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Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers

development of targeted therapies, was herein deconvoluted via single cell RNA sequencing

in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine

model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is con-

served in both human and murine lung cancer. We previously reported a key role for the

oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo

PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI

analysis showed decreased tumor size, while single cell transcriptomics concomitantly

detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the

presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings

therefore hold promise for the development of a targeted therapy for KRAS-mutant

adenocarcinomas.
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Non-small cell lung cancer (NSCLC), the most common
epithelial tumor, comprising ~85% of pulmonary malig-
nancies, is the leading cause of cancer-related deaths1.

Considerable heterogeneity exists among lung adenocarcinomas
(ADCs). Among the genes implicated in their etiology2, frequent
activating mutations in KRAS have been identified in 10–30% of
cases. In addition, loss-of-function mutations in p53 occur in
~50–70% of cases3 and co-occur with KRAS mutations in ~40%
of cases4. Besides direct covalent KRAS-G12C inhibition5, no
therapies have been approved for mutant-KRAS NSCLCs4;
therefore identification of tumorigenic subpopulations sustaining
growth may contribute to improved targeted therapies.

Resolving the distinct subpopulations of healthy versus tumor-
bearing lungs has been hampered by traditional ensemble-based
methods such as bulk RNA sequencing, and gaps-in-knowledge
on specific phenotypic markers. Recently, single-cell RNAseq (sc-
RNAseq) has enabled analysis of complex tissues and character-
ization of cellular identity, by grouping cells based on their gene
expression profiles, at an unprecedented high-resolution6.

Pulmonary sc-RNAseq on tumor epithelial cells represents an
undeveloped field. A pioneering study on fluorescence-activated
cell sorting-purified murine lungs distinguished healthy multi-
potential, bipotential, and mature alveolar type II (ATII) epithe-
lial cells7. Subsequently, identification of markers for major
normal body-wide lineages gave rise to the mouse cell atlas
(MCA)8 with similar efforts currently underway for humans as
part of the Human Cell Atlas9–11. Pulmonary-associated immune
cells in healthy12, inflamed13, or transformed lungs14–16 have
been identified in both human and murine tissues, including our
study comparing tumor-infiltrating myeloid subpopulations in
both species NSCLCs17.

Although tumor heterogeneity hampers major therapeutic
advancements, little is known on how transformation events
orchestrate molecular/cellular alterations within lung cancer. Our
deconvolution of human NSCLCs leads to the identification of a
distinct epithelial subpopulation, selectively detectable in ADCs
carrying the aggressive mutant-KRAS oncogene.

We also comprehensively mapped pulmonary subpopulations
in normal and tumor-bearing lungs, by adopting a model of ADC
(Kras+/G12D;Trp53−/−, henceforth referred to as KP), which
combines Kras activation with p53 ablation in pulmonary
epithelium18–20. Our data produced a unique cellular atlas of
healthy lungs and KP ADCs, and found new cell subtypes that are
distinctly associated with disease. Newly identified tumor-
enriched subpopulations were discovered, of which one repre-
sents a novel specific epithelial tumor cluster, matching a sig-
nature of markers that we also selectively identified in the human
mutant-KRAS-specific subpopulation. Both murine and human
mutant-KRAS-specific subpopulations are positive for the onco-
gene Bmi-1 (B-cell-specific Moloney murine leukemia virus
integration site 1), a key component of the epigenetic complex
polycomb repressive complex-1, which belongs to the 11-gene
death-from-cancer-signature21. Since its discovery, BMI-1 has
been implicated in several biological phenomena including
development, cell cycle, DNA damage response, senescence, stem
cell, self-renewal, and cancer. BMI-1 has recently proven to be of
significant clinical relevance as it overexpressed in a number of
malignancies22–30. We previously identified BMI-1 as a critical
druggable target in NSCLC31. Here, we tested on KP mice
PTC596, a drug identified by its ability to eliminate BMI-1+

leukemic cells32 and currently in phase (Ph) 1b trial (Identifier
NCT02404480) for solid malignancies. As assessed by magnetic
resonance imaging (MRI), PTC596 treatment demonstrated more
rapid and efficient antitumor ability than conventional therapy.
sc-RNAseq, depicting the transcriptional dynamics encompassing
tumor response to PTC596, emphasized a strong decrease of the

epithelial subpopulations as well as the tumor-specific epithelial
cluster, suggesting Kras-mutant tumor is amenable to PTC596
treatment. PTC596 is also capable of decreasing tumor growth of
human mutant-KRAS xenograft models, encouraging the devel-
opment of PTC596-based therapies for NSCLC patients carrying
KRAS mutations for which no pharmacological indication is
available.

Results
sc-RNAseq deconvolution of human NSCLCs unravels tumor
heterogeneity between wild-type and mutant KRAS ADCs. To
study the epithelial component constituting human NSCLCs, we
performed sc-RNAseq analysis on freshly isolated biopsies17 from
12 patients (Supplementary Table 1). Once inter-sample and
batch variability was accounted for, defined subpopulations were
identified using SingleR33, which used the annotated Human
Primary Cell Atlas11 data set for reference cell signatures. Despite
the typical high genomic variability of human NSCLCs, we were
able to identify common subpopulations, which we visualized
utilizing SPRING34. The force-directed layout of k-nearest-
neighbor graphs depicted 15 distinct transcriptional clusters
(C1–C15) (Fig. 1a). Specifically, we identified the epithelial
compartment (Fig. 1b), and distinct subpopulations were also
identified, which contain tumor-infiltrating immune cells
(Fig. 1c), endothelial cells (Fig. 1d), and fibroblasts (Fig. 1e).

By splitting only the ADC samples according to their KRAS
mutation status (mutants n= 8, wt= 2), we discovered the
presence of a transcriptional epithelial cluster, C10, which was
almost exclusively detected in mutant-KRAS ADCs alone (false
discovery rate (FDR)= 2.07 × 10−116) (Fig. 1f, Supplementary
Figures 1a–c, Supplementary Table 2, and Supplementary Data),
urging us to ask whether it may represent a novel subpopulation
capable of distinguishing the most aggressive and still untarge-
table mutant-KRAS ADCs from the KRAS WT ADCs.

sc-RNAseq of healthy and tumor-bearing lungs highlights the
presence of a transformed epithelial tumor-specific cluster.
Having identified a specific epithelial tumor subpopulation in
human mutant-KRAS ADCs, this prompted us to ask whether we
may detect its murine counterpart, and subsequently attempt its
in vivo targeting, by employing KP mice that develop pulmonary
ADCs20.

By performing sc-RNAseq on normal lungs from control
littermates and KP tumors, we identified which subpopulations
were present in tumors versus healthy lungs. Algorithmically, 13
clusters (C1–C13) were identified (Fig. 2a). These clusters were
transcriptionally distinct, as shown by the top 25 marker genes per
cluster in both healthy (heatmaps and gene lists in Supplementary
Figure 2a and Supplementary Table 3, respectively) and tumor
tissues (Supplementary Figure 2b and Supplementary Table 4). By
comparing lung tumors with healthy lungs by cell number
quantification, we found that C3, C4, C7, and C11 were
significantly underrepresented in tumors (FDR C3= 0, C4=
4.42 × 10−10, C7= 1.47 × 10−288, C11= 1.12 × 10−96), whereas
clusters C1, C2, C5, C8, C10, C12, and C13 were enriched (FDR
C1= 2.46 × 10−3, C2= 4.22 × 10−56, C5= 4.39 × 10−15, C8=
4.92 × 10−95, C10= 1.36 × 10−192, C12= 1.05 × 10−72, C13=
1.22 × 10−289), as compared with control lungs (Fig. 2b and
Supplementary Table 5). C9 instead was equally distributed in both
tissues (FDR 6.58 × 10−1). Clusters C2, C10, and C13 were almost
virtually exclusive to tumors, being barely detectable in healthy
lungs, and therefore representing epithelial tumor-enriched clusters
(TECs) (Figs. 2a and 2b, Supplementary Figure 2c).

