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Abstract: Organic and biological compounds (especially those related to the pharmaceutical industry)
have always been of great interest for researchers due to their importance for the development of new
drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients)
and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous
polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and
characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During
any API synthesis/production or in the formulated drug product, impurities must be identified and
characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission
electron microscope (TEM) is expected to be a promising technique to screen and identify the
different (organic) compounds used in a typical pharmaceutical or biological system and to detect
any impurities present, if any, during the synthesis or formulation process. In this work, we propose
the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and
their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by
further correlation with advanced DFT, simulations were utilized.

Keywords: TEM; EELS; organic; pharmaceutical; plasmon loss, monochromator, amorphous

1. Introduction

Many pharmaceutical compounds may exist as polymorphs (e.g., they crystallize into different
packing arrangements having the same chemical formula). Drug polymorphism is critically important
in the pharmaceutical industry, as many of the solid-state properties of a compound are dependent
on its polymorphic form. As an example, different polymorphic phases dissolve at different rates
(solubility, bioavailability) affecting the adsorption of the compound in vivo, making it essential to
control which polymorphic form is dosed to patients [1,2]. There is hence a requirement that the
polymorphic behavior of a drug compound is thoroughly investigated and understood.

Polymers 2020, 12, 1434; doi:10.3390/polym12071434 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-6110-6322
https://orcid.org/0000-0001-9331-9544
https://orcid.org/0000-0002-7151-8101
https://orcid.org/0000-0002-4003-0082
http://dx.doi.org/10.3390/polym12071434
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/7/1434?type=check_update&version=3


Polymers 2020, 12, 1434 2 of 11

Besides, when a drug or active pharmaceutical ingredient (API) is approved to be released into
the market to be used for medication purposes, it is important that the marketed polymorphic form is
well characterized (e.g., rules under US Food and Drug Administration—FDA in United States and
European Medicines Agency—EMA in European countries). In practice, the approved API together
with its other polymorphic forms is protected by Patent/IP rights before being launched onto the
market and the released pharmaceutical product must contain exclusively the specific approved API
form. Therefore, it is very important to characterize all the forms, not just only the marketed ones, as it
might be possible that some polymorphic forms could have (or not) the same therapeutic effects as the
marketed API, or it can be harmful for health and the environment [3].

On the other hand, during synthesis/production of a specific API in a particular polymorphic form,
sudden transformation to another (more stable) polymorph may occur (e.g., the case of Ritonavir API
where the marketed polymorph converted with time to a more stable but much less soluble form) [4,5].
Such transformed polymorphs may present in “trace” quantities that can also co-exist along with
the main compound and are often unobserved during initial screening. As previously mentioned,
the detection of impurities from the initial synthetic material or during the production process is also
relevant. Therefore, there is a need to develop new reliable techniques and approaches to detect such
trace polymorphic impurities (or other impurities) if present.

In the current “state of the art”, the standard characterization of an API (crystalline or amorphous),
its polymorphs and its blend within a polymer matrix is usually performed using conventional or
Synchrotron X-Ray powder diffraction (XRPD) (detection limit of 0.01 wt %). Other techniques like
Fourier-transform infrared spectroscopy (FT-IR)/Raman scattering, differential scanning calorimetry
(DSC) and solid-state nuclear magnetic resonance (NMR) can also be used with limited spatial resolution
(from several hundreds of microns to nm); for example, Raman spectroscopy can only distinguish
compounds at micron scale and photothermal-induced resonance (PTIR) has a spatial resolution
reaching up to ~100 nm [6–11].

In the case of crystalline materials, electron diffraction (ED) in a TEM is ideal to identify whether
an individual crystallite may belong to a new polymorph phase or not [12–16] at very local scale
(10–20 nm) by collecting experimental diffraction patterns from an area of the sample and comparing
them with the simulated diffraction patterns of well-known phases; electron diffraction based 3D
tomography [17–21] can also be applied to determine the ab initio unit cell and crystal structure of
each individual crystallite but its application can be very time consuming because of the significant
number of API nanocrystals that may exist in a ng quantity powder sample; therefore there is a need to
develop a technique to finely screen and detect (at nm scale) different APIs having various possible
polymorphs (independent of crystalline or amorphous phases) and/or screen various possible phases
in amorphous solid dispersion (ASD) [22], with nm spatial resolution. In the case of an amorphous
material electron pair, distribution function can also be used to study pharmaceutical polymorphs [23].

