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Abstract

Clinical pathologists identify visually many morphological features to characterize the

different normal cells, as well as the abnormal cell types whose presence in peripheral

blood is the evidence of serious diseases. Disadvantages of visual morphological anal-

ysis are that it is time consuming, needs expertise to perform an objective review of the

smears and is prone to inter-observer variability. Also, most of the morphological de-

scriptions are given in qualitative terms and there is a lack of quantitative measures. The

general objective of this thesis is the automatic recognition of normal and dysplastic cells

circulating in blood in myelodysplastic syndromes using convolutional neural networks

and digital image processing techniques. In order to accomplish this objective, this work

starts with the design and development of a MySQL Database to store information and

images from patients and the development of a first classifier of four groups of cells, us-

ing convolutional neural networks as feature extractors. Then, a high-quality dataset of

around 17,000 images of normal blood cells is compiled and used for the development of

a recognition system of eight groups of blood cells. In this work, we compare two transfer

learning approaches to find the best to classify the different cell types. In the second part

of the thesis, a new convolutional neural network model for the diagnosis of myelodys-

plastic syndromes is developed. This model was validated by means of a proof of concept.

It is considered among the first models that have been built for diagnosis support. The

final work of the thesis is the integration of two convolutional networks in a modular sys-

tem for the automatic classification of normal and abnormal cells. The methodology and



models developed constitute a step forward to the implementation of a modular system to

recognize automatically all cell types in a real setup in the laboratory.

Keywords: Blood morphology; Convolutional neural networks; Blood cells automatic

recognition; Myelodysplastic syndromes; Diagnosis support
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Chapter 1

Introduction

1.1 Motivation

Peripheral Blood (PB) carries several cell types suspended in plasma, all essential for

immunity and life: erythrocytes (red cells), leukocytes (white cells) and thrombocytes

(platelets). Fortunately, PB is easily accessible and observable by optical microscopy,

therefore visual cell inspection is very relevant in working flows of clinical laboratories.

World Health Organization (WHO) considers morphology, along with other complemen-

tary tests such as immunophenotype, cytogenetic and molecular genetic studies, essential

for the integral diagnosis of hematological diseases.

Clinical pathologists identify many morphological features to characterize the different

normal cells, as well as the abnormal cell types whose presence in PB is the evidence of

serious diseases. A drawback of visual morphological analysis is that is time consuming,

needs expertise to review the PB smears in an objective and reliable way and is prone

to inter-observer variability. Also, most of the morphological descriptions are given in

qualitative terms and there is a lack of quantitative measures. As a result, the subtle inter-

class morphological differences among abnormal cell types produce low specificity scores
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in the daily work screening.

The detection and correct classification of abnormal cells is required to give a correct and

prompt initial diagnostic approach. Laboratory autoanalysers show flags when the in-

strument detects possible blood cell abnormalities. Nevertheless, the smear review under

the microscope is needed to confirm the presence of abnormal cells circulating in blood.

Given all these limitations in the recognition of malignant cells, our research group Con-

trol, Modelling, Identification and Applications (CoDAlab) from Technical University of

Catalonia (UPC) in collaboration with the Hematology and Cytology Unit of the Core

laboratory at the Hospital Clinic of Barcelona, are interested in proposing solutions to the

automatic recognition of PB cells, using Artificial Intelligence (AI), to assist in the daily

work of clinical pathologists.

The rapid development of AI algorithms in recent years provides computational tools to

solve the problem of the objective morphological classification of PB cells. Specifically,

deep learning comprises multilayered computer models to extract features from input in-

formation to discover automatically subjective and intuitive patterns from complex data

structures like the images of PB cells. The main objective of this thesis is the automatic

classification of normal PB cells and dysplastic cells associated to myelodysplastic syn-

dromes circulating in PB through the use of deep Convolutional Neural Network (CNN).

This research is part of the global objectives of the group to advance in the development

of PB cell classification systems using deep learning.

1.2 Objectives

The general objective of this thesis is the automatic recognition of normal and abnormal

cells circulating in blood in myelodysplastic syndromes using CNNs and digital image

processing techniques.

2



1.3 Theoretical framework

To achieve this, the following specific objectives have been proposed:

1. Configure a database of PB cell images acquired during the research using CellaV-

ision DM96. The database will be organized by entities and patients.

2. Extract deep features from PB cell images using different architectures of CNNs

described in the literature and further use these features to train a classifier to rec-

ognize the corresponding images.

3. Design and assessment of a CNN recognition system for eight groups of PB cells:

neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulo-

cytes (myelocytes, metamyelocytes and promyelocytes), erythroblasts and platelets.

4. Design and testing of a CNN model for the automatic recognition of hypogranulated

dysplastic neutrophils in PB.

5. Perform a proof of concept with cell images from MDS patients to validate the

proposed system for the diagnosis support of MDS.

6. Integration of two CNN models in a system for the automatic recognition of MDS

using all types of blood cells circulating in PB.

1.3 Theoretical framework

This section highlights the body of knowledge used for the development of this thesis. The

framework is organized in three principal blocks: fundamental knowledge, specialized

knowledge and tools.

The fundamental knowledge displayed in Figure 1.1 is the group of disciplines, repre-

sented by cubes, upon which the other two blocks are constructed. A background on
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linear algebra (Chapter 2 in reference [1]) is useful to refresh basic concepts related to

matrix transformations, eigenvalues and eigenvectors decomposition, which were impor-

tant in issues like dimensional reduction used in data analysis. Multivariable calculus and

optimization tools were the foundations for the neural networks training [2]. Probability

theory background in Chapters 1 and 2 of reference [3], like algebra of events, law of

total probability, Bayes theorem and probability distributions were also reviewed to apply

concepts from information theory like entropy and the entropy loss used to measure the

performance of a neural network.

On the other hand, peripheral blood cell morphology was studied from [4], Chapters

1, 2 and 6, to learn and understand the principal morphological features of PB cells,

specifically those of the normal cells: neutrophils, eosinophils, basophils, lymphocytes,

monocytes, immature granulocytes, erythroblasts and platelets and dysplastic cells: hy-

pogranulated, hypersegmented and Pelger-Hüet neutrophils. A more detailed description

of the most important morphological features of normal PB cells is presented in Chapters

3 and 4 of this thesis. The relevant features of dysplastic cells are described in Chapter 5.

Linear
Algebra

vector operations
matrices transformations
determinants
eigenvalues and
eigenvectors
linear transformations Peripheral blood

cells morphology

Dysplastic cellsNormal cells
neutrophils

hipogranulated
neutrophils

hypersegmented
neutrophils

pelger-hüet

eosinophils
basophils
lymphocytes
monocytes
immature
granulocytes
eythroblasts
platelets

Multivariable
Calculus

gradients
jacobian
and hessian

partial
derivatives

Probability
theory

algebra of events

law of total probability
Bayes theorem
probability distributions
information theory - entropy

FUNDAMENTAL
KNOWLEDGE

Figure 1.1: Fundamental knowledge. Group of basic disciplines and concepts upon
which the other two blocks are constructed. Cubes represent the disciplines and the dots
are their respective concepts used to develop this thesis.

The second block in Figure 1.2 represents specialized knowledge, conformed by concepts

and tools related to machine learning: Support Vector Machine (SVM) and CNNs.
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1.3 Theoretical framework

SPECIALIZED
KNOWLEDGE

Machine
learning

Convolutional
neural

networks(deep
learning)

Support vector
machines

convex optimization
kernel methods

stochastic gradient
descent
batch/minibatch processing
learning rate
momentum
backpropagation

parameter regularization:dropout
batch normalization
crossentropy loss
performance parameters:
accuracy, loss
cnn's architectures
convolutions

Figure 1.2: Specialized knowledge. Specific concepts related to machine learning like
the Support Vector Machine (SVM) and Convolutional Neural Network (CNN).

SVMs more important related concepts are the convex optimization and the kernel meth-

ods, which are the basics to understand their inner functioning. These concepts were

reviewed from [5], Chapter 3 and from [6], Chapters 5 and 6. SVMs were implemented

in works presented in Chapters 2 and 4 of this thesis.

CNNs, the principal model implemented in this thesis, and related concepts like the

Stochastic Gradient Descent (SGD), backpropagation and crossentropy loss used for train-

ing, as well as basic concepts to tune models like batch/minibatch processing, learning

rate, batch normalization, momentum, and dropout were reviewed from different sources:

Chapters, 7, 8 and 9 from [1], Chapter 15 from [5], Chapters 10 and 11 from [7] and Part

I from [8]. The architectures implemented in our research and the different layers that

conform the CNNs, as well as the training algorithms, are explained in detail in Chapters

4 and 5 of this thesis.

The last block in Figure 1.3 are the software tools used to implement the CNNs. The

first work about classification presented in Chapter 2 was developed with the propietary

software Matlab and a toolbox named matconvnet [9], which contains several pretrained
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CNN architectures easy to implement and train. The rapid development of more powerful

open source libraries in python [10], like tensorflow [11] and keras [12], allowed us to

adopt them along with other numerical libraries like numpy [13], pandas [14], scikit-

learn [15], matplotlib [16] and seaborn [17]. The mysql library [18] was used to design

the images database explained in Chapter 2 of this thesis.

TOOLS

Software
libraries

Open source
librariesPropietary software

matlab
matconvnet

linux

tensorflow
keras
numpy
pandas

scikit-learn
matplotlib
seaborn
mysql

python 

Figure 1.3: Software tools used to to implement the models developed in this thesis.

1.4 Research methodology

The use of CNNs for image classification requires a set of steps to obtain models that

are able to extract useful information by means of convolutional layers and use it to per-

form the automatic classification with high accuracy. These steps conform the research

methodology presented in the flowchart in Figure 1.4. Rectangles represent the principal

steps in the methodology. Parallelograms are outputs resulting from some processes and

rhombus represent points where a decision must be made.

The research workflow is organized in two blocks (dashed rectangles). The first part, from

the acquisition of images to the data split, are data driven processes, which have to do only
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with the data processing needed for training the models. The second block, from selection

of model to the workflow end, are model driven processes because they are related to the

model selection, design, training and testing processes.

Start
Acquisition of
images at the

laboratory

Import of
images into

a DB*

Dataset
selection

Dataset
split

train
set

val
set

test
set

POC**
set

Selection of
the model

pre-
trained?

Set up model
parameters

yes no

Design a new
model from

scratch

Model
training

Set up of training
hyperparameters

  Performance
satisfactory?

no

Model
testing

yes

yes

POC**

no

Take
corrective

actions

Need more 
images

yes

FINAL
MODEL

End

no

Data driven processes Model driven processes

  Performance
satisfactory?

no

Figure 1.4: Research methodology used in this thesis. Rectangles represent the principal
steps in the methodology, parallelograms are outputs resulting from some processes and
rhombus represent points where a decision must be made. (DB∗=database, POC∗∗=proof
of concept).
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Acquisition of images in the laboratory: At this first stage blood samples are processed

at the Core laboratory of the Hospital Clinic with a standardized quality control system

to ensure equal and stable conditions for all samples. As a result, images of individual

peripheral blood cells of size 360x363 pixels in jpg format are obtained. Each cell image

is labeled by clinical pathologists.

Import of images into a Database (DB): The images obtained are anonymzed and im-

ported into a MySQL Database. We designed an indexed the database to store in a sys-

temic and organized manner the information about the cells like the smear date, number

of cells and type of cells in each smear, location of image storage, etc. This organiza-

tion enables the subsequent search for information using different criteria to conform the

datasets for training the models.

Dataset selection: The images required to train a model are selected from our DB. Some

criteria selection are the disease or entity and the cell type.

Dataset split: Once the dataset is set up, it is split in four groups: train, validation, test

and proof of concept sets. With this step the data processing is finished.

Selection of the model: In this step we select the type of model we are going to use.

Among the models in this thesis are SVMs and CNNs. If the model selected is pretrained,

we have to set up the model parameters for training. If the model is not pretrained, we

have to design a model from scratch and initialize its parameters randomly.

Set up of training hyperparameters: For training the models we have to set up some

parameters like the number of epochs, as well as select the training algorithms and number

of layers to train if the model is a CNN.

Model training: Execute the training and monitor the progress of the performance met-

rics, usually accuracy and loss. The training time of a model depends on the number of

parameters to be trained. The more parameters and more complex the architecture, the

8



1.5 Thesis organization and contributions

longer time the training will take. Several trains can be executed until the desired accuracy

levels are achieved.

Model testing: The objective of this step is to test the model with new images not used

previously for the training stage and measure a more real performance of the model. If

the accuracy and loss results are satisfactory, we consider the model ready for the proof

of concept. If the results are not satisfactory, corrective actions must be taken.

Implement corrective actions: This action is taken based on the analysis of the classifi-

cation errors obtained. The corrective actions to implement can be mainly of two types:

1) Related to data: this means to go back to the start of the workflow and collect more

images to improve the classification results; and 2) Related to models: go back to model

selection and follow the workflow from this step.

Proof of Concept (POC): When testing results of the classification model are satisfactory,

the POC is performed. The main goal with this final test is to evaluate the performance of

the model in a real set up, using smears from individual patients.

1.5 Thesis organization and contributions

Figure 1.5 illustrates the thesis organization. This document can be read in two ways: 1)

Following the chapters column (from top to down). This is the same order in which the

thesis was developed. 2) Following the objectives column from left to right, the reader

may select an specific objective, the chapter where the development and results are ex-

plained in detail and their related contribution.

The thesis is conformed by seven chapters. The first chapter is the Introduction where im-

portant aspects of the context are presented. It starts with the motivation and justification

to perform this research, next, the theoretical framework used for the development of the
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OBJECTIVES CHAPTERS

Obj. 1: Configure a database
of PB cell images.

Obj. 2: Extract deep features
from PB cells to train a

classifier.

Obj. 3: Design and
assessment of a CNN

recognition system for eight
groups of PB cells.

Obj. 4: Design and testing of
a CNN model for the

automatic recognition of hypo
granulated neutrophils.

Obj. 5: Perform proof of
concept with MDS patients.

Obj. 6: Integration of two
CNN models.

Ch. 1: Introduction

Ch. 2: Initial works

Ch. 3: A Dataset of
microscopic PB cell images

Ch. 4: Recognition of
peripheral blood cell images

using CNNs

Ch. 5: A new convolutional
neural network predictive

model to assist in the
diagnosis of MDS

Ch. 6: Modular system for
neutrophils detection and

MDS diagnosis.

Ch. 7: Conclusions,
contributions and future

perspectives.

CONTRIBUTIONS

2. Dataset of eight types of
PB cells. 

3. CNNs for the classification
of eight groups of PB cells. 

4. DysplasiaNet: A new CNN
model for diagnosis support

of MDS. 

5. Modular system for MDS
diagnosis.  

Figure 1.5: Thesis organization and contributions.
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thesis, following with the objectives that guided the thesis development and finishing with

the research methodology implemented. Chapter 2 details the initial works developed to

accomplish the first two specific objectives proposed in the thesis. The first work was the

design and development of an indexed MySQL Database to store the images of PB cells.

The second work was the development of a first model to perform automatic classification

of four groups of PB cells using several pretrained CNNs to extract image features to train

SVMs. The results obtained were presented at the International Symposium of Biomedi-

cal Imaging, ISBI 2017. Chapter 3 describes the dataset of PB cell images compiled for

the training and testing of CNNs [19]. The dataset was published in Data in Brief, an

open access scientific journal that provides a way for researchers to share and reuse each

other’s datasets.

Chapter 4 presents the development of CNN models for the classification of eight groups

of PB cells [20]. The results obtained were published in Computer Methods and Programs

in Biomedicine, a scientific journal classified in the first quartile (Q1) and impact factor

of 3.362 (2019) accordingly to the Journal of Citation Reports ranking (JCR). Chapter

5 presents the design and development of a new model for the diagnosis of MDS. The

results are being evaluated by the scientific journal Computers in Biology and Medicine,

which is classified in the first quartile (Q1) and has an impact factor of 3.434 (2019)

according to JCR.

Chapter 6 presents a modular system for neutrophils detection and MDS diagnosis. In

the same chapter, we also present a final work towards a modular system for the classifi-

cation of a wide range of PB cells. Although a global system is out of the scope of this

thesis, we have performed a final test to Model 1 using abnormal cells present in serious

diseases as leukemia, lymphoma and infections. This is the first effort in integrating the

different classification models that are being developed in the research group. Chapter 7

summarizes the conclusions, contributions and some perspectives on future works.
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Chapter 2

Initial works
1

1Based upon: Acevedo, A., Alférez, S., Merino, A., Puigví, L., & Rodellar, J. (2017). Automatic recog-
nition system of peripheral blood cell images using deep features. Abstract presented at IEEE International
Symposium on Biomedical Imaging – ISBI 2017.





2.1 Database design

Abstract

This chapter presents the initial works to develop the first two specific objectives proposed

in this thesis. The first work, in Section 2.1, is the design of the MySQL Database devel-

oped to store information from PB cell images in a structured manner, which are obtained

from healthy controls and patients. Also, the process to import the images to the database

and some SQL queries to retrieve information, are explained. Section 2.2 presents the

development of a first classifier to classify four groups of PB cells using CNNs as feature

extractors. A dataset of 22,371 images was selected from the MySQL Database and or-

ganized in four groups: Mononuclear cells, granulocytes, platelets and smudge cells. Six

pre-trained CNNs were used to extract features from the images to train a SVM to classify

these four groups. Total accuracies in all cases were above 94 %.

2.1 Database design

A MySQL Database is a set of tables created to store information in units called registers.

The rows of the table are the registers and the columns are the fields of the registers.

All registers from the same table have the same number and type of fields. When using

a MySQL Database, before storing new data, all the tables and the type of data of the

columns must be configured. We use three types of data in the database: VARCHAR, to

store data composed by numbers and letters of different sizes, INT to store integers and

DATE to store dates.

The DB designed is conformed by three tables: "historias", "entrenamiento" and "testing".

