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Abstract: Interactions between hydrogen atoms separated by a distance much larger than their
radius will be studied in this essay. It will be done by calculating the energy of an isolated system in
which there are only two atoms. In order to find the non-trivial result perturbation theory will be
used and we will deduce the interaction by interpreting the resulting energy. Afterwards, another
scenario with a first excited hydrogen atom and a ground one will be studied and we will compare
both results. Since the 2p orbital does not have spherical symmetry, a stronger interaction will be
found. Finally we will cover some particles which may have similar interactions when put in the
same scenario and, lastly we will study the results collected through the paper.

I. INTRODUCTION

A hydrogen atom is a charge neutral particle which
contains a single proton and an electron bound by
the Coulomb force. When it is at ground state, its
electronic configuration is 1s1. The s orbit in which the
electron locates has spherical symmetry and, therefore,
its probability distribution has no angular dependence.

Given this information, it would make sense to assume
interactions between two far away hydrogen atoms to be
non existent. Although the logical approach of this as-
sumption, reality states the opposite. A Van der Waals
force arises between them.
In this project we will study this interaction from a quan-
tum approach. First, we will describe the interaction be-
tween two hydrogen atoms in ground state. Afterwards,
we will describe the interaction of an atom in ground
state and another in the first excited state n = 2. Then,
we will consider other particles which could interact sim-
ilarly in certain scenarios and describe the main differ-
ences we encounter in them. And lastly, we will finish
with the conclusions and an analysis of the results.

II. 1S-1S HYDROGEN ATOM INTERACTION

In order to start this project, we will theoretically de-
duce the effective interaction of two hydrogen atoms with
their electrons in the ground state 1s. We start with a
system made up by these two atoms at a distance much
larger than Bohr’s radius (ao), which reflects the atom’s
size: R >> ao. The system is summarized in FIG. 1:
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FIG. 1: Electrons (red) and protons (blue) and their relative
positions

A. Perturbation theory

Proton-electron interactions from each atom are far
stronger than the ones between both atoms. In or-
der to find the potential between them, we will see the
hydrogen-hydrogen interaction as a perturbation of each
hydrogen eigenstate. The hamiltonian of the system is:

H = Ho +H ′ (1)

Ho = − ~2

2µ
(∆1 + ∆2)− e2

r1
− e2

r2
(2)

H ′ = −e
2

R
+

e2

|~R+ ~r2 − ~r1|
− e2

|~R+ ~r2|
− e2

|~R− ~r1|
(3)

Where Ho corresponds to the two isolated atoms and H ′

as the perturbation. The wave function of each hydrogen
atom is:

ψ1,0,0 = (
1

ao
)3/2

√
1

π
e−

r
ao (4)

The wave function has spherical symmetry. We combine
both unperturbed waves and obtain:

ψ
(0)
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e−

r1+r2
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In addition, the energy of each atom is:

En = −µ(αc)2

2n2
(6)

Where α is the fine structure constant and µ the reduced
mass of the hydrogen atom. For two ground state hydro-
gen atoms, the system’s energy is, therefore:

ET = −µ(αc)2 (7)

It is important to keep in mind that, since the nucleus
mass is much larger than the electron one, we consider
protons to be frozen in space while electrons arrange
themselves. This is known as Born-Oppenheimer approx-
imation and enables us to use these eigenstates.
Now, we will expand the perturbation Hamiltonian in
powers of ri/R, since we assume that the distance be-
tween atoms is far larger than the average proton-electron
atomic distance ao (R >> ao). By taking the expansion
to the third power of 1/R we end up with the perturba-
tion Hamiltonian:

H ′ = e2(
~r1 · ~r2
R3

− 3
(~r1 · ~R)(~r2 · ~R)

R5
) (8)

We start with the first order perturbation:

E(1)
n =< ψ(0)

n |H ′|ψ(0)
n > (9)

By parity, for n = 1:

E
(1)
1 = 0 (10)

We now proceed to calculate the second order of per-
turbations. In order to do so, we use:

E
(2)
0 =

∑
m 6=0

| < ψ
(0)
0 |H ′|ψ

(0)
m > |2

E
(0)
m − E(0)

0

(11)

We manipulate the equation so it looks similar to the
zeroth order one in equation (7):

E
(2)
0 = −µ(αc)2(

ao
R

)6ζ (12)

ζ =
~2

µa60

∑
m 6=0

| < ψ
(0)
0 |S|ψ

(0)
m > |2

E
(0)
m − E(0)

0

(13)

S = ~r1 · ~r2 − 3(~r1 · R̂)(~r2 · R̂) (14)