It was recently shown that electron energy loss spectroscopy (EELS) in the low loss regime
(0–50 eV) can be a suitable technique to distinguish amorphous organics at very local (nm range)
scale [24]. It has been shown that EELS spectroscopy might be used to quantify local concentrations
of API drugs through the amorphous polymer matrix with high accuracy at sub-100 nm resolution
in a thin-film-like sample by recording the spectral signatures of the different compounds. In the
work of Ricarte et al. [24], analysis of phenytoin/HPMCAS ASDs showed that drug and polymer were
intimately mixed throughout the ASD, even at high drug loadings.

Therefore TEM-EELS spectroscopy appears as a potentially complementary tool to identify and
screen with high spatial resolution a number of organic small molecules (APIs, polymers in ASD) that
otherwise cannot be distinguishable by other analytical techniques. In this work we try to explore
further the possibility of finely characterizing various crystalline & amorphous APIs (including several
polymorphs) by using high energy resolution monochromated STEM-EELS.

With EELS, we can study the loss of kinetic energy that electrons passing through or near a sample
experience by exciting the sample itself. In particular in the low-loss regime the electron beam probes
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the optical transitions of the material in the ultraviolet to infrared range, providing information similar
to that of optical UV−Vis spectroscopies. The spectra are approximately described by the so-called
energy loss function Im[−1/ẽ(ω)] (ELF).

2. Materials and Specimen Preparation/Instrumental Configuration—Data Collection

To identify APIs in crystals and ASDs we acquired spatially resolved maps of EELS spectra,
through the so-called STEM-EELS spectrum imaging mode in the Titan3 microscope from Thermo
Fisher Scientific installed at EMAT-Antwerp and equipped with a Wien filter monochromated electron
source, a probe aberrations corrector and a Gatan Enfina electron spectrometer, featuring a fast
electrostatic shutter. As organic compounds are very beam sensitive (critical dose for organics varies
from 10–120 e/Å2) [25,26], to reduce beam damage, EELS low loss spectra from micron-sized grains
were collected at 300 kV in low dose condition at RT with an effective resolution of 0.2 eV. The low-loss
scattering events have a much higher cross section than higher energy transitions (e.g., the promotion
of core-shell electrons to the valence levels) thus helping minimize the dose.

Using optimized low dose data acquisition, EELS data was acquired in STEM mode without
any cryo-cooling techniques and no beam damage has been observed in our samples. We used a
low convergence semi-angle (~0.5 mrad) to reduce current density within the probe, a collection
semi-angle of 25 mrad. Since high energy electrons can induce radiation damage even at a distance of
a few nm from its trajectory, we acquired the spectra from widely spaced (~50 nm) probe positions to
avoid cross-damage between neighboring positions [27]. Each spectrum was acquired for 20 msec,
where the scans covered areas between 0.5 and 2 µm2 and the dose was estimated to be 1 e/Å2 sec.
Beam damage for the crystalline sample was monitored by observation of the high angle reflections
in the diffraction pattern; the typical lifetimes of crystals were of the order of minutes in the current
measuring conditions. Progressive amorphization by the electron beam proceeded via progressive loss
of long-range order (fading of the high angle diffraction spots in crystalline APIs). For noncrystalline
material the beam damage was monitored by observing any possible sample shape change in the
STEM image. In addition, possible sample beam damage was also monitored by observing any low
loss spectral change (1–5 eV EELS region) over time.

EELS data from several pristine sample areas were collected to compare the reproducibility of our
results. EDX data were also collected from all samples to confirm the elements present in the molecule
(especially for peptide TH_15 and TH_27: C, N, O, S) and to check for the presence of impurities
(Figure 1). The EDX spectrometer for data acquisition is a Bruker Super-X, which uses 4 windowless
detectors to reach a total collection angle of ~1 Steradian (Sr). The windowless design allows the
effective detection of the signal of light elements, while the high acceptance angle greatly increases the
dose-efficiency (detecting a higher fraction of the X-rays emitted by the sample), allowing it to perform
EDX mapping even for organic materials.