The tables, their respective column names and the data type of each column are presented

in Figure 2.1. Table "historias" contains two columns. First is nhc, which corresponds

to patient history. The type of data of this column is VARCHAR and can be of up to

255 characters. The second column is nhc_aleatorio, where are stored the new history
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numbers of data type INT. This is a random number generated to replace the original

history number. The principal objective of this table is to map the original history number

to the new random history number assigned and ensure that the new generated number is

unique.

entrenamiento

id_registro INT

historia INT

peticion VARCHAR(255)

fecha DATE

ruta VARCHAR(300)

celula VARCHAR(30)

entidad VARCHAR(50)

grupo VARCHAR(10)

n_imagenes INT

origen VARCHAR(20)

Indexes

historias

nhc VARCHAR(255)

nhc_aleatorio INT

Indexes

testing

id_registro INT

historia INT

fecha DATE

ruta VARCHAR(300)

celula VARCHAR(30)

entidad VARCHAR(50)

grupo VARCHAR(10)

n_imagenes INT

origen VARCHAR(20)

Indexes

Figure 2.1: Database tables schema. The database is conformed by three tables: histo-
rias, entrenamiento and testing.The columns of each table are also listed.

Table "entrenamiento" stores the smears used to train Machine Learning (ML) models.

There is one register for each type of cell (column celula) in a smear. This table contains

10 columns:

• id_registro: random number generated each time a new register is inserted in the

table. It is also named as the primary_key used to identify uniquely each register.

• historia: random history number assigned to the smear. Corresponds to nhc_aleatorio
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from "historias" table.

• peticion: number generated in the laboratory to identify each smear.

• fecha: the date when the smear was generated at the laboratory.

• ruta: directory where are stored the images that correspond to an specific smear

and type of cell. The physical route to each type of cell has the following structure

: grupo/entidad/historia/fecha/celula

• celula: cell type. There are 19 cell types in the database among normal and abnor-

mals: monocyte, lymphocyte, eosinophil, neutrophil band, neutrophil segmented,

basophil, metamyelocyte, promyelocyte, myelocyte, prolymphocyte, variant lym-

phocyte, smudge, giant platelets, erythroblasts, atypical lymphocytes, centroblasts,

blasts, atypical promyelocyte, plasma cells.

• entidad: is the type of entity or disease. There are cells of 13 entities in the

database: Normal, Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma

(FL), Hairy Cell Leukemia (HCL), Large Granular Lymphocyte Leukemia (LGL-

T), Mantle Cell Lymphoma (MCL), Plasma Cell Leukemia (PCL), B and T Pro-

lymphocytic Leukemia (PL), Splenic Marginal Zone Lymphoma (SMZL), Sézary

Sindrome (SS), Infections (CLR), Acute Lymphocytic Leukemia (ALL) and Acute

Myeloid Leukemia (AML).

• grupo: entity group. Entities are organized in five groups: Normal, CLR , B-cell

Chronic Lymphoproliferative Disorder (SLPC-B), T-cell Chronic Lymphoprolifer-

ative Disorder (SLPC-T) and Blasts (BLASTS).

• n_imagenes: number of images in the directory.

• origen: source of the images. The images can be from two sources: CELLAVISION

and MICROSCOPE.
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Regarding the table "testing", it contains 9 columns with the same data type as of "entre-

namiento" table. In this table, smears from different patients are stored and are usually

used to test the models developed.

2.1.1 Import process

The import process was designed to store the images and smear information acquired in

the laboratory. It is the second step in the research methodology described in Figure 1.4.

The information is imported to the MySQL Database by means of an algorithm described

in the flowchart in Figure 2.2. The algorithm script was written in Perl language.

The import starts with the connection to the MySQL Database with the proper access cre-

dentials. The script reads a excel file which contains information of the smears selected in

the laboratory. Each row of the excel contains the following fields with information from

one smear: patient history, number of petition, date of the smear and entity or disease.

The script checks that the first three fields are not empty. If any of them is empty, the row

is discarded and the script proceeds to the next row in file. If these fields are not empty,

the script query to "historia" table to check if the patient has been previously inserted in

the DB. If not, a new register is inserted in the "historia" table and a new patient history

number is generated. If the patient is already in the DB, the nhc_aleatorio is retrieved

and kept in memory. Next, the script checks that the smear directory exists and moves

it to the final location into the directory system of the DB with the following structure:

/grupo/entidad/historia/fecha/celula. The number of images in each "celula" subdirectory

is counted and the register is inserted in the proper table: training or testing. If the register

already exists in the table, it is not inserted and the script follows with the next "celula"

sudirectory in the smear. When all the directories corresponding to each type of cell in

the smear have been inserted, the script writes a log file to keep track of the inserts and

follows with the next smear in the excel file until all lines are processed.

16
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Figure 2.2: Import algorithm developed to insert into the mysql database new smears
selected in the laboratory.
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2.1.2 Database queries

The DB can be consulted using the MySQL workbench. This is a graphical interface to

create and interact with MySQL Database. Figure 2.3 presents four important parts of the

interface (red numbers). Number one is the query. This is the information we want to

retrieve from the database. It should be written in SQL. In the example we query all the

registers in "entrenamiento" table whose entity is NORMAL. The tables that conform the

database are marked with number two: historias, testing and entrenamiento. The answer

to the query, in this case, all the registers that correspond to NORMAL smears in the

"entrenamiento" table, are marked with number three. Number four marks the summary

of the action performed with information like the query executed, the total of registers

consulted and duration time of the query.

Figure 2.3: Important features of the workbench interface.

If it is required to retrieve only normal lymphocyte images for training, for example, we

have to write the query presented in Figure 2.4, where we ask for all registers from healthy

controls (entidad = NORMAL) and cell type lymphocytes (celula = LYMPHOCYTE).

18
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Figure 2.4: Query example to retrieve only the normal lymphocytes from training table.

Next, there are some examples of queries to retrieve information from the database:

1. To obtain the total of normal patients:

Select count(distinct historia) from training where entidad = ’NORMAL’;

2. To obtain the number of smears from each normal patient:

Select historia, count(distinct fecha) from training where entidad =

’NORMAL’ group by historia,fecha;

3. To obtain the total of normal lymphocytes:

Select sum(n_imagenes) from training where entidad= ’NORMAL’ and celula=

’LYMPHOCYTE’;

4. Obtain the abnormal lymphocytes from follicular lymphoma disease:

Select * from training where entidad = ’LF’ and celula=

’ATYPICAL_LYMPHOCYTE’;

19



Initial works

2.2 A first classifier of PB images

The second preliminary work was the development of a first classifier for the automatic

morphological detection of PB images [21]. A SVM was trained for the recognition of

four cells groups: 1) Mononuclear Cells (MNC), 2) granulocytes, 3) smudge cells, and

4) platelets, using deep features extracted using different architectures of CNNs. The

MNC group was conformed by abnormal lymphoid and blast cells circulating in PB in

malignant diseases such as lymphoid neoplasms and acute leukemias. Granulocytes and

platelets are common normal cells that can be encountered in PB. Smudge cells represent

abnormally fragile cells that break during the smear preparation. Their observation is fre-

quent in PB in chronic lymphocytic leukemia.

We acquired 22,371 digital cell images from a total of 404 patients at the routine workload

of the Core Laboratory of the Hospital Clinic of Barcelona. PB films were stained auto-

matically with May Grünwald-Giemsa and images were acquired using the CellaVision

DM96 system. Images were imported to the MySQL Database. The dataset was organized

in four groups: MNC (10,982 images including lymphocytes, monocytes, reactive lym-

phocytes, abnormal lymphocytes, plasma cells, atypical promyelocytes, blast cells and

erythroblasts), granulocytes (7,186 images including basophils, eosinophils, neutrophils,

band cells, myelocytes, metamyelocytes, promyelocytes), platelets (1,962 images corre-

sponding to giant platelets and aggregates) and smudge cells (2,241 images of isolated

cell nuclei). Examples of images of the different groups are shown in Figure 2.5.

We extracted a total of 4,096 features from each image using six pre-trained CNNs:

Alexnet [22], vgg-s,m,f [23], vd-16 and vd-19 [24]. Then, with these features we trained

a quadratic SVM in Matlab, implementing a 5-fold cross validation.

Results obtained are presented in Table 2.1. The True Positive Rate (TPR) for each group
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I. INTRODUCTION 

Abnormal lymphoid and blast cells are mononuclear cells 
(MNC) circulating in peripheral blood (PB) in malignant 
diseases such as lymphoid neoplasms and acute leukemias. An 
automated morphological detection of these cells would help 
as a support for the morphologic diagnosis [1]. We present a 
system for the automatic recognition of four groups obtained 
from PB: 1) MNC 2) granulocytes 3) smudge cells and 4) 
platelets, using deep features from different convolutional 
neural networks (CNN) and classification with a quadratic 
support vector machine (SVM). 

II. METHODOLOGY 

We compiled a dataset of 22371 digital cell images from 

the routine workload of the Core Laboratory of the Hospital 

Clinic of Barcelona. PB films were stained automatically with 

May Grünwald-Giemsa and images were obtained using the 

CellaVision DM96 system and taken from a total of 404 

patients. The dataset was organized in four groups: MNC 

(10982 images including lymphocytes, monocytes, reactive 

lymphocytes, abnormal lymphocytes, plasma cells, atypical 

promyelocytes, blast cells and erythroblasts), Granulocytes 

(7186 images  including basophils, eosinophils, neutrophils, 

band cells, myelocytes, metamyelocytes, promyelocytes), 

Platelets (1962 images corresponding to giant platelets and 

aggregates) and Smudge cells (2241 images of isolated cell 

nuclei). Examples of images of the different groups are shown 

in Figure 1. 

 

We extracted a total of 4096 features from the images using 
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SVM using Matlab with a 5-fold cross validation. 
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Figure 1. Representative cell images 

III. RESULTS 

Table I shows the true positive rates for each group 
classified. Total accuracies in all cases were above 94%. In 
addition, the AUC ROC was close to 1 for all the analysis. 

TABLE I. TRUE POSITIVE RATES (TPR) VALUES (%) OBTAINED 

IN THE CLASSIFICATION USING 4096 FEATURES. 

CNN: Convolutional Neural Network, MNC: Mononuclear cells, SC: Smudge cells. 

IV. CONCLUSIONS 

The use of pre-trained CNN to extract deep features from 
PB images allowed obtaining very high accuracy percentages 
in their automatic classification without requiring previous 
segmentation of the regions of interest of the images. Results 
are encouraging towards the development of an automatic 
recognition system for a broader family of abnormal 
mononuclear cells as a diagnosis support tool. 
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Figure 2.5: Examples of images of the four groups classified: granulocytes,Mononuclear
Cells (MNC), platelets and smudge cells.

classified is in percentage. Total accuracies for all CNNs were above 94%. In addition,

the area under the curve Receiver Operating Characteristic (ROC) was close to 1 for all

the analysis.
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CNN TPR MNC 
TPR 

Granulocytes  

TPR 

Platelets 

TPR 

SC 

Alexnet 98 95 99 93 

Vgg-s 98 96 99 94 

Vgg-m 98 94 99 95 

Vgg-f 98 96 98 93 

Vd-16 96 92 98 91 

Vd-19 96 92 97 91 

 

Table 2.1: True Positive Rate (TPR) for each group classified with different CNNs. Total
accuracies in all cases were above 94 %.

2.3 Conclusions

We made a first approach to the classification of PB cells using pre-trained CNN to extract

deep features. We obtained high accuracy percentages in the automatic classification

without requiring previous segmentation of the regions of interest of the images, which

was the predominant direction in the research group. These results were encouraging
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Initial works

towards the development of automatic recognition models for a broader family of cells

and with a diagnosis perspective. With this purpose, the immediate next step was to select

a larger dataset to increase the number of cell types to be classified. This is explained in

Chapter 3.
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Chapter 3

A dataset of microscopic peripheral

blood cell images for development of

automatic recognition systems
1

1Based upon: Acevedo, A, Merino, A, Alférez, S, Molina, Á, Boldú, L, and Rodellar, J. (2020). A
dataset of microscopic peripheral blood cell images for development of automatic recognition systems.
Data in Brief, 30. https://doi.org/10.1016/j.dib.2020.105474





3.1 Data

Abstract

This chapter presents a dataset for the development of automatic recognition systems of

PB cell images. The dataset contains a total of 17,092 images of individual normal blood

cells, which were acquired using the analyzer CellaVision DM96 in the Core Labora-

tory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight

groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granu-

locytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or

thrombocytes. The size of the images is 360 x 363 pixels, in format JPG, and they were

annotated by expert clinical pathologists. The images were captured from individuals

without infection, hematologic or oncologic disease and free of any pharmacologic treat-

ment at the moment of blood collection.

This high-quality labelled dataset may be used to train and test ML and deep learning

models to recognize different types of normal PB cells. To our knowledge, this is the first

publicly available set with large numbers of normal PB cells, so that it is expected to be a

canonical dataset for model benchmarking.

3.1 Data

The normal PB dataset contains a total of 17,092 images of individual cells, which were

acquired using the analyser CellaVision DM96. All images were obtained in the colour

space RGB. The format and size of the images is jpg and 360 x 363 pixels, respectively,

and were labelled by clinical pathologists at the Hospital Clinic.

The dataset is organized in eight groups of different types of blood cells as indicated in

Table 3.1.
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Cell type Total of images by type %

neutrophils 3,329 19.48
eosinophils 3,117 18.24
basophils 1,218 7.13
lymphocytes 1,214 7.10
monocytes 1,420 8.31

metamyelocytes
myelocytes

immature
granulocytes

promyelocytes
2,895 16.94

erythroblasts 1,551 9.07
platelets(thrombocytes) 2,348 13.74
Total 17,092 100

Table 3.1: Types and number of cells in each group.

Although the group of immature granulocytes includes myelocytes, metamyelocytes and

promyelocytes, we have kept all in a single group for two main reasons: (1) the individual

identification of these specific subgroups does not have special interest for diagnosis; and

(2) morphological differences among these groups are subjective even for the clinical

pathologist. Figure 3.1 shows examples of the ten types of normal PB leukocytes that

conform the dataset.

3.2 Experimental design, materials and methods

The images were obtained during the period 2015–2019 from blood smears collected from

patients without infections, hematologic or oncologic diseases and free of any pharmaco-

logic treatment at the moment of their blood extraction. The procedure followed the daily

workflow standardized in the Core Laboratory at the Hospital Clinic of Barcelona, which

is illustrated in Figure 3.2.
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3.2 Experimental design, materials and methods

Figure 3.1: Example images of the ten types of normal blood cells that can be found in
the dataset organized in eight groups.

Figure 3.2: Daily work flow at the Core Laboratory performed to obtain the blood cell
images.

The workflow starts in the Autoanalyzer Advia 2120 instrument where blood samples are

processed to obtain a general blood cell count. In a second step, the blood smears were au-
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tomatically stained using May Grünwald-Giemsa [25] in the autostainer Sysmex SP1000i.

This automated process ensures equal and stable staining regardless of the specific user.

The laboratory has a standardized quality control system to supervise the procedure. Then

the resulting stained smear goes through the CellaVision DM96 where the automatic im-

age acquisition was performed. As a result, images of individual normal blood cells, with

jpg format and size 360x363 pixels, were obtained. Each cell image was annotated by the

clinical pathologist and saved with a random identification number to remove any link and

traceability to the patient data, resulting in an anonymized dataset. No filter and further

pre-processing were performed to the images.

The above acquisition procedure has been extensively used by our research group in sev-

eral works related to cell image segmentation and classification of PB cells [26]–[30].

The dataset presented in this article has been used in our more recent work to develop a

CNN model for the automatic classification of eight types of normal PB cells [20].

3.3 Value of the data

• This dataset is useful in the area of microscopic image-based haematological diag-

nosis since the images have high-quality standards, have been annotated by expert

clinical pathologists and cover a wide spectrum of normal PB cell types.

• The dataset can be useful to perform training and testing of ML and deep learning

models for automatic classification of PB cells.

• This dataset can be used as a public canonical image set for model benchmarking

and comparisons.

• This dataset might be used as a model weight initializer. This means to use the

available images to pre-train learning models, which can be further trained to clas-

sify other types of abnormal cells.
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3.4 Specifications table

3.4 Specifications table

Subject Hematology

Specific subject area

Computational tools for hematological diagnosis us-

ing microscopic cell images and automatic learning

methods

Type of data Images

How data were acquired

Digital images of normal PB cells were obtained from

samples collected in the Core Laboratory at the Hos-

pital Clinic of Barcelona. In order to obtain the all

blood counts, blood samples were analysed in the Ad-

via 2120 instrument. Next, the smear was automati-

cally prepared using the slide maker–stainer Sysmex

SP1000i with May Grünwald-Giemsa staining. Then,

the automatic analyser CellaVision DM96 was used

to obtain individual cell images with format jpg and

size 360 x 363 pixels. Images obtained were labelled

and stored by the clinical pathologists.

Data format Raw

Parameters for data collec-

tion

The dataset images were obtained from individuals

without infections, hematologic or oncologic diseases

and free of any pharmacologic treatment at the mo-

ment of their blood collection.
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Description of data collec-

tion

The images were collected in a 4-year period (2015

to 2019) within a daily routine. Blood cell images

were annotated and saved using a random number to

remove any link to the individual data, resulting in an

anonymized dataset.

Data source location
Institution: Hospital Clinic of Barcelona, Region:

Barcelona, Catalonia Country: Spain

Data accessibility

The dataset is stored in a Mendeley repository:

Repository name: “A dataset for microscopic

peripheral blood cell images for development

of automatic recognition systems” Data iden-

tification number: 10.17632/snkd93bnjr.1 Di-

rect URL to data: https://data.mendeley.

com/datasets/snkd93bnjr/draft?a=

d9582c71-9af0-4e59-9062-df30df05a121

Related research article

Author’s name: Andrea Acevedo, Anna Merino, San-

tiago Alférez, Laura Puigví, José Rodellar. Title:

Recognition of peripheral blood cells images us-

ing convolutional neural networks. Journal: Com-

puter Methods and Programs in Biomedicine. DOI:

https://doi.org/10.1016/j.cmpb.2019.105020

Table 3.2: Tables with general specifications of the dataset.

