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Abstract

The aim of project is to study the quantum-resistant cryptosystems Classic
McEliece and NTRU, revising some of their previous literature and proving some
of the main results upon which these cryptosystems are built. We also study the
implementation strategies for the acceleration of these schemes.

Finally, we make a comparative study of the reference implementations, consi-
dering metrics such as performance and key size.
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Chapter 1

Introduction

The aim of modern cryptography is the study of communications in the pres-
ence of an adversary. For this work, we consider the classical setting for cryptog-
raphy. In this setting, we have two parties A,B that need to communicate via an
insecure channel, where their messages can be intercepted. The notion of message
encryption refers to a strategy that ensures that this communication is secure.

Currently there are two main approaches to message encryption: Symmetric
Key encryption and Asymmetric Key encryption, also known as Public-key.

In Symmetric key encryption, both parties share a secret key, as well as an
encryption algorithm, which is usually well known by third parties. To share a
message, the first party encrypts it using the secret key, and the second party can
recover the original message by applying the encryption algorithm inversely with
the secret key to the encrypted message. This method of encryption has an in-
teresting flaw. The problem with symmetric keys is that both parties must agree
on a secret key before they can communicate with each other. If the parties could
meet and share the secret key without need to send them as messages, there is no
problem. But when the parties cannot communicate by any way besides insecure
messages (vulnerable to third parties), they could never begin their communica-
tion, since they would need a secure communication to share the keys, but they
need the keys to make the communication secure. On the other side, Symmet-
ric key encryption is usually very easy to use and implement, and it also makes
it consistently hard for third parties to decrypt a message without knowing the
secret key.

In Public-key encryption, the first party generates a key pair: A Secret key and
a Public key. They keep to themselves the Secret key, and share the Public key
to every party observing the channel. Now, the second party can use the public
key to encrypt a message-it is interesting to note that any party can encrypt a
message, since the public key is available to everyone. The second party can send
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2 Introduction

the encrypted message to the first party, who will be able to decrypt the message
using their secret key. Other third parties will only have access to the Public key,
so they will not be able to decrypt the message. This method provides a clear
advantage over Symmetric Key encryption, because it does not require the parties
to meet securely to begin the communication. On the other side, these algorithms
are usually less efficient and more complicated, making for slow communication,
and their safety against attackers is also a lot more subtle.

The security of the public-key cryptographic schemes relies upon mathemati-
cal problems, that are assumed to be hard to solve. Currently, the most popular
schemes are based on Rivest-Shamir-Adleman (RSA) or based on the discrete loga-
rithm problem over elliptic curves. The process of factorizing an arbitrarily large
integer is very hard and slow. So as long as any attacker is unable to efficiently
factorize integers, encryption via algorithms like RSA cannot be broken without
knowing the secret key. Using the existing “classical" computers, all known prob-
abilistic polynomial time algorithms attempting to solve these problems only suc-
ceed with very small probability [15]. But what happens if suddenly appeared an
algorithm which could easily factorise large integers?

Quantum-Resistant Cryptosystems

In 1994, Peter Shor invented an algorithm - commonly referred as Shor’s al-
gorithm [19] - which reduces the complexity of finding the prime factors of large
integers. Even though Shor’s algorithm was a great advance, because it provided
an efficient solution to one of the most well known complexity problems in math-
ematics, it was largely disregarded because it is an algorithm that can only be
implemented on a powerful Quantum Computer, something that most considered
to be science-fiction.

In recent years, there has been a substantial amount of research on quantum
computers - machines that exploit quantum mechanical phenomena to solve math-
ematical problems that are difficult or intractable for conventional computers. If
large-scale quantum computers are ever built, they will be able to break many of
the public-key cryptosystems currently in use. This would seriously compromise
the confidentiality and integrity of digital communications on the Internet and
elsewhere. The goal of post-quantum cryptography (also called quantum-resistant
cryptography) is to develop cryptographic systems that are secure against both
quantum and classical computers, and can interoperate with existing communica-
tions protocols and networks.

The question of when a large-scale quantum computer will be built is a com-
plicated one. While in the past it was less clear that large quantum computers
are a physical possibility, many scientists now believe it to be merely a significant
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engineering challenge. Some engineers even predict that within the next twenty
or so years sufficiently large quantum computers will be built to break essen-
tially all public key schemes currently in use. Historically, it has taken almost two
decades to deploy our modern public key cryptography infrastructure. Therefore,
regardless of whether we can estimate the exact time of the arrival of the quantum
computing era, we must begin now to prepare our information security systems
to be able to resist quantum computing [4]. According to this need, several stan-
dardization entities around the world are exploring for the new standards. Most
of these processes are secret, but at NIST the procedure is transparent and the
updates are shared publicly. This allows for communication and exploration from
outside the institute to contribute to the process.

NIST contest state

Currently, NIST (National Institute of Standards and Technology) is engaged in
a process to evaluate and standardize some quantum-resistant KEMs and digital
signatures. In the first place, NIST called for proposals of several algorithms. This
first call has already undergone Round 1, in which some of the proposals were
discarded and some were unified. On January 30, 2019, Round 2 candidates were
announced. These candidates are up to evaluation in order to conclude which
submitted KEMs can be considered the best, in order to work on its standardiza-
tion.

1.1 Key Encapsulation Mechanisms (KEM)

All of the algorithms presented in this document are KEMs. Currently, Public
Key Encryption is no longer considered an effective way for communication. In-
stead we are using KEMs, which use public key encryption algorithms to share a
symmetric key between two parties, and this key will be used for communication.
One of the parties generates (pk, sk), and shares pk publicly with the other party.
This party outputs ¢ and k, sharing ¢ publicly with the first party. The first party
now obtains back the key k, considering that it does not fail. After this process,
both parties share the key k which can be now used as a symmetric key for Sym-
metric Key Encryption. Now, the question that remains is how safe is this key that
the parties share, namely how unlikely is it for other parties to obtain this secret
key k.

A Key Encapsulation Mechanism (KEM) is defined as a triple of algorithms
K=(KeyGen, Encaps, Decaps) and a corresponding key space K.[16]
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1. The probabilistic key generation algorithm KeyGen() returns a public/secret-
key pair (pk, sk).

2. The probabilistic encapsulation algorithm Encaps(pk) takes as input a public
key pk and outputs a ciphertext c as well as a key k € K.

3. The deterministic decapsulation algorithm Decaps(sk, ¢) takes as input a se-
cret key sk and a ciphertext c an returns a key k € K or L, denoting failure.

A KEM K is e-correct if for all (sk, pk) < KeyGen() and (c, k) < Encaps(pk), it
holds that P[Decaps(sk, c) # k] < e. We say it is correct if € = 0.

