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Abstract

The selection of a Bitemporal (BT) or Right Unilateral (RUL) electrode placement affects the 

efficacy and side effects of electroconvulsive therapy (ECT). Previous studies have not entirely 

described the neurobiological underpinnings of such differential effects. Recent neuroimaging 

research on gray matter (GM) volumes is contributing to understand the mechanism of action of 

ECT, and could clarify the differential mechanisms of BT and RUL ECT. To assess the whole-

brain GM volumetric changes observed after treating subjects with treatment-resistant depression 

(TRD) with BT or RUL ECT, the authors assessed with magnetic resonance imaging (MRI) 24 

subjects with TRD (12 subjects receiving bifrontotemporal ECT and 12 subjects receiving RUL 

ECT) at two time-points (before the first ECT session and after ECT completion). Subjects 

receiving BT ECT showed GM volume increases in the bilateral limbic system, but RUL ECT 

treated subjects showed such GM volume increases limited to the right hemisphere. The authors 
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observed significant differences between the two groups in mid-temporal and subcortical limbic 

structures in the left hemisphere. These findings highlight that ECT-induced GM volume increases 

may be specifically observed in the stimulated hemisphere(s). The authors suggest electrode 

placement may relevantly contribute in clinical settings to develop personalized treatment 

protocols.
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INTRODUCTION

Electroconvulsive therapy (ECT) is an effective antidepressant treatment for patients with 

treatment-resistant depression (TRD) {1}. Therapeutic efficacy and cognitive side effects 

depend on a number of stimulation parameters (such as electrode placement, pulse width, 

etc.), but the specific impact of these variables on brain anatomy and physiology are poorly 

understood. Understanding the effects of treatment parameters on brain biology is a missing 

critical step towards the rational development of therapeutic innovations, particularly when 

considering individualization strategies focused on target engagement.

Electrode placement is a critical ECT parameter with both therapeutic and side effects 

implications. The two most common electrode placements are Bitemporal (BT) and Right 

Unilateral (RUL or D’Elia electrode placement {2}) ECT. The Food and Drug 

Administration (FDA) concluded in 2011{3} that BT ECT is the most effective electrode 

placement. Nevertheless, RUL ECT has been increasingly prevalent in the last decades given 

its more tolerable profile {4}. Challenging common clinical assumptions, some studies 

{5-6} suggested that RUL ECT is not inferior in efficacy compared to BT ECT. Altogether, 

it seems that our knowledge on the comparative efficacy and side effect profile of RUL and 

BT treatments could be partially revised with additional nuances, and these clinical 

considerations would benefit from a mechanistic understanding of the distinct biological 

effects of these treatment parameters.

Gray matter volume increases, mainly in the limbic temporal lobe, have been observed after 

RUL or BT ECT {7-19}. While most publications have not observed an association between 

volumetric and clinical changes, some have though not always in the same directions {10, 

16, 19, 20}. The nature of these changes may shed light on the mechanism of action of ECT, 

but current studies do not allow a clear disambiguation between the mechanisms of BT vs. 

RUL ECT. Indeed, only one recent structural neuroimaging study assessed the effect of RUL 

vs. bilateral (that is, bitemporal and bifrontal) ECT, but, as opposed to our whole-brain 

approach, the authors limited its focus to volumetric changes in the hippocampus {20}. 

Results from this study indicated that electrode placement determines the extent of volume 

change in right and left hemispheres, with bilateral electrode placement being associated 

with bilateral hippocampal changes, while RUL electrode placement was preferentially 

associated with right hippocampal changes. In addition to these volumetric differences, 

previous neurophysiological studies have already shown that slow-wave activity after RUL 
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ECT was observed in the right hemisphere, whereas with BT ECT slow-wave activity was 

more prominent over the left hemisphere {21}.