28

https://data.mendeley.com/datasets/snkd93bnjr/draft?a=d9582c71-9af0-4e59-9062-df30df05a121
https://data.mendeley.com/datasets/snkd93bnjr/draft?a=d9582c71-9af0-4e59-9062-df30df05a121
https://data.mendeley.com/datasets/snkd93bnjr/draft?a=d9582c71-9af0-4e59-9062-df30df05a121


Chapter 4

Recognition of peripheral blood cell

images using convolutional neural
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Abstract

Background and objectives: Morphological analysis is the starting point for the diagnos-

tic approach of more than 80 % of hematological diseases. However, the morphological

differentiation among different types of normal and abnormal peripheral blood cells is a

difficult task that requires experience and skills. Therefore, in this work we develop a

system for the automatic classification of eight groups of peripheral blood cells with high

accuracy by means of a transfer learning approach using convolutional neural networks.

With this new approach, it is not necessary to implement image segmentation, feature

extraction becomes automatic and existing models can be fine-tuned to obtain specific

classifiers.

Methods: A dataset of 17,092 images of eight classes of normal peripheral blood cells

was acquired using the CellaVision DM96 analyzer. All images were identified by pathol-

ogists as the ground truth to train a model to classify different cell types: neutrophils,

eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (myelocytes,

metamyelocytes and promyelocytes), erythroblasts and platelets. Two designs were per-

formed based on two architectures of convolutional neural networks, Vgg-16 and Incep-

tionv3. In the first case, the networks were used as feature extractors and these features

were used to train a support vector machine classifier. In the second case, the same net-

works were fine-tuned with our dataset to obtain two end-to-end models for classification

of the eight classes of blood cells.

Results: In the first case, the experimental test accuracies obtained were 86 % and 90 %

when extracting features with Vgg-16 and Inceptionv3, respectively. On the other hand,

in the fine-tuning experiment, global accuracy values of 96 % and 95 % were obtained

using Vgg-16 and Inceptionv3, respectively. All the models were trained and tested using

Keras and Tensorflow with a Nvidia Titan XP Graphics Processing Unit.

Conclusions: The main contribution of this paper is a classification scheme involving a
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convolutional neural network trained to discriminate among eight classes of cells circu-

lating in peripheral blood. Starting from a state-of-the-art general architecture, we have

established a fine-tuning procedure to develop an end-to-end classifier trained using a

dataset with over 17,000 cell images obtained from clinical practice. The performance

obtained when testing the system has been truly satisfactory, the values of precision, sen-

sitivity, and specificity being excellent. To summarize, the best overall classification ac-

curacy has been 96.2 %.

4.1 Introduction

PB is a fluid that circulates through the blood vessels and contains three main cell types

suspended in plasma: erythrocytes (red blood cells), leukocytes (white blood cells) and

platelets (thrombocytes). Specifically, leukocytes are nucleated cells that play an impor-

tant role in defense against infections. They are classified as granulocytes (segmented and

band neutrophils, eosinophils and basophils), lymphocytes and monocytes [31]. Granulo-

cytes represent 54-62 % of the total leukocytes in PB. Its nucleus is divided into segments

(from 2 to 5) joined by a thin filament of nuclear material. In the band neutrophils the

nucleus is not segmented and usually the normal percentages in blood are between 0 and

6 %. Eosinophils constitute 1-3 %, basophils 0-1 %, lymphocytes 25-33 % and mono-

cytes 3-10 % of the leukocytes circulating in PB [4]. In several situations (infections,

regenerative anaemias or others) it is possible to find in PB some immature granulocytes

(ig) (promyelocytes, myelocytes and metamyelocytes) or erythroid precursors, such as

erythroblasts. Examples of these types of cells and some of their most important morpho-

logical characteristics are shown in Figure 4.1.

The morphological analysis of the different types of cells in PB is the starting point for the

diagnostic approach of more than 80 % of the hematological diseases. Currently, in the

market there are several systems for the automated pre-classification of normal leukocytes
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Figure 4.1: Images of different types of leukocytes: neutrophil, eosinophil, basophil, lym-
phocyte, monocyte and immature granulocytes (metamyelocyte, myelocyte and promye-
locyte), erythroblasts and platelets (thrombocytes) that can be found in peripheral blood
and some of their most important morphological characteristics.

[32]–[34]. These analyzers are based on a motorized microscope to acquire the images

from a blood smear and algorithms that perform the pre-classification of the blood cell

images. These systems have a high cost due to the complexity of the acquisition and the

classification steps. Usually, the classification process using image analysis requires dif-

ferent steps, such as segmentation, feature extraction, selection and classification of the

images using algorithms for pattern recognition [29], [30], [35]. The segmentation is con-

sidered the most critical step in the process, mainly due to the complex morphology and

subtle differences in the wide class of blood cells. It has a direct effect on the accuracies
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of the classification results [27], [36]. Trying to overcome some of the limitations of tra-

ditional computer vision techniques, new methods known as deep learning have emerged.

This is a sub-field of machine learning, whose approach is learning representations from

data using models called neural networks, which are structures arranged in layers [8] con-

taining descriptive features. The ‘depth’ of the model depends on how many layers make

up the network. The most important characteristic of these networks is that engineers do

not design these layers of features. Conversely, they are learned from data using different

learning algorithms in which the segmentation of the images is not necessary. In recent

years, different studies using one type of deep neural network known as convolutional

neural networks (CNN) have shown good results in image classification [37].

The main objective of this work was to design a CNN-based system for the automatic clas-

sification of eight classes of peripheral blood cells: neutrophils, eosinophils, basophils,

lymphocytes, monocytes, ig (metamyelocytes, myelocytes and promyelocytes), platelets

and erythoblasts. To our knowledge, a convolutional network has not been designed and

implemented before for the recognition of this high number of blood cell types achieving

an overall accuracy over 96% as obtained in this work. The practical clinical interest is

twofold: first, they include the family of normal leukocytes and the cells more frequently

observed in infections and regenerative anaemia; and second, the experience gained in

this work will be the basis for further extensions of CNNs to classify the broader classes

of abnormal cells related to acute leukemia and lymphoma, such as myeoloblasts, lym-

phoblasts, abnormal B or T lymphoid cells and dysplastic cells.

In this chapter, we present the full training process and experimental test results consid-

ering two different architectures of CNN’s already pre-trained with the ImageNet dataset

[38]: Vgg-16 [24] and Inceptionv3 [39]. In a first step, a transfer learning approach is

followed using the networks as feature extractors [40] and then, these features are used

to train a SVM classifier. In an alternative second stage, both networks are modified

and tuned with the dataset presented in Chapter 3, to obtain two end-to-end models for
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classification of the eight classes of blood cells.

After a summary of the most related work in Subsection 4.1.1, the chapter is organized

as follows: Section 4.2 describes the data set used in the study and Section 4.3 describes

the CNN methodological background. The proposed classification system is presented in

Section 4.4, giving details on the architectures and the training procedures. The experi-

mental assessment is described in Section 4.5 and their results and practical issues are then

discussed in Section 4.6. Finally, Section 4.7 highlights the most relevant conclusions of

this work.

4.1.1 Related work

The automatic classification of PB cells has been studied for several years in order to

create tools that support the work on the clinical laboratories. The traditionally used

technique is mainly based on the segmentation and extraction of handcrafted features that

are then used together with pattern recognition tools for the classification of the different

blood cells. In [41], [42] the authors present a review of the state-of-the-art methods

of leukocyte segmentation, feature extraction and classification published in the last two

decades. As a result, the authors identified several aspects of improvement with respect

to the classical approach, such as, the accuracy percentages obtained so far, and the lack

of datasets containing a greater number of images to consider sufficiently reliable the

classification models obtained. Due to the development of more efficient algorithms and

methods related to machine learning, their use have become popular, more specifically

those of deep learning and neural networks in the medical field [43]–[45]. In [46] the

authors performed the classification of five types of normal PB cells using two different

approaches: first, the traditional segmentation, extraction and classification steps using

a SVM and Pricipal Components Analysis (PCA) for feature selection; and second, the

novel approach using a CNN and the entire image as input. Better performances (85 %)
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were obtained with the CNN. In [47] Shahin et al. also proposed the use of CNN for the

classification of five types of PB cells. They performed fine-tuning of Alexnet and LeNet-

5 networks achieving accuracies of 91.2 % and 84.9 % respectively. They also proposed

a trained model with a dataset of 2,551 images for the classification of five types of PB

cells and reported a maximum testing accuracy of 96 %.

4.2 Materials

The dataset used in this work is explained in detail in Chapter 3. Table 4.1 details the

number and percentages of the different types of blood cell images.

Cell type Total of images
by class %

neutrophils 3,329 19.48
eosinophils 3,117 18.24
basophils 1,218 7.13
lymphocytes 1,214 7.10
monocytes 1,420 8.31

metamyelocytes
myelocytes

immature
granulocytes

promyelocytes
2,895 16.94

erythroblasts 1,551 9.07
platelets(thrombocytes) 2,348 13.74

Total 17,092 100

Table 4.1: Dataset organized in eight classes: neutrophils, eosinophils, basophils, lym-
phocytes, monocytes, immature granulocytes, erythroblasts and platelets.

In order to balance the dataset, we performed data augmenting to increment the number

of images and obtain the same number per group. Individual images were modified ap-

plying randomly transformations as vertical and horizontal flips, rotation from 0 to 60

degrees and pixel value standardization [12]. Up to four different versions of each of the

original images were obtained from the groups with less number of images (basophils and

lymphocytes) as shown in Figure 4.2.
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Figure 4.2: Examples of some of the transformations applied to augment the number of
training images. The lymphocyte (A) is the original image, (B) is a rotated version, (C)
is a flipped and rotated image, (D) is a version with pixel values standardized and (E) is
pixel standardized and a rotated image.

Regarding the network architectures, we selected two different architectures of CNNs pre-

trained with other images different from blood cells, named Vgg-16 [24] and Inceptionv3

[39]. The networks were trained using Keras and Tensorflow software libraries [12] and

a Nvidia Titan XP GPU.

4.3 Methodological background

4.3.1 Overview

The main objective of this work is to design a system for the automatic classification of

eight classes of peripheral blood cells using CNN’s as the background tool for processing

and extracting information. Images of PB cells are the input to the system and the output

should be the correct label indicating the class of each cell image. Figure 4.3 shows its

general structure. We considered two alternative approaches to design the classifier. In

the first case, the CNN is used as a feature extractor and then a SVM is trained with these

features. This serves as an exploratory search to find out if the use of convolutional neural

networks is suitable to solve our classification problem. The second approach is based

on the concept of fine tuning, where the CNN is re-trained with PB cell images to obtain

an end-to-end classifier. Our hypothesis is that if the results of the classification are good

with the approach one, they may improve when implementing the second approach. In
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any case, the system’s output is a set of eight probabilities (one per class), such that the

highest probability indicates the group which the input image belongs to.

Figure 4.3: Overall structure of the system for the classification of eight types of periph-
eral blood cells using convolutional neural networks as a principal tool for processing
and extracting information from the images. *SVM: support vector machine. *CNN:
Convolutional neural network.

The purpose of using these two approaches is to take advantage of the knowledge of

a CNN previously trained with a large dataset in a specific domain and use it for the

classification of images in a different domain [48]. This helps to overcome the deficit of

training examples and serve as an effective weight initialization technique for these deep

neural networks [49].

CNNs are multilayered networks that can learn complex and high-dimensional features

from a large collection of examples. Unlike traditional computer vision models where

hand-crafted features are extracted and used to train a classifier, in this approach the model

can learn to extract relevant features and use a fully connected structure for classification

purposes. The use of CNNs for image classification presents many advantages, such as

the efficient use of memory and the capacity of processing large images due to the use of
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connections of single neurons to specific portions of an image. In addition, these trained

networks present invariance with respect to translation or distortions of the input image

and can take advantage of the high correlation between nearby pixels of an image and

combine them to identify simple patterns as edges and corners or more complex features.

Based on the model presented by Lecun et al in [50], Figure 4.4 shows the basic layered

structure of a CNN. The first layer is the input, which reads the pixels of the image.

The following is the convolutional layer, where a number of convolution operations are

performed over the image to extract the features. Its output is a set of feature maps.

A CNN may contain one convolutional layer or a group of consecutive convolutional

layers called convolutional blocks. After a convolutional layer or block, a pooling layer

is usually placed to reduce the dimensions of the feature maps. Subsequent layers are

combinations of convolutional and pooling layers to extract more complex features. After

the convolutions and poolings, a set of fully connected layers is placed to combine all the

features. Finally, the output is calculated in the last layer by applying a softmax operation

to obtain the result of the classification as probability values.

Figure 4.4: Basic structure of a convolutional neural network. [50]

4.3.2 Architectures for peripheral blood cells classification

As it was stated before, we implemented two CNNs as a base for the design of our clas-

sification system: Vgg-16 and Inceptionv3. The Vgg-16 is a deep convolutional neural

network for object recognition designed and trained by the Visual Geometry Group (Vgg)
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of the Oxford University in 2014 [24]. Despite its around 160 million of parameters, this

network is known for its good performance and simple architecture. On the other hand,

the network Inceptionv3 was developed by the Google research team in 2015 and over-

comes the high computational cost of convolutional networks as Vgg, introducing more

complexity to the model by implementing convolutions in parallel, organized in modules

called Inception [39]. This resulted into a more complex architecture but with less pa-

rameters, diminishing the execution time and making possible to implement the Inception

network in cases where memory or computational capacity is limited.

Next, we describe the main components of the system that we trained for PB cell classifi-

cation.

The convolutional layer

The convolutional layer is the most important component in a CNN. It is a structure that

transforms an input to an output through a convolution-based procedure. Both input and

output are seen as a volume structure. The input volume is composed of planes with fixed

height and width. The number of planes defines the depth (D). As illustrated in Figure

4.5 (A), when the input is a RGB image, we have D = 3 and each plane contains the

corresponding component pixel matrix.

The convolutional layer has also a volume structure with a number N of planes, and each

plane is defined by a number of filters (kernels) of small size (F). A typical case is, for

instance, F = 3 so that the filter is an 3×3 matrix with weights. Let us consider the kth

input plane with value matrix Xk. Consider also the corresponding filter in the jth plane

of the convolutional layer, whose parameters (weights) are arranged in a matrix Wk j. The

convolution of this filter sliding over the kth input plane produces a two-dimensional

matrix Wk j ∗Xk. Figure 4.5 (B) illustrates an example of the convolution of a filter of size

3×3 with the input image. These matrices are summed for all the input planes and biased
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by a matrix B j and the result is transformed by an activation function f as follows [51]:

Yj = f

(
B j +

D

∑
k=1

Wk j ∗Xk

)
; j = 1, . . . ,N (4.1)

The resulting matrix Yj is called feature map. The final output of the convolutional layer

is a volume whose planes are the N feature maps.

Figure 4.5: Convolutional layer structure. Figure A presents the local connectivity of a
neuron with a portion of the input image. Figure B is equivalent to Figure A but planes
contain filters which are convoluted with the input image. The result of the convolution of
each filter is a feature map [52].

The Rectifier Linear Unit (ReLU) is the activation function mostly used in the current

CNN architectures. It converts all negative input values to zero while keeping all positive

inputs the same, being defined as follows:
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f (x) = max(0,x) (4.2)

This ReLu function is applied to the output of a convolutional layer, and it helps to in-

crease the learning speed of the network and the classification accuracy.

The pooling layer

After each convolutional layer or block of layers, a pooling layer is usually placed to re-

duce the feature map size. This reduction preserves important information while eliminat-

ing irrelevant details about the position of the features within the input images, reducing

the sensitivity of the model to shifts and distortions.

Pooling is defined essentially by two parameters: (1) the size (F) of the squared portion

of the feature map whose pixels are pooled in a single value, and (2) the stride (S), which

indicates the steps along both width and height that pooling moves to cover the full map.

The Vgg-16 has in total five pooling layers with parameters F = 2 and S = 2. This means

that the pooling operation is applied every 2 × 2 pixels with steps of two pixels over

the whole feature map, keeping the maximum value of each frame (max pooling). The

Inceptionv3 case is different because it has many more pooling layers. This network has

five max pooling layers, four of them with F = 3 and S = 2 and one with F = 3 and

S = 1. In addition, this network has eight average pooling layers with F=3 and S=1 and

a last average pooling layer with F=8 and S=1. Unlike max pooling, the average pooling

substitutes a frame of pixels by its average value.

Table 4.2 presents a summary of the implemented architectures of Vgg-16 (left) and In-

ceptionv3 (right). The Vgg-16 network is composed by 13 convolutional layers organized

in blocks. Each block may contain two or three convolutional layers, whereas the In-

ceptionv3 is composed by five convolutional layers and 9 Inception modules [39], which
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contain between four and 10 convolutional layers each. The last layers of both networks

are fully connected with 1000 nodes for the 1000 class classification of the Imagenet

contest.

Layers Filter
size

Number N of
planes (filters)

2xconv2D 3x3 64
Max pooling: F=2 and S=2

2xconv2D 3x3 128
Max pooling: F=2 and S=2

3xconv2D 3x3 256
Max pooling: F=2 and S=2

3xconv2D 3x3 512
Max pooling: F=2 and S=2

3xconv2D 3x3 512
Max pooling: F=2 and S=2
4096 nodes fully connected
4096 nodes fully connected
1000 nodes fully connected

with softmax activation

Layers Filter
size

Number N of
planes (filters)

conv2D 3x3 32
conv2D 3x3 32
conv2D 3x3 64

Max pooling: F=3 and S=2
conv2D 1x1 80
conv2D 3x3 192

Max pooling: F=3 and S=2
3x inception modules
4x inception modules
2x inception modules
Average pooling: F= 8

1000 nodes fully connected
with

softmax activation

Table 4.2: Architecture of Vgg-16 (left) and Inceptionv3 (right).

The fully connected and output layers

After the successive convolutions and pooling layers, a set of feature maps is obtained.

They are a useful representation of the input images. At this point, it is possible to take

two approaches to use these features. The first is to use them to train a different classifier

such as SVM, k-NN, decision trees and others. The second possibility is to couple a block

of fully connected layers to learn non-linear combinations of the features and to perform

the final classification. Each neuron of a fully connected layer performs an input-output

operation defined as follows:

Z = f

(
b+

m

∑
i

ωixi

)
(4.3)

where xi are the input features, ωi are the neuron weights, m is the number of features,

and b is a bias parameter. Function f is the same activation function described in equation
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4.2. The output Z is a new feature that serves as input to the next fully connected layer.

