an imbalanced dataset usually causes the convnet model to be
more biased towards the majority class and poor classification of the minority
class. Because of that, we have decided to use F1-score instead of accuracy.

In the library Scikit-learn, there is a function called "Classification Report"
which shows the representation of the main classification metrics per-class basis.

5.2 Find the best model architecture

This experiment aims to identify the best model architecture to suit in multil-
abel food recognition problem. For this reason, we have trained different models
evaluated in the Food-201 dataset.

All the experiments were carried out with input shape = 224 x 224 x 3 and
batch size = 12 as our fixed parameters. The first model was executed using the
hyperparameters described below:

– Pretrained model: Resnet50

– Batch size: 12

– Input shape: 224 x 224 x 3

– Without data augmentation

– Without dropout

– Loss function: binary_cross-entropy

– Optimizer: Stochastic Gradient Descent with learning rate 0.01

From figure 5.4 and 5.5, which plot the F1-score and loss curves of the first
model, we can observe a clear example of an overfit model. Therefore, we decided
to train new models modifying the following hyper-parameters:

• Optimizers and learning rates: is important to choose a suitable optimizer
to train deep models because the optimizers are used to update and calculate
network parameters that affect model training and the output, so as to ap-
proximate or reach the optimal value, thereby minimizing the loss function.
We had tried with several optimizers such as Adam with default values,
Adam with lr=0.01, and Adadelta with default values. These changes aimed
to see the implication of using different optimizers in a convnet model.

• Regularization: the aim of adding regularization techniques in the convnets
is to reduce the overfitting problem of the first trained model.

5.2 Find the best model architecture 39

• Data augmentation techniques: We also applied some data augmentation
techniques to handle with overfitting problem. You can find the techniques
used in section 4.5.1.

• Base architecture: by changing the base architecture, we aimed to see the
performance of each pre-trained model in our Food-201 dataset.

• New data: after analyzing the per-class performance, we decided to add new
image samples into the dataset because in some specific classes there was not
enough data that enables our model to learn. So, retraining the algorithm on
a bigger, richer, and more diverse data set should improve its performance.

Figure 5.4: F1-score of Model1

Figure 5.5: Loss of Model1

According to the loss and F1 curves of the first model shown previously, we
were able to detect the overfitting problem on the model where the validation loss
is much higher than the training loss. Also, the training F1-score is higher than
the validation F1-score.

40 Validation of Multi-label Food Recognition

5.2.1 Results

We have trained eleven different models changing or combining some of the
hyper-parameters mentioned early. Table 5.1 reports the detail architecture of each
model.

In the initial stage of this experiment, we had focused on the evaluation of dif-
ferent techniques to reduce the overfitting effect (especially the first five models).
These architectures have been extracted from the result of the following experi-
ment, explained in 5.3. When this problem has been reduced, we were able to
explore and analyze the performance of model by using different pre-trained ar-
chitectures.

Base Architecture Optimizer Dropout Data Augmentation Regularizer Val F1 Test F1

Model1 ResNet50 SGD(lr=0.01) NO NO NO 0.5403 0.1789

Model2 ResNet50 Adam() NO NO NO 0.3981 0.1021

Model3 ResNet50 SGD(lr=0.01) Dropout(0.4) NO NO 0.5012 0.1203

Model4 ResNet50 Adam(lr=0.01, rho=0.95) SpatialDropout2D(0.5) Type1 L2(0.0001) 0.4634 0.1239

Model5 ResNet50 Adam(lr=0.01, rho=0.95) SpatialDropout2D(0.5) Type1 L1(0.0001) 0.4012 0.1120

Model6 InceptionResnetV2 Adadelta() SpatialDropout2D(0.4) Type1 No 0.4292 0.4086

Model7 EfficientNetB7 Adadelta() SpatialDropout2D(0.4) Type1 No 0.5217 0.3812

Model8 DenseNet169 Adadelta() SpatialDropout2D(0.4) Type2 No 0.5052 0.4038

Model9 DenseNet169 Adadelta() SpatialDropout2D(0.4) Type3 No 0.4825 0.4246

Model10 EfficientB5 Adadelta() SpatialDropout2D(0.4) Type1 No 0.5838 0.3012

Model11 EfficientB5 Adadelta() SpatialDropout2D(0.4) Type3 No 0.5006 0.4812

Table 5.1: Architecture of trained models

As expected, the results of our models proved that:

• The effectiveness of adding dropout (in our case, SpatialDroupout2D) and
data augmentation techniques into the model architecture for reducing the
overfitting effect.