In this study, we aimed to assess the effects of ECT electrode placement, and specifically the 

differential impact of RUL vs. bifrontotemporal ECT, on whole-brain volumetric changes in 

subjects with TRD. We hypothesized that despite the common causal association with the 

ECT-induced generalized seizure, RUL and BT electrode placements would lead to different 

topographic distributions of the volumetric changes observed after ECT: specifically, 

subjects treated with BT ECT, in comparison with subjects receiving RUL treatment, would 

show greater gray matter volume increases in the left hemisphere.

METHODS

Participants

We recruited twenty-four subjects with TRD from 2 research centers. Subjects from the 

Mood Disorders Inpatient Unit of Bellvitge University Hospital, Barcelona, Spain (N = 12) 

were 59.17 ± 8.02 years of age, and 50% (n = 6) were men. Subjects from the Department of 

Psychiatry at Massachusetts General Hospital (MGH), Boston, MA (N = 12) were 42.25 ± 

15.78 years of age, and 50% (n = 6) were men. Age and gender were used as covariates for 

statistical analyses. All subjects met criteria for a major depressive episode according to the 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) {22} and structural 

clinical interviews: the Structured Clinical Interview for DSM-IV Axis I Disorders-Clinician 

Version (SCID) for the Bellvitge University Hospital {23} and the Mini International 

Neuropsychiatric Interview (MINI 6.0) for the MGH cohort {24}. Exclusion criteria 

included: (i) the presence or past history of a severe medical or neurological disorder, (ii) 

contraindication to magnetic resonance imaging (MRI) scanning or abnormal MRI upon 

visual inspection and (iii) a history of ECT during the previous 12 months. Pharmacotherapy 

was maintained unchanged throughout the ECT protocol with close monitoring for 

unwanted adverse effects (Table 1 and Table SM1). Moreover, subjects from the Bellvitge 

University Hospital underwent longitudinal clinical assessment using the Hamilton Rating 

Scale for Depression (HRSD-21 items) {25} and subjects at the MGH using the Quick 

Inventory of Depressive Symptomatology (QIDS) {26}. The study was approved by the 

local ethical review board of each center and was performed in accordance with the 

Declaration of Helsinki. All participants gave written informed consent after a detailed 

description of the study.

Electroconvulsive therapy

The twelve subjects from the Bellvitge University Hospital were treated with 

bifrontotemporal, brief pulse (0.5–1 ms) ECT, using a Thymatron System IV device 

(Somatics, Lake Bluff, IL, USA). Anesthesia was induced with intravenous thiopental (2–2.5 

mg kg−1) and succinylcholine (0.5 mg kg−1) was used for muscle paralysis. Initial stimulus 

dose was determined by the half-age method {27} and subsequent dosing was determined 

according to seizure morphology adequacy. The twelve subjects from the MGH were treated 

with RUL ECT (D’Elia electrode placement {2}) with ultra-brief and brief pulse (0.3–0.5 

ms) using a Mecta Corporation Spectrum 5000Q machine. Anesthesia for the procedure was 
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provided using methohexital (0.8–1.2 mg kg−1) for induction and succinylcholine for muscle 

relaxation (0.5–1 mg kg−1). Initial stimulus dose was determined by titrating seizure 

threshold, starting with 19 millicoulombs for women and 38 millicoulombs for men. 

Subsequent treatments were performed at six times the estimated seizure threshold. During 

an acute course of ECT, treatments occur thrice a week every other day in both centers.

Image acquisition and preprocessing

All the subjects were scanned two times: before the first ECT session (MRI1) and after the 

completion of the ECT course (MRI2). A 3.0 T structural T1 – weighted MRI high-

resolution structural scan was locally acquired for each participant. Subjects from Bellvitge 

University Hospital were scanned in a Philips Achieva 3.0 Tesla magnet scanner equipped 

with an eight-channel phased-array head coil. This center acquired 160 slices with repetition 

time = 8.1 ms; echo time = 3.7 ms; flip angle = 8º; field of view = 240 × 240 mm; matrix 

size 256 × 256 pixels; in-plane resolution = 0.94 × 0.94 mm2; slice thickness = 1 mm. 

