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Abstract: High-throughput phenotyping platforms provide valuable opportunities to investigate
biomass and drought-adaptive traits. We explored the capacity of traits associated with drought
adaptation such as aerial measurements of the Normalized Difference Vegetation Index (NDVI) and
carbon isotope composition (δ13C) determined at the leaf level to predict genetic variation in biomass.
A panel of 248 elite durum wheat accessions was grown at the Maricopa Phenotyping platform (US)
under well-watered conditions until anthesis, and then irrigation was stopped and plot biomass was
harvested about three weeks later. Globally, the δ13C values increased from the first to the second
sampling date, in keeping with the imposition of progressive water stress. Additionally, δ13C was
negatively correlated with final biomass, and the correlation increased at the second sampling,
suggesting that accessions with lower water-use efficiency maintained better water status and, thus,
performed better. Flowering time affected NDVI predictions of biomass, revealing the importance of
developmental stage when measuring the NDVI and the effect that phenology has on its accuracy
when monitoring genotypic adaptation to specific environments. The results indicate that in addition
to choosing the optimal phenotypic traits, the time at which they are assessed, and avoiding a wide
genotypic range in phenology is crucial.
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1. Introduction

Global warming makes agricultural productivity more unpredictable, especially in the semiarid
regions of the world. Indeed, in the southern and eastern parts of the Mediterranean Basin where
durum wheat is the main annual crop and of great cultural importance, the frequency and severity of
drought events (understood as the combination of water and heat stresses) show an upward trend [1].
Drought is a major factor limiting wheat yield, but, despite decades of research, it remains a challenge
for plant breeders [2]. Drought stress significantly affects growth and photosynthetic plant performance
and, consequently, agronomical grain yield components such as the number of fertile spikes per unit
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area, the number of grains per spike, grain weight, harvest index, or plant height [3,4]. In this context
there is an urgent need to increase genetic yield potential and drought resilience in new cultivars [5].
Genetic gains in grain yield can be achieved by targeting proxy traits closely associated with improved
wheat adaptation [4,5]. Among them, crop phenology has been one of the most successful proxies
used by breeders in Mediterranean environments, where the frequency and intensity of drought
episodes occurring during grain filling have increased in the past decades. In these conditions,
genotypes with earlier anthesis have demonstrated their value [6–8]. Stay-green at the reproductive
stage, particularly during grain filling, is another relevant proxy trait for breeding in Mediterranean
environments. High levels of green biomass during grain filling are associated with high potential
canopy photosynthesis and radiation use efficiency, not only when environmental stresses are absent,
but also under conditions where some degree of drought stress is present. Stay-green has proven
relevant among the genetic gains of recent decades under both high-yielding [9] and growth-limiting
conditions [10,11]. Therefore, it is expected that it will have an important impact on future genetic gain
in yield [12,13].

Estimating direct plant green biomass under field conditions is labor intensive, which makes
it almost impracticable to manage experiments where thousands of genotypes need to be screened.
Alternatively, remote sensing approaches have been suggested as tools to estimate biomass directly,
potentially based on the canopy’s spectral reflectance properties [14–16]. Therefore, remote sensing
tools provide an excellent opportunity for improving the capacity to phenotype under field conditions.
In addition, the preferred platforms for remote sensing are unmanned aerial vehicles (UAVs) because they
are versatile and effective for measuring plant traits at suitable spatial and temporal resolutions [11,17–19].
Sensors and imagers installed in UAVs can accurately measure proxy traits, such as multispectral
indices, in hundreds of plots with low investment in time [20–22]. Multispectral cameras with different
band centers and bandwidths (e.g., Parrot Sequoia and MicaSense RedEdge) mounted on unmanned
and autopiloted vehicles such as drones (including fixed-wing and polycopter devices) have been
used in the past to measure the normalized difference vegetation index (NDVI) [23]. The NDVI is
one of the best-known multispectral indices and is a widely used vegetation index to infer canopy
photosynthesis, stay-green, and overall plant status [24]. The NDVI compares the spectral reflectance
of the vegetation in the red (from 620 to 690 nm) and in the near-infrared (NIR, from 760 to 900 nm)
portions of the spectrum and relates to chlorophyll content through the absorption features of the
molecule, representing a proxy of the green photosynthetically active area of the plant [24,25]. Therefore,
when assessed at the plot level, the NDVI calculated as (NIR − Red)/(NIR + Red) may be a proxy of
canopy chlorophyll [26], green biomass, and, consequently, grain yield [27]. In this sense, the NDVI
has been used not only to characterize plant growth under good agronomical conditions but also as
an indicator of plant response to drought [28] including the genetic dissection of the NDVI as a key
secondary trait for selecting genetic loci associated with drought tolerance and yield potential [29]
in wheat. However, in spite of the numerous advantages of remote sensing, particularly when devices
are mounted on a UAV, lab-based phenotypic traits may still be useful. In this regard, the stable carbon
isotope composition (δ13C) in its natural abundance in plant dry matter has proven its value [30–32],
which has been used for decades as a tool for screening water-use efficiency (WUE) during grain filling
in C3 plants, including wheat [30,33]. Water-use efficiency, expressed as assimilation rate divided
by transpiration rate, is the rate of CO2 uptake for a given rate of water loss. The δ13C has been
successfully used as a time-integrated proxy for WUE and is based on the 13C discrimination that
occurs during two steps of CO2 uptake. The first step is diffusion from the air to the intercellular air
space through the boundary layer and stomata, followed by the second step where Rubisco is involved
in the carboxylation reaction [34]. During these two steps, the lighter 12C preferentially diffuses and is
fixed by Rubisco, resulting in assimilates being depleted in 13C compared to the ambient CO2 [30].
The extent to which this occurs is dependent on the ratio of the intercellular versus atmospheric CO2