• The F1-score of the models using both techniques (ImageDataGenerator and
Albumentations) are better than the models with a single data augmentation
technique.

As shown in table 5.1, the best performing model with highest test F1-score
was Model 11. We can observe that the F1-score of the validation and test sets
are still really low. With this problem in mind, we have computed the per-class
validation F1-score of the model.

5.3 Overfitting problem handling 41

Figure 5.6: Per-class Validation F1-score

If we look at the validation F1-score and the training support of the classes
shown in figure 5.6, some F1-score was 0, and also, the training support was very
low. This would appear to indicate that we need to study deeply on these low-
performing classes (explained in section 5.4).

5.3 Overfitting problem handling

This experiment was developed in parallel with the first experiment. In order
to reduce the overfitting problem of the first model, we carried out several sub-
experiments.

To overcome the overfitting problem, we did the following steps and in this
experiment we focused on the first two steps.:

1. Adding dropout

2. Augmentation strategies

Because of the long runtime needed on the learning process with the com-
plete Food-201 dataset and the necessity of study deeper the behaviour of the
low performing classes, we had extracted the dataset into seven small datasets,

42 Validation of Multi-label Food Recognition

and we had applied data augmentation strategies mentioned in 4.5.1 to solve the
over-fitting problem.

We extracted the seven dataset based to the per-class F1-score of the first base
model, and we had picked the lowest F1-score classes.

– C1: image samples of class Sauce.

– C2: image samples of class Parsley plus C1.

– C3: image samples of class Spinach plus C2.

– C4: image samples of class Greens plus C3.

– C5: image sample of class chicken plus C4.

– C6: image samples of class beef plus C5

– C7: image samples of class chives plus C6.

The setting of the base architecture is shown as below:

– Pretrained model: Resnet50

– Batch size: 12

– Input shape: 224 x 224 x 3

– Without data augmentation

– Without dropout

– Loss function: binary_cross-entropy

– Optimizer: Stochastic Gradient Descent with learning rate 0.01

We did different sub-experiments with each dataset mentioned previously:

• Sub-experiment 1: train the base architecture model using the previous seven
datasets.

• Sub-experiment 2: train the base architecture model adding dropout using
the previous seven datasets.

• Sub-experiment 3: train the base architecture model adding dropout and
some data augmentation techniques (using ImageDataGenerator) using the
previous seven datasets.

• Sub-experiment 4: train the base architecture model adding dropout (us-
ing SpatialDropout2D(0.4)) and some data augmentation techniques (using
Albumentations) using the previous seven datasets. In this case, we use
Adadelta as the optimizer.

5.3 Overfitting problem handling 43

• Sub-experiment 5: train the base architecture model adding dropout and
some data augmentation techniques (using Albumentations and ImageData-
Generator) using the previous seven datasets.

All the sub-experiments mentioned before use Resnet50 as the base architec-
ture. To explore more about the over-fitting issue, we decided to train the model
using InceptionRestnetV2 as the pretrained model:

• Sub-experiment 6: train the InceptionRestnetV2 architecture model adding
dropout and some data augmentation techniques (using ImageDataGenera-
tor) using the previous seven datasets.

• Sub-experiment 7: train the InceptionRestnetV2 architecture model adding
dropout and some data augmentation techniques (using Albumentations)
using the previous seven datasets. In this case, we use Adadelta as the
optimizer.

• Sub-experiment 8: train the InceptionRestnetV2 architecture model adding
dropout and some data augmentation techniques (using ImageDataGenera-
tor + Albumentations) using the previous seven datasets.

Activation Maps and Feature Visualization

Once we discovered the overfitting problem, we thought that it is interesting
to visualize the activation maps and extract features to make sure if the convnets
can identify different classes of a given image.

With this in mind, we did different sub-experiments using different models
(EfficientNetB5 and InceptionResnetV2) to visualize the activation maps and ex-
tract features from these models. In order to evaluate the result, we used the
datasets C1, C2, C3, C4, C5, and Food-201.

And for each selected model, we did the following steps:

1. Create activation maps for the specific class (check if the activation maps can
localize the position of that class).

The first thing we have to do is to get the index of the prediction. After
that, we need the final convolutional layer of the trained model to obtain the
gradients. Once we get that, we will finally be able to compute the heatmap
with some more operations.