Security of KEMs

The security of modern cryptosystems is based on the assumption that some
mathematical problems are hard. For instance, the security of the RSA public-
key cryptosystem is based on the security of the so-called RSA problem, which is
connected to the factorization problem (see [20]). The security of Classic McEliece
and its successors is based on decoding problems, which are considered to be NP.
For details on this consideration, see [22]. In the same book, the authors suggest:
"no proof of security supporting NTRU is known, and confidence in the security
of the scheme is gained primarily from the best currently known attacks".

Since the basis for security on modern cryptosystems is the complexity of the
problems, there is no clear approach to studying the security solely based on the
hardness of deciphering the encrypted message. Then, the modern approach to
security consists on modelling the adversary as an algorithm that runs on polyno-
mial time and has access to some parts of the cryptosystem.

The underlying idea behind the following definitions is that whenever the ad-
versary attacks the cryptosystem (expected to be NP) while running at polynomial
time, they cannot gain any advantage towards breaking the cryptosystem, i.e. the
best attacks are about as effective as randomly guessing. The different definitions
correspond to increasing assumptions about the tools that the adversary has at
their disposal.

The security of KEMs is defined in terms of the indistinguishability of the
session key against chosen-plaintext (IND-CPA) and chosen-ciphertext (IND-CCA)
adversaries.

e In the IND-CPA experiment, the challenger generates (sk, pk) < KeyGen(),
computes (¢, ko) < Encaps(pk), and samples k; uniformly at random from
the key space. Then, the adversary is given c, k;, (k; can be ko or ki with
equal probability) and pk, and it is asked to decide whether it received the
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key corresponding to c (kp), or a random value (k;). The adversary wins if it
chooses k.

o In the IND-CCA experiment, the setting is the same as before, but now the
adversary also has access to the decapsulation oracle, which allows it to
obtain k* <— Decaps(sk, c*), for any c* # c (It knows the result of decrypting
every ciphertext except for the one at stake).

The KEM is respectively considered IND-CPA /IND-CCA secure if performing
calculations in polynomial time allows the adversary to win with a probability at
most 0.5 + €, where € becomes negligible when the parameters of the cryptosystem
become larger.[16]

In the NIST call, all the proposals are asked to be IND-CCA secure. Also,
there are security levels, which relate to the hardness of a key search attack on a
block cipher, like AES. That is, the comparison is made by taking into account the
best known algorithms that break AES and the algorithms that break the analyzed
KEMs. Specifically, NIST considers security levels 1, 3 and 5, which correspond to
the security of AES-128, AES-192 and AES-256, respectively.

1.2 This work

In this project we aim to provide a mathematical approach to post-quantum
cryptography. We check the correctness of this schemes by only using basic re-
sults of abstract algebra. This approach contrast with most of the literature, in
which these results are usually proven using extensive additional knowledge in
coding theory. Unless stated, the proofs are original and intended for a broader
mathematical audience.

Following the evaluation of quantum-resistant KEMs being held by NIST, we
aim to contribute to the study and analysis of the cryptosystems by elaborating a
summary of the main attributes of schemes as well as some techniques for their
acceleration. In this project we will focus on two of the most prominent candidates,
Classic McEliece and NTRU.

We believe these candidates show some of the best qualities the NIST might
be looking for in this contest. Classic McEliece is based on the original scheme
from 1978 by Robert J. McEliece [7], which is considered to be a quantum-resistant
cryptosystem. NTRU is a more novel lattice-based cryptosystem, which shows
promise, but has less history to back it up. Both schemes take these reliable bases
and use them to build a modern KEMs adapted to the needs of the Post-Quantum
world, as well as showing some notable advantages regarding reliability and effi-
ciency.
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In Chapter 2 we will do a thorough study of the Code Structure of Classic
McEliece (section 2.1), as well as the Lattice Structure of NTRU (section 2.2), look-
ing at how the schemes work and proving some of the main results that show that
these cryptosystems are indeed correct, and therefore reliable to be used as KEMs.

In Chapter 3 we will be looking at the challenges presented when implement-
ing these cryptosystems, and some of the key solutions to solving them. Specif-
ically, we will be looking at the Berlekamp-Massey algorithm (section 3.2) - the
main responsible of Classic McEliece decryption - as well as the Number-Theoretic
Transform (section 3.3) - a great tool for finite ring multiplications on NTRU.

In Chapter 4 we will do a comparative study of the reference implementations
of both schemes, considering the best candidate according to different metrics:
Performance, Key sizes, and Area (Memory) required for Hardware implementa-
tions.



Chapter 2

PQ cryptosystems

2.1 Classic McEliece

The McEliece cryptosystem belongs to the family of the code-based cryp-
tosystems. In these cryptosystems, the one-way function associated to this cryp-
tosystem is the addition of errors to codewords of a linear code. The trapdoor
of this one-way function is the knowledge of an efficient error correcting algo-
rithm for the considered family of linear codes and the knowledge of a secret
matrix permutation. The McEliece cryptosystem is considered the first code-
based cryptosystem.[21] Classic McEliece is a reinterpretation of the McEliece
cryptosytem, adapting it to the modern necessities of KEMs.

In this section we will discuss the structure of the Goppa code used in the
McEliece cryptosystem, proving some of the main results regarding the validity of
the cryptosystem. This text is elaborated following the results by E.R. Berlekamp
on [1]. The cryptosystem corresponds to the NIST submission [5].

2.1.1 Binary Goppa Code Structure

Let m be any integer. Let t > 2. Let g(x) € Fn[x] be a square-free polynomial
of degree t. Let L = &y, ..., a, a set of elements of F» that are not roots of g(x).

The Binary Goppa code of location field Fm, Goppa polynomial g(x) and
length 7 is defined as the set of vectors in (Fom)" that satisfy

G

where C; is the coefficient of C in the ith position. These vectors C are codewords
of the Binary Goppa Code.

This equation can be viewed as a set of ¢t equations, each corresponding to the
powers of x. These equations are linear in respect to C;.

7



8 PQ cryptosystems

Theorem 2.1. The matrix H is a parity check matrix of the Binary Goppa Code

ro1 1 1 7
g(m)  gla) g(an)
a1 az an

H— g(a1) g(f.lz) g(an)

(al)t—l (az)t—l (an)t—l

L g(a)  glaz) "7 glan) |

Proof. Let’s begin by writing the code equation as a linear system. To do so, we

describe the sum polynomial as a polynomial of degree t — 1 whose coefficients

are linear expressions in C;.
First we need to obtain p'(x)

L mod g(x), where p'(x) = Yi—g pia/

X—; =

t—1

D

j=0
=1 o ‘
Y (Pi—1 — aipj)x) + pi_qx' mod g(x)
=1

, =1 o e
l=(x—a)p'(x) = (x —a;) Z pjx = p}x]Jrl — Zocip}x] mod g(x)
j=0 j=0

t -1
=) pig¥ = ) aipix) = —apy +
j=1 j=0
Now, we consider g(x) = th‘:o g]-xj . Without loss of generality, we can assume the
glx).

polynomial g(x) is monic. If it were not, we consider o with this polynomial we
will obtain a parity check matrix g; * H. This matrix is equivalent to the matrix H,
so the result holds.