In addition, to classify the cell types within each cluster, a
hybrid annotation strategy was employed wherein immunological
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cells were identified using the Immgen data set35 via SingleR, and
the remaining cells annotated using MCA transcriptional maps8

to leverage the strengths of each annotation data set. This
approach enabled accurate detection of numerous epithelial cell
types (Fig. 2c), namely alveolar bipotent progenitors, alveolar type
I (ATI), ATII, basal epithelial, ciliated, club as well as endothelial,

immune, and fibroblast subpopulations (Fig. 2d). Cell number
quantification revealed that ATII-like cells are the most enriched
within the tumor milieu expanding to 31.7%, as compared with
1.2% in healthy tissues (Supplementary Table 6).

By superimposing cell annotations (Fig. 2d) on the cluster
distribution (Fig. 2a), our analysis revealed an unprecedented

Fig. 1 Single-cell RNA sequencing deconvolution of human NSCLC unravels tumor heterogeneity between WT and mutant KRAS adenocarcinomas.
a SPRING plot of the 15 human clusters identified in 12 NSCLCs. Each point represents one cell. Each color represents a defined transcriptomic cluster.
b Epithelial cells (green); c immune cells (panel legend defines subpopulations); d endothelial cells (maroon), and e fibroblasts (blue) were identified.
f SPRING plots of the 15 clusters in ten ADC patients (eight carrying KRAS mutations, two wildtypes for KRAS). Dotted squares highlight cluster 10 (C10) is
unique to the KRAS-mutant samples.
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definition of the healthy and tumor epithelial compartment,
wherein we observed that healthy ATII-like cells are comprised of
two distinct transcriptomic profiles, defined as C13 (0.3%) and
the slightly more abundant C8 (2.8%) (Fig. 2d, and Supplemen-
tary Table 5). Interestingly, in the tumor, in addition to the
enrichment of these two ATII-like clusters (TEC-C13= 17.8%
and TEC-C8= 12.8%), an additional cluster (TEC-C2) can also
be annotated as ATII-like. Furthermore, TEC-C10, while being
annotated as positive for a generic “epithelial” cell signature
(Fig. 2d, right panel and labeled by the *), did not match any
normal pulmonary epithelial subpopulation, therefore represent-
ing a bona fide transformed TEC/cell subpopulation. Overall, our
data identified KP tumor-enriched epithelial cells, which are
mainly comprised of the tumor-specific subpopulation (C10),
which does not match any normal epithelial signature, as well as
ATII cells, which themselves consist of different clusters, as
described above.

Having identified C10 as being virtually unique to tumor
tissues and not ascribable to any common, defined epithelial cell
type, we attempted to further characterize its differences over the
other tumor epithelial clusters. Transcriptionally, the top 50
highest and lowest expressing genes are sufficient to show the
unique transcriptional profile of C10, as compared with all other
tumor epithelial clusters (Fig. 3a). The genes represented in the
heatmap are listed in Supplementary Table 7. Gene expression
profiling and gene set enrichment analysis (GSEA) of C10 cells
versus all other tumor epithelial cells, showed enrichment of (i)
stem cell signatures (Fig. 3b), (ii) stemness genes (stem cells,
embryonic, mammary stem cells, liver cancer stem cells), cancer
radiotherapy responsiveness (Supplementary Figure 2d), as well
as target genes of the cancer stem cell gene BMI-1 (Fig. 3b and
Supplementary Figure 2d). Consistently, RNA velocity analysis,
which attempts to elucidate cell’s transcriptomic differentiation
trajectory or “direction”36, showed that C10 contains a

Fig. 2 Single-cell RNA sequencing of healthy and tumor-bearing lungs highlights the presence of a transformed epithelial tumor-specific cluster.
a SPRING plots of the 13 clusters identified in healthy (n= 2, left panel) and tumor tissues (n= 3, right panel). b Percentages of clusters distributions in
healthy (blue) and tumor (red) tissues. c SPRING plots showing the epithelial compartment (green) in healthy and tumor tissues. d SPRING plots showing
the annotated cell types (panel legend) in healthy and tumor tissues. * labels TEC-C10; the dotted boxes highlight ATII-like cells.
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transcriptomic point of origin (short/no arrows; Fig. 3c) from
which, the other tumor epithelial cells contained within C10 stem.
These data, therefore, support the hypothesis that C10 potentially
contains tumor-initiating cells.

Human and murine KP ADCs display a tumor cluster speci-
fically associated with harboring KRAS mutations. After com-
paring differentially expressed genes between mutant-KRAS-
associated C10 clusters, in both humans and mice, versus all other
epithelial clusters, we identified a common mutant-KRAS-
associated signature of 21 upregulated (LogFC ≥ 1.5) and nine
downregulated (LogFC ≤−1.5) homologous markers (Fig. 4a),
which is specific for C10. SPRING plots display the colocalization
of the combined upregulated (Fig. 4b, Supplementary 3a) and
downregulated (Fig. 4c, Supplementary 3a) markers comprising
the signature, thereby showing conservation across species.
Representative expressions of selected marker genes contained
within the signature are depicted in Figs. 4d and 4e. In particular,
they represent genes contained within the 50 highest/upregulated
(Fig. 4d) or lowest/downregulated (Fig. 4e) genes, commonly
present in both the human and murine data sets. Upregulated
genes contained within the conserved top 50 genes whose
expression is highly restricted to C10 (Fig. 4d), act as oncogenes
associated with poor prognosis in multiple human malignancies
(Human Protein Atlas, www.proteinatlas.org37 and38–41), sup-
porting the aggressive nature of C10. In addition, among the
conserved downregulated 50 genes C10 is more negatively labeled

by SFTPC and HOPX (Fig. 4e), the major markers for ATII and
ATI cells, respectively, as well as other relevant differentiation
markers of secretory (SCGB3A1) and ATII (SFTPA1, NAPSA,
SLC34A2, LPCAT1, LAMP3) epithelial cells42,43 (Fig. 4e). Overall,
these data indicate that C10 represents a transformed sub-
population that does not match normal alveolar subtypes, thus
representing a novel subpopulation capable of distinguishing
mutant-KRAS from WT-KRAS ADCs. Of note, Ingenuity Path-
way Analysis (IPA) identified EIF2, mTOR, eIF4/p706SK, and
integrin signalings as the common enriched pathways within the
top five (“cellular growth, proliferation, and development” cate-
gory) in both murine and human C10 (Fig. 4f), which all act,
according to the curated IPA software, downstream of activated
Kras (Supplementary Figures 3b–e).