Subjects from MGH were scanned at the Martinos Center for Biomedical Imaging using a 

Siemens Skyra 3.0 Tesla magnet scanner equipped with an 32-channel head coil. This center 

acquired 156 slices with repetition time = 2530 ms; echo time = 1.69, 3.55, 5.41, 7.27 ms; 

flip angle = 7º; field of view = 256×256 mm; matrix size 256×256 pixels; in-plane resolution 

= 1 × 1 mm2; slice thickness = 1 mm.

All the structural MRI data were processed on a Microsoft Windows platform using 

technical computing software (MATLAB 7.14; The MathWorks, Natick, MA, USA) and 

Statistical Parametric Mapping (SPM12; The Welcome Department of Imaging 

Neuroscience, London, UK). The preprocessing consisted of an initial rigid-body within-

subject coregistration to the first scan to ensure good starting estimates. This was followed 

by a pairwise longitudinal registration between the scans of each participant to obtain an 

average image and a Jacobian difference map. The average image was segmented and the 

gray matter (GM) voxels were multiplied by the Jacobian difference map to obtain a GM 

volume change map for each participant. Next, we generated one specific template of both 

study samples (in Montreal Neurological Institute (MNI) space) using a Diffeomorphic 

Anatomical Registration Through Exponentiated Lie Algebra algorithm {28-29}, which was 

used to spatially normalize the GM volume change maps. Finally, images were smoothed 

with a 6 mm full-width at half maximum isotropic Gaussian Kernel.

Statistical analyses

Sociodemographic and clinical data were analyzed with SPSS v.21 (SPSS, Chicago, IL, 

USA) using nonparametric tests.

We used an independent two-sample model to derive a t-statistic map comparing the GM 

volume change maps between subjects with TRD treated with bifrontotemporal ECT (BT 

group) and subjects with TRD treated with right unilateral ECT (RUL group). We initially 

estimated within-group volumetric changes (using two one-sample t-tests at a p level of 

p<0.05 (two-tailed), Family-Wise error (FWE) corrected for multiple comparisons across the 

whole brain) and created a combined mask (adding significant changes from both groups) in 

which we investigated between-group differences. This approach has been used as a strategy 
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to increase the sensitivity directed towards our main objective (i.e., BT vs. RUL ECT 

comparison). Age and gender were included as confounding covariates. Statistical 

significance was set at p<0.05 (two-tailed), FWE corrected for multiple comparisons across 

all in-mask voxels (i.e., using small-volume correction procedures across all voxels showing 

volumetric changes in the RUL or the BT group). This mask contained 20592 voxels.

RESULTS

Sociodemographic and clinical characteristics

Twelve subjects with TRD from Bellvitge University Hospital received an acute BT ECT 

course, averaging 11 ECT sessions per patient (mean ECT sessions ± s.d. = 11.08 ± 1.50). 

The mean ± s.d. HRSD score prior to ECT initiation was 31.25±9.21 and the mean HRSD ± 

s.d. score after the completion of the ECT was 2.92± 2.54. At the end of treatment, all 

subjects fulfilled clinical response criteria (reduction > 50% in HRSD score), and all but one 

were in clinical remission (HRSD < 8). Moreover, the reduction in depression severity 

(HRSD score) between MRI1 and MRI2 assessments was significant according to a 

Wilcoxon signed-rank test (z = −3.062; p = 0.002, two-tailed).

On the other hand, twelve subjects with TRD from MGH received an acute RUL ECT 

course, averaging 10 ECT sessions per patient (mean ECT sessions ± s.d. = 10.33 ± 2.42). 

The mean ± s.d. QIDS score prior to ECT initiation was 17.42±3.34 and the mean QIDS ± 

s.d. score after the completion of the ECT was 11± 4.90. At the end of treatment, four 

subjects fulfilled clinical response criteria (reduction > 50% in QIDS score), and two were in 

clinical remission (QIDS < 6). The reduction in depression severity (QIDS score) between 

MRI1 and MRI2 assessments was significant according to a Wilcoxon signed-rank test (z = 

−2.671; p = 0.008, two-tailed).