concentration (Ci/Ca), which can be affected by both the assimilation rate and stomatal conductance.
All else equal, a lower Ci/Ca will correspond to a higher WUE and a higher δ13C [30,35].
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Under field conditions, the δ13C has been negatively associated with biomass and yield,
not only under well-watered conditions [36] but also in environments exhibiting moderate to
severe drought [32,37]. As a lower δ13C implies a lower WUE under drought conditions, the yield
advantage may result from constitutive (e.g., phenology, plant size, etc.) or stress-adaptive (e.g.,
osmotic adjustment, root architecture, etc.) traits that allow the crop to avoid the negative effects of
drought stress. However, positive relationships between δ13C and biomass and yield [38–40] have also
been reported, particularly under severe drought conditions [30,35,41,42]. δ13C is a good indicator of
the water strategy that crop plants adopt in the field and is a desirable trait for breeding programs [3]
because it integrates plant transpiration [43] and the photosynthetic performance of the plant over
time [31] and can be easily sampled in a large number of genotypes [35] with high repeatability [43].
In addition, although the application of δ13C has been mainly related to plant water status, it has been
used as a secondary trait for selecting genetic loci associated with drought tolerance and also as a
measure of increasing yield under good agronomical conditions in wheat [44] and other cereals [45,46].

Although this is often forgotten, timing is key for phenotyping as well as defining derived actions
such as selection indices and ideotypes and even the genetic dissection and formulation of quantitative
trait loci (QTL) [47]. The objective of the present study was to explore the capacity to predict genotypic
variability in green biomass during grain filling by using aerial measurements of NDVI at different
phenological stages and evaluate the δ13C in the flag leaves sampled initially under well-watered
conditions and, subsequently, under drought. In addition to the assessment of these phenotypic
traits, another important objective was to determine the best time to measure such traits in terms of
crop phenology and growing conditions. The study was performed in a panel of 248 genotypes of
durum wheat grown in the Maricopa phenotyping platform, one of the best-integrated agricultural
technology platforms and the largest open-air phenotyping robotic scanner in the world. The rationale
of our work was to illustrate the confounding effects phenology may have when phenotyping wheat.
We addressed phenology under two premises. Firstly, genotypic variability in phenology, which results
in different genotypes being sampled at different phenological stages at a given moment. This may
affect, for example, the sign and strength of the relationships between δ13C and plant biomass. Secondly,
the phenological stage at which plants are measured may strongly affect the performance of any
phenotypic trait. As an example, the sign and strength of the relationship between NDVI and crop
biomass may be affected by the crop stage when NDVI is measured. We might even add a third factor,
which may somehow interact with the previous ones: Besides phenology, the growing conditions
during evaluation will likely influence phenotypic values. This is illustrated again by the relationship
between carbon isotope composition and biomass, where the strength of the relationship changes from
well-irrigated plants to plants last irrigated two weeks before, a scenario frequently experienced by
wheat under Mediterranean conditions where terminal drought (i.e., during grain filling, the last part
of the cropping cycle) occurs. In other words, even analyzing the same organ (the flag leaf in our
study), the information derived from δ13C is not similar but is affected by growing conditions.

2. Materials and Methods

2.1. Germplasm Used and Experimental Conditions

The field experiment was conducted during 2016 at the Maricopa Agricultural Center (33.070◦ N,
long. 111.974◦W, elev. 360 m) (Supplementary Figure S1) on a Casa Grande sandy loam soil (fine-loamy,
mixed, superactive, hyperthermic Typic Natrargids). The plant material included 248 accessions
of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) from the association mapping
population assembled by Maccaferri and co-workers at the University of Bologna (UNIBO), namely the
UNIBO-Durum Panel representing an Elite Durum Panel (EDP) that comprises a large portion of the
genetic diversity present in the most important improved durum wheat gene pools. EDP encompassed
Mediterranean-adapted accessions from different private and public international breeding programs
and included elite cultivars and lines originally collected from Mediterranean countries, Mexico,
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Australia, Europe, and the Southwestern USA [23]. The accessions were planted on 20 December
2016 according to a Randomized Complete Block Design (RCBD) with two replicates and border plots
(consisting of durum wheat cv. Orita). Each accession was evaluated in two-row plots (3.5 m long, 0.76
m apart) with a final density of 22 plants m−2. Prior to sowing, the experiment received 112 kg ha−1 of
nitrogen and 56 kg ha−1 of phosphorus (P205). Phenology was assessed visually using Zadoks decimal
code and flowering time was assessed as the number of days to reach anthesis between the latest and
earliest accessions, assigning zero to the earliest accession (Supplementary Table S1). Disease and
insect pest pressure were negligible throughout the crop cycle.

Initial irrigations were provided by sprinklers and further irrigations were delivered via subsurface
drip irrigation. The field received a total of 115 mm of water distributed from 15 irrigations (4 by
sprinklers and 11 by subsurface drip). Drip irrigation was stopped on 16 March 2017, which
corresponded to growth stage (GS) 45 (averaged across the 248 accessions) according to the Zadoks
decimal code [48], and from that date the accessions were subjected to a progressive drought stress
until 3–4 April 2017 (averaged GS 62) when plants were harvested to measure biomass.

The accumulated precipitation from planting to crop harvest was 50 mm, while the accumulated
potential evapotranspiration from planting to the last irrigation was 222 mm and from planting until
crop harvest was 320 mm (Figure 1). Environmental conditions during growth are detailed in Figure 1.