In addition, GSEA showed that murine C10-upregulated genes
were significantly enriched within three different murine-curated
data sets derived from samples displaying Kras upregulation
(Supplementary Figure 3f). A similar result is shown by
comparing human C10-upregulated genes to two curated data
sets displaying upregulated KRAS signaling as well (Supplemen-
tary Figure 3g). Conversely, a comparison between the human
C10 with both a data set containing genes overexpressed in
NSCLCs genetically defined by copy number amplification and a
Reactome data set of EGFR signaling (another main lung cancer
driver) did not show any significant enrichment (Supplementary
Figure 3h). Overall, these data confirm C10 is specifically
associated with Kras signaling.
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Fig. 3 The transformed epithelial tumor-specific cluster shows a defined signature. a Heatmap showing the 50 highest and lowest expressed genes in
C10. b GSEA shows enrichment of stem cell module genes (FDR= 0.0) and Bmi-1 target genes (FDR= 0.0) in C10, as compared with all other tumor
epithelial clusters. Normalized enrichment score (NES) is indicated in each panel. c RNA velocity analysis recapitulates dynamics of tumor epithelial cells
(zoomed in the dotted box) differentiation. Within the dotted box short/no arrow-containing cells indicate the point of origin from which other C10
(orange) tumor cells are originated.
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Fig. 4 Human and murine KP ADCs display a tumor cluster specifically associated with harboring KRAS mutations. a Heatmap of the common
differentially expressed genes in both murine (upper panel) and human (lower panel) KRAS-mutated ADCs, as defined by differential gene expression
analysis. Row-scaled z scores of the log2-normalized expression values per gene are shown. b–c SPRING plots showing the common signature enrichment
score for C10 clusters, calculated for each cell equivalent to the number of detected genes from the common signature shown in a. For the positive/
upregulated (4b) and the negative/downregulated signature (4c) the more genes detected per cell, the stronger the enrichment score, represented as a
scale from 0 (gray) to 0.5 (blue) to 1 (red), where an enrichment score of 1 signifies detected expression of all marker genes within that cell. SPRING plots
showing a visual representation of the log2-normalized gene expression for the selected d, upregulated, and e downregulated genes of interest in both
murine (left panels) and human (right panels) C10 clusters. f IPA analysis showing common top three enriched pathways in KP and Human C10s.
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In additionally, by utilizing the EnrichR enrichment suite, in
both species, the molecular pathway downstream of the nuclear
factor-κB subunit RelA/p65, which is required for Kras-induced
lung tumorigenesis19 are found to be enriched in C10, as
compared with the other epithelial clusters (FDR= 0.01 and 0.03,
in mouse and human data set, respectively) (Supplementary
Table 8). LGALS3, S100A6, AGR2, and TFF1, which are contained
within the mutant-KRAS-associated signature, are among the
common RelA/p65-downstream effectors. IPA software also
detected that both murine and human C10 display active
Integrin, epidermal growth factor, insulin-like growth factor-1,
extracellular signal-regulated kinase/mitogen-activated protein
kinase, and insulin receptor pathways (Supplementary Figure 3i),
as similarly found through proteogenomic network analysis on
KrasG12D tumors (colon and pancreas)44. Consistently, IPA
revealed that C10 in both species are enriched for signaling
pathways involved in multiple malignancies associated with
KRAS mutation, i.e., NSCLC, as well as colorectal cancer,
pancreatic ADC, ovarian cancer, acute myeloid leukemia,
melanoma, and endometrial cancer (Supplementary Figure 3j).
Similarly, TCGA (The Cancer Genome Atlas) RNASeq samples
belonging to several human ADCs [colon (COAD), pancrea-
tic (PAAD), and stomach (STAD)], subdivided into mutant- and
WT-KRAS status, show that the mutant-KRAS-associated
signature identified is also applicable across cancer contexts
(p= 0.011 for COAD, N= 100 mutant KRAS and N= 211 WT;
p= 2.83 × 10−7 for the PAAD, N= 127 mutant KRAS and N=
31 WT; and p= 0.05 for STAD, N= 18 mutant KRAS and N=
294 WT) (Fig. 5a). Moreover, Kaplan–Meier survival analysis
showed that overall, patients displaying high C10 signature had
significantly poorer outcomes as compared with the group with
low C10 signature (p= 1.96 × 10−6) (Fig. 5b), in line with the
known aggressiveness of mutant KRAS tumors45.

We have previously demonstrated, in a model of pulmonary
ADC driven by CEBPα knockout in lung epithelial cells, the
importance of Bmi-131, a major oncogene in NSCLC30, with
suggested roles in regulating cancer cells31,46, and noteworthy,
pharmacologically targetable31. Here, BMI-1 was positive by
immunohistochemistry (IHC) in both murine and human lung
tumors (Supplementary Figures 3k, 3m, and 3o). Most impor-
tantly, both murine and human C10 clusters, in which the
mutant-KRAS-associated signature was identified, are positive for
BMI-1 transcripts (Supplementary Figures 3l and 3n).

PTC596 treatment of the mutant-KRAS A549 and SKLU1 cell
lines affects their cell cycle progression. Having discovered that
BMI-1 is expressed in both human and murine mutant-KRAS-
associated clusters C10, we initially investigated the efficiency of

its pharmacologically driven downregulation in mutant-KRAS
ADC cells. By collaborating with PTC Therapeutics, we utilized
two of their compounds, PTC596 (Supplementary Figure 4a) and
its analog PTC028 (Supplementary Figure 4b). PTC596, identified
by its ability to kill BMI-1+ cancer cells32, is currently being
tested in clinical trials for solid malignancies, as an orally bioa-
vailable drug, which displays a long-circulating half-life, and lacks
the multidrug transporter P-glycoprotein substrate activity47.
PTC596 and PTC028 reportedly result in hyperphosphorylated
BMI-132,48 associated with cell cycle arrest in G2-M47. By treating
A549 and SKLU1 cells with PTC596 (1 μM), PTC028 (1 μM) or
vehicle control (0.5% dimethyl sulfoxide (DMSO)) for 24 h, 48 h,
and 72 h, we confirmed by western blot presence of a band higher
than 40–42 kDa at 24 h of drug treatment (Fig. 6a, b, Supple-
mentary Figures 4c, d), corresponding to the hyperpho-
sphorylated BMI-1 form32,48. Concurrent cell cycle analysis
carried out at 24 h (n= 3), when the major effect on BMI-1
hyper-phosphorylation is observed, concomitantly reveals a sig-
nificantly higher number of cells in G2-M upon PTC596 (80.5% ±
3.7 p= 4.52 × 10−4 in A549; 69.9% ±2.8 p= 4.58 × 10−4

in SKLU1) and PTC028 (80.2% ±1.9 p= 6.05 × 10−6 in A549;
74.9% ± 3.1 p= 6.02×10−4 in SKLU1) treatment, as compared
with DMSO-treated cells (15.2% ±1.2 in A549; 35% ±1.3 in
SKLU1) (Fig. 6c–f).

BMI-1 acts as a major component of the chromatin remodeling
complex PRC1, which ubiquitinates Histone H2A at lysine 119
(H2AK119ub). To determine whether PTC596 treatment affected
BMI-1 activity, immunofluorescence staining for H2AK119ub, as
readout for BMI-1 activity49 was performed. A549 cells treated
with the clinical-grade compound PTC596, which was adopted in
the subsequent murine in vivo studies, show almost undetectable
H2AK119ub nuclear staining, as compared with vehicle-treated
cells (n= 32 each, mean±standard error fluorescence for
PTC596-treated cells 170 ± 26 and vehicle-treated 2800 ± 110;
p= 2.90 × 10−24), validating our pharmacological approach
(Figs. 6g and 6h).