Since g(x) =0, x! = — Z;’l gjx/. Also, we call g¥(x) = Z;'(:o gixl.

. t—1 ] ) ) . t—1 .
1= —aipg+ ) (pj1 —aipp)d —pry ) g2 mod g(x)
j=1 j=0

= —aipy — pi-180 + Y (Pj_1 — aip} — pr_18;)%) mod g(x)
=

The coefficients of the polynomial p’(x) are given by the system of equations

—; 0 ... O —30 B Pf) . 1
1 —a : : Pl 0
0 0 = |:
: 1 —a —8t—2 Pzt:—z 0

K 0 1 —a—g Pl L0

Now, we solve it by Gaussian elimination. Let Id be the t x t identity matrix, and
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let A be the t x (t — 1) matrix defined as

—u; 0
0 —(0(1‘)2
A= 0 :
0
0 —80
0
1 —u —8t-2
0 1 —a;—g
0 0
—(a;)?
) 0

— (o)t — Z;;cl) gj(a;)

—8%w;) | 1 ]
—gM(a;) | 1
-8 2 (a) | 1
-1

1 )

- Z}:o gj(a;)

L5 gi(w)

0
0
— (o)1
0 -
—20 1]
—Q1&; 0
—gt—2(a;)' 2 0
— ()" = gr-1(a;)' 71| 0 ]
[ —g%(a;)
—g' ()
~ A :
-8 (wy)
i —g'(w;)
%) ]
01 81((061‘))
_ g
0] 1 g(a;)
A : :
g (w)
01 781(061)
Hoomr
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[ Ye—1 8k (@)
Yg—2 8r(ai)
~ A :
0 Vi1 8k(ai)
- g(_alf) _
' sy Dhr &ele) )T T g () T
Zk 28k( )2 71 5 Lie ng+2( w;)k
~ Id : ~ Id :
5@ Zztc:H g ()t ) Zi:o Skrt—1 ()
- g(“lf) -t g(a{) ]

In conclusion:
t-1 t—1 -1 t—1—j K .
= ZP;‘XJ = Z ) Z Skrj+1 (i) | ¥
j=0 j k=0
We recall that

=1 -1 o
Zx—zx =Y 7 )G =), Yy pHC=) Y, piCix =0mod g(x)
b owel

w;€L lXiELj:O j=0 ;€L

Then, the linear code is given by equations } ;.. p?Ci = 0 for every j, i.e. H is a
Parity Check Matrix:

P}—l P%—l T

o | P,
R O 4

o Py .- PG

The matrix H can be obtained as an equivalent matrix to H’ via steps of Gaus-
sian reduction, therefore H is indeed a Parity Check Matrix of the Goppa Code.
For j € {0,---,t —1}, R; are the rows of the matrix H’, and ﬁj are the rows of the
matrix H.

-1
g(“n

VRS
oqQ
~ |
Rl

Z 8k+t—j “n)k>

Rj = (P}—l—jr' o IP?fpj) =
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For 0 <j <t—1, we obtain ﬁj as a linear combination of R; and Ry with0 < k < i

j-1
Rj = ( Skt R — Rj)
k=0

so the matrix H is indeed equivalent to H'. O

When an error vector E € (F)" is added to a codeword C € (Fm)", the
received word R is given by R = C + E. Since the code is linear,

Since C is a codeword, the first sum on the right side is zero mod g(x), therefore

R;

Y. =) Ei mod g(x).

;€L X — & ;€L X =&

The syndrome polynomial S(x) is defined as the polynomial of degree < t such

that R E
Sx)=), ——=) sz

;€L X — & w;€L X — &

Let M = {a; € L | E; # 0} C L. Since E; = 0 for the i’s that are not in M, the
previous sum can be written as:

S(x) = Z

mod g(x).

Consider the error-locator polynomial, a polynomial that has as roots the locations
of errors in E.

o(x) =[] (x—a).

a;eM

Let y(x) be a variant of the previous polynomial defined as

pe) =3 E J] (x—w).

yeEM  a;eM\{a;}

Lemma 2.2. The polynomials o(x) and u(x) are relatively prime.

Proof. Tt is enough to see that none of the monomials (x — ;) in o(x) divides the
polynomial y(x).
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Suppose that there exists a (x — ax) dividing u(x). For every ay # «a;,

(x—w) | J] (x—a.

ajeM\{a;}

Therefore,

(x—a) | ), E J] (x—a.

i €M\{we} €M\ {w;}

Since (x — ay) divides p(x), we also have:

(x—ap) | B J] (x—a)).

ajEM\ {ay}

But none of the monomials in the product is (x — a;), and Ej is nonzero by defini-
tion of M, so this is a contradiction. O

Next, we want to see that the errors in the vector E are given by the polynomi-

als o(x) and p(x).

Proposition 2.3. The coordinates E; of the vector are

Oifo(a;) #0 and ) ifo(a;) =0,

o’ (a;)

where o’ (x) is the formal derivative of o(x).

Proof. By the definition of o(x), for any E; # 0, o(«;) = 0, so the first affirmation
is clear.
We evaluate the formal derivative of o (x):

dx) =Y JI x—qa).

€M w;eM\{a;}

Notice that for each k, the product vanishes for every i except when i = k.

o) = Z E; H (Dék—vc]'):Ek H (uck—zxj).

GEM  weM\{a;} a; €M\ {ax}
o)=Y, TI (m—a)= T[] (ax—ua.
6 €M ;e M\ {a;} o €M\ {ac }

Combining the two equations, we obtain p(ax) = Exo’(ay), which proves the sec-
ond affirmation. O
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So far, we've seen that given the polynomials o(x), jt(x) we can recover the
error vector E and therefore the codeword C. Now, we need to prove that given
the syndrome polynomial S(x) we can obtain o(x), p(x).

By multiplying the defining expressions for S(x) and ¢(x), we obtain p(x)

E;

S(x)o(x) = Z : H (x—aj) = E E; H (x —aj) = p(x) mod g(x).

a,eEM X — & D(]'EM a; €M thEM\{lXi}
If we consider the representative p(x) of

S(x)o(x) — p(x) mod g(x)

such that it is of degree lower or equal than f, we obtain a linear system of ¢
equations with the coefficients of o(x), u(x) as unknowns, given by the equality
between polynomials p(x) = 0.

Theorem 2.4. There is a t-error correcting code for the Goppa code with polynomial g(x).