Importantly, we observed a significantly (Mann-Whitney U-test, z = −3.984; p < 0.001, two-

tailed) greater reduction in clinical severity in subjects treated with BT ECT (89.26%, as 

measured by the percentage of change in HRSD scores) than in subjects treated with RUL 

ECT (33.41%, as measured by the percentage of change in QIDS scores). Conversely, the 

number of ECT sessions did not significantly differ between groups (Mann-Whitney U-test, 

z = −1.030; p < 0.303, two-tailed).

Neuroimaging analyses

The pattern of volumetric change between MRI1 and MRI2 for each group is shown in 

Figure 1A and Figure 1B (at a p<0.001, uncorrected, for illustrative purposes). Briefly, in the 

BT group GM volume increases between both time-points were symmetrically located in the 

bilateral limbic temporal lobes, the bilateral insula and the bilateral striatum, while in the 

RUL group, GM volume changes were mainly located in the right limbic temporal lobe. 

Moreover, both groups showed GM volume increases in the right pregenual anterior 

cingulate cortex.

Importantly, the direct comparison between subjects with TRD receiving BT and RUL 

treatment showed that subjects treated with bifrontotemporal ECT, in comparison with 

subjects receiving right unilateral ECT, displayed a significantly greater GM volume change 
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in left medial-temporal and other subcortical limbic structures, encompassing the ventral 

striatum (specifically, the ventral putamen portion) and the amygdala, extending to the 

ventral hippocampus (Table 2 and Figure 1C). These results were significant after adjusting 

for the number of ECT sessions. Interestingly, the GM volume increase in the left medial-

temporal structures was associated with clinical response in a previous study from our group 

(Cano et al. {19}).

DISCUSSION

This is the first study comparing the whole-brain volumetric correlates of BT and RUL ECT 

in subjects with TRD. In agreement with previous research {7-19}, we observed that ECT is 

associated with GM volume increases in limbic structures, including the ventral striatum, the 

amygdala and the hippocampus. Indeed, a large evidence of neuroimaging, 

neuropathological and lesion analysis studies has highlighted the importance of cortico-

limbic circuit disruption in depression {30}. However, our study provides novel insight 

regarding the GM volume increases associated with ECT electrode placement, since we 

describe that limbic GM volume increases are specifically observed ipsilateral to the 

hemisphere(s) stimulated: the pattern of GM change after a BT treatment includes both 

hemispheres, in comparison with the unilateral right hemisphere changes observed in 

subjects under RUL ECT. In this sense, our results concur with the recent study by Oltedal et 

al. {20}, where they observed that while bilateral ECT accounted for similar volume 

changes in right and left hippocampi, RUL ECT led to more focal effects in the right 

hippocampus. It is important to note that, although this study also demonstrated a dose-

dependent effect of the number of ECT sessions on hippocampal volume, such ECT 

parameter did not significantly differ between our groups and regressing it out did not 

change our results. Therefore, our whole-brain analyses show that these changes are not 

limited to the hippocampus, but extend to other limbic structures critical for negative and 

positive affective processing and the pathophysiology of depression, such as the amygdala 

and the ventral striatum {31}.

The literature on BT vs. RUL ECT has shown that the seizure evoked by BT ECT is better 

generalized throughout the brain {32}. Indeed, current density in unilateral ECT placements 

is substantially larger in the ipsilateral than in the contralateral hemisphere {33-34}. 