Agronomy 2020, 10, x FOR PEER REVIEW 4 of 20 

 

Mediterranean-adapted accessions from different private and public international breeding 
programs and included elite cultivars and lines originally collected from Mediterranean countries, 
Mexico, Australia, Europe, and the Southwestern USA [23]. The accessions were planted on 20 
December 2016 according to a Randomized Complete Block Design (RCBD) with two replicates and 
border plots (consisting of durum wheat cv. Orita). Each accession was evaluated in two-row plots 
(3.5 m long, 0.76 m apart) with a final density of 22 plants m−2. Prior to sowing, the experiment 
received 112 kg ha−1 of nitrogen and 56 kg ha−1 of phosphorus (P205). Phenology was assessed visually 
using Zadoks decimal code and flowering time was assessed as the number of days to reach anthesis 
between the latest and earliest accessions, assigning zero to the earliest accession (Supplementary 
Table S1). Disease and insect pest pressure were negligible throughout the crop cycle. 

Irrigation started 28 days after sowing, with the initial irrigation provided by sprinklers and 
further irrigations delivered via subsurface drip irrigation. The field received a total of 115 mm of 
water distributed from 11 irrigations. Drip irrigation was stopped on 16 March 2017, which 
corresponded to growth stage (GS) 45 (averaged across the 248 accessions) according to the Zadoks 
decimal code [48], and from that date the accessions were subjected to a progressive drought stress 
until 3–4 April 2017 (averaged GS 62) when plants were harvested to measure biomass. 

The accumulated precipitation from planting to crop harvest was 50 mm, while the accumulated 
potential evapotranspiration from planting to the last irrigation was 222 mm and from planting until 
crop harvest was 320 mm (Figure 1). Environmental conditions during growth are detailed in Figure 
1. 

 
Figure 1. Monthly accumulated rainfall (cyan bars), irrigation (blue bars), evapotranspiration (closed 
circles, plain lines), and mean maximum and mean minimum temperatures (dashed and dotted lines, 
respectively) during the growing season from sowing until harvesting for biomass measurement (3–
4 April 2017). Evapotranspiration during April refers only to the days until harvest. 

2.2. NDVI Measurements 

UAV-based NDVI data were extracted from georeferenced orthomosaic Geostationary Earth 
Orbit Tagged Image File Format (GeoTIFF) files generated from images captured by autopiloted 
flights of a Parrot Sequoia (Parrot, Paris, France) multi-spectral camera (referred to as SE), carried on 
an eBee (SenseFly, Lausanne, France) fixed-wing aircraft, and a MicaSense RedEdge (MicaSense, 
Seattle, WA, USA) multi-spectral camera (referred to as RE), carried on a hexacopter. Differences 
between the two multispectral cameras were mainly based on band centers and bandwidths as 
described in [23]. The purpose for using cameras with slightly different band centers and bandwidths 
was to explore the phenotypic performance of the NDVI generated with the two multispectral sensors. 
The flights were performed at a height of 40 m to 42 m from ground level where it was possible to 
achieve a ground sampling distance of 4.4 cm/pixel for the Sequoia and ~3 cm/pixel for the RedEdge. 

Figure 1. Monthly accumulated rainfall (cyan bars), irrigation (blue bars), evapotranspiration (closed
circles, plain lines), and mean maximum and mean minimum temperatures (dashed and dotted lines,
respectively) during the growing season from sowing until harvesting for biomass measurement
(3–4 April 2017). Evapotranspiration during April refers only to the days until harvest.

2.2. NDVI Measurements

UAV-based NDVI data were extracted from georeferenced orthomosaic Geostationary Earth Orbit
Tagged Image File Format (GeoTIFF) files generated from images captured by autopiloted flights
of a Parrot Sequoia (Parrot, Paris, France) multi-spectral camera (referred to as SE), carried on an
eBee (SenseFly, Lausanne, France) fixed-wing aircraft, and a MicaSense RedEdge (MicaSense, Seattle,
WA, USA) multi-spectral camera (referred to as RE), carried on a hexacopter. Differences between
the two multispectral cameras were mainly based on band centers and bandwidths as described
in [23]. The purpose for using cameras with slightly different band centers and bandwidths was
to explore the phenotypic performance of the NDVI generated with the two multispectral sensors.
The flights were performed at a height of 40 m to 42 m from ground level where it was possible to
achieve a ground sampling distance of 4.4 cm/pixel for the Sequoia and ~3 cm/pixel for the RedEdge.
Mission planning was undertaken with either eMotion 3 (senseFly, Lausanne, France) or Atlas Flight
(MicaSense, Seattle, WA, USA) software for the Sequoia camera and with UgCS software (UgCS, Riga,
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Latvia) for the RedEdge camera. An 80% image overlap along the flight corridors was achieved
for all flights. Both the Sequoia and RedEdge cameras use global shutters. Orthomosaics for each
camera band were generated with Pix4DMapperPro desktop software (Pix4D SA, Prilly, Switzerland,
http://pix4d.com), as explained elsewhere [23]. Real-time kinematic (RTK) survey precision was used
to geolocate six to eight ground control points (GCPs) and to georeference the orthomosaics. At the
beginning of each flight, manufacturer-supplied reflectance panels were imaged in order to calibrate
camera images. QGIS software version 2.18.3 (QGIS, Zurich, Switzerland, http://www.qgis.org) was
used to create plot-level NDVI means from UAVs. Spatial adjustment analysis of the raw NDVI plot
data from aerial platforms was conducted with the lme4 package (r-project) and custom R scripts using
a mixed procedure including random effects of columns and rows and a moving mean of variable
size for optimizing spatial adjustment. Annotated, single-plot polygons enclosed by shape files were
generated with an R (r-project.org) script. Based on RTK survey-grade measuring devices, shape files
with GCPs as features (points) were also employed. NDVI orthomosaics generated from Pix4D and
the GeoTIFF were combined with the GCP shape files and the plot polygon in a single QGIS project.
Verification of proper geolocations of the Pix4D orthomosaics was performed by visually confirming
the alignment of the visible GCPs with the corresponding points in the feature shape file. The Zonal
Statistics function in QGIS was used to generate NDVI plot means. NDVI was measured at multiple
times using RE and SE sensors. NDVI based on SE sensor was measured on 13 and 21 February and 3
and 13 March 2017, whereas NDVI based on RE sensor was measured at two different time points on
21 and 28 March 2017.