Proof. (Based on the proof on [1]) To prove that we can decode up to ¢ errors, it
is enough to show that the linear system has no more than one solution when
the degrees of o(x), u(x) are sufficiently small. Let’s suppose given two different
solutions:

S(x)o(x)
S(x)ot(x)

(x) mod g(x)

I
u' (x) mod g(x)

We observe that o(x) is invertible mod g(x). If it were not, o(x) would share a
common factor with g(x). Then this factor should also divide y(x), contradicting
the fact that o(x), u(x) are relatively prime. Then we can obtain the two following
relations:

From these, we obtain

o(x)u(x) = ot (x)pu(x) mod g(x)

First, we observe that ¢’(x) = pu(x) Then, we observe that xo’(x) is the odd part

A

of o(x). We call o(x) the even part of ¢(x). With this notation:

(0(x)+ xa/(x))all(x) = (o' (x) + xall(x))cr/(x) mod g(x)
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o (x)ot (x) + 61 (x)0’ (x) = 0 mod g(x)
Since ¢’ (x) is even, all the polynomials in the last expression are even. Then,
o (x)ot (x) + 61 (x)o’ (x) = 0 mod g2(x)

Since ¢?(x) has degree 2t, if o(x),o!(x) have degrees lower or equal than ¢, we

obtain
o(x)o (x) = 61 (x)o’ (x)

Since o(x),0’(x) are relatively prime, we obtain ¢(x) = ¢!(x). In conclusion the
code can recover an error vector of weight up to t. O

2.1.2 Cryptosystem algorithm

The system parameters are positive integers m, n,t such that n < 2", and t > 2.
We define g = 2™ and, k = n — mt.

1. The secret key has two parts: First, a sequence aj, ..., a, of distinct elements
of F,. Second, a square-free polynomial g(x) € F,;[x] of degree f, such that

Vie{l,...,n},g(a;) #0.

2. For the public key we compute the following t x n matrix with coefficients

in Fq:
o1 1 17
g(a1) g(a2) g(ay)
a an an
H— g(a) g(flz) g(ay)
(al)t71 (ﬂz)t71 (ﬂn)t71
L g(a1) g(a2) g(ay)

3. Then we extend the previous matrix by writing the elements in F; as column
i—1

at
vectors of F}', géT-) — (co,...,cm—1), using the polynomial expression to
]

represent an element of F,.

4. Lastly, we perform complete Gaussian elimination on a n X mt binary matrix,
obtaining (I, T), where I is the identity matrix of size mt and T is a mt x k
matrix. The public key is the matrix T.

For the encryption, we take a vector e € F}' of weight ¢ (¢ coefficients of e are 1).
The ciphertext is obtained as Cy = (I, T)e € FJ, of size mt.

1. For the decryption, given Cy of dim n — k, we consider V = (Cy,0,...,0)
of dim n. We find the unique c in the Goppa Code at distance < t from v.
Finally, we consider e = v + ¢, and check if weight(e) =t and Cy = (I, T)e.
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2. To find the c, we need to compute the double-size 2t x n parity check matrix

ro1 1 17
@)  ga2) 7 g(an)
ay az an
H® — (@)  ga2) 7 g(aw)
(al)zt—l (az)Zt—l (ﬂn)2t71
L gz(al) gz(’ZZ) 82(511) a

3. Similarly to during the key generation, we extend the matrix H? to a
2mt x n matrix H'® by writing the elements in F; as column vectors of
FJ'. We compute the double-size syndrome S(?) = H'®?) x C,

4. Using the Berlekamp-Massey algorithm we obtain the error-locator polyno-
mial ¢ (x) from S).

5. Evaluating o(x) atay, ...,a,, we obtain t roots, which represent the non-zero
coefficients of the error vector e. Given that non-zero coefficients are 1, the
vector can be recovered accordingly.

2.2 NTRU

NTRU was originally proposed by Hoffstein, Pipher and Silverman in 1996.
The scheme was originally presented using polynomial rings. The security of the
NTRU scheme is based on the hardness of solving a system of linear equations.
The hardness of the underlying mathematical problem has been studied for many
years, and can also be formulated in terms of lattices. For this reason, NTRU is
usually considered a lattice-based cryptographic scheme.[21]

In the following section we will give some preliminary notions about the struc-
ture of the lattice used in the NTRU crptosystem, and then explain the algorithm
used in the NTRU submission.

2.2.1 Lattice Structure and Preliminaries

Let n be an odd prime such that 2 and 3 are of order n — 1 in (Z/n)*. Let q be
a power of 2. We consider the polynomials

n_1 n—1

Xi
x—1 ig(:)

O1=x-1, P, =

We consider several quotient rings:

R =Z[x]/(®:1®y), S=2Z[x]/(Dy)



16 PQ cryptosystems

R/3=7Z[x]/(3,®1P,), R/q=2Z[x]/(q,P1D,),
S/3=2Z[x]/(3,®,), S/q=2Z|x]|/(q,Pn).
For the coefficients over finite rings, we consider the following canonical represen-

tatives:

7/3=1{-1,0,1}, Z/q={—q/2,...,q/2—1}.

Then, a polynomial in the previous rings will be a canonical representative if all
of its coefficients are canonical representatives of the corresponding ring.

We consider f,g two polynomials that are canonical representatives of ele-
ments in S/3, i.e. two polynomials of degree at most n — 2 with coefficients in
{—1,0,1}. Furthermore, the polynomial ¢ must have exactly (q/16 — 1) coeffi-
cients equal to 1, and (q/16 — 1) coefficients equal to —1.

The NTRU lattice is defined by the polynomials f,g. Now, we build the de-
coder of the lattice.

o We consider f, the canonical representative of f~!in /4.
e We consider / the canonical representative of 3 * ¢ * f in R/q.
e We consider h; the canonical representative of h~! in S/g.
e We consider f; the canonical representative of f~!in S/3.

Then the decoder for the lattice is (f, f3, /14)-

Given a message m and an error r as polynomials in S/3, and m having exactly
(q/16 — 1) coefficients equal to 1, and (q/16 — 1) coefficients equal to —1, we
consider the ciphertext c as the canonical representative of » * h +m in R/q.

To decrypt the message, we consider a the canonical representative of ¢ * f in R/g.

e We consider m'’ the canonical representative of a * f3 in S/3.

e We consider ' the canonical representative of (c —m’) * h, in S/q.

Lemma 2.5. Given two polynomials a(x),b(x) of degree n — 1, their product is:

n—1 n—1 ] n—1 k n—1
= kfaakxk Z;J bix) =) (Z aibe_; +x" ) a]-bk+nj> X
= j=

=0 j=k+1

Proof.
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To obtain the last expression, we group the coefficients for each x*. These are
obtained by multiplying coefficients of both polynomials such that their indexes
add up to k, hence the products a;b;_;. Now it only remains to check for which j
this product makes sense, i.e. weneed toensure 0 <j<n—-1,0<k—j<n-—-1
The second condition is equivalent to k — (n — 1) < j < k.

e Whenk<n—-1,k—(n—1)<0<j<k<n-—1,s0jruns from 0 to k.

e Whenn <k, 0<k—(n—1) <j<n—1<k sojruns fromk—n+1to
n—1.

e Also, for k > 2n — 1, all coefficients are 0, but for a better expression we will
keep writing term 2n — 1.