44 Validation of Multi-label Food Recognition

Figure 5.7: How we get the heatmap

2. Convert the activation map to a binary mask and multiply with the original
image.

Figure 5.8: How we compute the mask

Figure 5.9: How we get the final image

3. Use the masked image on the classifier and extract features from the last but
one FC layer.

Figure 5.10: How we get the last dense layer to extract features

4. Apply PCA and t-SNE to visualize the features: we have used "Projector
Embedding".

5.3 Overfitting problem handling 45

5.3.1 Result

Since the dataset C1 contains only images of class sauce, for this experiment,
we decided to show up only the F1-score of this class using the "Classification
Report".

• Base Architecture training:

C1 C2 C3 C4 C5 C6 C7

Training 0.99 1.0 1.0 1.0 1.0 0.99 1.0

Validation 0.39 0.49 0.45 0.4 0.4 0.19 0.16

Test 0.41 0.45 0.36 0.37 0.26 0.1 0.15

Table 5.2: F1-score of the Sub-experiment 1

• With dropout:

C1 C2 C3 C4 C5 C6 C7

Training 1.0 1.0 0.97 0.95 0.84 0.81 0.81

Validation 0.71 0.66 0.56 0.47 0.47 0.25 0.2

Test 0.58 0.51 0.47 0.38 0.41 0.28 0.23

Table 5.3: F1-score of the Sub-experiment 2

• With dropout and data augmentation Type1:

C1 C2 C3 C4 C5 C6 C7

Training 0.88 0.83 0.81 0.82 0.78 0.69 0.69

Validation 0.53 0.50 0.48 0.46 0.44 0.28 0.24

Test 0.51 0.49 0.47 0.42 0.38 0.22 0.26

Table 5.4: F1-score of the Sub-experiment 3

46 Validation of Multi-label Food Recognition

• With dropout and data augmentation Type2:

C1 C2 C3 C4 C5 C6 C7

Training 0.97 0.97 0.96 0.96 0.96 0.96 0.95

Validation 0.65 0.59 0.53 0.52 0.47 0.21 0.23

Test 0.61 0.55 0.59 0.51 0.46 0.27 0.31

Table 5.5: F1-score of the Sub-experiment 4

• With dropout and data augmentation Type3:

C1 C2 C3 C4 C5 C6 C7

Training 0.99 0.97 0.97 0.96 0.90 0.86 0.87

Validation 0.72 0.68 0.61 0.50 0.35 0.28 0.22

Test 0.66 0.61 0.53 0.46 0.42 0.34 0.29

Table 5.6: F1-score of the Sub-experiment 5

As expected, in each case of the previous five tables, the F1-score has de-
creased by adding new group images. This fact is understandable because
by adding new group images, the convnets will be more complex.

Moreover, these sub-experiments revealed that with the same pretrained
model, the performance has increased by applying dropout and data aug-
mentation technique.

We also have tested with InceptionResnetV2 as pretrained model. And the
results of these three sub-experiments were in line with the previous results.

• With dropout and data augmentation Type1:

C1 C2 C3 C4 C5 C6 C7

Training 0.99 0.99 0.99 0.99 0.99 0.98 0.98

Validation 0.70 0.68 0.60 054 0.47 0.26 0.28

Test 0.67 0.61 0.57 0.56 0.49 0.32 0.22

Table 5.7: F1-score of the Sub-experiment 6

5.3 Overfitting problem handling 47

• With dropout and data augmentation Type2:

C1 C2 C3 C4 C5 C6 C7

Training 0.99 0.99 0.98 0.99 0.99 0.89 0.97

Validation 0.75 0.73 0.62 0.53 0.44 0.27 0.23

Test 0.68 0.64 0.61 0.48 0.36 0.26 0.19

Table 5.8: F1-score of the Sub-experiment 7

• With dropout and data augmentation Type3:

C1 C2 C3 C4 C5 C6 C7

Training 0.99 0.99 0.99 0.99 0.99 0.98 0.96

Validation 0.77 0.72 0.62 0.53 0.49 0.29 0.27

Test 0.70 0.66 0.64 0.54 0.41 0.38 0.32

Table 5.9: F1-score of the Sub-experiment 8

As we can observe in the previous sub-experiments, the performance have in-
creased by adding dropout and data augmentation techniques. Due to the results,
we extracted the following approach to create new models for the first experiment:

1. The importance of adding dropouts into our models.

2. The effect of applying ImageDataGenerator techniques with Albumen-
tation’s library techniques that we explained in subsection 4.5.1 into our
models.