The output layer is the last layer of the network. It is also a fully connected configuration

but the activation function used is a softmax expressed as follows:

f (y j) = softmax(y j) =
e(y j)

8

∑
k=1

e(yk)

f or j = 1, . . . ,8 (4.4)

This function is applied to the result of each node of the output layer to obtain the results

as a probability distribution. In our design, we have eight output neurons because we aim

to classify eight classes of cell images.

4.4 Design and training of the proposed system

In the next sections we describe the two approaches taken to design and train our classifier:

the transfer learning using a pre-trained CNN as a feature extractor and the fine tuning of

a pre-trained CNN to build an end-to-end classifier.

4.4.1 Transfer learning using a CNN as feature extractor

In this approach the dataset was split into two subsets: training and testing. We selected

15,173 (88 %) images for the training set and 1,919 (12 %) images for the test set. The

training set was augmented by applying random transformations, as explained in Section

4.2, to obtain a new training set with a total of 4,608 images per class. To extract the fea-

tures of the training set, we used the Vgg-16 and Inceptionv3 with their original weights

of the Imagenet contest. From Vgg-16, the fully connected layer and the output layer

were removed in order to extract 4,096 features for each image. From Inceptionv3, the

fully connected and the output layers were removed to extract 2,048 features per image.
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Figure 4.6: Transfer learning. 4,096 features per image from the Vgg-16 and 2,048
features per image from the Inceptionv3 were extracted.

We selected two types of SVM kernels : 1) a radial basis function (RBF) kernel, which

we have implemented in previous works with satisfactory results [27]; and 2) a cubic

polinomial kernel. See Figure 4.6.

To train the SVMs, we implemented a 5-fold cross validation, in which the training is

performed through five iterations where the training set is divided automatically into five

subsets. In each iteration, one subset is used as a validation set and the other four are used

for training. The accuracy of the model is averaged over all the iterations. The training

was implemented using Keras and Scikit-learn software libraries [53].

In Figure 4.7 we present the training and validation accuracies for each iteration of the

resulting four models. In view of these results, we decided to select the SVM with cubic

kernel trained with both Vgg-16 and Inceptionv3 features. Validation average accura-

cies were 0.87 and 0.88, respectively. The resulting models will be used later on in the

experimental assessment.
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Figure 4.7: Training and validation accuracies progression for the training of four clasi-
fiers: 1) use of Vgg-16 features to train a SVM with RBF kernel, 2) use of Inception
features to train a SVM with RBF kernel, 3) use of Vgg-16 features to train a SVM with
cubic kernel and 4) use of Inception features to train a SVM with cubic kernel.

4.4.2 Transfer learning using fine-tuning

The second approach, fine-tuning, is a type of transfer learning in which a CNN that

has been trained for another task is modified, re-training some layers and adapting them

to new data [54]. This approach is usually implemented with CNNs like Vgg-16 and

Inceptionv3, which have large quantity of parameters because training them from scratch

(weights initialized randomly) can affect their ability to generalize and may result into
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low accuracies or overfitting [7]. As the deeper layers of a CNN extract more dataset-

specific features [55], the fine-tuning is usually performed over these layers to modify the

representations accordingly to the new classes.

In this second approach we split the former training set, used for the first approach in

Section 4.4.1, into a training set with 11,077 images (64 %) and a validation set with

4,096 images (24 %). The test set with 1,919 images (12 %) remained the same.

A total of 512 feature maps were obtained from the Vgg-16 and converted to an array of

25,088 features as illustrated in Figure 4.8. These features are the input to the fully con-

nected layers, the first layer with 4,096 nodes and the second with 1,024 nodes. To obtain

the final classification, a third fully connected layer with eight nodes was configured, one

node for each class.

7 pixels

7 pixels

512 feature
maps

...

 25,088
features

..

4,096  
nodes

Fully connected block

8 nodes with
softmax

activation

Output layerLast convolutional layer

512 x 7 x 7

..

1,024  
nodes

FC1 FC2

Figure 4.8: Fully connected block and output layer designed for the Vgg-16.

The design of the fully connected layer for the Inceptionv3 is shown in Figure 4.9. A

number of 2,048 feature maps of 8× 8 pixels were obtained from Inceptionv3 convo-

lutional blocks and were converted to an array of 2,048 features using average pooling.

These features are fed to a fully connected layer of 1,024 nodes and the output goes to a

final layer of eight nodes, one by each class.

The design of the fully connected layers of both networks was done empirically, starting
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8 pixels
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2,048 feature
maps

Average
pooling of  
8x8 with  
stride = 1

...

1,024  
nodes

Fully connected layer

8 nodes with
softmax

activation

Last convolutional layer + average pooling

...

2,048
features

Output layer

Figure 4.9: Fully connected block and output layers designed for the Inceptionv3.

from the original design and changing the number of layers and nodes to obtain better

accuracies. The objective was to design a customized fully connected block maintaining

a balance between performance and training time.

Training using the backpropagation algorithm

During the training stage, the neural network classifies each training image based on the

features extracted. After each image is classified, the difference between the manual label

assigned by the pathologists (ground truth) and the prediction made by the network is

measured using a loss function. For this case, it was implemented a categorical cross-

entropy function defined as follows:

L =−
n

∑
j=1

y j log(ŷ j) (4.5)

where ŷ j is the probability of the predicted label and depends of the weights (ω) and

biases of the network, y j is the ground truth and n is the number of classes. During the

training, the goal is to minimize the loss function calculating its gradient (∇L) at certain

point and updating the weights and biases of the network iteratively. The gradient is

46



4.4 Design and training of the proposed system

calculated backwards through the network, computing first the gradient of the weights

of the final layer and finishing with the gradients of the weights of the first layer. The

computations from one layer are reused in the computation of the gradient of the previous

layer. The weights are updated according to a hyperparameter called learning rate (α)

with the following relationship:

ω := ω −α∇L (4.6)

The learning rate is an empirical parameter that is selected based on experience. The

lower the learning rate, the slower is found the minimum of the loss function. We selected

a small value of learning rate (α = 10−4) to ensure the result convergence and train the

model in an acceptable time. The training was performed through 100 iterations (epochs).

In each epoch, all the images from the training and validation set are passed through the

network and the training validation accuracy and loss are obtained. Although different

CNNs architectures may require different number of training epochs, we selected a value

of 100 because both models reached accuracy plateau for this value. Our target perfor-

mance parameter was the accuracy, so that we saved the models that obtained the highest

accuracy during the training. This is the number of images correctly classified over the

total number of images.

Two important hyperparameters were selected: the number of training images and the

number of convolutional blocks to train. To do this, we carried out several tests in which

we varied: 1) the number of training images per group: 512, 1,024, 2,048 and 4,096

images; and 2) the number of convolutional blocks fine tuned: last block, last two, last

four, last six and last eight blocks, respectively. The validation accuracies are presented in

Table 4.3. In the case of Vgg-16, the last 1, 2 and 4 blocks were trained (values in italic).

From the results, it can be observed that the best models, with higher accuracies, are those

whose last four and last six blocks were trained with 2,040 and 4,096 images per class.

Based on the results in Table 4.3, we selected the models with the last four convolutional

47



Recognition of peripheral blood cell images using convolutional neural networks

images/group
blocks trained 1 2 4 6 8

512 92 93.7 93.5
92.7 92 91.8 92.7 91

1,024 93 95 95
92.3 93 93.2 94 94

2,048 93.2 95 95.5
93 94 94 95 95

4,096 94.5 95 95.4
93 94.7 95.2 96 96

Table 4.3: Validation accuracies of Vgg-16 (values in italic) and Inceptionv3 changing
two parameters: 1) The number of training images per group and 2) the number of con-
volutional blocks trained. The accuracies values in bold represent the models selected for
testing.

blocks tuned using 4,096 images per class (accuracies in bold). Figure 4.10 shows the

training and validation progression of the accuracy and loss for these two models. In

addition, the training and validation maximum accuracy values (train max acc, val max

acc) and training and validation minimum loss values (train min loss, val min loss) are

presented.

For Vgg-16, the maximum validation accuracy (0.96) was obtained in epoch 80. For

Inceptionv3, the maximum accuracy (0.95) was obtained in epoch 78. The weights ob-

tained in these epochs determined the final models. It should be noted that the training

and validation curves are close and present a similar performance. This means that it can

be assured that the tuned models do not present overfitting.

The fine-tuning and all tests were performed using Keras and Tensorflow software li-

braries.

In the next section, we present the results of a test assessment of the selected models,

including the confusion matrices and some performance parameters.
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Figure 4.10: Progression of the accuracy and loss during the fine tuning of the last
four convolutional blocks of Inceptionv3 and Vgg-16. Each network was trained for 100
epochs.

4.5 Experimental assessment

The objective of this work was the classification of eight classes of PB cells with high

accuracy. For this assessment, we used the test set of images that were not used for

training. For each experiment, a confusion matrix was calculated to obtain performance

parameters as follows:

Sensitivity =
T P

T P+FN
; Speci f icity =

T N
T N +FP

; Precision =
T P

T P+FP
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where for each class:

• T P = True positive. Value in the principal diagonal of the target class in the confu-

sion matrix.

• T N = True negative. Is the sum of all rows and columns excluding the target class

column and row.

• FP = False positive. Is the sum of the column values of the target class, excluding

the true positive.

• FN = False negative. Is the sum of the row values of the target class, excluding the

true positive.

Since this is a multi-class classification, we took a “one vs all” approach where the perfor-

mance parameter is calculated for each class, considering the target class as the positive

and the rest of the classes as negative We also calculated the sensitivity, specificity and

precision average for each model and presented them in a bar plot along with the standard

deviation for a general overview of each model performance.

4.5.1 Results of transfer learning using a CNN as feature extractor

Figure 4.11 presents the confusion matrices for the classification of the test set using

the SVM classifiers with cubic kernel and trained with Vgg-16 features (model a) and

Inceptionv3 features (model b).

The overall test accuracies were 87.4 % for model (a) and 90.5 % for model (b). The

principal diagonal of the matrix contains the TPR for each group (% of images correctly

classified). The rows of the matrices are true values and the columns are the predicted

values. For example, the confusion matrix for the results using a SVM trained with Vgg-

16 features shows that 99.22 % of the platelet images were correctly classified.
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(a) SVM trained with Vgg-16 features. (b) SVM trained with Inceptionv3 features.

Figure 4.11: Test assessment confusion matrices of SVM classifiers with cubic kernel.
Values are in percentage.

With respect to the TPR for each class using the model a, we obtained the highest values

for platelet and neutrophil classes (>98 %). Other classes as eosinophil, lymphocyte,

basophil, ig present values greater than 85 %. Monocyte and erythroblast present the

lower TPRs with 76.17 % and 76.56 % respectively. The overall accuracy with model

(a) is 87.4 %. Model (b) presents similar performance to model (a) but, in general, with

higher true positive rates and consequently with higher overall accuracy (90.5 %).

4.5.2 Results of fine tuning

The confusion matrices in Figure 4.12 show the results of the test assessment of the best

models based on Vgg-16 and Inceptionv3 networks selected at the training stage. The

model based on Vgg-16 presents very high TPRs for neutrophils, eosinophils and platelets

(99.61 %) classes. TPR for the rest of classes is over 90 %. The Inceptionv3 based

model presents a similar performance to Vgg-16, with the highest TPRs for the same

three groups: neutrophils (99.61 %), eosinophils (98.83 %) and platelets (98.44 %). An
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important difference between the two models lies in the results for the monocyte class

(95.31 % for Vgg-16 and 87.89 % for Inceptionv3). Regarding the overall accuracies, the

fine-tuned Vgg-16 is 96.2 % and Inception 95 %.

(a) Vgg-16 based model (b) Inceptionv3 based model

Figure 4.12: Confusion matrices of the test assessment of tuned models based on Vgg-
16 and Inceptionv3. Rows represent the true values and columns represent the predicted
values. The principal diagonal (grey) are the true positive rates. All values are in per-
centages.

The bar plots in Figure 4.13 present average sensitivity, specificity and precision for the

four models tested. We obtained higher sensitivity and precision values with the fine-

tuning approach in comparison with the first experiment of transfer learning. Specificity

values are similar for all models.

From these results, we can state that by implementing fine tuning to pre-trained models

it is possible to obtain new models for classification with very high accuracies. This is

particularly noticeable in this case of classification of PB cell images, where characteris-

tics of the different classes are very subtle, such as the chromatin clumping in neutrophils

and eosinophils, and the variations in the nucleus shape: spherical, oval, u-shaped, kidney

bean shaped, bilobed and others.
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Figure 4.13: Average sensitivity, specificity and precision for the four classification mod-
els tested.

4.6 Discussion

The problem of automatic classification of the different cells circulating in peripheral

blood has been addressed for some years now within the usual machine learning frame-

work with the following steps: preprocessing, segmentation, feature extraction, selection

and classification. Specifically, for the classification of leukocytes, different approaches

have been used such as Fuzzy logic [56], Learning Vector Quantization [57], k-nearest

neighbors algorithms (k-NN), Bayes classifiers [58], multi class support vector machines

[59], multilayer perceptrons [59]–[61] among others.

The traditional framework requires to segment and extract features manually, this means

that all possible variations in the morphology of normal and abnormal cells circulating

in blood cells should be considered, which is truly difficult [62]. Specially, segmentation

presents many challenges due to the complex morphology of the cells, the variability of

the blood smear staining and the general conditions of the images acquisition [57]. All
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of these aspects affect the results of the accuracies of the classification models [56], [57],

[60], [63]. In addition, the small amount and low quality of the blood cell images available

also affect the robustness of the models [58], [61].

Our group has been working in developing image-based screening methods for automatic

classification of abnormal lymphoid cells using the traditional framework [21], [26], [64].

In this work, we have addressed the use of new emerging deep learning techniques for

the recognition of other groups of cells that are also circulating in peripheral blood, such

as neutrophils, eosinophils, basophils, lymphocytes and monocytes, immature granulo-

cytes (metamyelocytes, myelocytes and promyelocytes) and others as erythoblasts and

platelets. As training a CNN from scratch requires large amounts of data and a lot of

expertise to ensure convergence, fine-tuning arises as an alternative to train a model that

can outperform a CNN trained from scratch [65].

In this work, two pre-trained networks of different architectures, Vgg-16 and Inceptionv3

have been used. They were trained for the ImageNet contest with images of very different

objects with respect to blood cells. The test accuracy of 96 % obtained with our fine-tuned

Vgg-16 is higher than the one previously reported [46], [47].

To perform a more detailed comparison with these works, Figure 4.14 shows the true

positive rate for each individual cell group. Our fine-tuned Vgg-16 used as an end-to-end

classifier outperforms the results of the other models for all the five normal types of cells.

In addition, our model classifies with high accuracy other types of cells circulating in PB

such as platelets, erythroblast and immature granulocytes.

To accomplish this, two strategies have been implemented with the aim to improve the

performance of the classifiers. The first one was the application of data augmentation

to the training set to increase its size and balance the number of images per class. This

strategy allows to obtain a more robust model [66]. The second strategy was the use of

open source software that allows easy implementation of the classifier and the reproduc-

54



4.6 Discussion

Figure 4.14: True positive rates for each individual blood cell type, comparing the pro-
posed Vgg-16 best model with two other previous published works.

tion of the results presented here. Another important aspect to remark is the number of

images and their high quality used to perform this work. The dataset acquired, with more

than 17,000 images, is among the largest used so far to train a blood cell classifier. This

allowed to obtain a robust model, avoiding overfitting [46].

An additional difference of this work with previous publications [46], [47], [63], and one

of the main contributions, is that our tuned models succeeded in classifying eight types

of blood cells. To our knowledge, this high number of blood cell groups automatically

recognized in this work using CNNs has not been reported in the literature. The practi-

cal interest is twofold: first, they include the family of normal leukocytes and the cells

more frequently observed in infections and regenerative anaemia; and second, the lessons

learned in this work will be the basis for further extensions of CNN to classify the broader

classes of leukemic and dysplastic cells.

The remaining subsections discuss some insights on the convolutional features, some in-

terpretations about the classification results and a few practical implementation issues.
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4.6.1 Visualization of intermediate feature maps

Displaying the feature maps generated by intermediate convolutional layers of a CNN

may be useful to get an idea of what features the network extracts. With this purpose,

we fed both our trained Vgg-16 model and the original Vgg-16 Imagenet model with a

cell image selected from the test set. For comparison, we extracted the same feature maps

from the same convolutional layers as illustrated in Figure 4.15. Part (a) shows the original

image (neutrophil). Figure 4.15(b) contains the feature map 38 of 256 from the convolu-

tional block 3, layer 1. From the feature map generated by the original CNN (left), it can

be noted that at this deepness of the network, it barely detects diagonal lines of the input

image. This was expected since, at this depth, the network still detects dataset-specific

features and the original Vgg-16 model was trained with images of everyday objects such

as animals, plants, people, which are very different from the images of blood cells. In-

stead, our own fine-tuned network is able to detect information about the cell, its nucleus,

its texture and the red cells around. In our problem of blood cell classification, subtle mor-

phological differences, such as the roundness of the nucleus, the chromatin texture and

the presence or absence of granules in the cytoplasm, can make the difference between

cell types. In Figure 4.15(c), the feature map 27 of 256 from the convolutional block 3,

layer 2, shows that at this stage our network is capable of detecting the red cells from the

background, while the feature map from the original network does not capture almost any

information from the image. Figure 4.15(c) shows another case where the improvement

in the detection of important characteristics of the cells is visually interpretable. In each

case, the network detects different types of characteristics assigning different degrees of

importance depending on the training performed. It is important to notice that, although

all layers of the network extract important information about the input images, not all the

feature maps can be visually interpreted. Deeper layers contain more abstract information

about the specific class to which the image belongs and further iterations produce smaller

maps with features more difficult to observe and interpret.
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(b) Feature map 38 from convolutional block 3, layer 1.
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(c) Feature map 27 from convolutional block 3, layer 2.
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(d) Feature map 54 from convolutional block 3, layer 3.