Now, we change the indices in the second addend as k' =k —n

2n—1 n—1 n—-1 n—1 v
n . .
oy D S S o s
—n+1 kK'=0j=k"+1 kK'=0j=k"+1

Gathering these results we obtain:

ZZa]bk o x Z Z ajbiin—jx

k=0 j=k+1

— n—1
Z(Z%Wﬂﬁ Zﬂﬁmox

=0 j=k+1

Proposition 2.6. The output message is indeed the same as the original, i.e. (r,m) =
(r',m').

Proof. Given the definitions for 2 and ¢, we study m’ in terms of previously defined
polynomials, such as r,m and the polynomials in the secret key.

c=rxh+minR/q
a=cxf=(rxh+m)xf=r*«3*xgxfoxf+mxf=r*3xg+mx*finR/q
Hence, a is equal to
a=r*x3xg+mx*f+ (x"—1)xd(x)+g*b(x)

for some polynomials d(x) and b(x). Due to the construction of the polynomials
in the definition of a, we can find d(x) such that b(x) =
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Notice that m, f, are two polynomials with coefficients over degree n — 2 with
coefficients over {—1,0,1}. Furthermore, m has exactly (q/16 — 1) coefficients
equal to 1, and (q/16 — 1) coefficients equal to —1; overall (q/8 — 2) non-zero
coefficients. Let’s consider their multiplication. For practical reasons we consider
their coefficients up to n — 1, even though they are 0. By Lemma

n—1 n—1 n—1 k n—1
m *f = Z mkxk ijx] = Z (Z m]'fk_]‘ —f—Xn Z m]-fk+n_j> xk
k=0 j=0 k=0 \j=0 j=k+1

Considering modular reduction in R/g using x" — 1 (which affects the polynomial
d(x)), we have x" = 1.

n—1 k n—1
mx f—(x"=1) xdi(x) =) ( mifej+ ) mjfk+nj> x*

k=0 \j=0 j=k+1
Then, this polynomial is of degree n — 1, and its coefficients are obtained as a sum
of n elements over {—1,0,1}. Since at most (§/8 — 2) of these elements are non-
zero, the coefficients must be in the range {—q/8 +2,...,4/8 —2}. Similarly, g, r
are defined like m, f, respectively. Then, we can also find

gxr— (x"—1)*xday(x)

of degree n — 1 with coefficients in the same range.

3xgxr—3x%(x"—1)*dy(x)
will have coefficients over {—3¢/8+6,...,39/8 — 6}, and their sum
rx3xg+mxf— (x" —1)* (di(x) + 3da)(x)

will have coefficients over {—q/2+38,...,q/2 —8}. Also, since it is of degree n — 1
it is a canonical representative, so it is indeed a. Then b(x) = 0.
Now we consider m’ using the definition we found for a:

m=axfs=F*3xg+mxf+(x"—1)*xd(x))*f3
=rx0xgxfat+mxfxfz3+0xd(x)*fz =minS/3
Then, we obtain that m’ = m in §/3, and since both are canonical representatives,
they are indeed the same.
Since we have c defined in R/q (mod(q, ¢1¢n)), and both g, p1¢, are actually 0
in S/q, ¢ has the same definition in S/4.
'=(c—m')shy=((r«h+m)—m)sxhy=r*xhxh; =rinS/q

Even though r is defined in S/3, since its coefficients are over {—1,0,1}, it is also
a canonical representative in S/q. Then, ¥ = rin S/q and both are canonical
representatives, so they are indeed the same. O
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2.2.2 Cryptosystem algorithm

The implementation of the algorithm is the following, as seen on [6].

1.

2.

6.

7.

Generating f and g two polynomials of degree n with 1, 0 and -1.

Inverting f mod (3, ®,); we obtain f,.

. Multiplying 3¢ * f mod(q, ®,); we obtain vj.

. Inverting vyp mod (g, ®,); we obtain v;.

Multiplying v; * 3¢ * 3¢ mod (g, ®; * ®,); we obtain h.
Multiplying v; * f * f mod (g, @1 * ®,); we obtain h,.

The secret key is f, fy, hy. The public key is h.

In order to obtain the inverses, we use the Almost Inverse algorithm[17]. For

mod(q), the Almost Inverse algorithm is performed mod(2), and later we have to

calculate some polynomial multiplications.

First, we perform a subtle transformation Lift to the message mg to obtain m;
(sometimes this transformation is just the identity, and otherwise they’re simple
operations mod (3, ®,)). Then, the ciphertext is obtained as follows:

c =rxh+m; mod(q, &1 xD,)

Where r is a random noise.

. Multiplying ¢ * f mod(q, @1 * ®;,); we obtain v;.

Multiplying v; * f, mod(3, ®,); we obtain mj.

. Performing the subtle transformation Lift to the message 1 to obtain m;

We obtain the noise r = (¢ — m1) * h; mod(q, ®,,).

. Lastly, we have to check that both the message and the noise are valid, oth-

erwise, we consider the process has failed.
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Chapter 3

Acceleration of PQ schemes

As we have discussed on previous chapters, the purpose of these cryptosys-
tems is to make it hard for an adversary who does not know the secret key to
decrypt the message. While this is needed in order to ensure the security of the
cryptosystems, it is also interesting for the Key Generation, Encryption and De-
cryption algorithms to be as efficient as possible.

This acceleration aims to reduce the resources required for the parties A and B to
share messages. If the algorithm can be implemented more efficiently, the com-
munication will be faster and will require less powerful computers.

3.1 General acceleration techniques

In all cryptosystems, there are some acceleration strategies that are commonly
used. These strategies are related to basic operations commonly performed in
cryptosystems. Binary Matrix-Vector multiplication is mainly used during the
encryption and decryption of the Classic McEliece cryptosystem when obtaining
the syndrome. In both cryptosystems the elements are in finite rings, so we need
an efficient way to invert these elements.

Binary Matrix-Vector multiplication

First, it is interesting to notice that binary vectors, and by extension binary
matrices, are very easy for computers to work with. A binary vector of size 8 can
be stored precisely as a byte, with each bit corresponding to each component of
the vector. Bigger vectors can be stored in the same way using consecutive bytes.
This allows for vector addition to be performed using the operation XOR &.

Notice that indeed 050=0,0461=100=1,1H1=0.

21
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Now, regarding the Matrix-Vector multiplication, we observe the usual pro-
cedure, which requires nm multiplications and (m — 1)n additions of binary ele-
ments.