2.3. Dry Biomass Evaluation

At the end of the field trial, plants within the entire two-row plots were harvested mechanically
(Carter Manufacturing Company, Brookston, IN, USA) and the weight was adjusted to 0% moisture.
Plant moisture content (%) at harvest was estimated from a subsample of biomass from 2–3 plants,
either placed directly in a drying oven or stored temporarily in an uncooled greenhouse that reached a
diurnal high temperature of 60 ◦C before being transferred to an oven at 60 ◦C for final drying.

2.4. Total Nitrogen and Carbon Content and Carbon Isotope Composition

On 17 March (the day after the final irrigation, i.e., before water stress induction) and 30 March
(about two weeks after drought induction) six representative leaves (the flag leaf, if present, or the
most recent fully developed leaf) from main tillers were collected per plot, oven dried at 70 ◦C for
48 h, weighed, and finely ground for carbon isotope analysis. The stable carbon isotope composition
(δ13C) together with the total carbon and nitrogen concentrations of the control (17 March) and stressed
(30 March) leaves were determined using an elemental analyzer (EA; Flash 1112 EA, Thermo Fisher
Scientific, Bremen, Germany) coupled with an isotope ratio-mass spectrometer (IRMS; Delta C with
CONFLO III interface, Thermo Fisher Scientific, Bremen, Germany) operating in continuous-flow
mode in order to determine the stable carbon (13C/12C) isotope ratios of the same samples. Samples of
approximately 1 mg of total dry matter (DM) for the dry biomass and reference materials were weighed
into tin capsules, sealed, and then loaded into an automatic sampler (Thermo Fisher Scientific, Bremen,
Germany) before EA-IRMS analysis. The 13C/12C ratios of the plant material were expressed in δ

notation [49]: δ13C = (13C/12C)sample/(13C/12C)standard − 1, where “sample” refers to plant material and
“standard” to international secondary standards of known 13C/12C ratios (International Atomic Energy
Agency (IAEA) CH7 polyethylene foil, IAEA CH6 Sucrose, and the United States Geological Survey
(USGS) 40 l-glutamic acid) calibrated against Vienna Pee Dee Belemnite calcium carbonate with an
analytical precision (SD) of 0.10%�. Total carbon and nitrogen contents were expressed as a percentage
of the dry matter (%). Measurements were carried out at the Scientific Facilities of the University of
Barcelona. The δ13C of the samples collected before drought induction (17 March) and two weeks after
(30 March) are referred to as δ13C control and δ13C stress, respectively.

http://pix4d.com
http://www.qgis.org
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2.5. Statistical Analysis

NDVI measurements, phenology, δ13C, and total carbon and nitrogen contents were subjected to
one-way analysis of variance (ANOVA) using the general linear model to calculate the effect of crop
growth prior to anthesis and progressive drought from anthesis to mid grain filling. For the NDVI,
the date of measurement was included as a fixed factor in the ANOVA, whereas in the δ13C it was
the absence of irrigation. Means were compared by Tukey’s honestly significant difference (HSD) test.
A bivariate correlation procedure was constructed to analyze the relationships between the measured
traits and plant dry matter. Descriptive statistics of agronomic variables were estimated, and analysis
of principal components (PCA) and stepwise analysis were calculated using the SPSS 18.0 statistical
package (SPSS, Chicago, IL, USA).

3. Results

3.1. General Characteristics of the Elite Durum Panel (EDP)

The EDP ranged from 0 to 35 days between extreme accessions in terms of date of anthesis.
The dry biomass harvested two weeks after the last irrigation and averaged across the genotypes of
the EDP was 2.67 Mg ha−1 (Table 1). The Normalized Difference Vegetation Index (NDVI) increased
as crop development progressed, reaching its maximum around anthesis (Table 1). Thus, the lowest
NDVI value, averaged across the EDP, was 0.548 (measured with the SE sensor) and was measured on
13 February, corresponding on average to GS 31 on the Zadoks phenological scale [48]. The highest
NDVI average value was 0.879, using the SE sensor, which corresponded to a value of 0.829 (when
measured with the RE sensor). This measurement took place on 21 March, five days after the last
irrigation. Twelve days after the last irrigation (28 March), which corresponded on average to the GS
58 stage, the NDVI (RE) decreased to 0.772.

Table 1. Average (AVG) and standard error (SE) for dry biomass, nitrogen biomass, flowering time
range (difference between extreme genotypes), and the Normalized Difference Vegetation Index (NDVI).
This index was assessed using Sequoia (SE) and RedEdge (RE) sensors and evaluated at different
growth stages of the Zadoks scale in the 248 Elite Durum Panel (EDP) accessions. Mean values for
NDVI measurements at different time points with different letter are significantly different according to
the Tukey’s honestly significnt difference test ( p < 0.05). The mean squares of the ANOVA for the NDVI
measurement at different time points are included at the bottom of the variable. Level of significance
*** p < 0.001.