PTC596 in vivo treatment affects the growth of KRAS-mutant
ADCs. As PTC596 and PTC208 treatments affect A549 cell cycle
progression in culture, we tested their efficacy in in vivo tumor
growth of human mutant-KRAS cells, by generating xenograft
models of A549 cells in immunocompromised NSG mice. After
subcutaneously injecting 2 × 106 cells per flank, once sub-
cutaneous tumors reached ~80–90 mm3, we started bi-weekly
treatment with PTC596 (n= 15), PTC028 (n= 7), or vehicle
(n= 20) for 3 weeks. Figure 7a depicts the size of individually
treated tumors at treatment termination, normalized to day 0.
PTC596- and PTC028-treated xenografts showed a significant
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Fig. 5 C10-specific signature is conserved in multiple tissue ADCs and it is associated with lower overall survival. a Boxplots for distributions of the
signature scores for combining the positive and negative signature genes over KRAS-mutant samples versus WT samples cross four adenocarcinomas
(colon, COAD, N= 100 mutant KRAS and N= 211 WT; pancreas, PAAD, N= 127 mutant KRAS and N= 31 WT; stomach, STAD, N= 18 mutant KRAS and
N= 294 WT). P values are indicated. b Survival analysis between C10 signature high and low groups (p value= 1.96 × 10−6, hazard ratio= 2.37). C10 low
group: n= 223, and C10 high group: n= 222.
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Fig. 6 PTC596 treatment of the KRAS mutant A549 and SKLU1 cell lines affects their cell cycle progression. Western blot analyses of human a A549
and b SKLU1 cell lines treated for 24, 48, and 72 hours with DMSO vehicle as control, and PTC596 or PTC028. Protein lysates were immunoblotted with an
anti-BMI-1 antibody. Loading was assessed with an anti-β-actin antibody. The expected size is shown in kDa. The slower migrating hyperphosphorylated
BMI-1 band is indicated by the arrowhead. c–f Cell cycle analysis of the A549 c–d and SKLU1 e–f cell lines after treatment for 24 hours with DMSO (red),
PTC596 (blue), or PTC028 (black). The bar charts (d and f) represent the distribution of cells in G0-G1, S, and G2-M phases. P values are indicated. Error
bars represent standard deviation (SD). Percentages of cells in each cell cycle phase are indicated. g Fluorescence nuclear imaging of DNA and H2AK119ub
in A549 cell line by confocal microscopy. Upper panels show DMSO-treated cells; lower panels show cells treated with PTC596 for 24 hours. Left panels
show DNA staining by Hoechst 33342 (blue acquisition chanel). Right panels show H2AK119ub staining by immunofluorescence (scale bar 10 μm). h Dot
plots of H2AK119ub average nuclear fluorescence for DMSO− (red) and PTC596-treated (blue) A549 cells. Error bars represent SD of the average values.
Data are expressed in fluorescence counts which are proportional to H2AK119ub concentration. P value is indicated.
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Fig. 7 PTC596 in vivo treatment affects the growth of KRAS-mutant ADCs. a A549 xenografts tumor volumes at treatment termination (vehicle n= 20,
red; PTC596 n= 15, blue; PTC208 n= 7, black) normalized to the tumor volume measured at the beginning of treatment. The difference in tumor size at
day 21 was statistically significant (p values are indicated). b SPRING plots showing epithelial compartments (green) in vehicle- (n= 3, left panels) versus
PTC596-treated tumors (n= 2, right panels). c Pie charts summarizing the epithelial cell proportions in vehicle- (left panels) and PTC596-treated tumors
(right panels). d SPRING plots of the 13 clusters in vehicle- (left panel) and PTC596- (right panel) treated tumor samples. e Pie charts summarizing
epithelial sub-cluster compositions in vehicle- (left panels) and PTC596- (right panels) treated tumors. f The graph shows the percentage of change in
tumor volume measured by MRI at the indicated time points, between PTC596 (n= 7, blue) and vehicle-treated (n= 8, red) groups. Error bars represent
SD. P value is indicated.
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decrease in average tumor size by 78.37% (p= 9.52 × 10−5) and
78.04% (p= 9.70 × 10−5) respectively, as compared to vehicle-
treated mice.

Having proved these pharmacological treatments significantly
affect tumor growth of human mutant-KRAS cells in vivo, we
tested the clinical-grade PTC596 efficacy in the KP model of lung
cancer. Here, we adopted a combined strategy by both profiling
lung tumor response to PTC596 through sc-RNAseq and,
concomitantly, monitoring in vivo tumor growth by bi-weekly
MRI. When tumors reached a comparable size (~1–2 mm
diameter), we enrolled the mice for PTC596 or vehicle treatment
and followed their response for up to one month. At treatment
completion, tumors were isolated and profiled by sc-RNAseq.
SPRING plots displayed major differences in the epithelial
subpopulations of PTC596- versus vehicle-treated mice (Fig. 7b).

Specifically, epithelial cells represent 47.9% of the vehicle-
treated tumor cells, whereas they display an approximately
twofold decrease (FDR= 5.75 × 10−57), reaching a total of 22.2%
overall cells, upon PTC596 treatment (Fig. 7c). SPRING plots in
Fig. 7d depict cluster distribution in the vehicle- and PTC596-
treated tumors. In particular, ATII-like clusters TEC-C8 and
TEC-C13 showed a 5.6- and 2.7-fold reduction, respectively,
decreasing their total cell number from 12.8% and 17.8% in
vehicle-treated tumors to 2.3% and 6.6% in PTC596-treated
tumors, respectively (TEC-C8 FDR= 3.28 × 10−74 and TEC-C13
FDR= 2.76 ×10−54) (Fig. 7e). TEC-C10, the epithelial tumor-
specific cluster, showed a 5.4-fold reduction (from 11.8% to 2.2%,
FDR= 3.96 × 10−67) (Fig. 7e).

Consistently, MRI showed a concomitant significant decrease
in tumor volume (Fig. 7f). Changes in lung tumor burden over
the course of treatment were calculated as a percentage change in
volume over tumor volume at day 1 (set at 100%). In PTC596-
treated mice, tumor size started being significantly impaired by
day 7, with notable tumor size regression after day 10. On day 28
of PTC596 treatment, tumors shrunk by 16.3%, as compared to
day 1. In addition, although tumor volume increased up to
156.1% by day 28 in the vehicle-treated group, drug-treated
tumors shrunk to 83.7%, resulting in a significant 46.3%
reduction in tumor size (FDR= 2.36 × 10−7), as also shown in
the representative MRI images of tumors at day 1 and 28 of both
vehicle and PTC596 treatment (Supplementary Figure 5a).
Overall, we show that PTC596 significantly decreases tumor size
by MRI, in accordance with the major decrease detected in
epithelial clusters, as assessed by sc-RNAseq. We also asked
whether adopting selumetinib (an allosteric MEK1/2 inhibitor) in
combination with PTC596 may show improved antitumor
response. Remarkably, MRI data show that PTC596 alone
achieves better results than selumetinib alone, and that their
combined inhibition is not synergistic, in that adding selumetinib
does not significantly improve the effects achieved by PTC596
alone (Supplementary Figure 5b).