Finding ζ is complex since it requires the summation of
the S operator over an infinite number of states with the
ground one. Since we can not sum the series analytically,
we find a bound. Notice that an upper bound is found
by replacing in (13) all the excited energies by E1, which
by equation (6) is:

E1 = −µ(αc)2

4
(15)

Therefore, other terms of the summation will have a de-

nominator larger than 3µ(αc)
2

4 . Hence:

ζ ≤ 4

3a4o

∑
j 6=0

| < ψ
(0)
0 |S|ψ

(0)
j > |2 (16)

Using the closure relation property, knowing that

< ψ
(0)
o |S|ψ(0)

o >= 0 and taking advantage of the spherical
symmetry:∫

d3xf(~x)xixj =
δij
3

∫
d3xf(~x)~x2 (17)

We finally obtain the upper bound for ζ in (13), which
means a lower bound for the total second order pertur-
bation energy:

ζ ≤ 8

9a4o
< ψ

(0)
0 |~r1 · ~r2|ψ

(0)
1 >≈ 8 (18)

Eo < −µ(αc)2[1 + 8(
ao
R

)6] (19)

The final result of the perturbative calculation shows
us that the dependence of the interaction upon the dis-
tance R is proportional to 1/R6.

B. Variational method

In order to find the upper bound we use the variational
method. We use the following ansatz:

ψ(~r1, ~r2) = (
1

ao
)3

1

π
e−

r1+r2
ao [1 +AH ′] = ψ

(0)
0 [1 +AH ′]

(20)
Where A [1] is the parameter to be optimized and H ′ the
perturbative term introduced in equation (8). Now, we
proceed to find the average energy as well as the value of
A:

< H >ψ=
< ψ|Ho +H ′|ψ >

< ψ|ψ >

=
< 0|(1 +AH ′)(Ho +H ′)(1 +AH ′)|0 >

< 0|(1 +AH ′+)2|0 >
(21)

(In order to facilitate the mathematical understanding
of the procedure I have labelled |0 > to the system’s
ground wave function.)

< H >ψ=
Eo+ < 0|H ′H ′|0 > +A2 < 0|H ′HoH

′|0 >
1 +A2 < 0|H ′H ′|0 >

(22)
We first localize the unperturbed energy, then we calcu-
late the squared perturbed Hamiltonian.

H ′H ′ =
e4

R6
((~r1·~r2)2+9(~r1·R̂)2(~r2·R̂)2−6(~r1·~r2)(~r1·R̂)(~r2·R̂))

(23)
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Both first terms cancel themselves because of spherical
symmetry. We calculate the last term and obtain:

< 0|H ′H ′|0 >=
6(eao)

4

R6
(24)

We solve the last term from equation (22) by using
commutation properties between H ′ and H0:

< 0|H ′[Ho, H
′]|0 > + < 0|H ′H ′Ho|0 >=

< 0|H ′[Ho, H
′]|0 > +Eo < 0|H ′H ′|0 > (25)

The term < 0|H ′H ′|0 > has been calculated in equa-
tions (24) and (7). We operate the commutation between
H1 and H0 knowing that it results in the operator 1

r1
∂
∂r1

:

< 0|H1[Ho, H1]|0 >=
~2

µ
< 0|H1H1

1

r1

∂

∂r1
|0 > (26)

Finally, applying the spherical property of equation
(17):

< 0|H1[Ho, H1]|0 >=
6µ(αc)2(eao)

4

R6
(27)

Now that we know all the terms, equation (22) reads:

< H >ψ=
−µ(αc)2 +A 12(eao)

4

R6

1 +A2 6(eao)4

R6

(28)

Given that ao is much smaller than R we apply first or-
der Taylor expansion and omit terms with denominators
with R of power smaller than -6.

< H >ψ' −µ(αc)2 +
6(eao)

4

R6
[2A+ µ(αc)2A2] (29)

When minimizing < H >ψ, we obtain that the value
of our variational parameter is A = −1/µ(αc)2. When
applying it to the energy equation (30) we get:

Evar(R) = −µ(αc)2[1 + 6(
ao
R

)6] < E(R) (30)

This conclusion shows us a lower bound of ζ. After our
two theoretical approaches we conclude that:

6 ≤ ζ ≤ 8 (31)

The empirical result is ζ = 6.5 [1], which is compatible
with equation (31).

III. 1S-2P HYDROGEN ATOM INTERACTION

If in the same two hydrogen system, one of them
is at an energy level n = 2, the system becomes
eightfold degenerate:|ψa1,0,0;ψb2,0,0 >; |ψa2,0,0;ψb1,0,0 >

; |ψa1,0,0;ψb2,1,m >; |ψa2,1,m′ ;ψb1,0,0 > where m,m’=-1,0,1.
Notice that we now label the two atoms a and b, this
is to simplify the reading. In addition, we put the two

atoms in the z axis: ~R = Rẑ. In order to solve the ele-
ments of the 8x8 matrix we check the possible quantum
state interactions with our perturbed Hamiltonian, that
way we will find the first order perturbation energy.