Agronomic Variables AVG SE

Biomass 2017 (Mg ha−1) 2.67 0.02
Flowering time range (days) 17.08 0.52

NDVI (Unmanned Aerial Vehicles) Zadoks (GS)
NDVI (SE) 13 Feb control 31 0.548 g 0.002
NDVI (SE) 21 Feb control 0.706 e 0.002
NDVI (SE) 3 Mar control 0.656 f 0.002

NDVI (SE) 13 Mar control 53 0.714 d 0.002
NDVI (RE) 21 Mar stress 0.829 b 0.001
NDVI (SE) 21 Mar stress 0.879 a 0.001
NDVI (RE) 28 Mar stress 58 0.772 c 0.002

Mean Squares
NDVI measurements 3.02 ***

Control plants showed lower values for δ13C (more negative δ13C) compared to water-stressed
plants (Table 2). Total C and N concentrations were higher after drought induction, although in the
one-way analysis of variance the effect of drought was more significant in C than N, as observed from
the higher values of the mean squares in the former (Table 2).
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Table 2. Average (AVG) and standard error (SE) for the stable isotope composition of carbon (δ13C) and
total carbon (Total C) and nitrogen (Total N) concentrations of the dry matter of aerial biomass sampled
before (control) and after (stress) drought was imposed on the 248 EDP accessions. The outputs of
the ANOVA for treatment effect (water availability) are included to the right of the variable. Level of
significance ** p < 0.01, *** p < 0.001.

Control Stress ANOVA

AVG SE AVG SE Mean Squares

Total N (%) 4.74 0.03 4.87 0.02 1.89 **
Total C (%) 43.69 0.21 44.35 0.11 31.98 **
δ13C (%�) −26.57 0.04 −26.29 0.03 9.35 ***

3.2. Relationship between Studied Parameters and Biomass

Principal component analysis (PCA) showed that the δ13C of stressed plants was negatively
correlated with plant biomass (Figure 2, upper panel), whereas the δ13C of control plants did not
show a clear relationship to the biomass (because a perpendicular angle was observed between the
two parameters). The δ13C (either control or stressed plants) showed a positive relationship with
the flowering time, suggesting a sensitivity of δ13C to the wide range of phenologies present in the
EDP (Figure 2, upper panel). Biomass was also sensitive to phenology, as observed by its negative
relationship to flowering time in the PCA, with early accessions being related to higher biomass,
whereas late accessions showed lower biomass (Figure 2, upper panel).

Considering the NDVI measurements at different time points, the NDVI (SE) measured at early
time points during crop development and before drought induction (13 and 21 February) showed a
closer and positive relationship to the biomass (Figure 2, lower panel). In contrast, the NDVI measured
after the last irrigation (i.e., under increasing drought conditions) was poorly correlated with biomass,
as observed by the perpendicular angle between the biomass and the NDVI (RE) measured at the
later time points (21 and 28 March). However, the NDVIs measured after drought induction were
closely correlated with flowering time in the PCA (Figure 2, lower panel), suggesting that these NDVIs
primarily represented the ‘greenness’ of late-phenology accessions, which are associated with a lower
biomass (as observed by the negative relationship between flowering time and biomass). In fact,
when considering the accessions for each flowering time independently, no correlations were observed
between biomass and NDVI in either the accessions with early or late phenologies (Supplementary
Table S2). However, the NDVIs measured in accessions with early phenology (10 to 15 days to
flowering time) tended to be positively correlated with biomass (meaning that early phenologies are
associated with higher biomass, as observed in the PCA), whereas correlations in accessions with
delayed phenologies (16 to 35 days to flowering time) tended to be negative (delayed phenologies are
associated with a lower biomass).

Moreover, in accordance with the PCA, the linear regressions between the NDVI measured before
anthesis in the absence of water stress (i.e., control plants) and biomass (Figure 3, upper panel) were
positive and significant: r = 0.13 (p < 0.05) and r = 0.18 (p < 0.01), for NDVI (SE) measurements
performed on 13 and 21 February, respectively. However, no correlation with biomass was observed
when the NDVI was measured five days after the last irrigation (21 March), and the relationship tended
to be negative and almost significant (p < 0.05) when the NDVI was measured nearly two weeks after
the last irrigation (28 March). Moreover, linear correlation coefficients between flowering time and the
NDVI changed from being non-significant before anthesis to positive and highly significant (p < 0.001)
around anthesis, and further increased as drought advanced. Therefore, the positive relationship
between NDVI and flowering time during the late stages of the crop (13, 21, and 28 March) was
substantiated by the ‘greenness’ of the most delayed accessions (Figure 3, middle panel). Similarly,
the δ13C of stressed plants showed positive correlations with NDVI (p < 0.001) and their strength
increased progressively as NDVI was measured through drought induction (13, 21, and 28 March),
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whereas correlation between the δ13C of control plants and the NDVI did not clearly increase over
time in the presence of drought (on average r � 0.12, p < 0.05) (Figure 3, lower panel).