Accordingly, our brain volumetric findings appear to be related to the specific placement of 

the electrode(s), and, therefore, likely to be associated to the underlying current density 

distribution. In addition, although some neuroimaging studies mixed RUL and BT ECT and 

reported that GM volume increases were not clearly lateralized to the stimulation side {7, 

11, 14, 16, 35}, when specifically assessing the brain volumetric effects of RUL ECT {10, 

36} or BT ECT {8, 13, 17, 19}, GM volume increases were consistently observed 

underneath the stimulation side (except for Depping et al. {36}, that limited the analysis to 

cerebellar volume changes). Overall, our findings and the results from the previous literature 

clearly support the notion of a direct relationship between electrode placement and 

lateralization of ECT-induced volumetric increases. Contrary to this line of argument 

though, it is important to note that, we also observed volumetric increases in the pregenual 

anterior cingulate cortex that were limited to the right hemisphere both in the BT and the 

RUL group. Further research is warranted to ascertain the possible mechanisms underlying 
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this finding, which may putatively involve interactions between current density and the 

specific structural plasticity features of the different brain regions.

Regarding clinical effects, we observed 89.26% of clinical response (as measured by the 

percentage of change in HRSD scores) in subjects with TRD treated with BT ECT, while 

subjects treated with RUL ECT only showed a 33.41% of clinical response (as measured by 

the percentage of change in QIDS scores). These results are in agreement with the 

conclusions of the FDA in 2011 {3}, indicating that RUL is less effective than BT ECT. 

While the greater generalization of the evoked seizure in BT ECT {32} has been thought to 

predict greater clinical response {37-38}, biophysical differences across the two electrode 

placements, such as induced electric field distribution or intensity in the brain, may be 

causally linked to the clinical differences between electrode placements. In this sense, the 

greater capability of BT ECT to induce comparable electric field strength in both 

hemispheres may be explaining the clinical superiority of this electrode placement {34}. 

However, despite the characteristically low clinical response of the RUL ECT group, we also 

observed neuroanatomical changes associated with RUL ECT. In this sense, it is important 

to note that recent research suggests that volumetric changes should not be necessarily 

linked to treatment response {20}.

On the other hand, Abrams suggested that slow-wave activity after BT ECT is accentuated 

on the left hemisphere {21} and that left unilateral (LUL) electrode placement may be as 

effective as BT ECT {39}, findings that dovetail with the positive association between 

volume increases in the left hemisphere and clinical improvement observed in our previous 

study {19}. Therefore, another plausible interpretation of the clinical superiority of BT ECT 

may be, specifically, the modulation of the left hemisphere. Indeed, other effective brain 

stimulation treatments for TRD, such as transcranial magnetic stimulation (TMS), primarily 

target the left hemisphere {40}. Moreover, despite the traditional association between left 

hemisphere stimulation and verbal memory disruptions, some reports suggest that patients 

receiving LUL may avoid specific side effects, such as disruption in non-verbal functions 

{41}. Therefore, LUL may be a reasonable treatment alternative for specific subgroups of 

patients.

This study has a number of limitations. Most importantly, there is a perfect collinear 

association between ECT electrode placement and scanner type, as these studies were 

conducted independently (i.e., without possibility for a priori randomization) and our results 

stem from a post-hoc analysis of the merged datasets. While these confounders might 

introduce nuisance between-group variance, the longitudinal processing applied to our data 

allowed us to minimize such putative inter-scan confounding effects: subjects from the 

different scanners were never directly compared and, instead, we exclusively compared the 

gray matter volume change maps which were obtained from each individual patient. 

Moreover, the anatomical correspondence between stimulation side and structural changes 

would be difficult to explain by differences in scanner-specific artifacts, and suggest that 

findings were indeed consequence of ECT treatment. Nevertheless, a prospective study with 

a priori randomization would be needed to fully confirm our results. Second, we cannot 

determine what effect, if any, concurrent pharmacological treatment had on our results, 

although in an attempt to minimize this confounding effect, pharmacological treatment was 
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not modified throughout the entire ECT course. Third, the putative differences between the 

standardized scales used in each site (i.e., HRSD and QIDS) in ascertaining remission from 

depression could have compromised our clinical findings. Finally, other ECT parameters in 

addition to electrode placement differed between study groups (i.e., dosing method and 

pulse width). Therefore, our results should probably be better understood as depicting the 

neurobiological correlates of two different treatment approaches differing in various 

associated factors, of which electrode placement is the primary driver of other differences 