Activation maps and Features Visualization

Activation Maps: as shown in the two images in Figures 5.11 and 5.12, we
were able to see that in some of the cases, the activation maps were correct, such
as class "Dumplings" and class "Spring Rolls".

48 Validation of Multi-label Food Recognition

Figure 5.11: Activation map of some images

Despite that, in some cases like images with class "Sauce", the model could
not localize it. The F1-score of this class was very low. We were not surprised
about that result because class "Sauce" was one of the ten classes with the lowest
F1-score.

5.3 Overfitting problem handling 49

Figure 5.12: Activation map of some images

Binary masked Images: now we will show some binary masked images that
we used for extract features. Masking involves setting some of the pixel values to
zero.

In our case, we are interested in the pixels with a value number close to 1. In
other words, we want just the regions in the image in which the pixels are relevant
to one specific class.

50 Validation of Multi-label Food Recognition

Figure 5.13: Some binary masked images

Figure 5.14: Some binary masked images

5.3 Overfitting problem handling 51

PCA and T-sne:

Figure 5.15: PCA visualization of C2

Figure 5.16: T-sne visualization of C2

52 Validation of Multi-label Food Recognition

Figure 5.17: PCA visualization of C3

Figure 5.18: T-sne of C3

5.3 Overfitting problem handling 53

Figure 5.19: T-sne of C3: Spinach

Figure 5.20: PCA visualization of C4

54 Validation of Multi-label Food Recognition

Figure 5.21: T-sne of C4

Figure 5.22: T-sne of C4: Spinach

5.4 Train with new data 55

5.4 Train with new data

This experiment aimed to improve our best-performing model (with less over-
fitting effect and with the best F1-score). According to the results of Experiment 1
(Figure 5.2), the best performing model has the following hyper-parameters:

• Convolutional base: EfficientNetB5

• Input shape: 224 x 224 x 3

• Batch size: 12

• SpatialDropout2D: 0.5

• Optimizer: Adadelta

• Loss function: binary cross-entropy

• Data Augmentation techniques:

– Data augmentation using Albumentations library 4.9.

– Data augmentation using ImageDataGenerator 4.8.

After computing the per-class F1-score of this model, we have noticed that
even by adding dropout and augmentation strategies in our model, there were
still some low performing classes. Due to that, we decided to study deeply the ten
low-performing classes by adding new images into them that have been partially
labeled.

Figure 5.23: Validation F1-score vs Train Support

56 Validation of Multi-label Food Recognition

After analyzing the results, we decided to apply the following techniques to
improve our model:

1. Add new partially-labeled images into the ten low-performing classes.

2. Change the loss function according to the paper "Learning a deep con-
vnet for multi-label classification with partial labels" [13] because of our
single-labeled dataset.

Our Augmented dataset

Our augmented dataset is composed of images downloaded from Yummly,
Meituan, and Flickr. We have labeled them according to the Food-201 annotation
files, but we only single-labeled them due to the complexity of annotating all food
present in the images.

The selection of these images was based on the result of the best performing
model of experiment 1. We have chosen the ten lowest F1-scores classes by using
"classification report (from Keras)".

The reason that we decided to add new images into the Food-201 dataset was
that we want to see how the model improves by adding more samples of the low
performing classes.

We have added 200 images into each selected class. The classes are the follow-
ing:

∗ Bun
∗ Cup cakes
∗ Gravy
∗ Hot and sour soup
∗ Lobster bisque
∗ Mint
∗ Mushrooms
∗ Pizza
∗ Spinach
∗ Takoyaki

After getting the result of the model with new images, we have decided to add 200
more samples into the five lowest performance classes (bun, gravy, mint, mush-
rooms, and spinach) of the ten previous ones. Also, we have added more images
into the validation and test dataset of these classes according to the proportion of
the split of the original dataset: split = {′Train′ : 0.8,′ Val′ : 0.15,′ Test′ : 0.05}. You
can find the support of our new images in the following table:

5.4 Train with new data 57

Figure 5.24: Support

Description of the Sub-experiments

To see the effectiveness of adding new single-labeled images into the Food-
201 dataset and the performance of the partial binary cross-entropy [13]) we have
divided this experiment into some small sub-experiments.