The EELS data were treated with the python package Hyperspy [28]. We applied, in order,
a Savitzky–Golay filter, then a Richardson−Lucy deconvolution not with the purpose of increasing the
energy resolution, but with that of reducing the impact of multiple scattering. We then removed the
zero loss by fitting it to a pseudo-Voigt shape, subsequently subtracted from every point the spectral
signature corresponding to the support film. From this pretreated data, we manually selected the
thinnest area in order to obtain the best quality spectra.

Samples used for the experiment were the following: beta-cyclodextrin, hexacarboxy cyclohexane,
tannin, peptide TH_15, peptide TH_27 and piroxicam form 1 and form 2 and aripiprazole form 2
and form 4 (Figure S1). All examined samples were crushed gently between two glass plates and
then the powder sample was sprinkled on continuous carbon TEM grid. The size of the particles was
relatively large (µm size) and in general samples were found thick in most areas; EELS observations
were performed only in thin sample areas.
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Figure 1. Scanned area and EDS mapping of TH-15 (up) and TH-27 (down) peptide compound shows
presence of presence of C, N, S, O (from the molecule) and F (impurities). Cu signal is homogeneously
distributed and is an artifact due the TEM sample grid being made of copper. Top left corner image
shows the high annular dark field image (HAADF) of the observed area.

3. Results

For the synthetic peptide TH_15 and TH_27, fluorine impurity traces were detected by EDX
(Figure 1); such traces might have come from the synthesis procedure and more specifically from
the use of trifluoroacetic acid (CF3CO2H) during the cleavage of the peptide from the solid support
(resin) [29].

In order to establish a fairly conclusive screening and identification methodology to readily
differentiate among various organic molecular crystals and their polymorphs, we first analyzed by
EELS various “reference” organic crystals; in most of the cases several characteristic low loss < 20 eV
peaks were identified which were entirely specific to each organic compound (Figure 2).

From our obtained results it seemed that the use of TEM–EELS (Figure 2) with a monochromatic
source (0.2 eV resolution) was necessary to reveal fine spectral details in the low loss EELS region for
organic compounds, otherwise without its use many spectral fine details would not have been clearly
distinguishable (for example the EELS spectra of tannin). All studied compounds (with the exception
of the beta-cyclodextrin sample) revealed a different unique EELS signature at the low loss/optical
region arising from π–π* transition peaks intimately tied to molecular structure. Based on our initial
results it seemed that the EELS fingerprint (centered on the low loss/plasmon loss region) applied to
organic compounds could potentially differentiate between them. These interesting results confirmed
further early results obtained with low resolution EELS spectra on organic compounds [24].
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Figure 2. Low loss electron energy loss spectroscopy (EELS) for various organic small molecules
showing characteristic (π–π* transition peaks) in low loss region, for (a) beta-cyclodextrin with no
characteristic signal; (b) hexacarboxy cyclohexane ~8 eV; (c) tannin ~4.5, ~4.9, ~7.2 eV; (d) peptide
TH_15~3.8, ~6.9 eV, (e) peptide TH_27~6.5 eV peak was observed.

In order to evaluate whether EELS could be used to distinguish between different polymorphic
forms of the same compound, we acquired spectroscopic data from two different prepared forms of
piroxicam and two different prepared forms of aripiprazole [30,31]. By choosing spectra from the
thinnest parts of the analyzed samples (mean free path λ = 3, for both samples) for piroxicam, we were
able to extract spectra showing a clear difference between the two forms of piroxicam (Figure 3).
Though this mean free path (mfp) was on the limit for low loss EELS analysis (for qualitative mapping
with edges < 800 eV the thickness should be between 0.1–1.2 mfp and for low-loss EELS analysis the
thickness should be between 0.1–3.0 mfp), as the relative thickness was the same for both samples
the results in this case were trustworthy and it was also reproducible [32]. The relative thickness was
estimated using Gatan DM software using the log-ratio (relative) method [33]. This difference tended
to disappear when thicker regions were analyzed suggesting that multiple scattering was a limiting
factor for EELS to be sensitive enough to differentiate polymorphic samples. Such a clear difference,
though, could not be observed in the case of the two polymorphic forms of aripiprazole samples even
the EELS data were extracted from the thinnest part of the sample. During the EELS fingerprinting it
was advisable to estimate the thickness in terms of mfps from the area where low loss EELS data were
extracted; otherwise thickness variation might affect the result.