(e.g., BT ECT will be associated with lower stimulation intensity and greater therapeutic 

response). Nevertheless, despite being unable to specifically control for these other factors, 

due to their collinear association with electrode placement, our findings provide a 

framework to interpret previous results and stimulate further research on the relationships 

between ECT parameters with changes in brain biology and clinical efficacy in a prospective 

controlled manner.

In conclusion, our findings indicate that brain volumetric changes associated with ECT may 

be ipsilateral to the stimulation side(s) (i.e., RUL ECT triggered GM volume increases 

limited to the right hemisphere while BT ECT unleashed bilateral GM volume increases). 

Despite its diffuse biophysical properties, the biological effects of ECT are more specific 

than previously considered, and this specificity is parameter-dependent. Since the 

lateralization of GM volume changes may be related with the clinical effects of ECT (i.e., 

efficacy and side effects), our results highlight the importance of carefully considering 

electrode placement in clinical settings in order to develop tailored treatment protocols, 

which may include RUL, BT or even LUL approaches. Moreover, clinical research should 

also carefully consider electrode placement in order to properly interpret the results from 

studies aiming at unraveling the mechanisms of action of ECT.
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Figure 1. 
Brain areas showing gray matter volume increases in subjects with treatment-resistant 

depression treated with bitemporal ECT or right unilateral ECT

A) Volume increases in the right limbic temporal lobe, the right pregenual anterior cingulate 

cortex, the left putamen and the left insula in subjects with TRD treated with right unilateral 

ECT. B) Volume increases in the bilateral limbic temporal lobes, the bilateral insula, the 

bilateral striatum and the right pregenual anterior cingulate cortex in subjects with TRD 

treated with bitemporal ECT. C) Volume increases in the left limbic system (encompassing 

the ventral striatum and the amygdala and extending to the ventral hippocampus) in subjects 

with TRD treated with bitemporal ECT in comparison with subjects receiving right 

unilateral ECT. Images are in anatomical norm. Sagittal cut is of the right hemisphere. Color 

bar represents t-value.

Cano et al. Page 11

J Neuropsychiatry Clin Neurosci. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cano et al. Page 12

Table 1.

Concurrent pharmacological regimen of the study samples

Drugs: % (N) TRD subjects treated with BT ECT (N=12) TRD subjects treated with RUL ECT (N=11*)

Antidepressant 100 (12) 90.9 (10)

Antipsychotics 75 (9) 45.4 (5)

Lithium 16.7 (2) 0 (0)

Anxiolytics 50 (6) 36.4 (4)

Abbreviations: TRD, Treatment-resistant Depression; BT, Bitemporal; RUL, Right Unilateral; ECT, Electroconvulsive Therapy.

*
Data was missing for 1 subject.
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Table 2.

Brain areas showing gray matter volume increases in subjects with treatment-resistant depression treated with 

bitemporal ECT compared to subjects with treatment-resistant depression treated with right unilateral ECT

Cluster x y z t value df p value
a Anatomical location

Left limbic system
−20 6 −14 4.69 20 0.027 Left ventral striatum

−21 −6 −12 4.65 20 0.029 Left amygdala

Abbreviations: df, degrees of freedom. x, y, z coordinates are reported in standard Montreal Neurological Institute (MNI) space.

a
FWE corrected for multiple comparisons.
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Table 3.