Figure 4.15: Feature maps from Vgg-16 with Imagenet weights (left) compared with fea-
ture maps from Vgg-16 fine tuned for the classification of eight classes of peripheral blood
cells.

In the daily work, pathologists perform a visual qualitative analysis of the cell features

based on their experience and knowledge. These qualitative features have direct rela-

tionship with quantitative features that can be extracted directly from the images using

classical machine learning pipelines and mathematical formulations. For example, shape

characteristics expressed qualitatively by the pathologist as the size of the cell or the size

of the nucleus may be expressed quantitatively using nucleus/cytoplasm ratio, the perime-

ter of the nucleus, the perimeter of the cell and cytoplasmic external profile. Regarding
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texture, qualitative features like chromatin clumping or cytoplasmic granulation among

others are quantitatively described using formulations based on granulometry [21], [30],

[35]. On the other hand, convolutional neural networks can extract features without im-

age segmentation and are robust models that can achieve state-of-the-art accuracies as we

achieved in this paper, but the features extracted have not direct relationship with math-

ematical formulations and are of limited understanding. Further developments would be

worth to explore to translate them into visually interpretable patterns [67].

4.6.2 Detailed analysis of the confusion matrix

Another way to understand the behavior of the final models developed in this work is to

perform an analysis of the results presented in the confusion matrix of Figure 4.12. Both

models Vgg-16 and Inceptionv3 present the highest TPR for the neutrophils, eosinophils

and platelets. The remaining blood cells also present high TPR but with some classifica-

tion errors, which are worth to discuss in light of the morphological similarities between

cell types to understand the model behavior and establish future lines of improvement.

For example, the Vgg-16 model classifies 3.12 % of monocytes as immature granulocytes

as observed in Figure 4.12(a). These two classes come from the same precursor cell, the

myeloblast and therefore, have common morphological characteristics such as their size:

monocytes are large cells (12-20 µm) and have fine chromatin as well as the promyelo-

cytes (15-25 µm). In addition, the nucleus of the monocyte can be kidney-shaped or be

indented as well as the nucleus of the metamyelocyte. A clear difference between mono-

cytes and immature granulocytes is the texture of the cytoplasm, since the monocyte has

some granulation but not as basophilic as that of the immature group (promyelocytes,

myelocytes and metamyelocytes). Examples of these cells are presented in Figure 4.16

(a).

On the other hand, 3.12 % of immature granulocytes were classified as neutrophils, as
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seen in Figure 4.12(a). This may be due to morphological similarities, mainly in the

nucleus shape, between the metamyelocytes and the neutrophils band since the latter are

an intermediate state in the process of maturation of the metamyelocyte to segmented

neutrophil. See Figure 4.16 (b).

Regarding the erythroblasts, 3.12 % of their images were classified as lymphocytes, see

Figure 4.12(a). Both cells exhibit common patterns. For instance, they have similar size,

round nucleus and condensed chromatin as displayed in Figure 4.16 (c).

(a) Examples of monocyte (left), promyelocyte (center) and metamyelocyte (right).

(b) Examples of metamyelocyte (left) and neutrophil(right).

(c) Examples of erythroblast (left) and lymphocyte (right).

(d) Examples of basophil (left) and eosinophil (right).

Figure 4.16: Examples of cell types where the final models present classification errors
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Finally, 2.58 % of basophils were classified as eosinophils. These two groups share some

morphological characteristics such as the similar size and the lobed shape of the nucleus.

In addition, the basophil granules are larger and darker and cover the entire nucleus and

cytoplasm. See Figure 4.16 (d).

4.6.3 Practical implementation issues

There are no mathematical expressions or well-established rules to define the number

of images to properly train a CNN, how many epochs should be required or how many

layers should be tuned. Therefore, most of the model hyperparameters in this work were

selected empirically. We performed different tests varying these hyperparameters to know

how they affect the final classification results. From our experience, we concluded that

using a minimum of 1,000 images per group, a number of epochs around 80 and tuning

the last two or four blocks of our proposed CNNs it was possible to obtain satisfactorily

high accuracies (96 % for Vgg-16).

It is interesting to analyze how the performance of the models change depending on the

balance of the training set. In this respect, we performed fine-tuning of both CNNs, Vgg-

16 and InceptionV3, with the original unbalanced dataset to compare the results with

the balanced dataset presented in this paper. Figure 4.17 shows the validation accuracies

during the training in both cases. They are higher when the networks are trained with the

balanced dataset (>0.95), as expected. Another observable feature is that training with the

unbalanced dataset produces many fluctuations in the Vgg-16 validation accuracy. This

effect may be due to the fact that the unbalanced validation set is too small. By increasing

the number of images and balancing the dataset, it is observed that these fluctuations

decrease.

We also performed a testing of the networks when trained with the unbalanced data set. In

comparison to the balanced data, the overall test accuracy reduces from 96.2 % to 93.9 %
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Figure 4.17: Validation accuracies of Vgg-16 and Inceptionv3 trained with balanced and
unbalanced (original) dataset.

for Vgg-16, while reduces from 94.9 % to 92.5 % for Inceptionv3. To give more details,

Figure 4.18 shows the true positive rate values for each type of cell. Two main details

may be highlighted:

1. The TPR of the groups with higher number of images, eosinophil, neutrophil and

platelet, remain at very high values in both training cases, balanced and unbalanced

dataset.

2. The TPRs for the rest of the groups with smaller number of images (lymphocyte,

monocyte, immature granulocyte, basophil and erythroblast) decrease for both networks

when are trained with the unbalanced dataset.

To summarize, the dataset quality is essential. It should not only have a sufficient number

of images, but these images should be of good quality and be properly labeled to be able

to observe morphological characteristics that can lead towards a diagnosis. In general,

medical data is scarce and difficult to label. In our interdisciplinary research group we
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Figure 4.18: True positive rate by type of cell obtained with Vgg-16 and Inceptionv3
(incv3) trained with the unbalanced dataset (UD) and the balanced dataset (BD).

have experienced pathologists able to perform a manual labelling that is also confirmed

through other complementary tests if needed. On the other hand, images were all stained

with the same standard May Grünwald-Giemsa technique used in the clinical practice.

4.7 Conclusion

The main contribution of this paper is a classification scheme involving a convolutional

neural network trained to discriminate among eight classes of cells circulating in periph-

eral blood. Starting from a state-of-the art general architecture, we have established a

fine tuning procedure to develop an end-to-end classifier trained using a dataset with over

17,000 cell images obtained from clinical practice.

The performance obtained when testing the system has been truly satisfactory, the val-

ues of precision, sensitivity and specificity being excellent. To summarize, the overall

classification accuracy has been 96.2 %.

The focus of this research has been on the group of normal leukocytes and the cells more

prevalent in regenerative anaemia and infections, which cover a clinically relevant spec-

trum of blood cells. This is a necessary first step to develop a broader CNN-based clas-
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sification system covering other types of blood cells circulating in peripheral blood in

different acute leukemias and lymphomas, such as myeloblasts, lymphoblasts, abnormal

B or T lymphoid cells and dysplastic cells.
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Chapter 5

A new convolutional neural network

predictive model for the automatic

recognition of hypogranulated

neutrophils in myelodysplastic

syndromes
1

1Based upon: Acevedo, A, Merino, A, Boldú, L, Molina, A, Alférez, S, and Rodellar, J. (2020). A new
convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils
in myelodysplastic syndromes. Computers in Biology and Medicine (paper in revision)





Abstract

Background: Morphological review of peripheral blood cells has a relevant role in the

initial diagnosis of MDS since dysplasia is observed in one or more of the major myeloid

lineages. Dysplastic neutrophils commonly show at least 2/3 reduction of the content

of cytoplasmic granules by morphologic examination. Recognition of less granulated

dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability.

To tackle this problem, we propose a new deep learning model (DysplasiaNet) able to

automatically recognize the presence of hypogranulated dysplastic neutrophils in PB.

Methods: A total of eight models were generated by varying convolutional blocks, the

number of nodes in layers and the fully connected layers. For training and testing we used

the hold-out method, splitting the dataset in train, validation and test. Each model was

trained for 20 epochs and the train set was augmented up to 3000 images by class. The

five models with highest accuracies were selected for a second stage, being trained until

they reached a validation accuracy of 99.5 % or a maximum number of 100 epochs. Af-

ter training, for each model, quantitative cut-off values were calculated for a granularity

score that discerns between normal and dysplastic neutrophils. Furthermore, a threshold

value was obtained to quantify the minimum proportion of dysplastic neutrophils in the

smear to consider that the patient might have MDS. With all these parameters set, classi-

fication true positive rates and total accuracies were calculated. The final selected model

(DysplasiaNet) was the one with the highest accuracy (95.5 %). Additional 5 and 10-fold

cross-validation was performed, which confirmed the accuracy obtained using hold-out.

Results: We performed a final proof of concept with 66 smears from 32 MDS patients

and 70 smears from 40 healthy controls, none of them involved in previous steps. All

smears were classified by DysplasiaNet according to whether they belong to a patient with

dysplasia or not indicated by the established threshold. As result, we report a sensitivity

of 95.5 %, specificity of 94.3 %, precision of 94 %, and a global accuracy of 94.85 %.
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Conclusions: The primary contribution of this work is a predictive model for the auto-

matic recognition in an objective way of hypogranulated neutrophils in peripheral blood

smears. We envision the utility of the model implemented as an evaluation tool for MDS

diagnosis integrated in the clinical laboratory workflow.

5.1 Introduction

MDS comprise several morphological, immunophenotypic, functional and genomic alter-

ations that take place in the different haematopoietic lineages, from stem cells to more

mature elements. MDS constitute a heterogeneous group of clonal haematological dis-

eases having in common an ineffective haematopoiesis beside recurrent genetic abnor-

malities, characterized by cytopenia and variable risk of transformation to acute myeloid

leukaemia [68].

Initial diagnosis of MDS is mainly supported by clinical information, blood count pa-

rameters, detection of morphological abnormalities in peripheral blood (PB) and Bone

Marrow (BM) cells, flow cytometry and genetic studies. Blood smear microscopic exam-

ination is a low-expensive and easily accessible tool for assessment of cell abnormalities.

It has a relevant role to support the initial MDS diagnosis, since dysplasia is observed in

one or more of major myeloid lineages [69]. In MDS, dyserythropoiesis and megakary-

ocyte morphological alterations are more apparent in BM. In contrast, dysgranulopoiesis,

which includes nuclear hyposegmentation (pseudo Pelger-Huët) or hypersegmentation,

giant neutrophils and cytoplasmic hypogranularity, are morphological changes usually

detected in PB.

Visual morphology shows that dysplastic hypogranulated neutrophils commonly exhibit

at least 2/3 reduction of the content of cytoplasmic granules [70]. However, differential

diagnosis should be done since dysgranulopoiesis is not itself a definitive evidence of a
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clonal process. Differential MDS diagnosis includes other conditions that may also cause

myelodysplastic changes in neutrophils, such as megaloblastic anaemia due to deficiency

of vitamin B12 or folic acid, HIV infection, granulocyte colony-stimulating factor admin-

istration, the effect of drugs including chemotherapeutic and immunosuppressive agents,

or copper deficiency[71].

Modern automated analysers based on digital image analysis enable faster blood smear re-

views. They present satisfactory results for normal white blood cells pre-classification but

do not identify the presence of abnormal blood cells [72]. The presence of less granulated

dysplastic neutrophils in PB is the most difficult abnormality to detect by human eyes.

This difficulty causes a considerable inter-observer variance in their manual classifica-

tion. Therefore, the identification of cytoplasmic hypo-granularity becomes inconsistent

among pathologists [73]. There is a clear need for further standardization of morphologi-

cal cell classification and the development of computational classification models for the

automatic detection of cytoplasmic hypogranulation for MDS diagnosis.

Research objective

The objective of this work was the development of a new CNN model to automatically

recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood. The

model was designed having in mind its potential use as a secondary diagnosis support tool

when MDS is suspected by the clinical pathologist based on the morphological PB smear

review as well as haematological parameters such as anaemia or high mean corpuscular

volume (MCV). With this purpose, the CNN was trained to identify individual dysplastic

neutrophil images and used to supply a diagnosis prediction when using an individual full

patient smear. A proof of concept using 136 PB smears from 72 individuals (including

healthy controls and MDS patients) showed sensitivity, specificity and precision values

of 95.5 %, 94.3 % and 94.0 %, respectively. To the authors knowledge, this is the first

CNN model that was built and validated for MDS diagnostic support, with potential to

be integrated in the workflow of the clinical laboratory. Since the recognition of hypo
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or hypersegmented nuclei, giant neutrophils, pseudo Pelger-Huët anomaly or dysplastic

abnormalities in other cell types are quite evident and easily detected by visual inspection

[72], we decided to focus our research to the design of a predictive model for the automatic

recognition of cytoplasmic hypogranularity in dysplastic neutrophils.

After a summary of the most related work, the organization of the chapter is as follows.

Section 5.2 describes the different image sets used in this work. Section 5.3 describes

the step by step methodological development of the CNN model, including architecture,

training and evaluations to obtain a final model ready for a proof of concept. Section 5.4

describes the results of such proof of concept and interpretability techniques. Results and

practical aspects are discussed in Section 5.5. Finally, Section 5.6 highlights the main

conclusions of this work.

Related work

Machine Learning (ML) methodologies have been applied in hematopathology as deci-

sion support systems in different tasks, such as differential diagnosis of malignant haema-

tological diseases, therapy selection or risk predictions [73]. Recently, several works on

cells classification have been focused on using segmentation and hand-crafted feature ex-

traction with the objective to classify among normal and reactive lymphocytes, blasts and

abnormal lymphoid cells [28], [29].

Since the advent of deep learning, more studies presenting new methodologies and mod-

els applied to malignant diseases detection have been published. Deep learning is a class

of ML that uses multiple layers to extract high-level features from the input, which in-

creasingly is present in diagnosis support tools based on image analysis. Among deep

learning techniques, CNNs are frequently used for medical image analysis in haematol-

ogy [74] because they allow to define systems not relying on hand-crafted features and

obtain better classification results [75], [76]. Nowadays, several CNN-based models can

discriminate among different types of leukocytes in PB [20], [77], [78]. Recent efforts
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are noticeable for accurate classification of acute leukaemia and other haematological

malignancies using pre-trained CNN models [79]–[81].

However, little has been published on the automatic detection of dysplastic cells present

in MDS. The assessment of dysplasia in Bone Marrow (BM) has been approached using

a pre-trained CNN like Resnet-152 for the automatic classification of hypo-granulated

cells [82]. The dataset used was small, conformed by 1,797 labelled images, what may be

due to the difficulty of obtaining BM cell images. The model performance was evaluated

using a five-fold cross-validation algorithm, obtaining sensitivity and specificity of 91 %

and 97 %, respectively, as well as a total accuracy of 97.2 %. Regarding MDS in PB, an

ensemble of CNN and Extreme Gradient Boosting (XGBoost) was trained to differentiate

MDS from Aplastic Anaemia (AA). The system was developed in two parts, first the CNN

was trained to extract features from the cell images. Then the XGBoost was configured

with these features and trained using smears from 75 MDS and 36 AA patients. The

system was tested with 26 MDS and 11 AA samples. The sensitivity and specificity

reported was 96.2 % and 100 %, respectively [83].

5.2 Patients and dataset selection

Blood samples, collected in EDTA, were automatically prepared using the slide maker-

stainer SP10i (Sysmex, Kobe, Japan) and stained with May Grünwald-Giemsa. Digital

images of individual cells were acquired with CellaVision®DM96 (CellaVision, Lund,

Sweden) (363x360 pixels) from smears obtained during daily work in the Core Laboratory

of Hospital Clinic of Barcelona. Cell images were selected by pathologists according to

their morphological characteristics. Patients diagnosis (ground truth) were confirmed by

integrating all supplementary test results: clinical data, PB and BM morphology, flow

cytometry, cytogenetics and molecular biology following WHO 2016 classification of

tumours of haematopoietic tissues [84].
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A total of 20,670 images were collected: hypogranulated neutrophils from patients with

MDS and normal neutrophils from healthy controls (HC). Images were imported to our

MySQL Database described in Chapter 2 and organized into four subsets summarized in

Table 5.1.

1. Training set. Split into two subsets: train and validation. The train subset con-

tains 1,887 images of dysplastic neutrophils and 2,923 normal neutrophils. The

validation subset contains 500 dysplastic and 500 normal neutrophils.

2. Test set by cell. It contains 1,000 images, 500 dysplastic and 500 normal neu-

trophils. It was selected to assess the performance of the model and calculate a

cut-off value, as explained later.

3. Test set by smear. Arranged with 32 MDS patients (49 blood smears), it involves

2,718 dysplastic neutrophils images. It also includes 64 smears from 40 HC (3,834

images). This set was selected to assess the system for classification of individual

smears and to determine a threshold value for MDS prediction.

4. Proof of concept set. It includes 66 smears from 32 new MDS patients and 70

smears from 40 new HC. It contains 7,308 images. This set was used to evaluate

the final system performance in a diagnosis setting.

IMAGE SUBSETS
Training

Train
subset

Validation
subset

Test by
cell

Test by
smear

Proof of
concept

Dysplastic 1,887 500 500
2,718

(49 smears)
3,071

(66 smears)CELL
IMAGES Normal 2,923 500 500

3,834
(64 smears)

4,237
(70 smears)

TOTAL IMAGES 5,810 1,000
6,552

(113 smears
from 72 patients)

7,308
(136 smears

from 72 patients)

Table 5.1: Dataset for training and testing DysplasiaNet CNN.
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5.3 Methodology

5.3.1 Overview and problem statement

The ultimate goal of this work is to build a system where the input is a set of images of

neutrophils from a patient blood smear on suspicion of dysplasia. The output is a diag-

nosis prediction whether the patient has MDS or not. Figure 5.1 shows an overview of

the workflow followed to develop and evaluate the system. Several processes are enumer-

ated and represented in rectangles, while the input datasets and the processes outputs are

represented in parallelograms.