Figure 3. High resolution low loss EELS spectra from piroxicam form 1 (monoclinic crystal structure)
and form 2 (triclinic crystal structure).
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In order to have a deeper insight into the EELS low loss difference between various polymorphs
of the same API compound, we studied theoretical simulations of the electronic structures of triclinic
and monoclinic polymorphs of piroxicam API where there was a clear difference in their respective
experimental EELS spectra (Figure 3).

Theoretical calculations of the electronic structure of the two piroxicam forms were performed
using the plane wave plus local orbitals (APW + lo) method of DFT, implemented on WIEN2k
code [34–37]. The exchange–correlation functional used was the Perdew–Burke–Ernzerhof method [38].
Crystallographic information of both phases was used as input. According to the bibliography, the
piroxicam form 1 corresponded to a monoclinic phase with P21/c space group and 36 non-equivalent
atomic positions. On the other site piroxicam form 2 corresponded to a triclinic phase (P1 space group)
with 78 non-equivalent atomic positions [30]. The self-consistent cycle converged to 10−5 eV and the
residual forces on atoms were below 0.01 eV/Å with 1000 k-points for both crystallographic phases.
Complex dielectric function (CDF) and ELF were computed using OPTIC from WIEN2k.

The obtained energy bandgaps for both phases were underestimated with respect to the
experimental values as is usual in DFT. The simulated data was calibrated using a scissor operator [39],
the needed shift was computed using the first signal of the experimental data (common to both forms)
placed at 3.825 eV.

In Figure 4, the real (dashed line) and imaginary (dotted line) part of the dielectric functions of
both forms are plotted. Form 1 presented a plasmon resonance at 21.56 eV,<(ε) = 0, and three main
interband transitions, first peaks of the =(ε); form 2 presented the plasmonic transition at a slightly
higher energy, 20.53 eV and a set of three interband transitions could be detected. Comparing both
forms, a clear difference in the relative intensity of the first transition was detected.

Figure 4. Complex dielectric function of monoclinic form 1 (left) and triclinic form 2 (right) phases of
piroxicam. The dotted line corresponded to the imaginary part of the CDF and the dashed line to the
real part. The insets corresponded to a zoom of the zero-crossing energies,<(ε) = 0.

From the CDF the ELF can be directly obtained. Figure 5 shows the ELF compared with the
experimental low loss spectra [40]. The difference in relative intensity on the imaginary CDF caused
form 2 to have broader peaks for low losses of energy.

Looking in detail at the interband transitions (Figure 6), we concluded that the simulated data
presented a good agreement with the experimental EELS data. The three main signals appeared on
both, however peak 3 had too low intensity to be detected in any of the forms, peak 1 and 2 had the
exact energy position for both phases and the peak 4 presented a redshift on form 2.
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Figure 5. Comparison between calculated EELS spectra (solid line) and experimental EELS data (dotted
line), for phases form 1 and form 2.
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(right) for both forms of piroxicam.

In view of our current results, we concluded that while it was still impossible to completely
exclude the presence of residual thickness or damage effects in the experimental data, EELS could be
used to detect the fingerprints of both polymorphs of piroxicam, through the change of the relative
intensity of the first signal and the redshift.

4. Discussion

Detection and identification of various polymorphs/various different organic structures/APIs
can be done with current Raman spectroscopy instrumentation with micron resolution; instead the
“plasmon loss” EELS map technique achieves 10–50 nm spatial resolution and is far more general, as it
may work for individual APIs and enable the efficient detection and screening of new pharmaceutical
polymorphs during API synthesis, even in very low trace quantities (<0.1 wt %). Assuming that each
organic compound/polymorph generally exhibits its unique (and distinguishable) π−π* transition
plasmon loss peak, it should be possible to create “plasmon loss” maps (filtered at a particular loss
peak, characteristic for each compound) that could potentially “differentiate” between various organic
compounds/polymorphs. Such EELS maps are performed routinely for materials science applications
(e.g., Si-Ge based layered semiconductors, core shell nanoparticles, perovskites etc.). Along with
“known” basic/principal polymorph/crystal phase API, the generation of such “plasmon loss” EELS
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maps may reveal the existence of other possible polymorphic phases which may present <0.01 wt %
in an ASD/formulated product where their further characterization could be done using electron
diffraction tomography techniques [17,19] for crystalline materials or electron pair distribution function
for amorphous materials [23].