Taken together, our data show that BMI-1 inhibition alone is
better than MEK inhibition alone and that PTC596 is able to
significantly affect murine mutant KRAS tumorigenesis in vivo,
and almost completely abrogates (5.4-fold reduction, decreasing
the subpopulation from 11.8% to 2.2%, FDR= 3.96 × 10−67), the
murine C10 subpopulation, which shares a common signature
with the human mutant-KRAS-specific C10 subpopulation, as
demonstrated by high-resolution transcriptomics.

Discussion
Considerable heterogeneity among ADCs of the lung exists,
which hampers efficient therapeutic targeting. There remains
much to be explored with respect to the physiological significance
of molecular and cellular heterogeneity, in an attempt to design

improved therapeutic treatments. Therefore, to study tumor
milieus at the single-cell transcriptional level, we adopted the
inDrop single-cell capture50, coupled with our newly designed
annotation approach, which combines different annotation data
sets, therefore allowing for more accurate and robust cell iden-
tification. By deconvoluting tumor milieus in both human
NSCLCs and a murine model of Kras-driven lung cancer, we
classified, in both species, clusters/subpopulations comprising the
tumor microenvironment. Specifically, we identified endothelial
cells, immune infiltrating cells, fibroblasts, and the epithelial
component, which is the primary focus of our investigation, as it
is a frequent target of transformation51. We herein report
exceptional parallelism, detected at single-cell level, between
human and murine mutant-KRAS-driven pulmonary ADCs,
which are associated with poor prognosis and aggressiveness.
Despite the increased intra-tumor heterogeneity of human ADC
samples over clonally bred mice, we discovered a novel tumor
epithelial subpopulation (referred to as C10 in the text), which
was specifically found in human mutant-KRAS ADCs and KP
tumors and virtually undetectable in human WT-KRAS ADCs
and in murine healthy lungs. This subpopulation expresses a set
of genes that we identified as a mutant-KRAS-associated sig-
nature. Of note, we observed that the mutant-KRAS-associated
signature identified in pulmonary ADCs, is also predictive of
KRAS mutation status in other ADCs (colon, pancreas, and sto-
mach). These data suggest the signature contains oncogenic
KRAS-signaling components that act independently of the spe-
cific cancer contexts, and that aggressive KRAS-mutant-driven
malignancies may be similarly targeted.

Despite the current lack of unique markers to identify
aggressive pulmonary subpopulations, we discovered a unique
molecular signature associated with malignant C10 mutant-KRAS
cells, which show downregulation of SCGB3A1 (marker of airway
secretory cells), SFTPA1, SFTPC, NAPSA, SLC34A2, LPCAT1,
and LAMP3 (markers of ATII cells), as well as HOPX (the main
marker of ATI cells)42,43, therefore confirming that such popu-
lation does not match any of the other common epithelial cell
type signatures. Furthermore, genes upregulated in the mutant-
KRAS-specific signature contained oncogenes involved in many
human cancers, whose expression is often associated with
poor prognosis (Human Protein Atlas, www.proteinatlas.org37

and38–41) and/or resistance to therapy, such as the membrane
protein Plac8. Noteworthy, its upregulation causes NSCLC
resistance to the tyrosine-kinase inhibitor Osimertinib52 and its
silencing in renal cell carcinomas significantly increases their
sensitivity to Cisplatin53.

We also observed that human C10, which is specific to KRAS
mutant patients, is present in both TP53 mutant and TP53 wt
patients, suggesting the mutant-KRAS-associated signature is
independent of TP53-status. Besides having identified a mutant
KRAS-specific signature, our results show at the single-cell level a
model in which KP ADCs are enriched in ATII-like cells, sup-
porting a model in which ATII cells are the cells-of-origin of
pulmonary ADCs54,55. Tumor-associated epithelial ATII-like
clusters and the epithelial cluster specific to mutant-KRAS
ADCs, are positive for the oncogene BMI-1, and, according to our
hypothesis, responsive to PTC596 in vivo treatment. Our data
represent the first high-resolution analysis of tumor epithelial
cells after a targeted pharmacological treatment, proving that sc-
RNAseq is a valuable tool to evaluate drug response and assess-
ment of subpopulation dynamics consequent to drug treatment.
Indeed, our sc-RNAseq analysis has highlighted an overall
approximately twofold decrease in the tumor epithelial com-
partment size, consistent with the ~50% decrease in tumor
volume, as compared to the vehicle, assessed by concurrently
monitoring tumor response by MRI.
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GSEA of murine C10 cells versus all other tumor epithelial cells
demonstrated enrichment of stem cell signatures and target genes
of the cancer stem cell gene BMI-1. Consistently, RNA velocity
analysis, a bioinformatic tool adopted to elucidate the transcrip-
tional dynamics of cells’ evolution, showed that C10 contains a
point of origin able to give rise to the other tumor epithelial cells
contained within C10, thus corroborating the hypothesis that C10
might contain tumor-initiating cells.

These observations make a significant contribution to the
already existing wealth of data proving the relevance of murine
models as valid preclinical tools. In this study, we demonstrated
their applicability in testing actionable therapies. Overall, our data
suggest that large-scale single-cell transcriptomics will eventually
impact the development and implementation of enrollment cri-
teria for clinical trials and the evaluation of therapeutic response
at the molecular level.

Taken together, our data emerge as a prototype cancer-focused
study in which we first identified tumor-specific subpopulations
and concomitantly assessed their transcriptional rewiring during
target therapy while also following-up tumor growth by MRI. To
date, besides the new KRAS-G12C inhibitors5, trials addressing
NSCLC patients harboring KRAS mutations have unfortunately
not led to major positive therapies56. It is noteworthy that
PTC596, which is undergoing clinical trials for solid tumors,
achieved the therapeutic outcome, we reported with undetectable/
unnoticeable side effects. BMI-1 inhibition alone was able to
achieve better results than MEK inhibition, and additional
pathways will have to be further tested to identify more efficient
combinations. Overall, our data strongly suggest that PTC596
might be a promising drug to be tested in the ~30% NSCLC
patients carrying highly aggressive KRAS mutations.

Methods
Cell culture. The human lung ADC cell lines A549 and SKLU1 were purchased
from ATCC. Cells were cultured in Roswell Park Memorial Institute Medium
(RPMI) 1640 medium containing 10% fetal bovine serum (FBS, Sigma) and grown
at 37 °C in a humidified incubator with 5% CO2. These cells were authenticated via
DNA fingerprinting57 and tested negative for mycoplasma.

Cells line were treated with PTC596 (1 μM), PTC028 (1 μM), or vehicle (0.5%
DMSO) for different time points (24, 48, and 72 hours) and the corresponding
lysates subjected to Western Blotting to assess BMI-1 protein levels.