Medical Exams and Results of Local and Remotely Evaluated Cohorts

Local (n=16) Remote (n=56) P Value

Brain MRI, N. (%) 14 (87.5) 48 (85.7) 0.8555

  Normal MRI, N. (%) 4 (25.0) 18 (32.1)
0.6021

  Abnormal MRI, N. (%) 9 (56.3) 29 (51.8)

Routine EEG, N. (%) 12 (75.0) 32 (57.1) 0.1963

  Abnormal rEEG, N. (%) 4 (25.0) 11 (34.4) 0.8954

  Epileptiform Activity, N. (%)

0.7735

      None, N. (%) 9 (56.3) 23 (41.1)

      Spikes, N. (%) 0 (0.0) 1 (1.8)

      Sharps, N. (%) 1 (6.3) 2 (3.6)

      Slowing, N. (%) 0 (0.0) 2 (3.6)

      Generalized Epileptiform
     Discharge, N. (%) 2 (12.5) 2 (3.6)

Ambulatory EEG, N. (%) 5 (31.3) 5 (8.9) 0.0228*

  Abnormal aEEG, N. (%) 1 (20.0) 2 (40.0) 0.1819

  Epileptiform Activity

0.2439      None, N. (%) 4 (25.0) 3 (5.4)

      Slowing, N. (%) 0 (0.0) 1 (1.8)

Video EEG, N. (%) 14 (87.5) 52 (92.9) 0.4941

  Abnormal vEEG, N. (%) 4 (28.6) 13 (25.0) 0.8813

  Epileptiform Activity, N. (%)

0.5296

     None, N. (%) 10 (62.5) 41 (73.2)

     Spikes, N. (%) 0 (0.0) 2 (3.6)

     Sharps, N. (%) 1 (6.25) 0 (0.0)

     Sowing, N. (%) 0 (0.0) 1 (1.8)

     Generalized Epileptiform
    Discharge, N. (%) 1 (6.3) 2 (3.6)

     Other, N. (%) 0 (0.0) 1 (1.8)

Elemental Neuro Exam
Abnormal, N. (%) 12 (75) 32 (57) 0.3166

Abbreviations: MRI, Magnetic Resonance Imaging; EEG, Electroencephalography; rEEG, Routine EEG; aEEG, Ambulatory EEG; vEEG, Video 
EEG; N., Number.

*
, Indicates statistically significant differences between local and remote groups.
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Table 4.

Symptom Scales of Local and Remotely Evaluated Cohorts

Local (n=16) Remote (n=56) P Value

BDI, Mean [95% CI] 25.0 [23.0,27.0] 28.9 [27.7,30.1] 0.0016*

BAI, Mean [95% CI] 23.3 [21.4,25.3] 28.5 [27.3,29.7] <0.001*

GAF, Mean [95% CI] ^ 51.1 [48.6,53.6] 50.4 [49.1,51.7] 0.6470

CAGE, Mean [95% CI] 0.6 [0.3,1.1] 0.7 [0.5,1.0] 0.6655

PCL-S, Mean [95% CI] 57.2 [55.1,59.3] 56.8 [55.5,58.2] 0.7719

HLOC, Mean [95% CI] 
a 57.3 [53.2,61.3] 53.7 [51.6,55.8] 0.1250

QOLIE, Mean [95% CI] 
a, ^ 37.6 [34.7,40.6] 35.8 [34.4,37.3] 0.2753

FAD

  Problem Solving, Mean [95% CI] 2.4 [1.8,3.0] 2.1 [1.8,2.5] 0.4270

  Communication, Mean [95% CI] 2.4 [1.8,2.9] 2.2 [1.9,2.5] 0.6463

  Roles, Mean [95% CI] 2.4 [1.8,2.5] 2.2 [1.9,2.5] 0.5695

  Affective Responsiveness, Mean [95% CI] 2.4 [1.8,3.0] 2.3 [2.0,2.6] 0.7811

  Affective Involvement, Mean [95% CI] 2.3 [1.7,2.9] 2.2 [1.9,2.5] 0.6704

  Behavior Control, Mean [95% CI] 1.9 [1.3,2.5] 1.8 [1.5,2.1] 0.7456

  Global Functioning, Mean [95% CI] 2.3 [1.7,2.9] 2.1 [1.8,2.4] 0.4596

SCL90 
a

  Somatization, Mean [95% CI] 70.0 [63.2,76.8] 71.7 [69.1, 74.3] 0.6430

  Obsessive-Compulsive, Mean [95% CI] 72.0 [64.6,79.4] 74.3 [71.5,77.1] 0.5596

  Interpersonal-Sensitivity, Mean [95% CI] 63.8 [54.3,73.3] 68.6 [65.1,72.2] 0.3454