Training set Validation set Test set Loss Function

Sub-experiment1 Food-201 Food-201 Food-201 Binary Cross-entropy

Sub-experiment2 Food-201 Food-201 Food-201 Partial Binary Cross-entropy

Sub-experiment3 Food-201+New Images Food-201 Food-201 Binary Cross-entropy

Sub-experiment4 Food-201+New Images Food-201 Food-201 Partial Binary Cross-entropy

Sub-experiment5 Food-201+New Images Food-201+New Images Food-201+New Images Binary Cross-entropy

Sub-experiment6 Food-201+New Images Food-201+New Images Food-201+New Images Partial Binary Cross-entropy

Table 5.10: Description of the sub-experiments

5.4.1 Results on the Augmented Dataset with Partially Labeled Images

The goal of this experiment was to improve the best model that we had trained
in section 5.2.1. We used the best performing model architecture to train with new
data that have false negatives. As explained in section 5.4, we have divided into

58 Validation of Multi-label Food Recognition

several sub-experiments. First of all, we will show the global performance of each
sub-experiment (F1):

SubExp1 SubExp3 SubExp5

Train Val Test Train Val Test Train Val Test

Global Performance 0.878 0.5 0.48 0.78 0.65 0.60 0.90 0.64 0.62

Table 5.11: Global F1-score of the sub-experiments

SubExp2 SubExp4 SubExp6

Train Val Test Train Val Test Train Val Test

Global Performance 0.84 0.67 0.64 0.80 0.65 0.62 0.92 0.66 0.63

Table 5.12: Global F1-score of the sub-experiments

Two clarifications of the previous two tables:

• The first table contains sub-experiments with binary cross-entropy as the loss
function. And the second table is with the new loss function.

• The difference between the sub-experiments of the same figure is the dataset
used.

We can observe that the validation and test F1-scores of the second table 5.14
are better than the F1-scores of the first table 5.11. And also, the F1-scores of the
same table have increased from left to right.

Now, we will show the per-class F1-score of each sub-experiment.

SubExp1 SubExp3 SubExp5

Train Val Test Train Val Test Train Val Test

Mint 0.78 0.14 0.11 0.88 0.26 0.00 0.94 0.54 0.63

Mushrooms 0.73 0.18 0.30 0.76 0.14 0.22 0.87 0.47 0.53

Spinach 0.74 0.16 0.22 0.79 0.15 0.19 0.79 0.19 0.51

Bun 0.52 0.13 0.00 0.81 0.16 0.00 0.89 0.65 0.64

Gravy 0.65 0.19 0.32 0.79 0.21 0.22 0.80 0.38 0.32

Table 5.13: Per-class F1-score of the sub-experiments

5.4 Train with new data 59

SubExp2 SubExp4 SubExp6

Train Val Test Train Val Test Train Val Test

Mint 0.72 0.16 0.00 0.82 0.29 0.15 0.96 0.54 0.69

Mushrooms 0.56 0.17 0.20 0.77 0.18 0.24 0.92 0.49 0.56

Spinach 0.58 0.18 0.24 0.77 0.18 0.16 0.91 0.20 0.52

Bun 0.13 0.00 0.00 0.86 0.07 0.11 0.93 0.68 0.63

Gravy 0.61 0.24 0.28 0.74 0.21 0.24 0.88 0.34 0.37

Table 5.14: Per-class F1-score of the sub-experiments

Figure 5.25: Test F1-score of the sub-experiments

According to the results, we can easily extract the following approaches:

• If we take a look at the table 5.14 shown previously, we can observe that the
results are better with adding more images into our training set. And what
is more, adding more image samples into our validation and test sets also
help the models to get a higher F1-score.

• Because of the single-labeled image samples that we have added into our
dataset, there are some partially labeled images. So, with the new loss func-
tion, the models can predict better than with the binary cross-entropy as the
loss function.

60 Validation of Multi-label Food Recognition

Chapter 6

Conclusions and Future Lines

In this project, we dove in the field of food image analysis, more specifically to
the multi-label food recognition. This work had as primary objective to analyze the
multi-label food classification using a convolutional neural network. We explored
in the detail the multi-label CNNs and their application to the multi-label food
recognition. We proved the importance of having a well-annotated dataset, and the
potential to ease the process by the partially labeled dataset. To this purpose, we
applied a recently introduced loss function especially suitable for partially labeled
datasets. We have trained several deep models by using pretrained convnets 4.2,
and we have evaluated them with the Food-201 dataset [31].