Western blot. A549 and SKLU1 cells were collected and then lysed with TritonX
1× and cOmplete ethylenediaminetetraacetic acid-free Protein Cocktail (Roche
#11873580001) for protease inhibitors and PhosSTOP (Roche #4906845001) as
phosphatase inhibitor cocktail. Lysates were centrifuged at 12,000 × g for 15 min at
4 °C, the supernatant was snap frozen in Liquid N2 and stored at −80 °C. In
all, 15 μg of total protein were separated on 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis gels and transferred to nitrocellulose membrane
using the TransBlot Transfer System (BioRad). Membranes were blocked in tris-
buffered saline and tween 20 containing 5% non-fat dry milk and incubated with
primary antibodies anti-BMI-1 (1:1000 Cell Signaling Technologies #6964 S).
Membranes were then stripped with Restore Western Blotting Buffer Solution
(Thermo Fisher #21059) for 15 minutes at room temperature (RT) and incubated
overnight (O/N) with an anti-β-actin mouse antibody (Santa Cruz #81178) at a
1:1000 dilution to assess equal loading. Blots were incubated with specific HRP-
conjugated secondary antibodies, anti-rabbit IgG-HRP (Santa Cruz #SC2054) or
anti-mouse-IgG-HRP (Santa Cruz #SC2031). An enhanced chemiluminescence
blotting analysis system (Pierce, Thermo Scientific #32106) was used for antigen-
antibody detection. The density of western blot bands was quantified by ImageJ
software (Version 1.51m9, National Institutes of Health, Bethesda, MD, USA).

Cell cycle analysis. A combination of Vybrant DyeCycle Violet and Pyronin Y
was used for the differential staining of cellular DNA and RNA. A549 and
SKLU1 cells treated for 24 hours with PTC596, PTC028, and DMSO, were per-
meabilized in phosphate-citrate buffer solution (pH 4.8), washed in phosphate-
buffered saline (PBS) 1×, and then resuspended in a solution of 5 μM Vybrant
DyeCycle Violet (Thermo fisher Scientific) and 4 μg/ml pyronin Y (Polysciences).
Cycle status was then evaluated by flow cytometry on Cytoflex Flow Cytometer
(Beckman Coulter, Inc.).

Immunofluorescence analyses on A549 cells. A549 cells were washed with
phosphate buffer saline 1× (PBS, three times) and then fixed with paraformalde-
hyde (2% in PBS) for 15 min. After washing with PBS (three times), cells were
permeabilized with 0.1% TritonX-100 made in PBS, for 15 min. Cells were then
washed with PBS (three times), 0.5% bovine serum albumin in PBS (PBB) four
times), and exposed for 40 min to 2% BSA in PBS (BSA 2%). After washing with
PBB (four times), cells were incubated with rabbit anti-human ubiquityl-histone
H2A monoclonal antibody (Cell Signaling Technologies #8240 S; 1:1600 dilution in
PBB) for 1 h at RT and additional 1.5 hours at 4 °C. Cells were washed with PBB
(four times), and incubated with the secondary antibody (donkey anti-Rabbit IgG
AlexaFluor 647 from Jackson ImmunoResearch #711-605-152 at 1:250 dilution in
PBB) for 1 h at RT in dark. Next, cells were washed with PBB (four times), stained
with Hoechst 33342 (1 mg/100 ml in water) for 30 s, and washed with PBS (three
times). Cells were then maintained in PBS at 4 °C before imaging, no longer than
7 days.

The negative control was obtained by means of the same procedure but
incubating the cells with PBB only instead of a primary antibody solution in PBB.

Imaging was carried out on a Zeiss 880 LSM confocal microscope according to
the protocol reported in Storti et al.49.

Murine models. Mice were housed in a sterile-barrier facility, and all experiments
were approved by the Institutional Animal Care and Use Committee at the Beth
Israel Deaconess Medical Center.

Xenografts and drug treatment. To study the in vivo effect of PTC596 or its
analog PTC028 on the ADC cell line A549, NOD-SCID IL2Rγ(null) mice (non-
obese diabetic/severe combined immunodeficient/interleukin-2 receptor γ null,
NSG mice, Jackson Laboratories) were injected subcutaneously in flanks on both
sides with 2 × 106 cells with 50 μl Matrigel (BD Basement Membrane Matrix
Phenol-red free #356237). Once tumors became measurable (~80–90 mm3), mice
were randomized to receive PTC596 (n= 15; 12 mg/kg), PTC028 (n= 7; 15 mg/
kg), or vehicle (n= 20; 0.5% hydroxypropyl methylcellulose—0.2% Tween 80 in
distilled water) by oral gavage twice a week. In order to determine tumor volume
by caliper measurement, the greatest longitudinal diameter (length) and the
greatest transverse diameter (width) were determined. Tumor volume was calcu-
lated by the modified ellipsoidal formula (tumor volume=½ (Length×width2), as
previously reported31. Treatment was started when tumor volume was measured
with a caliper as being at least 0.06 cm3, and tumor growth was followed up to
21 days.

Transgenic mice, drug treatments, and MRI. To generate K-RasG12D/p53 null
mice (Lox-stop-lox/LSL x K-RasG12D, p53 flox18,19,58 they received intranasal
administration of Cre-expressing adenovirus (2.5 × 107 viral particles per mouse)58

at 8 weeks of age, to achieve recombination in airway cells19. Sibling mice, receiving
the same amount of Adeno-empty virus, have been used as negative controls to
study healthy tissues. Tumor growth was assessed by MRI at the BIDMC Imaging
Facility after 5–6 weeks of induction, and were then monitored every 1–2 weeks to
detect baseline tumor volume and recruited into treatment groups (PTC596, or
vehicle) when tumor size reached 1–2.0 mm diameter.

Mice were treated with PTC596 (n= 7; 12 mg/kg in 0.5% HPMC and 0.2%
Tween, oral gavage twice per week), selumetinib (n= 12; daily oral gavage, 8 mg/kg
in 0.5% HPMC and 0.2% Tween, oral gavage daily), combination of PTC596-
selumetinib (n= 6) or vehicle control (n= 8; 0.5% HPMC and 0.2% Tween, same
regimen as PTC596). Negative control mice received vehicle treatment. All mice
were killed 1 month after treatment when the tumor burden of vehicle-treated mice
became too large.

Mice were then scanned by MRI twice/week to capture the effects of drug
treatment on tumor size over a month period. Processing and quantification
techniques of tumor burden were based on manual segmentation/volume
calculation of diffuse lung tumors59,60. Changes in lung tumor volumes over the
course of treatment were calculated as a percentage change in volume over tumor
volume at day 1 of treatment, which was set at 100%. MRI images of mouse lungs
were captured with a Bruker Biospec 94/20 9.4 Tesla scanner and the primary
imaging sequence used was RARE (rapid acquisition with refocused echoes), with
TR/TE= 1200 ms/17.5 ms.