  Depression, Mean [95% CI] 63.8 [56.1,71.6] 73.0 [70.1,75.9] 0.0309*

  Anxiety, Mean [95% CI] 62.2 [53.3,71.1] 72.9 [69.5,76.3] 0.0279*

  Hostility, Mean [95% CI] 63.8 [54.1,73.6] 66.7 [63.1,70.4] 0.5764

  Phobic Anxiety, Mean [95% CI] 66.7 [57.3,76.1] 71.2 [67.7,74.8] 0.3642

  Paranoid Ideation, Mean [95% CI] 59.2 [49.7,68.6] 63.7 [60.1,67.3] 0.3695

  Psychoticism, Mean [95% CI] 67.3 [60.0,74.6] 72.2 [69.4,74.9] 0.2196

  Global Severity Index, Mean [95% CI] 70.8 [64.2,77.5] 74.9 [72.4,77.4] 0.2576

  Positive Symptom Distress Index, Mean [95% CI] 67.8 [61.2,74.4] 68.5 [66.0,71.0] 0.8500

SF36 
a, ^

  Physical Functioning, Mean [95% CI] 47.5 [44.6,50.4] 40.3 [38.8,41.7] <0.001*

  Pain, Mean [95% CI] 32.7 [30.0,35.4] 33.7 [32.3,35.2] 0.4932

  General Health, Mean [95% CI] 32.0 [29.4,34.8] 36.3 [34.8,37.7] 0.0083*

  Vitality, Mean [95% CI] 27.5 [25.0,30.2] 27.3 [26.0,28.6] 0.8761

  Social Functioning, Mean [95% CI] 39.6 [36.8,42.5] 37.8 [36.3,39.3] 0.2605

  Mental Health, Mean [95% CI] 44.7 [31.8, 57.5] 43.5 [36.7, 50.2] 0.8673
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Local (n=16) Remote (n=56) P Value

Mini-Mental State Exam ^ Mean [95%CI] 27.3 [22,30] 28.0 [25,30] 0.1345

a
scores are reported as T scores.

^
For all assessments, except those marked with an up carrot, a higher score indicates a worse condition.

*
, Indicates statistically significant differences between local and remote groups.
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Table 5.

Developmental History of Local and Remotely Evaluated Cohortsa

Local (n=16) Remote (n=56) P Value

Physical Trauma 8 (50.0) 28 (50.0) 0.9490

  As a Child, N. (%) 6 (37.5) 25 (44.6) 0.5900

  As an Adult, N. (%) 4 (25.0) 9 (16.1) 0.3849

Verbal Trauma 4 (25.0) 23 (41.1) 0.2635

  As a Child, N. (%) 4 (25.0) 23 (41.1) 0.1953

  As an Adult, N. (%) 1 (6.3) 1 (1.8) 0.3411

Emotional Trauma 8 (50.0) 28 (50.0) 0.9191

  As a Child, N. (%) 6 (37.5) 24 (42.9) 0.8056

  As an Adult, N. (%) 4 (25.0) 11 (19.6) 0.5873

Sexual Trauma 6 (37.5) 23 (41.1) 0.8992

  As a Child, N. (%) 5 (31.3) 18 (32.1) 0.9494

  As an Adult, N. (%) 3 (18.8) 10 (17.9) 0.9182

Traumatic Brain Injury, N. (%) 9 (56.3) 40 (71.4) 0.2876

Abbreviations: N., Number.
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