When we started the experimental part of this project another objective soon
appeared that referred to the problem of overfitting that the first trained model
implies. Due to that problem, we have studied and applied different techniques to
cover the problem. According to the results of each experiment, the insights are:

• The importance of adding dropout and applying data augmentation tech-
niques in the model architecture to reduce the overfitting effect 5.3.1.

• The performance of the convnets increases by adding more image samples
into the dataset 5.4.1.

• With a partially labeled dataset, the performance increases by changing the
binary cross-entropy loss function into partial BCE [13].

61

62 Conclusions and Future Lines

The work done in this project could be extended in several directions. Firstly,
the exploration of new loss functions or techniques to handle partial labels is a
promising way to easy the annotation process and improve the models. Then, the
usage of new different networks such as InceptionV3 [45] to classify multi-labeled
images could also be explored. Last but not least, an open question is how to
create a protocol to easy the annotation process of multi-label food dataset.

Food-201

Most classification datasets do not have an exactly equal number of instances
in each class, but a small difference often does not matter. As you might observe
in the following figures, the support of the classes is not equal.

An imbalanced data typically refers to a problem with classification problems
where the classes are not represented equally. We can say that Food-201 is an
imbalanced dataset.

• Training set

Figure 1: Class Support of training set

i

ii Food-201

• Validation set

Figure 2: Class Support of validation set

• Test set

Figure 3: Class Support of test set

Partial Binary Cross-entropy

Figure 4: New Loss Function [13]

iii

iv Partial Binary Cross-entropy

Bibliography

[1] Eduardo Aguilar, Beatriz Remeseiro, Marc Bolaños, and Petia Radeva, Grab,
pay and eat: Semantic food detection for smart restaurants, 2017.

[2] S. Albawi, T. A. Mohammed, and S. Al-Zawi, Understanding of a convolutional
neural network, 2017 International Conference on Engineering and Technology
(ICET), 2017, pp. 1–6.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, Surf: Speeded up robust fea-
tures, Computer Vision – ECCV 2006 (Berlin, Heidelberg) (Aleš Leonardis,
Horst Bischof, and Axel Pinz, eds.), Springer Berlin Heidelberg, 2006,
pp. 404–417.

[4] V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa, Leveraging
context to support automated food recognition in restaurants, 2015 IEEE Winter
Conference on Applications of Computer Vision, 2015, pp. 580–587.

[5] Marc Bolaños, Aina Ferrà, and Petia Radeva, Food ingredients recognition
through multi-label learning, New Trends in Image Analysis and Processing
– ICIAP 2017 (Cham) (Sebastiano Battiato, Giovanni Maria Farinella, Marco
Leo, and Giovanni Gallo, eds.), Springer International Publishing, 2017,
pp. 394–402.

[6] S.S. Bucak, Rong Jin, and Anil K. Jain, Multi-label learning with incomplete class
assignments, Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2011), 2011.

[7] H. M. Bui, M. Lech, E. Cheng, K. Neville, and I. S. Burnett, Object recogni-
tion using deep convolutional features transformed by a recursive network structure,
IEEE Access 4 (2016), 10059–10066.

[8] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov,
Mikhail Druzhinin, and Alexandr A. Kalinin, Albumentations: Fast and flexible
image augmentations, Information 11 (2020), no. 2, 125.

v

vi BIBLIOGRAPHY

[9] J. Canny, A computational approach to edge detection, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence PAMI-8 (1986), no. 6, 679–698.

[10] M. Chen, K. Dhingra, W. Wu, L. Yang, R. Sukthankar, and J. Yang, Pfid:
Pittsburgh fast-food image dataset, 2009 16th IEEE International Conference on
Image Processing (ICIP), 2009, pp. 289–292.

[11] Gianluigi Ciocca, Paolo Napoletano, and Raimondo Schettini, Food recognition
and leftover estimation for daily diet monitoring, vol. 9281, 09 2015, pp. 334–341.

[12] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection,
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

[13] Thibaut Durand and Nazanin Mehrasa Greg Mori, Learning a deep convnet for
multi-label classification with partial labels, 2019.

[14] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, Object
detection with discriminatively trained part-based models, IEEE Transactions on
Pattern Analysis and Machine Intelligence 32 (2010), no. 9, 1627–1645.

[15] Soren Goyal and Paul Benjamin, Object recognition using deep neural networks:
A survey, (2014).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual learn-
ing for image recognition, 2015.

[17] H. Hoashi, T. Joutou, and K. Yanai, Image recognition of 85 food categories by fea-
ture fusion, 2010 IEEE International Symposium on Multimedia, 2010, pp. 296–
301.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger,
Densely connected convolutional networks, 2016.