1. Generate and
train eight models

training
set

Best five
models

2. Train five models
from scratch for

more epochs

training
set

Five
models
trained

3. Obtain best cut-
off by cell and test

4. Obtain best
threshold by

smear and test

test by
smear set

Classification
accuracy

test by
cell set

Diagnostic
accuracy

5. Architecture
evaluation using k-
fold cross-validation

Average
validation
accuracy

 training set +
test set

6. Proof of
concept

proof of
concept set

k-fold cross-validation for architecture
evaluation

Training

Best model:
Architecture +

weights

Model
selection

Figure 5.1: Methodology used to develop the system (DysplasiaNet). Processes are enu-
merated and represented in rectangles. Input data sets and processes outputs are repre-
sented in parallelograms.

The development started from eight CNN models generated by varying their number of
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convolutional blocks, filters and fully connected layers. These models were trained for 20

epochs to observe their performance trend, selecting those that reached higher accuracies.

In a second step, we trained these models from scratch for more epochs until they were

ready for testing. These two processes conform the training phase represented on top of

Figure 5.1.

In a visual inspection of blood cell morphology, pathologists consider neutrophils to be

dysplastic if they exhibit "sufficiently low" granularity. Therefore, our next specific ob-

jective was to select the model with the best performance in terms of this specification,

following the steps shown from top to bottom in Figure 5.1 (right part). In step 3, all

five models were tested using the test by cell set to determine the best quantitative cut-off

for each model to separate dysplastic from non-dysplastic neutrophils. The classification

accuracies were used as performance measures.

As a fourth step, to adjust the model to give an objective prediction for MDS diagnosis,

all five selected models were tested using full smears from healthy controls and patients in

which MDS diagnosis was confirmed by integration of clinical information and all sup-

plementary tests. The best threshold for smear was obtained and diagnostic accuracies

were calculated. The result of this step was the selection of the model with the highest

diagnostic accuracy, which was named DysplasiaNet. In addition, we decided to perform

an alternative evaluation (step 5 in Figure 5.1) of the selected architecture by implement-

ing five and ten-fold cross-validation techniques. The objective here was to check if such

robust performance evaluation, using the whole cell dataset (training and test sets), could

improve the model selected by comparing the average accuracy with the one obtained in

the hold-out procedure followed so far.

The final step 6 was the proof of concept of DysplasiaNet to obtain the performance of

the model using a set of images not used in any previous step. Details of each step of the

methodology are explained in next subsections.
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In developing a CNN classifier for eight normal blood cell categories in [20], we used

fine-tuning, where already established pre-trained architectures were re-trained with our

own image datasets. In this work, all models were built, trained and tested from scratch

using our own datasets. We took this approach based on what was reported in [85], where

authors performed a fine-grained study on transfer learning for medical images. They

found that transfer learning does not significantly help to improve performance in the

classification of medical images. Smaller and simpler convolutional architectures perform

comparably to standard Imagenet models even when there is little data. This is the case of

our medical setting, where large models might restrain a real integration in the laboratory

workflow.

5.3.2 CNNs general architecture

We will use DysplasiaNet to explain the general architecture of a CNN (See Figure 5.2).

DysplasiaNet consists of two sequential parts: 1) four blocks, whose end output is a set

of quantitative features learned from input images (Figure 5.2, sub-figure A); 2) two fully

connected layers, which supply the image classification using the learned features (Figure

5.2, sub-figure B).

Convolutional layers are the most important components in the CNNs. They are com-

posed by N planes, and each plane is defined by a filter (kernel) with small size (F). For

all CNNs tested, the size of convolutional filters is F = 3, so that each is a 3× 3 matrix

with numerical values known as weights, which conform the trainable parameters of the

network.

Convolutional filters are the main components in a CNN because they learn to efficiently

extract features from data. When processing the input image, these filters detect simple

shapes and spots like edges or circles. When used in subsequent blocks, different con-

volutional filters are used to identify increasingly complex objects. Globally, the whole
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convolution layer with relu

feature map size

(146,146,16) (35,35,16)(71,71,16)(73,73,16) (33,33,16)

(16,16,16)

(148,148,16)

448 weights 2320 weights 2320 weights 2320 weights

(297,297,16)

max pooling

block 1 block 2 block 3 block 4

16 pixels

16 pixels

16 feature
maps

...

 4096
features

..

16 nodes with
65552 weights.

output node
with

17 weights.Flatten
16x16x16

FC1 with relu +
dropout 

FC 2 with
sigmoid

activation

Sub-figure B: 
Fully connected blocks

Output

Last pooling layer output Fully connected block

Sub-figure A:
Convolutional blocks number of feature

maps

Input

Figure 5.2: DysplasiaNet CNN designed for the detection of myelodysplasia. It is con-
formed in two sequential parts: 1) four convolutional blocks (sub-figure A) and 2) two
fully connected layers (sub-figure B). Images of neutrophils are the input. The output is a
single score to allow the binary classification of the cell image as dysplastic or normal.

network uses a hierarchy of convolutional filters that allows the final classification of the

image.

The input image is composed by a number of planes with fixed width (imw) and height

(imh). Specifically, this work deals with RGB images, so that we have three planes. Each

plane is a gray scale image represented by a matrix of imw × imh pixels. Each convo-

lutional filter slides over the images one pixel at a time in such a way that, through the

convolution operation, it generates a new matrix. The obtained matrix is passed through

a ReLU (rectified linear unit) activation function. It simply converts all negative values to

zero, while keeping positive values unchanged. It is extensively used in the current CNN

architectures and helps to accelerate its learning process [86]. The result is named feature
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map. This way, the output of the convolutional layer is a number of N feature maps (FM).

All FM together can be seen as a three-dimensional volume whose size can be expressed

in the form:

FM out put sizeconv = (imw −2, imh −2,N) (5.1)

The convolutional layers keep the sizes of FM almost the same, they only remove two

positions in each dimension. This is a direct result of the filter size F = 3 and the sliding

over the whole image. We configured the size of input images as (299,299,3). Therefore,

the size of the resulting FM volume from the first convolutional layer is (297, 297, 16).

An important parameter is the amount of weights that need to be trained. This is relevant

to control the CNN size and to know the necessary computational resources. The number

of weights depends on the number (N) and size (F) of the filters and the number of input

planes (D). This parameter is simply (F ×F ×D+1)×N.

It is important to remark that the reduced size of the filters is a key feature of CNN archi-

tectures, since it makes possible to train and store a number of parameters significantly

small in comparison to the classic fully connected networks. This reduces memory re-

quirements and computing time, and improves statistical efficiency [1].

After each convolutional layer, we placed a max-pooling layer, which takes the maximum

value from a 2× 2 frame of pixels from each feature map. It is used to introduce local

invariances and generate features that are most robust to noise in the input data [87]. As a

result, this layer reduces the FM size to half of the original size but maintaining the same

number of FM. This structure is repeated for the subsequent blocks.

Figure 5.2 shows the output size and the number of trainable parameters of each convolu-

tional layer as well as the output size of the pooling layers of DysplasiaNet. Note that the

output of a pooling layer is the input for the next block.

The output of the last pooling layer is flattened into a one-dimensional vector, which
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feeds the last part of the network conformed by fully connected layers FC . These layers

are typical in the classical feed-forward neural network architectures, which are defined

by their number of nodes. These node units compute a weighted sum of their inputs from

the previous layer and pass the result through an activation function like the ReLU used

before. The objective is to process the features so that classes become linearly separable

by the output layer [37].

After the first FC, we place a dropout layer, which works as follows: during the CNN

training, a fraction of the FC1 nodes is randomly dropped at every iteration with prob-

ability Pdrop = 0.5. The objective is to force the network to learn more general patterns

from the data and to prevent from overfitting. Dropout is applied only for the training

phase [88]. The output layer (FC2) is conformed by a single node because we want the

output of the network to be a score between 0 and 1, which indicates if the neutrophil

image processed by the system shows dysplastic features or not. To accomplish this, we

use a sigmoid activation function instead of the ReLU used in previous layers.

5.3.3 Training

With the general parameters described, as a first step (see Figure 5.1), we generated a

total of eight models considering different choices of three hyper-parameters: 1) number

of convolutional blocks; 2) number of nodes in layers; and 3) number of fully connected

layers. Table 5.2 summarizes the models generated.

For training and testing we used the hold-out method, splitting the dataset in train, val-

idation and test as presented in Table 5.1. Hold-out was initially preferred because the

CNNs were trained from scratch and this method does not require as many computational

resources as cross-validation. Each model was trained for 20 epochs where all images in

the train and validation sets were used. The train set was augmented up to 3000 images by

class using image augmentation techniques. This means generate new images by applying
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Model name Conv. Blocks Nodes in
layers

Fully connected
layers Weights

M1 4 16 1 72,977
M2 6 16 1 13,105
M3 4 32 1 290,849
M4 6 32 1 51,297
M5 4 16 2 73,249
M6 6 16 2 13,377
M7 4 32 2 291,905
M8 6 32 2 52,353

Table 5.2: CNN models generated by varying the number of convolutional blocks, nodes
in each layer, fully connected layers and number of weights to be trained.

transformations to the original ones following the same procedure as in [20].

In each training iteration (epoch), all images from the train set pass forward through the

network. The classification of each image is compared to the ground truth assigned by

the pathologists and a loss function is calculated to quantify the classification error. In

a second step, the error is propagated backwards through the network using the gradient

descent algorithm to update all the weights involved in the network [5]. The training

objective is twofold: find the weights that minimize the loss function and to obtain a high

rate of images correctly classified (accuracy). Using the updated weights, in the end of

each epoch, the validation set is passed through the network to provide an assessment of

the model fit using the validation accuracy and the loss function as performance metrics.

For learning weights, we used the binary cross entropy as the loss function, the ADAM

optimizer [89] and the validation accuracy as the performance metric. In Figure 5.3 we

present the validation accuracy obtained for each model during the training. The training

and validation time of each model was around 8 minutes. Tensorboard was used for

visualizing the training progression.

As it is shown in Figure 5.3 five models (M1, M2, M3, M4 and M7) reached high vali-

dation accuracy (> 95 %), while three models (M5, M6 and M8) did not improve 50 %

accuracy (random accuracy). These three models were discarded and the best five were

77



A new convolutional neural network predictive model for the automatic recognition of
hypogranulated neutrophils in myelodysplastic syndromes

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ac
cu
ra
cy

Epochs

M1

M2

M3

M4

M5

M6

M7

M8

Figure 5.3: Validation accuracy for the training of the eight models generated. All models
were trained for 20 epochs.

selected to perform further training.

In a second step (see Figure 5.1), all five models were trained from scratch until they

reached a validation accuracy of 99.5 % or a maximum number of 100 epochs. Figure 5.4

shows the training progression of the five models. It can be observed that M1, M2, M4 y

M7 were trained for 100 epochs, while M3 training stopped at epoch 12 when reached a

validation accuracy of 99.5 %.

5.3.4 Model selection

The model selection starts with the third step presented in Figure 5.1. The objective is

to obtain a CNN such that the output score quantifies granularity in the neutrophil cyto-

plasm. As stated before, lower granularity is associated to dysplasia. Therefore, higher

values of the score (close to one) should indicate normal granularity, while values closer

to zero should indicate lower granularity. Since we aim to use the network as an objective
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Figure 5.4: Training progression of the best five models in a second step. All models were
configured to be trained from scratch until they reached a validation accuracy of 99.5 %
or a maximum of 100 epochs

predictor, we need to determine a quantitative cut-off for the required granularity score

to discern between normal and dysplastic neutrophils. The optimal cut-off represents the

best trade-off between sensitivity and specificity. This means that if the score assigned by

the network is above the cut-off value, the neutrophil is predicted as normal; and dysplas-

tic otherwise.

To determine the best classification cut-off, we used the test set by cell (Table 5.1). We

used the scores predicted by the network to plot true positive rate (sensitivity) versus false

positive rate (1 - specificity) for different cut-off values. This resulted in the Receiver

Operating Characteristic (ROC) curve, commonly used to measure the capability of a

model to predict the presenceabsence of a disease, independently of its prevalence [90].

From the optimal cut-off for each model, we calculated the TPRs and the total accuracy.

Table 5.3 presents the results obtained for each model.

To select the final best model, it is necessary a fourth step to test the candidate models in a

more real set up to give the clinical pathologist an objective support tool for MDS diagno-

sis. For this purpose, it is required to establish a threshold value to quantify the minimum
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Model name Optimal cut-off ROC - auc TPR (%) Total accuracy
(%)dysplastic normal

M1 0.979 0.998 97.6 97.8 97.7
M2 0.875 0.996 97.2 97.6 97.4
M3 0.606 0.998 98.2 98 98.1
M4 0.443 0.996 98.6 97.2 98.2
M7 0.631 0.996 97.2 97.8 97.5

Table 5.3: Optimal cut-off and area under the ROC curve for each model used to indicate
the degree of granularity of a neutrophil. With each cut-off, TPR percentages and total
accuracies were calculated.

proportion of dysplastic neutrophils in the smear to consider that the patient might have

MDS. We used the test set by smear (see Table 5.1) with smears from 40 healthy controls

and 32 patients, in which the MDS diagnosis was confirmed by integration of the clinical

information and all supplementary test results. All neutrophil images from the smears

were classified. A ROC curve was calculated to obtain the optimal threshold and use

it to obtain TPRs and diagnostic accuracy for each model. This accuracy measures the

percentage of smears correctly classified. Consequently, MDS is the predicted diagnosis

when the number of hypogranulated neutrophils detected in a single smear is above the

optimal threshold. The results are presented in Table 5.4. M1 was the model selected

because it reached the best diagnostic accuracy (95.5 %).

TPR (%)Model name Optimal
threshold ROC - auc dysplastic normal

Diagnostic accuracy
(%)

M1 0.123 0.953 89.7 100 95.5
M2 0.089 0.959 89.7 98.4 94.7
M3 0.215 0.965 87.8 98.4 93.8
M4 0.138 0.980 89.8 98.4 94.7
M7 0.483 0.915 79.6 98.4 90.2

Table 5.4: Optimal threshold and area under the ROC curve (auc) for each model used
to indicate if a patient presents MDS or not. With each threshold, true positive rate (TPR)
percentages and total accuracies were calculated. The model with highest diagnostic
accuracy (M1) was selected as the final model.

To further evaluate the selected architecture, we implemented 5 and 10-fold cross-validation

using the whole dataset: training and test by cell sets. Results are presented in Table 5.5,

showing the accuracy for each fold and the average accuracy and standard deviation for
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5-fold cross-
validation

10-fold cross-
validation

Fold Accuracy/fold (%) Accuracy/fold (%)
1 96.8124 99.6249
2 98.3124 97.1249
3 96.875 96.875
4 94.8125 98.3749
5 93.3125 93.8750
6 - 98.5000
7 - 98.6249
8 - 98.7500
9 - 97.6249

10 - 97.6249
Average accuracy 96.0249 97.6999

Standard dev 1.7551 1.4970

Table 5.5: Accuracies obtained from 5-fold and 10-fold cross-validation performed to the
best selected architecture.

all folds. The average accuracies using 5 and 10-fold cross-validation were high (96.02

% and 97.69 %, respectively), and very close to the accuracies obtained in the test by

cell using hold out (97.7 % in Table 5.3). These results confirm that the architecture and

model selections performed before using hold out method were correct.

5.4 Results

Once the final DysplasiaNet model was selected, the next step was to establish a real sce-

nario for detecting MDS and perform a proof of concept. Besides presenting the outcome

of this assessment, in this section we show results trying to get some interpretable insight

on how the CNN model achieves the classification of the neutrophil images.
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5.4.1 Proof of concept

Suspecting that a patient may have MDS on the basis of some parameters provided by the

haematological analyser (low blood cell counts) and in the case that MDS is suspected,

neutrophil images are selected and analysed by DysplasiaNet to quantify the dysplastic

neutrophils in the smear.

We performed this final test using the proof of concept set detailed in Table 5.1. This

set included 66 smears from 32 MDS patients and 70 smears from 40 HC, remarking

that none of them were involved in previous training and testing steps. All smears were

classified by DysplasiaNet according to whether they belong to a patient with dysplasia or

not indicated by the established threshold. Figure 5.5 shows the confusion matrix, where

the classification results are compared with the ground truth (confirmed diagnosis). From

this matrix, we calculated the sensitivity or true positive rate (TPR), specificity or true

negative rate (TNR), precision or positive predictive value (PPV) and overall accuracy as

follows:

Sensitivity(T PR) =
T P

T P+FN
= 95.5% Speci f icity(T NR) =

T N
T N +FP

= 94.3%

Precision(PPV ) =
T P

T P+FP
= 94%

Overall accuracy =
T P+T N

T P+T N +FP+FN
= 94.85%

As it is shown in Figure 5.5, the area under the ROC curve was 0.982.
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Figure 5.5: ROC curve (left) and confusion matrix results of the proof of concept set clas-
sification using DysplasiaNet (right). Sensitivity was 95.5 %, specificity 94.3 %, precision
94 % and overall accuracy 94.85 %.

5.4.2 Model interpretability

In order to get insight into the inner functioning of DysplasiaNet we implemented three

techniques: 1) t-distributed Stochastic Neighbour Embedding (t-SNE) [91] feature reduc-

tion to visualize and compare the features extracted by the network versus the original

images; 2) visualization of activation maps from the last convolutional block to under-

stand which parts of the images are contributing the most to the classification; and 3)

feature map visualization to interpret which features are being extracted by the CNN.

t-SNE feature reduction

We implemented this technique using all test by cell set images projecting 268,203 pixels

from each image onto two dimensions for visualization, see Figure 5.6 (left). Purple and

red dots represent dysplastic and normal neutrophils, respectively. This visualization may

help us to understand how difficult is the differentiation between both groups. Alterna-

tively, Figure 5.6 (right) represents the two-dimensional reduction of the 4,096 internal

features extracted from the images by the last convolutional block of DysplasiaNet. As

shown in the figure, the images are clearly separated in two clusters.

Activation maps visualization
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Figure 5.6: Dimensionality reduction using t-SNE over the test by cell images. Reduc-
tion from the pixel values of the original images (left) and reduction from the features
extracted from the last convolutional block of DysplasiaNet (right). Purple dots represent
the dysplastic neutrophils and red dots the normal ones. DysplasiaNet features result in
two clusters that can be easily separated with few overlapping.