The δ13C in the stressed plants seemed to be the best parameter correlated with biomass as it
was the first variable chosen in the multilinear model (stepwise analysis) combining the whole set of
genotypes with all flowering times (global) and considering the biomass as the dependent variable
(Table 3) and all NDVI and δ13C measurements as independent variables. However, when subsets
of genotypes were considered on the basis of their flowering time alone, the results were different.
When a flowering time range of 10 to 15 days was considered, the δ13C of the control plants was the
first variable chosen by the multilinear model, whereas the δ13C of stressed plants was the first variable
chosen for the subset of genotypes with a flowering time of 17 days (Table 3). For the subset of late
genotypes, with a flowering time of 25 days, the variables chosen by the multilinear model were NDVIs
measured after drought (28 March, followed by 21 March) (Table 3).Agronomy 2020, 10, x FOR PEER REVIEW 8 of 20 
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Figure 2. Analysis of principal components (PCA) showing similarity and relationship between
biomass, flowering time, and the stable carbon isotope composition (δ13C) of the flag leaf dry matter
sampled before (δ13C control) and after (δ13C stress) drought conditions were imposed in the field
(upper panel), and biomass, flowering time, and the Normalized Difference Vegetation Index (NDVI)
using Sequoia (SE) and RedEdge (RE) sensors and flowering time (lower panel) measured in the 248
EDP on different days after planting. The percentage of variance by the two first axes (components 1
and 2) is included as an inset within each panel.
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Figure 3. Pearson correlation coefficients of the relationship between the Normalized Difference
Vegetation Index (NDVI) measured on different days using Sequoia (SE) and RedEdge (RE) sensors
versus the biomass (upper panel), flowering time (FT) (middle panel), and stable carbon isotope
compositions (δ13C) of the flag leaf dry matter before stress conditions were imposed in the field (δ13C
control) and about two weeks after the last irrigation (δ13C stress) (lower panel) in a panel of 248 durum
wheat elite advanced lines and cultivars from around the world. Level of significance p < 0.05; p < 0.01;
p < 0.001.
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Table 3. Stepwise analysis for the entire 248 panel of durum wheat elite advanced lines and cultivars from around the world with biomass as a dependent variable,
and the following independent variables: Carbon stable isotope composition (δ13C) and total nitrogen (Total N) concentration of the flag leaf dry matter sampled
before stress conditions were imposed in the field (control) and two weeks after the last irrigation (stress), flowering time, and the Normalized Difference Vegetation
Index (NDVI) using Sequoia (SE) and RedEdge (RE) sensors measured on different days after planting. The “global” stepwise analysis represents values obtained by
considering accessions from all flowering times together. The 10, 12, 15, 17, and 25 days of flowering represent the stepwise analyses obtained with accessions within
each flowering time classification.

Variable df r Mean Squares F Significance (p)

Global
(−) δ13C stress 235 0.29 1.60 21.26 0.000

(−) δ13C stress, (+) NDVI (SE) 21 Feb control 234 0.36 1.20 16.85 0.000

Flowering time

10 days (−) δ13C control 75 0.38 0.78 12.93 0.001
(−) δ13C control, (+) NDVI (SE) 21 Feb control 74 0.44 0.51 8.75 0.000

12 days (+) Total N stress 8 0.64 0.39 5.50 0.047
15 days (−) δ13C control 8 0.74 0.25 9.64 0.015
17 days (−) δ13C stress 62 0.32 0.49 7.12 0.010

25 days
(−) NDVI (SE) 28 Mar stress 24 0.50 0.50 7.84 0.010

(−) NDVI (RE) 28 Mar stress, (+) NDVI (SE) 21 Mar stress 23 0.71 0.52 11.97 0.000
(−) NDVI (RE) 28 Mar stress, (+) NDVI (SE) 21 Mar stress, (−) δ13C stress 22 0.79 0.42 11.95 0.000
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3.3. Effect of Phenology on the Relationship of δ13C to Biomass

Biomass was negatively correlated with the δ13C of stressed and control plants (Figure 4). However,
the correlation between biomass and the δ13C was slightly improved in stressed plants (r = 0.54, p < 0.001)
compared to control plants (r = 0.46, p < 0.01). Even so, considering the sensitivity of the δ13C to phenology
(as observed by the close relationship between flowering time and the δ13C in the PCA, see above),
correlations among biomass and δ13C for the subset of genotypes with specific flowering times were
studied (Figure 5 and Supplementary Table S3). Such correlations still remained negative and significant
at different flowering times (Supplementary Table S3), especially in accessions with earlier phenologies
(flowering times of 10 and 17 days). Moreover, days to flowering was positively correlated with the δ13C of
control plants and even more strongly with the δ13C of stressed plants (Figure 6). Thus, considering that
one of the driving factors linked to the δ13C is the intrinsic photosynthetic capacity of the leaf, total N (used
as a proxy for the intrinsic photosynthetic capacity) was correlated with δ13C (Figure 7). Both parameters
showed no significant correlations in the control or stressed plants.
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Figure 5. Linear regression of the relationship between the plant biomass at mid grain filling and the
stable carbon isotope composition (δ13C) in the flag leaf dry matter sampled before stress conditions
were imposed (δ13C control, right panels) and two weeks after the last irrigation (δ13C stress, left panels)
across the subset of genotypes exhibiting the same date of anthesis: 10 days after the earliest genotype
(n = 76) and 17 days (n = 63). Level of significance, ns p > 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6. Linear regression of the relationship of the stable carbon isotope composition (δ13C) of the
flag leaf dry matter (DM) sampled before stress conditions were imposed (δ13C control) and two weeks
after the last irrigation (δ13C stress) against the different categories of flowering times (FT) assessed as
days from the earliest genotypes and included in the panel of 248 genotypes. The raw values of 0 FT
are not included. Level of significance, ** p < 0.01, *** p < 0001.
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Figure 7. Linear regression of the relationship between the total nitrogen (Total N) concentration
and the stable carbon isotope composition (δ13C) in the flag leaf dry matter sampled before stress
conditions were imposed (δ13C control, right panels) and after two weeks of the last irrigation (δ13C
stress, left panels). Relationships were studied by considering the subset of genotypes with a flowering
time of 10 (n = 76) and 17 days (n = 63). Level of significance, ns p > 0.05.
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4. Discussion