Many pharmaceutical API formulations (up to 80% in their crystalline form) result insoluble
in water and as a result their bioavailability is not adequate for appropriate medication; those
API compounds in amorphous form show much higher bioavailability/solubility rates (up to
10–1600 times) [41] than their crystalline counterparts. As amorphous API forms, they cannot
be conserved during long timescales (e.g., years) (which is mandatory for market acceptance) [42] in
industrial practice poorly soluble crystalline APIs as prepared as a solid dispersion mixture between
amorphous API and specific polymer mix (called ASD). This way the API/polymer mix ASD can be
maintained in an “amorphous state” for longer time scales (e.g. years). Although the chemistry of
API-polymer mix is not well-understood, it is generally assumed that in an “ideal” ASD, the API
molecules are surrounded by polymer molecules without effective interaction between them. Again,
in the case of ASD where both the API and polymer mix contain the same chemical elements (e.g. C, N,
O) in their composition, low loss EELS mapping may enable detection of the “as early as possible”
phase separation at ASD. It is also important to note that use of the scanned beam as in STEM and
working in “low loss” part of the EELS spectra reduces the possible beam damage in beam sensitive
(organic/pharmaceutical) compounds. The dose efficiency and sensitivity of EELS is also being further
enhanced by using of direct detection cameras which are starting to gain acceptance in the TEM
community. A low loss EELS spectrum is also useful to quantify water content in cells from various
cellular components [43–45].

The challenge to overcome for generalized use of the EELS “low loss” technique is related to
the fact that (in many cases) EELS low loss energy differentiation between various organics is often
below 0.9 eV (conventional resolution of Gatan EELS spectrometers without a monochromated electron
source). Therefore, the use of advanced TEM microscopes having EELS with a monochromated
electron source (energy resolution < 0.2 eV, down to 0.01 eV in the best examples) seems mandatory to
distinguish between various compounds.

Inelastic scattering between a fast electron and sample can occur even if the beam passes at a
slight distance from the sample, a phenomenon known as inelastic delocalization. This phenomenon
fundamentally induces a physical limit on the spatial resolution of the inelastic signal in EELS, even if
the signal were recorded with an ideal instrument. Inelastic delocalization increases for higher energy
beams and decreases with lower energy losses [32]. The inelastic delocalization factor R can be
estimated by the root mean square impact parameter drms proposed by Pennycook [46] and it is
~9 nm for 3 eV loss with 300 kV beam and ~4 nm for 7 eV loss with100 kV beam. In most of the
cases drug crystal nucleation or phase separation in ASD happens at 10–100 nm scale, so the inelastic
delocalization in EELS will not be a hindrance to observe phase separation or drug nucleation in
ASD [9,47,48].

While Cherenkov radiation has been a limiting factor in some EELS applications (e.g., bandgap
measurements in semiconductors), it was not a limiting factor in low loss EELS characterization for
organic compounds [49]. The refractive index of the studied compounds were not particularly high
(e.g., ~1.6 β-cyodextrin, ~1.4 for hexacarboxy clyclohexane, ~1.9 for tannin, ~1.7 for piroxicam, ~1.6 for
aripiprazole) meaning that while, depending on the beam energy, the electron velocity could be above
the Cherenkov threshold, the emission was not going to be strong enough to significantly distort the
fingerprints of the different organic compounds, and would at most give a small contribution to the
featureless background.

5. Conclusions

The present work further confirms TEM-EELS as a potentially powerful complementary analytical
tool to identify and screen with high spatial resolution organic small molecules (APIs, peptides,
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polymorphic forms of APIs) that otherwise cannot be distinguishable by other analytical techniques
with that spatial resolution. Further work to be performed towards increasing sensitivity of that
method to distinguish all possible polymorphic forms of an organic compound. It is also important
to bear in mind that in order to get reliable EELS spectra for phase identification, sample thickness
should be small enough (approx. <100 nm) to reduce multiple scattering effects. To obtain further
experiment improvement to avoid such effects, appropriate sample preparation protocols have to be
developed, e.g., with ultramicrotomy or Cryo FIB.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/7/1434/s1.
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