Activation maps were extracted using Gradient-weighted Class Activation Mapping (Grad-

CAM) technique [92]. Figure 5.7 presents six neutrophil images from the test by cell set

that were correctly classified as dysplastic and normal neutrophils, respectively. It also

shows their corresponding activation maps extracted from the last convolutional block of

DysplasiaNet (Block 4), as well as activation maps overlaid on the original images. The

yellow colour in the activation map indicates higher activations, while purple indicates

lower activations. In all cases, stronger activations are observed in the cells, thus showing

that the network uses cell pixels for its recognition. In dysplastic neutrophils (left), we

see that the network is also using some information of the background. The score is the

CNN output indicating the classification result.

Feature maps visualization

In this respect, it is interesting to visualize how granularity is characterized by the net-

work. Figure 5.8 displays two examples of dysplastic and normal neutrophils, respec-

tively. Left side shows the original images, while right side displays the respective feature

maps given by the third convolutional layer. Recall that feature maps are the quantitative

representations of the original image processed through the subsequent convolutional fil-

ters. Figure 5.8 (right) shows how one of the deep CNN layers assigned high values to the

pixels corresponding to the cytoplasmic granules in the normal neutrophil image (>200),
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Figure 5.7: Dysplastic and normal neutrophils, their corresponding activation maps and
the activation maps overlaid on the original image. The score value is the CNN output.

while these values were < 175 in the hypogranulated neutrophil.

Figure 5.8: Examples of feature maps extracted from DysplasiaNet. The original images
of a dysplastic and normal neutrophils (left) are compared to their correspondent feature
maps extracted from the third convolutional layer of DysplasiaNet. The model assigns
higher values to the pixels when it detects granules in the neutrophil cytoplasm.
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5.5 Discussion

Our group has been working in developing tools for the automatic classification of nor-

mal leukocytes and abnormal blood cells in acute leukaemia, lymphoma or malaria using

machine learning [27], [30], [93] and, more recently, deep learning techniques [94]. In

this work, we have proposed a tool for the automatic detection of dysplastic cells in pe-

ripheral blood present in patients with MDS, which is a problem scarcely addressed in the

literature [83].

Cytoplasmic hypogranulation in neutrophils associated to MDS may undergo high rates

of interobserver variability. Predictions based on deep learning might provide additional

objective tools to address this issue [95]. This work presents the development of a CNN

model (DysplasiaNet) designed and trained from scratch for the automatic recognition

of the cytoplasmic hypogranularity in dysplastic neutrophils. Other MDS morphological

features were considered out of the scope of this work because they are more evident and

easily detected by visual inspection of the PB smear [72]. DysplasiaNet was designed by

our multidisciplinary research group having in mind its deployment in a real set up. The

CNN was trained to predict if a single neutrophil image is dysplastic or not depending

on a single quantitative score, which was related to the cytoplasmic granularity level, in a

similar way to how clinical pathologists apply their skills and consider that a neutrophil

is dysplastic if it shows sufficiently low granularity. To the authors knowledge, this is

the first CNN model that has been built and validated for MDS support tool to assist in

the diagnosis, with potential to be integrated in the workflow of clinical laboratory as a

secondary evaluation under MDS suspicion.

Compared to the previously published paper using deep CNNs to differentiate MDS and

aplastic anaemia in [83], we remark some relevant differences in our work. The first is that

we focused in the automatic detection of the dysplastic neutrophils showing hypogranular-

ity circulating in blood in patients with MDS. We selected hypogranularity because, based
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on practical experience in the clinical laboratory, this is the most difficult feature to detect

under the microscope by visual inspection, being one of the most frequent morphological

abnormalities observed in blood in MDS patients. Moreover, it might be challenging to

differentiate dysplastic from normal neutrophils when the cytoplasmic granulation is fine

and scarce. Another significant difference to consider is that DysplasiaNet is a simpler

and lightweight CNN model that performs feature extraction and classification with high

accuracy (94.85 %).

Training a deep CNN from scratch requires a large amount of high quality-data. For this

reason, we compiled a dataset with 20,670 images obtained from healthy controls and

patients with MDS and they were annotated by expert clinical pathologists. This high

number of images was sufficient to obtain a model with high accuracy using the hold out

method. This was further verified with 5 and 10-fold cross-validation performed for the

architecture evaluation. Accuracies obtained with both methods were similar. Another as-

pect is related to the CNN parameter initialization. Given the random nature of the initial

parameters, it is possible to face problems like the vanishing/exploding gradients, where

the gradients become zero or too high, respectively [1]. This produces low accuracies (<

50 %) during training as occurred in the first step of the training, where models M5, M6

y M8 did not improve their 50 % accuracy (see Figure 5.3). These three models were

discarded and we kept only the models that reached high accuracies.

Model interpretation techniques implemented are visual guided approaches to identify

the features that influence the decisions of deep learning models. Nowadays, these tech-

niques are being applied to reduce the black box nature and understand the functioning of

models for medical image diagnosis [96]. With the first technique applied, t-SNE, image

features are embedded into two dimensions in order to visualize if classes are separable by

linear classifiers [97]. With the comparison of the embedding of the original image pix-

els versus the embedding of features extracted from the last DysplasiaNet convolutional

block (see Figure 5.6), we highlight the importance of the correct training of the network
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for the extraction of relevant characteristics for the subsequent image classification. The

subtle morphological differences between normal and dysplastic neutrophils represent a

challenge when training a model for diagnosis.

The second technique applied, Grad-CAM, was used to generate heatmaps to highlight the

important regions in the image for predicting a class. The result is called activation map.

In the field of medical images, its application in images for diabetic retinopathy classifi-

cation is particularly relevant [98]. In our image classification work, we obtained higher

activations (yellow colour) in the area where the cells are located (see Figure 5.7). This

shows that the model is ‘looking’ at the cell to extract important information, in the same

way that the clinical pathologist focuses his analysis on the cell and not on other portions

of the image. It is important to clarify that this is a coarse localization technique, and as

result, it is not possible to see clear differences among normal or dysplastic cell activation

maps. However, as a future work, it is possible to implement more advanced techniques

of guided gradients to achieve more fine-grained localization. As an alternative, we ex-

tracted the feature maps from an intermediate convolutional layer of DysplasiaNet. This

was the third technique implemented (see Figure 5.8). Feature maps show that in deep

layers of the network, the cytoplasm granulation was detected by assigning high values

to the pixels corresponding to the normal cytoplasmic granules, while these values were

lower in the hypogranulated dysplastic neutrophil. Both techniques together, Grad-CAM

and feature map extraction, show that DysplasiaNet works extracting features from the

cell and detecting the cytoplasm granularity.

For the practical use of the model in MDS diagnosis, we adjusted a threshold for the

prediction of a patient status based on the smear review. We envision that DysplasiaNet

would be used by the clinical pathologist as follows. In the case of a new patient presents

to the hospital with anaemia and/or leukopenia and/or thrombocytopenia, high mean cor-

puscular volume and blast flag provided by the automated haematological analyser, an

assessment of the PB smear morphology is required. If MDS is suspected in the PB re-
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view, the clinical pathologist might select the neutrophil images from the smear and enter

them to DysplasiaNet. This predictive model is in fact and algorithm that would be easily

implemented in any computer device as a secondary evaluation tool.

A practical concern for the implementation may be related to the quality of the smear

preparations. It is well known that the stain is particularly critical in assessing neutrophil

granulation. In the routine workflow of clinical laboratories, sometimes the smears could

be understained due to fluctuations of the reagents in the automated stainer. In this cir-

cumstance, all the neutrophils are seen as hypogranulated no mater they are normal or

dysplastic. In this case, the clinical pathologist would detect that the smear is not appro-

priate and would revise the staining process. AI models are trained and assessed with

smears prepared using a standardized staining. It is expected that the pathologist, before

entering the images to DysplasiaNet for their automatic recognition, will follow the same

criteria than when doing visual inspection.

In addition to the high performance of DysplasiaNet, there are technical aspects that may

facilitate its real implementation. Conformed by four convolutional blocks and two fully-

connected layers, DysplasiaNet is a simple and lightweight CNN model compared to

other more complex architectures like Inception [39] and Resnet [99]. Therefore, the pro-

posed model does not require graphics processing units (GPUs) to be trained and tested.

On the other hand, DysplasiaNet was developed using open source software TensorFlow

[11]. A big advantage of open software is the reduction of development, implementation

and maintenance costs because no license is needed and software libraries can be freely

updated. As a next step, it is possible to implement DysplasiaNet in a web browser to

make it easily accessible and usable, taking advantage of open source libraries such as

TensorFlowjs [100].
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5.6 Conclusion

The main contribution of this work is a CNN-based model for the automatic detection

of hypogranulated neutrophils in peripheral blood smears. We have proposed a method-

ology to design a simple and lightweight architecture that was trained from scratch and

tested with our dataset of 20,670 images. It was compiled from the clinical practice and

annotated by expert pathologists. The model was configured to obtain the best balance

between sensitivity and specificity. We envision the utility of the model implemented

as a secondary evaluation tool for MDS diagnosis integrated in the clinical laboratory

workflow.
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6.1 Introduction

Abstract

This chapter presents a modular system for the classification of MDS conformed by two

CNNs designed and trained from scratch. The complete system was developed in two

steps: 1) Development and test of Model 1; and 2) Integration of Model 1 with Model 2

and proof of concept of the complete system. Model 1 is a pre-classifier to detect eight

types of PB cells: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature

granulocytes, erythroblasts and platelets. This new CNN has as reference the pre-trained

Vgg-16 adopted in Chapter 4. However, in this work Model 1 is designed from scratch

to obtain a customized classifier with less layers and parameters. The images classified

as neutrophils are selected automatically to be the input to Model 2 (DysplasiaNet). The

output of the system is an indicator of weather the patient presents MDS or not, which

can used as a diagnostic assistance. As a final test of the system, we performed a proof of

concept where the input are neutrophils from PB smears and the output is the detection or

absence of MDS. The total accuracy obtained was 94.8 %.

Although a global system is out of the scope of this thesis, we performed an additional

experiment to test Model 1 and evaluate its performance for the classification of different

abnormal cells for which the model was not trained. It was found that abnormal mononu-

clear cells, important for the detection of serious diseases, are classified mainly in four

classes: lymphocyte, monocyte, immature granulocyte and erythroblast. Based on these

results, further steps could be done to integrate into the system other models to detect

leukemia and lymphoma.

6.1 Introduction

Chapter 5 of this thesis is focused on the diagnosis of myelodysplastic syndromes (MDS)

by means of the DysplasiaNet CNN. The input is a set of images of neutrophils selected
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by the pathologist from a patient smear. In this chapter, our aim is to mimic the selecting

role of the pathologist by a model that performs an automatic pre-classification among

all cell types present in the patient’s smear. With this purpose, we developed the mod-

ular system presented in Figure 6.1. The system is conformed by two CNNs: Model 1,

the pre-classifier, and Model 2, DysplasiaNet. The input is a set with all the smear im-

ages (normal and abnormal) and the output from Model 1 is the classification in eight

groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granu-

locytes (myelocytes, promyelocytes, metamyelocytes), erythroblasts and platelets. The

images classified as neutrophils by Model 1 are selected automatically and are the input

for DysplasiaNet, which finally indicates if the patient presents MDS or not, as described

in Chapter 5.

In a general system, the other groups of abnormal cells could be the input of other special-

ized classifiers to detect specific diseases such as acute leukaemia or lymphoma. In this

work, we just discard such cells and follow the track of neutrophils through DysplasiaNet.
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Figure 6.1: Integrated system for the classification of dysplastic cells. Model 1 receives
as input all the smear images (normal and abnormal) and performs the classification
in eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature
granulocytes (myelocytes, promyelocytes, metamyelocytes), erythroblasts and platelets.
Images classified as neutrophils are selected automatically as the input for Model 2 (Dys-
plasiaNet) to finally indicate if a patient presents MDS or not.

The modular system was developed in two steps: 1) Development and test of Model 1;

and 2) Integration of Model 1 with Model 2 and proof of concept of the complete system.
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These steps are described in Sections 6.2 and 6.3, respectively. Section 6.4 presents one

additional test to evaluate the Model 1 capability for the classification of other types of

abnormal cells.

6.2 Development and test of Model 1

6.2.1 Architecture design and training

In order to design Model 1 we have the reference of the CNN classifier developed in

Chapter 4 [20] for the classification of the eight cell groups circulating in peripheral blood.

In that case, we started with a pre-trained Vgg-16, which was fine tuned with our dataset.

However, Model 1 is a new CNN designed from scratch, following a similar approach to

the one adopted in Chapter 5. Based on what was reported in [85] about the effects of

transfer learning and our experience with Chapter 5, we wanted to obtain a customized

classifier with less layers and parameters trained with the dataset presented in Chapter 3.

Details about the number and type of layers and parameters are presented in Table 6.1.

Model 1 is conformed by five blocks of convolutional and max pooling layers, a sixth

block with one convolutional layer and a final fully connected block. The number of

filters in each convolutional layer (conv2D) increases in powers of two, for example, for

block 1 there are 25 = 32 filters, for block 2 there are 26 = 64 filters and so on. Block 5

and 6 have the same number of filters: 29 = 512. The size of the filters of all convolutional

layers is 3x3 pixels. Regarding the fully connected block, it is conformed by three layers:

the first fully connected (FC1) with 4,096 nodes where a dropout of 50 % is applied at

the output, the second (FC2) conformed by 1,024 nodes and the output layer (FC3) with

eight nodes, one for each group to classify. The rightmost column contains the number of

parameters (NPBi) required to train in each block i = 1,2, · · ·6. This value depends on the
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Layers Filter size Number of
filters

Number of
parameters

conv2D 3x3 32 896
max pooling : F = 2 and S= 2

Block
1

output shape: (111, 111, 32)
conv2D 3x3 64 18,496

max pooling : F = 2 and S= 2
Block

2
output shape: (54, 54, 64)

conv2D 3x3 128 73,856
max pooling : F = 2 and S= 2

Block
3

output shape: (26, 26, 128)
conv2D 3x3 256 295,168

max pooling : F = 2 and S= 2
Block

4
output shape: (12, 12, 256)

conv 2D 3x3 512 1,180,160
max pooling : F = 2 and S= 2

Block
5

output shape: (5, 5, 512)
conv2D 3x3 512 2,359,808Block

6 output shape: (3, 3, 512)
FC1+ 50 % dropout: 4,096 nodes 18,878,464

FC2 : 1,024 nodes 4,195,328
Fully

connected
block FC3 : 8 nodes 8,200

Table 6.1: Model 1 architecture description

filter size (FSi), the number of filters (NFi) and the number of feature maps that process

each layer (NFMi). The following expression can be used to compute this parameter for

the convolutional layers:

NPBi = (FSi ×NFi ×NFMi)+NBi

where NBi is the number of bias terms of each filter, so that it is equal to the number of

filters NFi.

As an example, for Block 1 we have:

• Filter size FS1 = 3×3 = 9

• Number of filters NF1 = 32
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• Number of feature maps, the number of channels of the input images, NFM1 = 3

• Number of bias NB1 = 32

Consequently, the number of parameters in Block 1 is NPB1 = (9×32×3)+32 = 896.

For Block 2 the number of parameters is NPB2 = (9× 64× 32)+ 64 = 18,496. In this

case, NFM2 = 32 because the output from Block 1, which is the input to Block 2, is a

volume of 32 feature maps of size 111×111 pixels. Similarly, the parameter numbers are

obtained for the subsequent convolutional blocks.

The fully connected layers have many more parameters than the convolutional layers and

are calculated differently. The number of parameters of FC1 is calculated having into

account the output volume from Block 6 of size (3, 3, 512), which contains a total of

3× 3× 512 = 4,608 features. These features are the input to the 4,096 nodes, so in this

layer we have (4,608×4,096)+4,096 = 18,878,464 parameters.

For FC2 we have (4,096× 1,024)+ 1,024 biases = 4,195,328 parameters. Finally, for

the output layer (FC3) we have (1,024×8)+8 biases = 8,200 parameters. Model 1 has a

total of 27,010,376 parameters, which are much less than for Vgg-16 model with around

133 millions of parameters.

Model 1 was trained using the dataset published in [19] to classify eight groups of PB

cells: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulo-

cytes (myelocytes, promyelocytes, metamyelocytes), erythroblasts and platelets. The

neutrophils subset was modified replacing 1,500 normal neutrophils by hypogranulated

neutrophils. The dataset was split in three subsets: train, validation and test. The train set

was balanced up to 3,000 images/group applying data augmenting as explained in Chap-

ter 4. For validation and test we selected 200 images/group. Model 1 was trained for 30

epochs. The training and validation accuracy progression are presented in Figure 6.2.
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Figure 6.2: Model 1 training and validation accuracies progression for 30 epochs.

6.2.2 Model 1 testing

After training, the model performance was tested using the test set. The results of classi-

fication are presented in the confusion matrix in Figure 6.3. True positive rates (TPR) for

basophil, eosinophil, erythroblast, lymphocyte, monocyte and platelet groups are above

97 %. Neutrophils TPR was 89.5 % due to the confusion of 4.5 % of them as ig (immature

granulocytes) and 3.5 % as erythroblasts. The ig class obtained the lower TPR with 83

%. A 10 % of these cells were missclassified in the monocyte group. This behavior may

be because these two types of cells share morphological features. The overall accuracy

obtained was 95.4 %.

Figure 6.4 presents the ROC curves calculated for this test. The ROC curve for each

class was obtained considering a "one versus all" approach. Class 0 to 7 correspond

to classes basophil, eosinophil, erythroblast, ig, lymphocyte, monocyte, neutrophil and

platelet, respectively. Areas under each curve are very close to one, indicating the accurate

performance of the model. The macro-average ROC curve is the average of all class

curves.