4.1. Effect of Drought in the EDP Based on the NDVI and δ13C

To the best of our knowledge, this is the first study that estimates crop growth capacity, in terms
of biomass at mid grain filling, in a panel of hundreds of durum wheat accessions by simultaneously
measuring the NDVI via UAV-based remote sensing platforms and the δ13C at a plant level and
using these parameters as proxies for plant growth, stay-green, and performance under different
water conditions. In the present study, the UAV-based NDVI measured at different time points in the
crop cycle reflected the increase in biomass during crop development until anthesis and the degree
of stay-green during grain filling in response to progressive drought (Table 1). Regardless of the
multispectral imager used (RE or SE), the NDVI increased from the early stages of crop growth along
with increases in the green biomass and the ability of the crop to intercept radiation [50] and peaked
(0.879, i.e., close to saturation) shortly after anthesis and five days after the last irrigation (21 March).
Such peak on NDVI values has been observed in the past as a consequence of canopy closure [51,52].
In fact, on 21 March, the NDVI was recorded simultaneously with RE and SE multispectral cameras
and the different band centers and bandwidths of the cameras did not significantly affect the NDVI
correlation with biomass or the other traits, and this suggests that both sensor types produced
comparable NDVIs. In other words, although absolute NDVI values were in some cases statistically
different, pattern and significance of the relationships of NDVI with biomass and other traits were not
affected by the sensor used. Fourteen days after anthesis (28 March), progressive canopy senescence
(inferred from the decrease of NDVI values and the visual, on-ground observation of the lower plant
leaves) during grain filling probably affected NDVI by reducing the reflectance in the near-infrared
while the reflectance in the red part of the spectrum increased, most likely due to cell degeneration and
chlorophyll loss [14,16,50] as well as decreases in cell water content [53]. Moreover, water-limiting
conditions also affected the δ13C (Table 2). Thus, reductions in soil water content and increases in
vapor pressure deficit (VPD) contributed to differential water use [35] increasing the δ13C of the plant
biomass relative to control in our study as the season progressed. Higher δ13C values in the plant
biomass under drought conditions were probably related to low stomatal conductance, causing a
lower Ci/Ca, which is frequently associated with an increased WUE [30,33]. Nitrogen concentration
values of the flag leaves were very high at the two sampling dates and even increased slightly after two
weeks from the last irrigation, which suggests that senescence induced by the treatment was not severe
and did not affect the upper leaves. In that sense, the decreased NDVI values observed two weeks
after the last irrigation relative to the values obtained five days after the last irrigation might have
an alternative explanation. A leaf-rolling effect resulting from water deficit stress [23,54] could have
been an important factor that decreased the NDVI, as observed from the negative relationship between
the NDVI and leaf rolling in a previous study in the same trial [23]. A methodological limitation of
the NDVI is that this vegetation index tends to saturate beyond values of 0.65–0.70, which would be
the case for both NDVI measurements taken on 21 sand 28 March. However, notwithstanding this
limitation, a small decrease was recorded between five days and two weeks after the last irrigation,
suggesting plants were progressively experiencing senescence, leaf rolling, or a combination of both
factors, after last irrigation.

4.2. Biomass Predictions in Early Stages of Crop Development in the EDP Based on the NDVI

NDVI measurements performed during the relatively early stages of crop development before
anthesis and full water conditions were positively correlated with biomass at harvest (mid grain filling).
This is in keeping with previous studies where NDVIs measured in the early stages of crop development
have been positively correlated with biomass [55]. This is not trivial since biomass is correlated with
yield and, in turn, yield is strongly correlated with the number of grains per area, a component that is
basically determined in the early stages of crop development [56]. Thus, the NDVI values, which are
usually below the threshold for saturation when measured early during the crop cycle, make this
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vegetation index a good proxy of green biomass [10,11,55,57,58]. Therefore, differences in canopy
development estimated during the early stages of crop growth according to the NDVI may help to
forecast crop growth capacity [14,55,58] and thus yield. The positive relationship between biomass and
NDVI was strongest early in the crop development (Figure 3), suggesting that accessions with greater
canopy development before anthesis were the most productive in terms of biomass at mid grain filling.

4.3. Biomass Prediction During the Late Stages of Crop Development Based on the NDVI

Unlike the relationship of biomass to the NDVI measured in the early stages of crop growth,
the relationship between the NDVI measured after drought induction and biomass was poor and even
tended to be negative (Figure 3). Although it was not the objective of our study, maximum growth in
wheat is usually achieved around anthesis and afterwards the canopy starts to senesce, more or less
quickly, depending on the growing conditions, and starting with the older leaves in the lower part
of the plant. In accordance with this, after two weeks of progressive drought induction, the NDVI
measured at mid grain filling decreased compared to values observed just five days after the last
irrigation. However, the negative correlation between the NDVI measured after drought induction
versus biomass and the positive relationship between the NDVI measured after drought versus
flowering time (Figures 2 and 3) led to other interpretations of our results. Thus, genotypes with
delayed phenology are characterized by more vegetative growth, which accounts for the higher NDVI
of such accessions, while earlier genotypes are characterized by less vegetative growth [59]. The larger
transpirative biomass of the late accessions may lead to faster water exhaustion and, so, to a worse
water status. These results suggest that, after drought, late phenologies with lower biomass (although
greener than in early phenologies) were probably associated with a lower proportion of stems and
spikes relative to leaves, hence, affecting plant water status negatively due to a faster exhaustion of soil
moisture in comparison to early flowering genotypes. This would agree with the more positive δ13C
values of the late phenology genotypes (Figures 2 and 3).

Nevertheless, while the general relationships between NDVI and biomass are well established,
selection of the correct crop phenological stage for NDVI monitoring of genotypic adaptation to specific
environments will depend on the growing conditions and also the genotypic range of phenologies.
For example, contrary to positive correlations between NDVIs measured after anthesis and yield in
bread [16] and durum wheat [14,60], the range in phenology across the panel of genotypes tested
was negligible.