1

mo 1
a ... a by ]':1”119]

=3

S% e

1
a, a

b 271:1 ﬂL b i

The following approach considers the matrix multiplication as a linear com-
bination of the columns of the matrix. The advantage this procedure provides is
that the coefficients b; tell us whether we have to add the column, depending on
whether it is 1 or 0. In this case, we need to check m coefficients and add up to m
vectors of size n. Since these vectors are stored as we mentioned before, we only
need to perform at most mg XOR.

1 m 1 m
a; ... af b 1 ay

: =bh + -+ by
1

a, ... ay] [bm a, ay

This has several advantages. The main one, is that the actual additions are per-
formed much more efficiently, since in the previous method there is no clear way
to benefit from the XOR addition. Also, in the second method we only "multiply"
once by b;, rather than multiplying at each row. Also, every 0 in the vector means
one less addition we need to perform, while Os do not provide any benefit in the
first method.

Inverting elements on a Finite Field

To invert elements over a Finite Field F,n, we use that (F,)* is a cyclic group.
Also, when G is a cyclic group of order n, Va € G,a" = 1. Then, a"~! = a~!. For
Fyn, this means that Va € (Fyn)*,a?" =2 = a~!, because (F,n)* is of order p™ — 1.
This method gives a way to invert elements over F,» using only multiplication.
This method can be further improved by using efficient exponentiation. Different
methods can be used depending on the specific exponentiation we want to per-
form. Exponentiation by squaring is a general method defined by the following
recursive algorithm:

1 ifb=0
Power(a,b) = { ax Power(a,b—1), ifbisodd
Power(a,b/2)?, if b is even
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3.2 Berlekamp-Massey Algorithm

The Berlekamp-Massey Algorithm is the key to decryption on a Binary Goppa
Code. The algorithm takes the syndrome polynomial S(x) of the error vector, and
returns the error locator polynomial o (x), which can later be used to find the error
vector. This formulation of the algorithm is based on the one presented by James
L. Massey on [8].

To begin the algorithm, we require some auxiliary variables. We initialize
cx)=1t(x)=1,m=1,d=0,b=1k=0,A=0

1. When k = n, the algorithm has finished. Otherwise, A = S, + Z?:l 0;5,_;

2. If A =0, we add one to m, and end the step, going to 5.

3. If A #0and d > &, we change o(x) to o(x) — £x™"7(x), then we add one to

m, and end the step, going to 5.

4. If A #0and d < &, we store o(x) in an auxiliary vector, then change o(x) to
o(x) — £x™7(x), and then change 7(x) to the auxiliary vector (The previous
o(x)). Wereset m =1, wesetb = A, and d = k+ 1 —d, and end the step,
going to 5.

5. We increase the step k by one and return to step 1.

3.3 Number-Theoretic Transform

In the NTRU algorithm, we need to multiply polynomials over Z,,, which is
a very costly operation. Then, we are interested in an algorithm that allows us
to more efficiently calculate these multiplications. This can be found using the
Number-Theoretic Transform following the results presented in [14].

The Number-Theoretic Transform (NTT), also known as the Discrete Fourier
Transform, is a generalization of the Fourier Transform for finite fields.
We consider the finite ring Z;, where q is a prime number and 7 is a power of two
such that ¢ = 1 mod n. Zyn = Z,[x]/ < f(x) >, where f(x) is any irreducible
polynomial of degree n over Z,. Then, the elements of Z; are represented as
polynomials over Z; of degree at most n — 1, with the relation f(x) = 0.

Given a polynomial a(x) = ZZ;& arxk with coefficients over Z,;, we define
its Number-Theoretic Transform as the polynomial NTT,(a) = Z?:_Ol A;x', where
A; =Y} ax(w')¥, and w is a primitive nth root of the unit in Z,.

Lemma 3.1. There exist primitive nth roots of unity in Z, rather than in an arbitrary
extension field.
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Proof. Given q =1 mod n, we know that g — 1 = n x k for some (positive) integer k.

Since (Z;)* is a cyclic group, there exists an element a of order nk in (Z;)*, i.e.
a is an nkth primitive root of unity. Then, a* is an nth primitive root of the unity
in Z,. O

Lemma 3.2. Given the transformation NTT,,, there is an inverse transformation INTT,,
such that INTT,, o NTT,, = Id. Furthermore, INTT,, = %NTTQH

Proof.

Given NTT( Z Z ar(w')*x!, consider the composition
i=0 k=0

M |

NTT,, +(NTT,(a

i (Zl ) (w )

Now let’s study the coefficients b; of sulting polynomial:

b ¥ (; aj(w")J) ; EZ ai(w ) = ;ﬂj (nzl(wff)k>

k=0 k=0

“a(Zrenr) oo (B ) =u (1) vpe (55 )
_naz—l—Za]( — Z]]_11>—naz+2a]< 11 1) na;

l]
j#i 7 \(w
Notice that when i # j, w'™/ # 1 because —n < i —j < n, and w is of order n.

Then, the INTT,, is indeed the inverse of NTT,,.
1 n—l ) n—1 )
1 __ 1 __
ENTT 1 (NTT,(a Z bix' ,‘;) na;x' = 1; aix' = a(x)
L]

As we can see in the previous Lemma, the key requirement for the NTT to be
invertible is that w is of order n. Then, the definition of the NTT can be extended
to more general situations.

Specifically, the definition holds for finite rings Z, [x] / < f(x) > where the
polynomial f(x) is not irreducible. Similarly, the ring over the polynomial is
defined doesn’t have to be a field, i.e. the definition still holds for finite rings

m[x] / < f(x) > where m is not necessarily a prime number and f(x) is not
necessarily irreducible, as long as n is invertible in Z,, and there exists an nth
primitive root of unity. These two extensions to the definition can be made because
there are no other inversions in the process (besides the primitive root, which is
guaranteed to be invertible), so having Zero Divisors does not affect the procedure.
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Optimizations for the NTT implementation

We assume given w,w™ !, and a polynomial a(x) expressed in vector notation
(ag,...,a,_1). All the elements a;, w,w ™! are in Z,.
Then, the algorithm computes A = NTT,(a).[14]

1. We consider & the vector such that 4, = a,,_1_;. The vector A is also a vector
of size n with elements over Z,;. At the beginning it is initialized to 0

2. For every i from 0 to log, n — 1, we compute the following:

3. For every j fromO0ton/2 -1

P. = ] * zlogzn—l—i
) nlog, n—1—i
A] = ﬁzj + ﬁ2j+1wpif mod q

A]'+ = ﬁzj — ﬁ2j+1wpif mod q

NIR

Polynomial multiplication using NTT

Depending on the polynomial f(x) defining the ring, this Transform can be
used to simplify multiplications. Specifically, we present a method that performs
these multiplications when f(x) = x" £ 1. In the following section we study the
case when f(x) = x" + 1. The case f(x) = x" — 1 is similar, but the steps where
we apply the variable change are skipped.