Histopathological analyses. Mice were killed by CO2 euthanasia. Lungs and
xenograft subcutaneous tumors were fixed in 10% formalin (formalin solution
neutral buffered 10%, Sigma-Aldrich) O/N. Fixed specimens were embedded in
paraffin and sectioned at 5-μm thickness. IHC were performed on paraffin sections
with an anti-BMI-1 mouse monoclonal antibody (Millipore, #05637; 1/100 dilu-
tion) on mouse tissues, and a rabbit anti-human BMI-1 (Cell Signaling #6964; 1/
200 dilution) for the xenografts. Fresh tumor tissue was collected from patients
undergoing surgical resection of NSCLC and placed in RPMI prior to being fixed in
10% formalin. Subsequently, they were stained as mentioned above. In brief, tissue
sections were deparaffinized with xylene and hydrated in graded ethanols. Antigen
retrieval was performed in 10 mM citrate buffer (pH 6.0) on a 2100 Retriever for
40 min. To prevent non-specific binding we applied as protein blocking solution
7% horse serum in PBS for 30 minutes at RT. Primary antibody were incubated at

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01897-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:370 | https://doi.org/10.1038/s42003-021-01897-6 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


4 °C O/N. Next, we applied peroxidase blocking solution for 10 minutes at RT and
subsequently we performed secondary antibody incubation for one hour at RT.
Secondary antibodies were horse anti-mouse BA2001 at 1/1200 dilution, and goat
anti-rabbit BA1000 at 1/1000 from Vector Laboratories, Inc. CA. ABC-HRP
standard kit (Vector Labs, CA PK-6100) was adopted and incubated for 30 minutes
and the signal was revealed with DAB (Vector Labs, CA SK-4100). Tissue sections
were counterstained with hematoxylin–eosin and mounted with Cytoseal 60
(Electron Microscopy Science), for pathology analysis.

Mouse lung and tumor dissociation into single cells. Murine pulmonary tissue
(healthy and tumor lung) were dissociated into single-cell for further RNA
sequencing downstream applications using the Tumor Dissociation kit by Miltenyi
Biotec (# 130-096-730). In brief, the tissue was placed in a petri dish on ice and cut
into small pieces of 2–4 mm. The pieces were infused with RPMI/enzyme mix
(Miltenyi Biotec), transferred to a gentleMACS C tube containing RPMI/enzyme
mix, attached to the sleeve of the gentleMACS Octo Dissociator and run using a
“37C_m_TDK_1” program. After termination of the program, the cells were spun
down at 300 × g for 10 min at 4 °C, resuspended in RPMI-2% FBS, passed through
a 70 μm strainer and centrifuge was repeated. The cell pellet was treated with 1 ml
of ACK solution for 7 min at RT, and the lysis stopped with 4 ml of RPMI-2% FBS.
After centrifugation, the cells were suspended in 1 ml RPMI-2% FBS and passed
through a cell strainer (70 μm) to obtain a single-cell suspension. Immediately
before transcriptome barcoding using the inDrop platform, cells were manually
counted on a hemocytometer and diluted to 60,000 cells/ml. The final cell sus-
pension included 15% v/v Optiprep (Sigma-Aldrich, Cat. No. D1556).

Patient description and preparation. Twelve NSCLC (twn ADCs and two
squamous carcinomas) patient samples were analyzed in this study. Fresh samples
were obtained from patients undergoing surgical resection. Patients were selected
when having tumors ≥1.6 cm that were treatment-naive. Analysis related to mutant
versus wt-KRAS mutation status was only performed on ADC samples (n= 10).

This study was conducted with approval of the Dana-Farber Brigham and
Women’s Cancer Center IRB and written informed consent from subjects. The
protocol allows the collection of discarded tissue samples. De-identified genomic
information is deposited in protected public repositories for subjects explicitly
allowing it on the consent form. Human tissue samples were de-identified and
analysis is not considered human subject research under the US Department of
Human and Health Services regulations and related guidance (45 CFR part 46).
Perpendicular sections immediately flanking 1–3-mm thick fragments of all tumor
tissues were reviewed by a pulmonary pathologist to confirm the diagnosis and
tumor content. Patients’ information is shown in Supplementary Table 1.

Tumor lung samples were dissociated for sc-RNAseq by using a Tumor
Dissociation kit Human from Miltenyi (#130-095-929), similar to the protocol
described for murine tumors, except the “37C_h_TDK2” program was used.

Genomic DNA was extracted from four 10 μm scrolls of paraffin-embedded
tissues per sample utilizing the QIAamp DNA FFPE Tissue Kit (#56404), according
to the manufacturer’s instructions.

All clinical samples were sequenced using the Oncopanel platform61. Samples
18, 21, 36, and 37 were sequenced using Ion S5-targeted sequencing (Ion Torrent;
Applied Biosystem, Calsbad, CA, USA). KRAS mutation status was confirmed by
digital droplet PCR (ddPCR) using the ddPCR Mutation Assay (BioRad®, Hercules,
CA) as per manufacturer instructions. A fluorescence intensity threshold of 3000
was set as a cutoff point. A mutation was called when at least one droplet was above
the threshold level. Mutations values were reported as mutant allele frequency
(MAF), defined as the proportion of mutant to wild-type PCR products in the
ddPCR readout. The analyzed mutations were KRAS codons 12 and 13. Patients
have been divided into KRAS mutated and KRAS wt (Supplementary Table 1)
based on the presence of activating mutations (see Supplementary Data). Some
tumors displayed KRAS amplification or loss. However, no functional analyses
were conducted to determine the effects of these additional mutations.

InDrop. For inDrops-seq, the cells were encapsulated in droplets and the libraries
were made at the Harvard Single-Cell Core50,62 with the following modifications in
the primer sequences.

RT primers on hydrogel beads-
5′-CGATTGATCAACGTAATACGACTCACTATAGGGTGTCGGGTGCAG

[bc1,8nt]GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG[bc2,8nt]
NNNNNNTTTTTTTTTTTTTTTTTTTV-3′

R1-N6 primer sequence (step 151 in the library prep protocol in [2])- 5′-TCGT
CGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNN-3′

PCR primer sequences (steps 157 and 160 in the library prep protocol in [2])-
5′-AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGG

CAGCGTC-3′, where XXXXXX is an index sequence for multiplexing libraries.
5′-CAAGCAGAAGACGGCATACGAGATGGGTGTCGGGTGCAG-3′-

sc-RNAseq data processing, quality control, filtering, and cell type identifi-
cation. Raw fastq files were obtained from a NextSeq 500. Next, transcripts were
mapped to the mouse transcriptome (GRCm38.81) following an established
bioinformatics pipeline for inDrop experiments to create raw gene-cell counts

matrices (available on GEO: GSE136246)50, with the slight modification of adding
an additional filtering step to remove lower quality base calls using Trimmomatic
(v0.36,63) with the parameters “LEADING:28 SLIDINGWINDOW:4:26 MIN-
LEN:15” after the “identifying abundant barcodes” step. Human samples were
mapped to GRCh38.91 using a similar approach. Subsequent analysis was per-
formed in R (v3.6.2) and was based on a previously published Bioconductor
workflow with minor modifications64, and published guidelines for sc-RNAseq
analysis65. In brief, cells with low total raw counts were removed if they had fewer
than a calculated number of counts. This trim threshold was based on the mode of
the total counts for a given sample and was calculated as follows (eq. 1).

If mode estimate< 100; trim threshold ¼ mode estimate � 5:5
If 100 ≤mode estimate ≤ 450; trim thresold ¼ ð�0:01 �mode estimateÞ þ 6:5

If mode estimate> 450; trim threshold ¼ mode estimate � 2

8><
>:

ð1Þ
Next, cells with library sizes more than three median absolute deviations

(MADs) below the median library or six MAD’s above the median library size were
filtered out. Cells with a total number of expressed genes (≥1 read) more than two
MADs below the median total number of expressed genes or five MAD’s above the
median total number of expressed genes were filtered out. Cells with a total percent
of expressed genes originating from mitochondrial DNA more than six MADs
above the median were filtered out. A doublet score was computed to estimate the
percentage of barcodes for two or more cells66, and cells with a doublet score of
0.99 and greater were excluded. The expression of each cell was normalized by a
size factor approach67. Principle component analysis, Uniform Manifold
Approximation and Projection for Dimension Reduction and t-distributed
stochastic neighbor embedding visualizations revealed no significant batch effects
to be regressed out for the mouse samples. For the human samples, mnnCorrect()
from the batchelor package68 was utilized for batch correcting samples.