H ′ =
e2

R3
(~ra · ~rb − 3(~ra · ẑ)(~rb · ẑ)) =

e2

R3
(xaxb + yayb − 2zazb)

(32)

Now, we can manipulate it and obtain an easy to in-
tegrate spherical harmonic (Yl,m) expression:

H ′ =
e2

R3

4πrarb
3

[Y a
1,−1Y

b
1,−1

∗ + Y a
1,1Y

b
1,1
∗ − 2Y a

1,0Y
b
1,0
∗] (33)

We can now decompose the 8x8 interaction matrix into
four 2x2 matrices. As we saw in equation (10), first order
perturbation energy from two s orbital atoms is null, the
others have the form:

(
0 km
km 0

)
(34)

Where km will depend on the privileged direction of
the p orbital and can be easily calculated by using the
spherical harmonics of each hydrogen atom. We proceed
to calculate km for all three possibilities. Since we are
using spherical harmonics we start solving the rigid angle
integral:
m = 0

∫
dΩb

∫
dΩaY

a
1,0
∗Y b

0,0
∗(

4πrarb
3

[−2Y a
1,0Y

b
1,0
∗])Y a

0,0Y
b
1,0 = −2rarb

3
(35)

m = −1∫
dΩb

∫
dΩaY

a
1,0
∗Y b

0,0
∗(

4πrarb
3

[Y a
1,−1Y

b
1,−1

∗])Y a
0,0Y

b
1,0 =

rarb
3

(36)

m = 1∫
dΩb

∫
dΩaY

a
1,0
∗Y b

0,0
∗(

4πrarb
3

[Y a
1,1Y

b
1,1
∗])Y a

0,0Y
b
1,0 =

rarb
3
(37)

Since the radial integral is the same for both electrons,
we calculate it once and square it:

∫ ∞
0

drar
2
aR
∗
1,0R2,1ra

∫ ∞
0

drbr
2
bR
∗
1,0R2,1rb =

= [

∫ ∞
0

drr2R∗1,0R2,1r]
2 = ao

215

39
(38)
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Now that we know both integrals, we reveal the values
of km:

k1,−1 =
e2

R3

a2o2
15

310
=
k0
2

(39)

We diagonalize the matrices and find the following
eigenvalues:

λ = ±km (40)

These results bring us very remarkable information.
m = 1,−1 interaction is half the value of that of m = 0.
For 1s, 2p hydrogen atoms, there are four possible
interactions:

m = 1,−1 W = ± e
2

R3

a2o2
15

310
(41)

m = 0 W = ± e
2

R3

a2o2
16

310
(42)

Furthermore, it is worth highlighting that in this sys-
tem we have not had the need of applying second order
perturbation theory in order to find the interactions be-
cause the system does not fulfill as many symmetries as
the first one.
If we wanted to find the interaction between 1s and 2s
hydrogen atoms we would have to go to second order
perturbation theory as we did in the 1s, 1s case.

IV. OTHER PARTICLES WITH SIMILAR
INTERACTIONS

As we have proceeded with the study of this interac-
tion we have only talked about hydrogen atoms. But it
seems logical to apply it to other atoms or particles with
similar properties. In this section I will explain some
similar cases and make clear why they can not follow the
exact same approach we have given to our hydrogen case.

A. Hydrogenoid atoms

Hydrogenoid atoms are any atom which possesses a
single electron. Since the nucleus mass is much larger
than that of the electron, it makes the reduced mass more
similar to me .
But we encounter a different problem. 1 < Z hy-
drogenoid atoms are positive ions by definition, so that
greatly disturbs our initial system. Since there appears a
much stronger electromagnetic interaction between both
atoms it would overshadow the one we are looking for in

this project.
Even though, the perturbation we study would essen-
tially remain the same, the energy of the system would
add an extra energy related to the repulsive electromag-
netic interaction between both ions.

B. Positronium

Positronium is a system consisting of an electron and a
positron. Considering the short lifetime of them, it would
be hard to prove this interaction. But theoretically we
can consider the physical outcome of it.
The biggest problem with positronium is that the mass
of the positron and the electron is the same and so we
can not apply the Born-Oppenheimer approximation on
it. Born-Oppenheimer approximation assumes that elec-
trons are much faster than nuclei because of the differ-
ence of masses. Therefore, we can assume the nucleus
to be frozen in a certain state and the electrons to ar-
range themselves consequentially. In both mathematical
procedures, we have started assuming the frozen position

of both nuclei at a distance ~R and then we have calcu-
lated the interactions by operating with both electron
distances from their nucleus.
In positronium, the distance ~R would be as much of a
variable as ~r1 or ~r2. Keeping it constant would differ so
much the physical problem from ours that the final result
would be physically meaningless.