For this case we need to introduce the square root of w, so it is also necessary
that there is a 2nth primitive root of unity (notice that in the case when g is prime,
this means q = 1 mod 2n). This root is required to "correct" the sign that comes
from the modular reduction (in the case x" — 1, summands stay positive because
x"=1).

We consider given a(x) = YI—) axxk,b(x) = Y/} bexk polynomials, and we
want to obtain the multiplication a(x)b(x) in Z,;/ < x" +1 >. We also consider
given w,w ™!, and ¢ a square root of w. We will also need to precompute n !, ¢~1;
the inverses of these elements mod g.[14]

1. We consider d(x) = a(¢x). In practice, this means ; = a;¢' mod q. Similarly

for b(x) = b(¢x)
2. Then, we consider A = NTT,,(a), B = NTT,(b)

3. Now that we have the Transforms of a,b, we multiply their transforms in
order to obtain the transform of the product. C = A - B, i.e. C; = A;B; mod g.
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4. In order to recover the product, we need to apply the inverse NTT. ¢ =
iNTT,(C) =n"'%«NTT,1(C)

5. Finally, we obtain c(x) = ¢(¢~'x) the product of a(x), b(x). In practice, this
means ¢; = &~ mod g

Lemma 3.3. Given two polynomials a(x),b(x) in Z;/{x" + 1)) and the change of vari-
ables @ : x — ¢x, the transformation of the product is the (scalar) product of the trans-
formations.

NTT,(® [a(x)b(x)]) = NTT, (a(¢x)) - NTT(b(¢x))

Proof. Since x" + 1 is the polynomial describing the ring, we have x" = —1. To-
gether with Lemma [2.5] we obtain:

n—1 n—1 ) n—1 k n—1
= kZ: agx” Z bix) = Z (Z ajby_j+x" Z ajbk+n_]~> x
=0 j=0

k=0 \j=0 j=k+1

n—1 k n—1
=) (Zﬂjbkj— ). ﬂjbk+nj> x
k=0 \j=0

j=k+1
Now we obtain the product with the changed variable. Since ¢ is a square root of
w, we know ¢?" = w" = 1. If ¢" = 1,1 = (¢2)% = w?. But this is a contradiction,
because w is of order n. Then, ¢ is of order 2n, and ¢" is a square root of unity
different than 1, so it is —1.

n—1
P la(x)b(x)] = E (Ea]bk i— Y a]-bk+nj> PFak

k= j=k+1
n—1 n—1
= (Z El]'bk,j(i)k — Z ajkarnj(Pk) Xk
k=0 \j= j=k+1
n—1

¢]bk ]‘Pk /- Z ¢~ "a;¢! bk+n P o ]> k

j=k+1
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Then, the n coefficients of the product polynomial are clear in this expression, so
the NTT transform is as follows:

NTT,(® ZCx = i (E <Z”1bk it Z Bjbisn- ]>( i)k) x!
0

i=0 \k=0 j=k+1
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On the other hand, we have the NTT transforms for a(¢x), b(¢x)

i=0

NTT,(a(¢px)) - NTT,(b(¢px)) = ni:l AiBix' = E (1121 ﬁk(wi)knil Ek(wi)k> X
i=0 k=0 =0

Following the reasoning described for the product of the polynomials, we have:

1

2
|

K
Z F " Z Z by n—j(w

k=0 j=k+1

Il
I M

n—1 on=1-
) ax(@')" ) be(w))
k=0 j=0

NTTu(a(¢x)) - NTT,(b

z (i (z -5 i) (wnk)

j=k+1
]

Theorem 3.4. The result of the NTT multiplication is indeed the product a(x)b(x).

Proof. In the previous lemma, we have proven that given two polynomials a(x),
b(x) the following equality holds:

NTT,(® [a(x)b(x)]) = NTT, (a(¢x)) - NTT, (b(¢x))
Then, performing an inverse transformation on both sides:
P [a(x)b(x)] = INTT,(NTT,(a(¢px)) - NTT, (b(¢x)))

The change of variables ¥ : x — ¢~ 'x applied to the product polynomial yields
the following result:

a(x)b(x) =Y o®[a(x)b(x)] =¥ [INTT,(NTTy(a(¢px)) - NTT, (b(¢x)))]

The formula on the right is the procedure described as the NTT multiplication. [
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Chapter 4

Performance

In the following chapter we will present the performance of the reference im-
plementations of Classic McEliece and NTRU for the NIST submission.

Definition 4.1. Here we define the concepts presented in this chapter.

o The security levels relate to the hardness of a key search attack on a block cipher, like
AES. That is, the comparison is made by taking into account the best known algo-
rithms that break AES and the algorithms that break the analyzed KEMs. Specifi-
cally, NIST considers security levels 1, 3 and 5, which correspond to the security of
AES-128, AES-192 and AES-256, respectively.

o The FPGA is the Hardware structure on which the cryptosystems have been imple-
mented.

o The (clock) cycles of the algorithms are the amount of cycles it takes an algorithm to
complete.

o The Frequency (in MHz) is the amount of millions Clock Cycles the computer is able
to process per second. With higher frequency, an algorithm with the same number of
clock cycles will take less real time in seconds to complete.

e The Lookup Tables (LUT) are hardware modules for performing simple operations.
The number of LUTs in a hardware implementation corresponds to the amount of
different logic operations that the algorithm will need to perform, regardless of how
often they are used.

o Flip-flops (FF) measure the bits of memory the algorithm is using.

29
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4.1 Classic McEliece

Figure shows Key and Ciphertext sizes for each parameter set. Figure
shows the performance and area of the Hardware implementations. The CPU on
titan0 is an Intel Xeon E3-1275 v3 (Haswell) running at 3.50GHz. Some of the
hardware designs for smaller parameter sets were built into an Artix-7 XC7A200T
FPGA. In the remaining cases, the implementation is on a Virtex-7 XC7V2000T
FPGA. [7]

For the highest security level implementation of Classic McEliece (largest pa-
rameters), mceliece8192128:

e The best performance achieved for the key generation process is 1286179
cycles in a Virtex-7 FPGA, although 4115427 cycles can be achieved with an
approach better balanced with area.

e For the encapsulation, 6528 cycles are enough given that the implementation
in Virtex-7 efficiently performs matrix multiplication.

e The best performance achieved for decapsulation is 26237 cycles in a Virtex-7
FPGA, and takes 33640 cycles in the balanced with area approach.

Performance decreases drastically when an Intel Haswell CPU core is used
(not a specialized implementation like a FPGA).

e The key generation process takes 1277898472 cycles.
e Encapsulation takes 185146 cycles.
e Decapsulation takes 324803 cycles.

It is worth noting that the key generation process has a lot of variation (around
85%), because it does not always succeed, and is actually quite likely to not suc-
ceed on a given attempt.