96



6.2 Development and test of Model 1

ba
so

ph
il

eo
sin

op
hi

l

er
yt

hr
ob

la
st ig

ly
m

ph
oc

yt
e

m
on

on
cy

te

ne
ut

ro
ph

il

pl
at

el
et

Predicted Class

basophil

eosinophil

erythroblast

ig

lymphocyte

mononcyte

neutrophil

platelet

Tr
ue

 C
la

ss
99.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 99.0 0.5 0.0 0.0 0.5 0.0 0.0

0.0 0.0 98.0 0.5 1.0 0.0 0.5 0.0

1.0 0.0 0.5 83.0 0.0 10.0 5.5 0.0

0.0 0.0 1.5 0.0 98.0 0.0 0.5 0.0

0.0 0.0 0.5 1.0 1.5 97.0 0.0 0.0

0.0 0.0 3.5 4.5 1.5 1.0 89.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Confusion matrix of model 1

Figure 6.3: Confusion matrix of the results of testing Model 1. Rows represent the true
label (True Class) and the columns the label predicted by the network (Predicted Class).
True positive rates are values in the principal diagonal. The overall accuracy obtained
was 95.4%. The neutrophil subset contains both normal and hypogranulated classes. ig:
immature granulocytes.

Another visual representation of the performance of Model 1 is presented in Figure 6.5.

The left plot is a reduction of the 299×299×3 = 268,203 pixels of each input cell image

to a two-dimensional map to visualize them using t-SNE reduction. The result is a set

of data points corresponding to each image. The data points are concentrated and very

close, making difficult to separate them by cell type. In fact, this was expected due to

the similar morphological characteristics existing between the cells. In contrast to this

observation, the right plot presents the reduction of the 3 × 3 × 512 = 4,608 features

extracted from Block 6 of Model 1 to a two-dimensional map. The resulting data points

apear clearly differentiated and separated. This may indicate that the features extracted

from the network are allowing the classification of the eight types of cells. The same

t-SNE reduction was applied in the development of DysplasiaNet in Chapter 5.
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Figure 6.4: ROC Curves obtained from testing Model 1. Class 0 to 7 correspond
to classes basophil, eosinophil, erythroblast, ig, lymphocyte, monocyte, neutrophil and
platelet, respectively. The macro-average roc curve is the average of all class curves.

Figure 6.5: Feature reduction into a two-dimensional map using the t-SNE technique.
Left plot are data points corresponding to the reduction of 268,203 pixels of each image.
The right plot corresponds to the reduction of 4,608 features extracted from the block 6 of
Model 1.

6.3 Model integration and proof of concept

In this step the output of the identified neutrophils is connected to the input of Dys-

plasiaNet to obtain the final system (see Figure 6.1). The input is a set of images from an

individual PB smear and the output is the detection or absence of MDS. Using this setup,

the pathologist in search of dysplastic neutrophils does not need to select the neutrophils
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to feed DysplasiaNet. Instead, all leukocytes from the PB smear are given to the inte-

grated system. Model 1 will identify all neutrophils and automatically will send them to

DysplasiaNet.

In order to test the performance of the complete system, we used the proof of concept set

described in Chapter 5, which includes a total of 136 smears (see Table 5.1). Figure 6.6

presents the classification results in a confusion matrix. We see that a number of 63 smears

obtained from MDS patients and 66 smears obtained from healthy controls were correctly

classified, which means a global accuracy of 94.8 %. It is important to remark that these

results are the same obtained for DysplasiaNet in Figure 5.5. This means that Model 1 is

effective in filtering the neutrophils correctly and redirecting them to DysplasiaNet.
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Figure 6.6: Confusion matrix of the results obtained in the proof of concept of the mod-
ular system. A total of 63 smears from patients with MDS and 66 smears from healthy
controls were correctly classified to obtain a global accuracy of 94.8 %.
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6.4 Towards a modular system for the classification of

blood cells

This thesis is framed within the global objectives of the research group to advance in the

development of computational methodologies to assist the clinical pathologist to reach a

feasible, objective and reliable diagnosis in myelodysplastic syndromes, acute leukemia

or lymphoma by means of the automatic classification of abnormal PB cells using convo-

lutional neural networks.

The idea of performing a pre-classification to identify the cells of interest for a subsequent

specialized classifier could be extended to other diseases beyond MDS. Although a global

system is out of the scope of this thesis, we decided to perform an additional experiment to

test Model 1 and evaluate its performance in the classification of abnormal cells, present

in serious diseases, but for which the system was not trained.

Our hypothesis is that, even though Model 1 was not trained to classify cells like blasts

and abnormal lymphocytes, it might be used with no further re-training to classify these

“unknown” cell types into the groups of cells with which they share some morphological

features. Different abnormal cell types were selected and classified with Model 1.

To carry out this experiment, we selected the following four cell groups:

1. Abnormal lymphoid cells. Conformed by nine groups of 200 cells each: CLL

(chronic lymphocytic leukemia), FL (follicular lymphoma), HCL (hairy cell leukemia),

LGLL-T (large granular lymphocyte leukemia), MCL (mantle cell lymphoma),

PCL (plasma cell leukemia), PL (B and T prolymphocytic leukemia), SMZL (splenic

marginal zone lymphoma) and SS (Sézary syndrome).

2. Blast cells (BLASTS). Conformed by two types of cells: 629 blasts of acute lym-

phocytic leukemia and 2,968 blasts corresponding to acute myeloid leukemia. A
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total of 3,597 blasts.

3. Reactive lymphoid cells (RL): 2,324 variant lymphocytes corresponding to patients

with infections.

4. Normal lymphocytes (LY): 2,498 lymphocytes.

For this test, a new group named "other" was configured in order to avoid false positives

when classifying other cell types for which the model was not trained. Model 1 output for

each image is a set of eight probabilities (one for each cell group) of the image to belong

to a certain group. The sum of the eight probabilities is equal to 1 due to the softmax

function at the output layer, as explained in [20]. Usually, the cell is classified in the

group with the highest probability. In this case, we defined that the highest probability

must be greater than 0.5. If this criterion is not met, the image will be classified in the

group other, indicating that Model 1 did not clearly identify the input cell class.

The results are presented in the confusion matrix of Figure 6.7. Rows are the true classes

of the input images and columns are the predicted labels. As expected, most of the abnor-

mal lymphoid cells were classified into lymphocyte and monocyte groups. Specifically,

most of the cells from CLL (96 %), FL (88.5 %), LGL-T (90 %), MCL (80.5 %) and SS

(71.5 %) were classified as lymphocytes. On the other hand, most of the reactive lympho-

cytes (67.7 %), blasts (67.5 %) and SMZL cells (65.5 %) were classified in the monocyte

group. Prolymphocytes were distributed mainly in two groups: lymphocytes (48.5 %) and

monocytes (46 %). Most of plasma cells were also classified in two groups: lymphocytes

(61.5 %) and erythroblasts (24 %). Regarding normal lymphocytes, 99 % were correctly

classified.

Cells classified by Model 1 as lymphocytes, monocytes, immature granulocytes (ig) and

erythroblasts can be redirected to other models specialized in detecting different types of

leukemia [28] and lymphoma [29].
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Figure 6.7: Confusion matrix obtained from testing Model 1 using other types of ab-
normal cells. Rows are the true classes or labels and columns are the predicted labels.
The class "other" gathers the images that do not obtain the maximum probability value
greater than 0.5. LY: lymphocytes, RL: reactive lymphocytes, CLL: chronic lymphocytic
leukemia, FL: follicular lymphoma, HCL: hairy cell leukemia, LGL-T: T-large granular
lymphocytes, MCL: mantle cell lyphoma, PCL: plasma cell leukemia, PL: prolympho-
cytes, SMZL: splenic marginal zone lymphoma and SS: Sézary syndrome.

6.5 Conclusion

This chapter presents the development of an integrated system for the detection of MDS.

The system is conformed by two CNNs trained from scratch and customized for the clas-

sification of PB cells. The inputs to the system are all types of cells observable in pe-
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ripheral blood. Cells classified as neutrophils by Model 1 are redirected automatically to

Model 2, DysplasiaNet, to detect dysplastic neutrophils. The overall accuracy of the test

of Model 1 (95.4 %), obtained when training from scratch, is comparable to the obtained

performing fine tuning in [20]. The high accuracy (94.8 %) in the proof of concept of the

integrated system for MDS diagnosis shows that Model 1 is performing pre-classification

as expected.

These satisfactory results suggested us to evaluate the utility of Model 1 as a pre-classifier

of other types of abnormal blood cells, besides dysplastic ones, for which it was not

trained. It was found that reactive and abnormal mononuclear cells (blasts and abnormal

lymphocytes) were classified mainly in four classes: lymphocytes, monocytes, immature

granulocytes and erythroblasts. This is encouraging for further works where other models

could be integrated to detect malignancies like leukemia and lymphoma.
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Chapter 7

Conclusions

This thesis has contributed with a methodology for the automatic classification of periph-

eral blood cells circulating in blood in healthy controls and in patients with infections,

regenerative anaemia and Myelodysplastic Syndromes (MDS) using Convolutional Neu-

ral Network (CNN) models.

This thesis has grown through the evolution of different works involving CNNs models

with the following targets:

• The automatic recognition of eight groups of cells circulating in blood.

• The automatic recognition of normal and dysplastic neutrophils.

• The design of a new model (DysplasiaNet) built and validated for the MDS diagno-

sis in individual patients.

• The development of a modular system to predict if the patient shows dysplastic cells

or not using all cells circulating in blood.

The conclusions derived along this research are outlined in Section 7.1. The main contri-

butions of this thesis are highlighted in Section 7.2. Finally, some future perspectives are
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discussed in Section 7.3.

7.1 Conclusions

Chapter 2 describes the design of an indexed database to organize all the images acquired

in the laboratory to facilitate our research, according to the first objective proposed in this

thesis. Two relevant conclusions can be highlighted:

• The acquisition and import algorithms developed facilitated the selection of datasets

for training and testing the different classification models throughout this thesis.

• We demonstrated that with the use of high-quality datasets of images, labelled by

clinical pathologists, it is possible to design high performance and customized CNN

models without requiring pre-trained models.

As it is detailed in Chapters 2 and 4, one objective of this thesis was the extraction of

deep features from blood cell images using different architectures of CNNs described in

the literature. These features were used to train a machine learning classifier to recognize

the corresponding images. From the obtained results the following conclusion is derived:

• Pre-trained CNNs were useful to extract features from different types of blood cells,

which were used to train a SVM model to classify four and eight groups of blood

cell images, obtaining accuracy values of 94 % and 90.5 %, respectively.

The main results presented in Chapter 4 correspond to the next objective of this thesis,

the design and assessment of a CNN recognition system for eight groups of PB cells. The

conclusions are the following:
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• Starting from a state-of-the art general architecture, a fine-tuning procedure was

established to develop an end-to end classifier trained using a dataset over 17,000

blood cell images obtained from clinical practice in the daily workflow of the labo-

ratory.

• A new classification system was designed involving CNNs (Vgg-16 and Incep-

tionv3) to discriminate among eight classes of blood cells: five-types of normal

leukocytes, erythroblasts (cells circulating in blood in regenerative anaemia) and

metamyelocytes, myelocytes and promyelocytes (circulating in blood in infections).

• Most of the model hyperparameters in this work were selected empirically. From

our experience, we concluded that using a minimum of 1,000 images per group, a

number of epochs around 80 and tuning the last two four blocks of our proposed

CNNs, it was possible to obtain satisfactorily high accuracies.

• The performance obtained when testing the system was truly satisfactory, show-

ing excellent precision, sensitivity and specificity values. To summarize, the over-

all classification accuracy for Vgg-16 was 96.2 %. Automatic recognition of this

number of groups of normal blood cells using deep learning models has not been

reported previously in the literature.

• It was proved that validation accuracies were higher when the networks were trained

with the balanced dataset. Testing performed when the networks were trained with

the unbalanced dataset showed a reduction of the overall test accuracy from 96.2 %

to 93.9 % for Vgg-16 and from 94.9 % to 92.5 % for Inceptionv3. Training with the

unbalanced dataset produced many fluctuations in the Vgg-16 validation accuracy.

By increasing the number of images and balancing the dataset, it was observed that

these fluctuations decreased.

The work detailed in Chapter 5 corresponds to the objective centred in the design and

testing of a CNN model for the automatic recognition of hypogranulated dysplastic neu-
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trophil images from peripheral blood. This chapter also includes the objective of a proof

of concept to validate the model to support the diagnosis of MDS. The following conclu-

sions were obtained:

• A number of eight CNN models were generated from scratch by varying convo-

lutional blocks, number of nodes in layers and fully connected layers. The CNN

model showing the highest overall accuracy (95.5 %) in the automatic recognition

of hypogranulated neutrophils in peripheral blood was selected. This new deep

learning model was named DysplasiaNet.

• DysplasiaNet was trained from scratch for the automatic recognition of hypogran-

ulated neutrophils using 20,670 images from our database. Model training and

selection were performed using the hold-out method. In addition, the final archi-

tecture was evaluated using five and ten-fold cross-validation. Accuracies obtained

with these two methods were similar which indicates that hold out was a correct

choice for model development.

• Conformed by four convolutional blocks and two fully-connected layers, DysplasiaNet,

with 72,977 parameters, is a simple and lightweight CNN model compared to other

more complex architectures like Inception or ResNet.

• It was possible to calculate a single quantitative score to relate the amount of cyto-

plasmic granularity with the recognition of normal or dysplastic neutrophil by the

CNN.

• Experimental testing gave an optimal threshold value (12 %) for the minimum pro-

portion of dysplastic neutrophils in the patient’s smear for the MDS prediction by

the CNN. It is remarkable that this low value is good enough to make the CNN

achieve excellent performance metrics.

• Model interpretability techniques implemented gave an insight into the inner func-

tioning of DysplasiaNet. t-SNE allowed the comparison of the embedding of the
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original image pixels versus the embedding of features extracted from DysplasiaNet,

confirming that subtle morphological differences between normal and dysplastic

neutrophils represent a challenge when training a model for diagnosis. Using Grad-

CAM, we visualized the parts of the images that DysplasiaNet is using to classify

normal and dysplastic neutrophils. Finally, feature maps visualization showed that

the CNN provided different numerical values to the pixels corresponding to the cy-

toplasmic granules of the images. These values were lower in the hypogranulated

neutrophils with respect to normal.

• The proof of concept to validate DysplasiaNet using a total of 70 smears from 40

healthy controls and 66 smears from 32 MDS patients showed sensitivity, speci-

ficity and precision values of 95.5 %, 94.3 % and 94.0 %, respectively, for the

automatic detection of MDS.

• AI models should be trained and assessed with smears stained using standardized

methods as the one used in this thesis. Understained smears may affect the auto-

matic classification of DysplasiaNet.

• This thesis presents the first CNN model that was built and validated for MDS to

assist in the diagnosis.

The next objective proposed in this thesis, as detailed in Chapter 6, was the integration of

two CNN models in a system for the automatic recognition of MDS using images of all

type of cells circulating in blood. The conclusions obtained are detailed below:

• A modular sequential system was designed for the automatic selection of neu-

trophils and the further recognition of those showing dysplasia. The system de-

tected MDS using a set of images obtained from individual blood smears, showing

accuracy values of 94.8 % in the proof of concept.
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• Blast cell images in patients with different leukaemia subtypes and abnormal lym-

phocytes in patients with different B or T-lymphomas were recognized by the first

model as mononuclear cells (lymphocytes, monocytes, immature granulocytes or

erythroblasts). Therefore, this model could be a preclassification system to be inte-

grated with other CNNs models specialized in leukaemia or lymphoma recognition.

7.2 Contributions

We have proposed CNN models that make feasible its integration in the workflow of the

clinical laboratory for the automatic classification of cells circulating in blood. The more

relevant contributions of this thesis are the following:

1. Generation of a published dataset. As it is explained in Chapter 3, a high-quality

dataset of 17,092 blood cell images has been acquired, labelled, published and made

available at the Mendeley repository to contribute to the research community.

2. CNN models for the automatic recognition of normal and abnormal blood cell im-

ages:

• A classification system has been developed involving a CNN (Vgg-16) trained

to discriminate among eight classes of cells circulating in PB, as it is described

in Chapter 4.

• A CNN-based model (DysplasiaNet) has been designed with a simple and

lightweight architecture for the automatic detection of hypogranulated neu-

trophils in PB smears, as it is detailed in Chapter 5. The model can be used

as a secondary evaluation tool for MDS diagnosis integrated in the clinical

laboratory workflow. It may be easily implemented and made accessible and

usable in any computer device.
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• A modular system for MDS diagnosis, as explained in Chapter 6, has been

built conformed by two CNN models, the first to recognize neutrophils and

the second to discriminate among normal and dysplastic ones.

7.3 Future perspectives

The results obtained in this thesis open some issues that could be further developed. Some

of them are outlined below:

• Analysis of the feature maps generated for the intermediate convolutional layers

of DysplasiaNet showed that the CNN provided different numerical values to the

pixels corresponding to a specific morphological characteristic of neutrophils: the

cytoplasmic granularity. It would be interesting the study of the feature maps gen-

erated for the intermediate convolutional layers of the CNN models used for the

classification of other abnormal cells circulating in blood, as blast cells in acute

leukaemia or abnormal lymphocytes in different types of lymphoma. In general,

representation analysis [101], [102] and explicability [96] techniques could be used

to obtain a step by step explanation of the model decision processes and determine

which input features contribute the most to the classification. This is particularly

important in a medical diagnosis scenario.

• The modular structure used in the last part of this thesis could be implemented in

different problems, where a preclassification could be linked to other CNN models

specialized in the recognition of different malignancies.

• Techniques named "few-shot learning" [103] could be explored to train CNN mod-

els with few images to generalize to unfamiliar categories without extensive retrain-

ing. This would be very useful for the automatic detection of critical morphological
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findings, such as blue-green cytoplasmic inclusions of death in PB smears in pa-

tients suffering from acute liver damage.

• A practical concern when using automatic blood cell image classifiers is related to

staining, particularly affecting when using images from different laboratories. It

may be interesting to explore the use of CNN and deep generative models [104]

to match certain colour normalization and build “normalized” training and testing

sets.

• The final diagnosis of hematological diseases is performed based on the integration

of clinical signs and results of several complementary tests, including blood mor-

phology. It would be interesting to train a CNN not only with images, but also with

numerical data obtained from other complementary tests to improve the classifica-

tion accuracy and contribute to the integrated diagnosis.
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