For expression data visualization, SPRING was used69. In brief, a graph of cells
connected to their nearest neighbors in gene expression space was determined and
this was then projected into two dimensions using a force-directed graph
layout. For cell annotations for the murine samples, a custom hybrid annotation
was used wherein immune cells were labelled using SingleR33,35,70 and its Immgen
reference set, whereas non-immune cells were labeled using the Mouse Cell Atlas as
a reference71. For the human samples the SingleR Human Cell Atlas annotation
was used11.

Supplementary Table 9 shows a cross-table of (a) predominant cell populations
present in each murine and/or human cluster and (b) cell types across both species.

For the patient samples, a total of 23 tumor nodules were sequenced with the
number of nodules from each patient as shown in Table 1:

Throughout the paper, we refer to deconvolution that was performed
considering solely the ADC samples contained within the NSCLC set and the
mutant-KRAS-associated cluster was annotated as Cluster 10 (C10). For validation
purposes, we also deconvoluted only the ADC samples, and in such case, the
mutant-KRAS-associated cluster was annotated as Cluster 3 (C3), as shown in
Supplementary Figures 1b, c and Supplementary Figure 3a.

Differential gene expression analysis, marker gene identification, and figure
generation. Differential gene expression was calculated using genewise negative
binomial generalized linear models (glmFit()) from the edgeR package72,73. In
brief, binomial dispersion was estimated using the estimateDisp(), followed by
model fitting using glmFit() and finally, likelihood ratios for differential expression
were calculated using glmLRT(). Differential gene expression results are provided
in Supplementary Tables including Log2 fold change (Log2FC), p value and
Benjamini–Hochberg adjusted p values (FDR)74.

For the heatmaps in Supplementary Figure 1, heatmaps were generated as
follows. To identify marker genes per expression cluster, findMarkers() from the
scran package64 was utilized with the parameter (direction = “up” or “any”)

Table 1 Patients’ sample replicates.

Patient sample Number of replicates

NSC004 4
NSC009 2
NSC010 2
NSC016 3
NSC018 2
NSC019 2
NSC020 2
NSC021 2
NSC035 1
NSC036 1
NSC037 1
NSC040 1

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01897-6

12 COMMUNICATIONS BIOLOGY |           (2021) 4:370 | https://doi.org/10.1038/s42003-021-01897-6 | www.nature.com/commsbio

www.nature.com/commsbio


depending on the heatmap created. From the 25 highest expressed genes per cluster
in tissue samples (25 genes, 13 cluster, totaling 325 genes), only unique genes were
selected (i.e., genes identified as a marker in only 1 cluster) and shown. This
resulted in a final count of 235 genes for murine healthy samples and 222 for
murine tumor tissue samples. Heatmaps were generated using the pheatmap R
package (Kolde R. pheatmap: Pretty Heatmaps. R package version 1012 2019) with
normalized expression matrices being row (gene) scaled prior to plotting. Genes
(rows) were hierarchically clustered in an unsupervised manner based on Euclidean
distances between genes by toggling the flag “cluster_rows=TRUE”. The genes
corresponding to the rows of the heatmaps are listed in Tables S3 and S4, with
genes in the same order as the heatmap.

Ingenuity pathway analysis. Analysis was conducted using IPA (Ingenuity®
Systems, www.ingenuity.com). Gene lists containing mean expression values of sc-
RNAseq data of murine and human C10, filtered for p value ≤ 10−10, were sub-
mitted to IPA. Core analysis of the uploaded data identified canonical pathways,
diseases and functions, and gene networks that are affected. Heatmaps were used to
show comparison analysis between murine and human data.

Gene set enrichment analysis. Differential expression gene sets were filtered with
an FDR < 0.01 and then ranked based on logFC. GSEA was then performed by
comparisons with curated expression grp lists downloaded from the Broad Institute
using the GSEA tool also from the Broad. Specifically, we used murine data sets
M1909775, M911876, M879577, M199978, and M947379 and human data sets
M5953, M2897, M27039 M457280, M253481, M707978, M126082, M1695683, and
M231684. For the Bmi-1 targets, we used the murine data set GSE5693531. The
GSEA data set database used was the full version of MSigDB v7.2.

Survival analysis and mutation-level association analysis. For survival analysis
of C10 signature, lung adenocarcinoma samples were taken from TCGA (https://
tcga-data.nci.nih.gov/tcga/), and the RNAseq raw counts data and clinical data
from the data sets were utilized. Prior to survival analysis, TCGA RNAseq raw
counts were normalized using the total mappable reads across all samples. Then, z
score transformation was performed for each gene in the C10 signature cross all
samples. For each of downregulated genes in C10, the z score was further trans-
ferred by multiplying with −1. The overall C10 score for a sample was then
determined by averaging the z scores of all upregulated genes and the transferred z
scores of all downregulated genes. The median of all overall C10 scores across all
samples was used to segregate the samples into C10 signature high and low groups.
Survival analysis was performed between these two groups (C10 signature high—
higher than the overall score median and C10 signature low—lower than the
overall score median) based on the Kaplan–Meier method using overall
survival data.

TCGA ADC cohorts (colon, COAD; pancreas, PAAD; stomach, STAD) were
scanned with the C10 to score its enrichment in KRAS-mutant versus WT cancers.

EnrichR analysis. Following differential gene expression of C10 versus other
epithelial clusters in both murine and human data sets, gene lists, filtered LogFC
≥1.5, FDR ≤0.05, were submitted to the EnrichR enrichment suite85,86.

Method for scoring the signature genes. TCGA RNAseq samples from several
ADCs (colon, rectum, pancreatic, stomach) were downloaded for gene expression
analysis. After mapping with STAR software, mapped counts were employed to
generate the raw expression counts using the FeatureCounts. The raw expression
counts were then further normalized using the Cross-Correlation method87. Kras
mutation status (mutant or wild type) across all samples was evaluated based on
the called maf files. For each signature gene in a sample, z score transform of
normalized expression was performed over all samples in each ADC type. The z
score transferred values of all signature genes in a sample were averaged to obtain
the signature score of the sample. For a combination of the positive and negative
Kras-mutant signature genes, negative equal weights were given for all negative
signature genes and the same positive equal weights for all positive signature genes
prior to averaging.

Student t statistics were used to assess the significance between the two means
of the signature scores in Kras-mutant and WT sample groups.

Statistics and reproducibility. For comparison of continuous variables between
groups, we used T test (two-tailed; type 3) unless otherwise stated. Differences were
considered statistically significant at P<0.05. The association between categorical
variables was investigated with two-sided Fisher’s exact test on cell numbers per
cluster. FDR’s were calculated by adjusting p values using the Benjamini–Hochberg
method. Statistical analyses were performed in PASW Statistics 18 (SPSS Inc.) and
R version 3.6.1 (The R Foundation for Statistical Computing) at 5%
significance level.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analyzed during the current study are available in
the GEO repository: GSE136246. All other data are available from the corresponding
author on reasonable request.
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