[19] Dat Huynh and Ehsan Elhamifar, Fine-grained generalized zero-shot learning via
dense attribute-based attention, Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[20] Sergey Ioffe and Christian Szegedy, Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift, 2015.

[21] M. T. Islam, B. M. N. Karim Siddique, S. Rahman, and T. Jabid, Image recogni-
tion with deep learning, 2018 International Conference on Intelligent Informat-
ics and Biomedical Sciences (ICIIBMS), vol. 3, 2018, pp. 106–110.

BIBLIOGRAPHY vii

[22] Hokuto Kagaya, Kiyoharu Aizawa, and Makoto Ogawa, Food detection and
recognition using convolutional neural network, 11 2014.

[23] Y. Kawano and K. Yanai, Automatic expansion of a food image dataset leveraging
existing categories with domain adaptation, Proc. of ECCV Workshop on Trans-
ferring and Adapting Source Knowledge in Computer Vision (TASK-CV),
2014.

[24] Yoshiyuki Kawano and Keiji Yanai., Food image recognition with deep convolu-
tional features., 2014, pp. 589–593.

[25] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization,
2014.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton., Imagenet classifica-
tion with deep convolutional neural networks., 2012, pp. 1097–1105.

[27] N. Martinel, G. Foresti, and C. Micheloni, Wide-slice residual networks for food
recognition, 2018 IEEE Winter Conference on Applications of Computer Vi-
sion (WACV) (Los Alamitos, CA, USA), IEEE Computer Society, mar 2018,
pp. 567–576.

[28] Y. Matsuda, H. Hoashi, and K. Yanai, Recognition of multiple-food images by
detecting candidate regions, 2012 IEEE International Conference on Multimedia
and Expo, 2012, pp. 25–30.

[29] Y. Matsuda and K. Yanai, Multiple-food recognition considering co-occurrence em-
ploying manifold ranking, Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), 2012, pp. 2017–2020.

[30] Yuji Matsuda, Hajime Hoashi, , and Keiji Yanai., Recognition of multiple-food
images by detecting candidate regions., IEEE, 08 2012, pp. 25–30.

[31] Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gor-
ban, Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan
Huang, and Kevin P Murphy., Im2calories: towards an automated mobile vision
food diary., 2015, pp. 1233–1241.

[32] Lili Pan, Samira Pouyanfar, Hao Chen, Jiaohua Qin, and Shu Ching Chen,
Deepfood: Automatic multi-class lassification of food materials using deep learning.,
2017, pp. 181–189.

[33] Jie Peng, Shuai Kang, Zhengyuan Ning, Hangxia Deng, Jingxian Shen, Yikai
Xu, Jing Zhang, Wei Zhao, Xinling Li, Wuxing Gong, Jinhua Huang, and

viii BIBLIOGRAPHY

Li Liu, Residual convolutional neural network for predicting response of transar-
terial chemoembolization in hepatocellular carcinoma from ct imaging, European
Radiology 30 (2019), 1–12.

[34] Sirawan Phiphitphatphaisit and Olarik Surinta, Food image classification with
improved mobilenet architecture and data augmentation, 04 2020.

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi., You only
look once: Unified, real-time object detection., 2016, pp. 779–788.

[36] Ramprasaath Rs, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra, Grad-cam: Visual explanations from deep networks
via gradient-based localization, 10 2017, pp. 618–626.

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei, Imagenet large scale visual recognition
challenge, 2014.

[38] Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek., Im-
age classification with the fish vector: Theory and practice., 2013, pp. 222–245.

[39] Karen Simonyan and Andrew Zisserman, Very deep convolutional networks for
large-scale image recognition, 2014.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov, Dropout: A simple way to prevent neural networks from over-
fitting, Journal of Machine Learning Research 15 (2014), no. 56, 1929–1958.

[41] M. A. Subhi, S. H. Ali, and M. A. Mohammed, Vision-based approaches for
automatic food recognition and dietary assessment: A survey, IEEE Access 7 (2019),
35370–35381.

[42] Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou, Multi-label learning with weak label,
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI’10, AAAI Press, 2010, p. 593–598.

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi,
Inception-v4, inception-resnet and the impact of residual connections on learning,
2016.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich, Going deeper with convolutions, 2014.

BIBLIOGRAPHY ix

[45] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna, Rethinking the inception architecture for computer vision, CoRR
abs/1512.00567 (2015).