Sizes in bytes

Public key | Private key | Ciphertext | Session key
mceliece348864 261120 6452 128 32
mceliece460896 524160 13568 188 32
mceliece6688128 1044992 13892 240 32
mceliece6960119 1047319 13908 226 32
mceliece8192128 1357824 14080 240 32

Figure 4.1: Classic McEliece ciphertext and key sizes
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4.2 NTRU
security | FPGA keypair enc dec | Fmax LUT FF
cycles cycles cycles | MHz
Area optimized
a 1 Artix-7 | 1599882 2720 15638 | 38.1 | 25327 49383
b 3 Artix-7 | 5002044 3360 27645 | 289 | 38669 74858
c 5 Virtex-7 | 12389742 5024 47309 | 37.3 | 44345 83637
d 5 Virtex-7 | 11179636 ~ 5413 40728 | 36.1 | 44154 88963
e 5 Virtex-7 | 15185314 6528 48802 | 33.4 | 45150 88154
Area and time balanced
a 1 Artix-7 482893 2720 12036 | 30.4 | 39766 70453
b 3 Artix-7 | 1383104 3360 18771 | 235 | 57134 97056
c 5 Virtex-7 | 3346231 5024 32145 | 265 | 66615 111299
d 5 Virtex-7 | 3086064 5413 26617 | 30.7 | 63629 115580
e 5 Virtex-7 | 4115427 6528 33640 | 22.2 | 67457 115819
Time optimized

a 1 Artix-7 202787 2720 10023 28.6 | 81339 132190
b 3 Virtex-7 515806 3360 14571 | 20.7 | 109484 168939
c 5 Virtex-7 | 1046139 5024 24730 | 16.0 | 122624 186194
d 5 Virtex-7 974306 5413 19722 | 28.8 | 116928 188324
e 5 Virtex-7 | 1286179 6528 26237 | 28.4 | 123361 190707

Figure 4.2: Performance and Area on the Classic McEliece reference implementa-
tion a=mceliece348864, b=mceliece460896, c=mceliece6688128 d=mceliece6960119,

e=mceliece8192128

4.2 NTRU

Figure 4.3| shows Key and ciphertext sizes and cycle counts for all of the rec-

ommended parameter sets. Cycle counts were obtained on one core of an Intel
Core i7-4770K (Haswell); "ref" refers to the C reference implementation, "AVX2" to
the implementation using AVX2 vector instructions.[6]

Figure 4.4 shows the results of a Hardware implementation on the Xilinx Zynq

UltraScale+ MPSoC XCZU9EG-2FFVB1156E][18]



Performance

32
ntruhrss701
Sizes (in Bytes) Haswell Cycles (ref)
sk: 1,452 gen: 23,302,424
pk: 1,138 enc: 1,256,210
ct: 1,138 dec: 3,642,966

Haswell Cycles (AVX2)

gen: 381,476
enc: 71,238
dec: 77,848

Figure 4.3: Performance and Sizes on the NTRU Reference implementation

Parameter Set

Security | Clock Freq. [MHz] | LUTs FFs

ntruhps2048677 | Level 1 200 24,328 | 19,244
ntruhps4096821 | Level 3 200 29,389 | 23,338
ntruhrss701 Level 1 200 27,218 | 21,410

Figure 4.4: Area on the NTRU Reference implementation

4.3 Comparison

Here we present three graphics (Figures [4.7) comparing the metrics of
both cryptosystems at security level 1. These graphics have been elaborated using
the data from the previous tables.

BODD0
JOD00
G000
50000
40000
30000
20000
10000

LUT JfFF

Level 1 Algorithms Area
Xilinx Artix-7 FPGA

Classic McEliece

W Logic W Memory

ona

MNTRU

Figure 4.5: Logic and memory on the reference implementations
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Cyphertext and key sizes at security level 1
1000000

100000

10000

1000
100

.
1

Classic McEliece MNTRLU

Bytes (log scale)

[=]

m Cyphertext mSecretkKey m Public key

Figure 4.6: Ciphertext and key Sizes in logarithmic scale

Overall we can observe that the NTRU cryptosystem is more balanced across
all metrics, while Classic McEliece makes compromises in some of them in order
to shine in others.

The main aspect where NTRU rises as a clear winner over Classic McEliece is
on the area used for their implementations. Classic McEliece requires about twice
as much logic as NTRU, and more than three times the memory. In any context
where the area is a major constraint, NTRU will be the best candidate amongst
the two.

When we take a look at the ciphertext and key sizes, the discussion becomes
a lot more nuanced. One may immediately discard Classic McEliece because of
its large public key, of about 200 kB. This is the main weak point for this cryp-
tosystem. Looking at the secret key, it is still bigger than NTRU, but by a more
reasonable margin. For the first time in this comparison, we see that the Classic
McEliece ciphertext is rather small, and it is indeed a whole order of magnitude
smaller than NTRU. As we observed before, all sizes in NTRU are more balanced,
all around 1kB.

The comparison of the performance is more favourable for Classic McEliece.
The key generation is a bit slower than NTRU, but Encapsulation and Decapsula-
tion are a lot faster.
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Level 1 Algorithms performanceona
Xilinx Artix-7 FPGA

Thousands of clock oycles

100
Classic McEliece NTRU
m Key generation  m Encapsulation Decapsulation

Figure 4.7: Algorithms Performance on the reference implementations

Given these numbers, one still may think that NTRU is a lot more favoured
than Classic McEliece, and for the most part it is true. But to better grasp the
nuance of this comparison, we need to take into account what these numbers mean
and why we want them to be as small as possible. Regarding the area, we want to
minimise it because when we use less area, we reduce both the required physical
size of the implementation and the components needed, therefore reducing the
overall cost.

When it comes to the sizes and the performance, we still want to minimize
them, in order to save time and resources when storing and sharing the keys. The
tirst thing to notice is that the speed of Key generation is a lot less relevant than
the speed of Encapsulation and Decapsulation, because the keys are generated
once, and then used several times for KEMS. Then, it is often considered that the
performance of Key generation is not a relevant metric, because it is performed a
lot less often that its counterparts. Something similar happens with the sizes of
the keys. The public key, no matter how big it is, is something that only needs
to be shared once. Also, since it is not secret information, it can be transmitted
without any security protocols, which eases the process. The secret key, on the
other side, is something that is not transmitted, but needs to be stored securely.
Depending on the architecture of the implementation, needing to store large secret
keys can be a downside. Again, the ciphertext is something that will be sent often,
every time we encapsulate. In this sense, having a small ciphertext should be more
relevant than having a large public key.

All of this comparisons show that neither cryptosystem has a clear advantage
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over the other. Depending on the resources available to the users and the con-
straints on time, cost or size, different metrics will be more relevant than others,
making it hard to establish a winner.
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