4.4. Biomass Predictions Based on δ13C

The accessions with higher biomass were those with better water status (and lower WUE),
as observed by the negative correlation between biomass versus δ13C in both stress and control
conditions (Figure 4). In addition, positive correlations between the δ13C and flowering time (Figure 6)
supported the idea of better water status in accessions with relatively early phenologies (e.g., flowering
times of 10 to 17 days) in contrast to the worse water status (as shown by the higher δ13C values) of
accessions with late phenology (e.g., with a flowering time of 35 days). These results suggest that
the more positive δ13C values in late phenologies are driven by a decrease in stomatal conductance
due to terminal stress [61]. However, when the potentially disturbing effect of phenology was
removed by analyzing the relationship between δ13C and biomass within subsets of genotypes with
similar dates of anthesis (Figure 5), relationships were in many cases still negative and significant,
suggesting genotypes with higher δ13C (and, thus, higher WUE) were those which accumulated less
biomass. Negative genotypic relationships of δ13C with canopy biomass and even more with grain
yield have been reported before [3,38,47,62]. Accordingly, an extensive review on wheat and other
herbaceous crops [63] have highlighted the positive association between higher stomatal conductance
and a more productive genotype. In our study, the increase in δ13C due to stomatal closure was
supported by the absence of a correlation between δ13C and total N either within subsets with the
same date of anthesis (Figure 7) or across the whole set. The absence of a correlation between δ13C
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and total N discarded the intrinsic photosynthetic capacity of the plant as the main cause of δ13C
enrichment [64] in response to elevated N fertilization and differences in phenology and senescence
during grain filling [42]. While a positive relationship between days to anthesis and the δ13C of mature
kernels in wheat has been reported [32,41,65], our study is the first to show that this relationship is
already present in the δ13C of the flag leaves. Genotypes with lower δ13C values were likely associated
with greater transpirative rates that were triggered by an increase in stomatal conductance. Thus,
early flowering accessions that escaped from terminal drought maintained higher levels of stomatal
conductance (which decreased δ13C), being the most productive in terms of biomass. This finding
suggests that under well-watered conditions it is worthwhile for the plant to invest in growth rather
than survival [8,37] and to ensure the maximization of production per unit of transpiration [66,67].
In fact, the maximization of productivity of green biomass occurred not only in well-watered plants
but also after drought because the correlation between biomass and δ13C under drought was stronger
than in the control and remained negative (Figure 3). Therefore, our results indicate that even under
(moderate) water-limiting conditions, the plant strategy is likely to have an impact on growth rather
than survival mechanisms [37]. More importantly, our results also suggest that environmental factors
are not the only basis of such a relationship. While the positive relationship between the date of anthesis
and the δ13C of mature kernels under Mediterranean conditions can be related to the later genotypes
being exposed to more severe drought conditions during grain filling [41], in our study the δ13C
was analyzed in flag leaves sampled simultaneously, and they were, therefore, exposed to the same
environmental conditions. In fact, in the absence of water stress, a lower (i.e., more negative) δ13C has
been associated with faster growth [37,68]. The mechanisms underlying the observed response behind
this are unclear but different avenues should be explored in the future. For example, higher stomatal
conductance as an indicator of better water status [30,33,35,37,41] or thinner leaves associated with
faster growth [37,68] may be related to a lower δ13C.

4.5. Concluding Remarks on How and When to Use Phenotyping Traits

Although phenology affected the δ13C, this trait (rather than days to anthesis) was the first
variable chosen by the multilinear model for biomass prediction both when we considered the whole
set of genotypes as well as for the larger subsets with a given anthesis time (Table 3). In contrast,
NDVI measurements based on UAV-mounted platforms did not predict biomass effectively, although a
notable decrease in the NDVI was observed 14 days after drought induction. The results observed in
this study not only reveal the importance of environmental conditions on NDVI measurements but
also the significance of the developmental stage in which the NDVI is measured when monitoring
genotypic adaptation to specific environments. Consequently, the crop developmental stage should
be considered in deciding when to measure NDVI because phenology could bias interpretation of
the results due to the negative association of biomass with NDVI during advanced developmental
stages. Therefore, accessions undergoing NDVI or δ13C assessment should have similar phenology,
otherwise the phenotypic performance of these traits may be biased. Our results concur with a recent
report on wheat [69] that advocates the phenotyping of photosynthetic traits at multiple scales (leaf to
canopy) and multiple development stages (vegetative, and pre- and post-anthesis). Additionally,
our study highlights the confounding effect of phenology when phenotyping other agronomic traits,
a well-known issue when interpreting the effects of QTL for drought-related proxies of biomass
and yield productivity [47,70]. Accordingly, any given trait such as NDVI and δ13C may have a
positive, negative, or null association with the target trait under selection, in accordance with previous
reports [38,41,47,55,71]. Therefore, a wide variation in phenology should be avoided in studies that
aim to elucidate the relationship between proxy traits and other agronomic traits, otherwise the
interpretation of the results may be compromised.

Our study illustrates how a correct phenotyping is only feasible providing (1) a good understanding
of phenotyping conditions in terms of traits measured, crop stages, and growing conditions when
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these traits are evaluated and (2) genotypic variability in intrinsic characteristics, such as phenology,
is accounted for.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/11/1679/s1,
Table S1: Number of accessions at different flowering times and phenological stages, Table S2: Linear regression
of the relationship between the biomass at mid grain filling and the NDVI, Table S3: Linear regression of the
relationship between the biomass and δ13C in the flag leaf dry matter sampled before imposition of stress and
after two weeks of stress conditions, Figure S1: Image of the field trial at the Maricopa phenotyping platform.
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