C. Muonic atom

In a muonic hydrogenoid atom, a muon orbits the nu-
cleus. Due to its high resting mass the average radial
distance between the muon and the nucleus is very small.
So much, that the quark distribution becomes relevant.
That makes the muon more susceptible to angular differ-
ences in the potential field, since it stops being central.
This creates a privileged angular position and disturbing
the spherical symmetry of the s orbital. Since the atom
tends to a polarity, the interaction hamiltonian drasti-
cally changes.
The shift on the perturbation hamiltonian completely de-
nies the procedure since H’ in equation (8) can no longer
be applied.
Also, since muonium has a larger mass than electrons,
Born-Oppenheimer approximation is not as useful, and
limits the coherence of the atomic approach.

D. Hadronic atom

Hadronic atoms consist of an atomic nucleus (we
will consider a single proton) and a negatively charged
hadron. An example of hadronic components of this ex-
otic atom are charged pions.
As with muons in muonic atoms, hadrons also tend to get
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close to the nucleus and alter Born-Oppenheimer approx-
imation, which disturbs our calculations with their lack
of spherical symmetry. But, in addition, the alteration is
even larger since they can interact via strong force with
nucleons.
Strong force bonds need a short distance in order to be
significant, but once hadrons are close enough, the inter-
action is far greater than the electromagnetic one. There-
fore, if the hadron is located in a low energy electronic
orbital, it will probably interact with the proton’s quarks
and quantum chromodynamics will step in our initial
Hamiltonian. That would make the hadron to tend to
a location where it minimizes the strong force and polar-
ize the atom, altering the final 1/R dependence.

V. CONCLUSION

We have studied the interaction between two hydrogen
atoms separated at a great distance in two different sce-
narios.
Firstly, having them both at ground level, the spheri-
cal symmetry of both atoms has been reflected on the
first order perturbation, where we have seen a lack of
interaction. Due to the impossibility of calculating the
second order summation, we have found an upper bound
with dependence R−6. Later on, we have found the lower
bound also with a R−6 dependence, by using the varia-
tional method with a wave function given in [1]. The
physical interpretation of it is that both hydrogen atoms
at 1s state have instantaneous polarizations where they
induce one another a very weak electric field which makes
them tend to lower the system energy by getting closer
until a repulsive force given by electromagnetic force bal-
ances it out. The outcome would be similar to that of
Lennard-Jones, which describes Van der Waals attraction
force with R−6 at large distances.

FIG. 2: Lennard-Jones potential

In addition, we consider the significance of the field
delay. If the distance between both hydrogen atoms is
much larger than the wavelengths (λo) from electronic
state transitions then the dependence becomes R−7 [4].

Afterwards, we have successfully calculated the interac-
tion between two hydrogen atoms at ground and first
excited levels respectively. The results have been signifi-
cantly different than the earlier ones. Due to the angular
dependence of the excited hydrogen atom, the interaction
is much stronger and has a dependence 1/R3. Not only
that, but there are four possible eigenvalues depending
on the magnetic quantum number (ml) for the orbital
p(l = 1). While ml = 1,−1 are degenerate, they de-

scribe orthogonal orbitals to the direction ~R. Them and
ml = 0 have an attractive and a repulsive eigenvalue,
meaning that the character of the interaction ultimately
depends on the angular momentum eigenstate of the sys-
tem.
By the end, we covered some particles which could
seem valid to interact similarly and have observed why
their physical properties invalidate this mathematical ap-
proach.
In conclusion, this procedure is physically consistent but
it is important to see the mathematical assumptions it
implies. We have expanded the perturbed hamiltonian
as a series to the power of (aoR )3, so we start having an
implicit correction of order O(3). Moreover, perturbation
theory also consists of approximation in a double expan-
sion approximation in inverse powers of R, and in α .
Here we retained the leading contribution which is, by
far, the most significant, (aoR )6 and α2, which is of order

10−5 · 1. From a physics context it is a good approxi-
mation if corrections from both perturbation theory and
the Taylor expansion are so small that neglecting them
does not bring a meaningful change to our results. That
is, while R covers ranges of ao << R << λo, our results
are excellent.
Van der Waals forces between neutral bodies are a purely
quantum effect, which can not be determined via new-
tonian physics and which shows the power of quantum
mechanics in atomic scale phenomena.
Finally, I would like to thank professor Josep Taron for
his assistance through the course of his essay. His help
has contributed greatly to my understanding of the topic
and the way to express it in the essay.
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