[46] Taichi Joutou and Keiji Yanai, A food image recognition system with multiple
kernel learning, 2009 16th IEEE International Conference on Image Processing
(ICIP), 2009, pp. 285–288.

[47] Mingxing Tan and Quoc V. Le, Efficientnet: Rethinking model scaling for convo-
lutional neural networks, 2019.

[48] IDF team, Diabetes facts figures, https://www.idf.org/aboutdiabetes/
what-is-diabetes/facts-figures.html, Accessed 2020-09-02.

[49] Keras team, Keras applications, https://keras.io/ap, Accessed 2020-08-31.

[50] Who team, Coronavirus disease (covid-19) pandemic, https://www.who.int/
emergencies/diseases/novel-coronavirus-2019, Accessed 2020-09-01.

[51] Who team et al., Obesity and overweight, https://www.who.int/news-room/
fact-sheets/detail/obesity-and-overweight, Accessed 2020-09-03.

[52] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christopher
Bregler, Efficient object localization using convolutional networks, 2014.

[53] Laurens van der Maaten and Geoffrey Hinton, Viualizing data using t-sne, Jour-
nal of Machine Learning Research 9 (2008), 2579–2605.

[54] Hui Wu, Michele Merler, Rosario Uceda-Sosa, and John Smith, Learning to
make better mistakes: Semantics-aware visual food recognition, 10 2016, pp. 172–
176.

[55] Guangming Xiong, Xin Li, Junqiang Xi, Spencer G. Fowers, and Huiyan Chen,
Object distance estimation based on stereo vision and color segmentation with region
matching, Advances in Visual Computing (Berlin, Heidelberg) (George Bebis,
Richard Boyle, Bahram Parvin, Darko Koracin, Ronald Chung, Riad Ham-
mound, Muhammad Hussain, Tan Kar-Han, Roger Crawfis, Daniel Thal-
mann, David Kao, and Lisa Avila, eds.), Springer Berlin Heidelberg, 2010,
pp. 368–376.

[56] K. Yanai and Y. Kawano, Food image recognition using deep convolutional net-
work with pre-training and fine-tuning, 2015 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), 2015, pp. 1–6.

https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
https://keras.io/ap
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

x BIBLIOGRAPHY

[57] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, Food recognition using
statistics of pairwise local features, 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2010, pp. 2249–2256.

[58] Sergey Zagoruyko and Nikos Komodakis, Wide residual networks, Proceed-
ings of the British Machine Vision Conference (BMVC) (Edwin R. Hancock
Richard C. Wilson and William A. P. Smith, eds.), BMVA Press, September
2016, pp. 87.1–87.12.

[59] Matthew D. Zeiler, Adadelta: An adaptive learning rate method, 2012.

[60] Weiyu Zhang, Qian Yu, Behjat Siddiquie, Ajay Divakaran, and Harpreet
Sawhney, “snap-n-eat”: Food recognition and nutrition estimation on a smartphone,
Journal of Diabetes Science and Technology 9 (2015), no. 3, 525–533, PMID:
25901024.

[61] F. Zhou and Y. Lin, Fine-grained image classification by exploring bipartite-graph
labels, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 1124–1133.

	Introduction
	Context
	Motivation
	Goals
	Planning of the project
	Organization of the memory

	Related work
	Single-label Food Recognition
	Food Recognition Using Classical Approach
	Food Recognition Using Deep Learning Approach

	Multi-label Food Recognition

	Methodology
	Deep Learning
	Convolutional Neural Networks
	Layers
	Optimizers
	Normalization
	Loss Function

	Implementation of Multi-label Food recognition
	Single-label vs Multi-label recognition
	Main difference

	Transfer Learning to the Multi-label Food Recognition
	CNN Learning with Partial Labels
	New loss function: partial Binary Cross-Entropy

	Feature Extraction and Architecture to Analyse
	Architectures used

	Over-fitting Problem
	Data Augmentation
	Regularization

	Visualization of Food Recognition
	Visualizing heatmaps of class activation in an image
	Visualizing Feature Extraction

	Validation of Multi-label Food Recognition
	Experimental Settings
	Environment
	Dataset
	Evaluation Criteria

	Find the best model architecture
	Results

	Overfitting problem handling
	Result

	Train with new data
	Results on the Augmented Dataset with Partially Labeled Images

	Conclusions and Future Lines
	Food-201
	Partial Binary Cross-entropy
	Bibliography

