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Abstract

The aim of this project is to prove the Denjoy-Wolff Theorem, which deals with iteration of
holomorphic self-maps of the unit disk D. It claims that either the map is conjugate to a rotation
about the origin or all the points converge to a unique point in D under iteration. We will also
prove that there always exists a fundamental set, an invariant subset reached by all the compact
sets in a finite number of iterations and where the map is one-to-one. Fundamental sets can be
classified in four different types, up to conformal conjugation.

Finally, we will use this results to classify the periodic Fatou components of entire maps. For
each of them, we can find a fundamental set. In the case of attracting or parabolic components
or Siegel disks, the dynamics in the fundamental set is determined up to conformal conjugation.
However, in the case of Baker domains three different types can occur and we will present some
examples of them.
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INTRODUCTION.

Throughout this project, we study the iteration of holomorphic functions in the unit disk and
apply the results in a more general context of complex dynamics.

The iteration of holomorphic functions in the unit disk started with the Schwarz lemma,
a result about analytic self-maps of D that fix the origin. Specifically, it asserts that, given a
self-map of D that fixes the origin, the disks centred in the origin of any radius remain invariant.
This result was stated by H. Schwarz (1880) only for one-to-one maps, and generalised by C.
Carathéorody (1912) for every self-map of D.

Few was discussed on the topic until 1926, when J. Wolff published an article at the Comptes
rendus hebdomadaires des séances de l’Academie des sciences [24]. He proved that, given an
analytic self-map of D, not a Möbius Transformation, without fixed points in D, all orbits
converge to the same point in the boundary. However, he assumed that the map extended
continuously to the boundary. Two weeks later, Wolff published another article where he
showed that the hypothesis of continuity at the boundary was superfluous [25]. One week later,
A. Denjoy published an alternative proof for the theorem [11]. Because of this independent,
but nevertheless collaboration, the theorem was named after the two mathematicians.

Denjoy-Wolff Theorem. Let f be an holomorphic self-map of D, that is not an elliptic
automorphism. Then, there is a ∈ D, such that ∀z ∈ D, fn(z)→ a, as n→∞.

The point a is called the Denjoy-Wolff point of f .

Months later, Wolff published Sur une géneralisation d’un théorème de Schwarz [26], where
he gave an alternative proof for the theorem based on Schwarz lemma. He proved that given a
self-map f with Denjoy-Wolff point a, any disk tangent to ∂D at a remains invariant under f .
This result, known as the Wolff lemma, was useful to compute the limit and derivative at the
Denjoy-Wolff point, in some generalised sense.

f
a

Figure 1: Wolff lemma asserts that tangent disks to ∂D at the Denjoy-Wolff point a are mapped into itselves.

In this project, we present a modern proof of these results due to A. Beardon (1990) that
can be found in [9] and [21]. The novelty relies on using the hyperbolic metric of D, instead of
the Euclidean one. The Schwarz-Pick lemma, that asserts that holomorphic maps are always
contractive with respect to the hyperbolic metric, is the key element of this proof. Chapters 1,
2 and 3 are devoted to preliminary results and finally, in chapter 4 we prove the Denjoy-Wolff
Theorem, as well as the Wolff lemma.

Once we know that all the orbits converge to the same point, it is natural to ask how they
converge. If we assume that the self-map of D is also analytic in a neighbourhood of the Denjoy-
Wolff point, then this question is closely related to the linearization around the fixed point, i.e.
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to whether the function is locally conjugate to its linear part, a classical problem widely studied
by many mathematicians going back to Schröder (1871), Koenigs (1884) or Leau (1897).

On the other hand, the general problem of convergence when the extension to the Denjow-
Wolff point is not assumed, remained open until 1981, when Cowen [10] proved the existence of
a subset of D where the dynamics are essentially linear. He called it a fundamental set.

Definition. Let f be a map of a domain ∆ ⊂ C into itself, we say V is a fundamental set
for f on ∆ if V is an open, connected, simply connected subset of ∆ such that: f(V ) ⊂ V and
for every compact set K ⊂ ∆, there is a positive integer n so that fn(K) ⊂ V .

Cowen’s Theorem. Let f : D→ D be analytic, nonconstant and not conformal, with Denjoy-
Wolff point a. Suppose that the angular derivative f ′(a) is nonzero. Then there is a fundamental
set V for f on D, a domain Ω (C or D), a Möbius transformation φ : Ω → Ω and an analytic
map σ : D → Ω, such that σ and f are univalent in V , σ(V ) is a fundamental set for φ on Ω
and the following diagram is commutative:

D f //

σ

��

D

σ

��
Ω

φ // Ω

Cowen’s results go actually further, proving that Ω and φ fall into four essentially different
cases.

1. Ω = C, φ(z) = sz, 0 < |s| < 1.

2. Ω = C, φ(z) = z + 1.

3. Ω = D, φ(z) =
(1 + s)z + (1− s)
(1− s)z + (1 + s)

with 0 < s < 1.

4. Ω = D, φ(z) =
(1± 2i)z − 1

z − 1± 2i
.

(a) CASE 1 (b) CASE 2 (c) CASE 3 (d) CASE 4

Figure 2: The different types of convergence to the Denjoy-Wolff point.

The results of Denjoy, Wolff and Cowen form together a fairly complete description of the
possible dynamics of holomorphic self-maps of D, arguably a quite restricted class of functions.
It turns out however that their results can be applied in a much more general setting, namely
the iteration of holomorphic maps in all of C, which had started some years earlier. Indeed, the
French Academy of Sciences announced that it would award its 1918 Grand Prix des Sciences
Mathématiques for the study of complex iteration in the Riemann sphere Ĉ. At that time, P.
Fatou and G. Julia developed independently a groundbreaking theory, based on the results on
normal families of P. Montel (1912). They reached the same results with different approaches,
but their most important idea was to split Ĉ into two different sets, one where the iterates are
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well-behaved and the other with chaotic dynamics. These two sets were named after them: the
Fatou set and the Julia set.

In chapter 6 we analyse the behaviour of the iterates in the Fatou set, in particular in each
connected component of it, which are called Fatou components. In the case of entire functions,
Fatou components are simply connected which connects, via the Riemann map, to the work
done in the previous sections. The main theorem is as follows.

Figure 3: The Julia set of the polynomial P (z) = z2 − 1.12 + 0.222i. [23]

Theorem. (Classification of Fatou components) Let f be a entire function, but not a
linear polynomial, and U be a periodic Fatou component of period k. Then exactly one of the
following holds:

1. U contains an attractive periodic point z0 and fnk → z0 uniformly on compact subsets of
U . Then U is a component of the basin of attraction of z0.

2. ∂U contains a parabolic periodic point z0 and fnk → z0 uniformly on compact subsets of
U . Then U is a component of the parabolic basin of attraction of z0.

3. There exists z0 ∈ U , an irrationally neutral periodic point and fk|U is conformally conjugate
to an irrational rotation. Then, U is a Siegel disk.

4. If f is transcendental, U can also be a Baker domain. That is fnk(z) → ∞ uniformly
on compact subsets of U .

(a) Basin of attraction. (b) Parabolic basin. (c) Siegel disk. (d) Baker domain.

Figure 4: Schematic representation of the different types of Fatou components.

The classification theorem is due essentially to Fatou (1919) and Cremer (1932). In 1926,
Fatou extend some of his results in the case of transcendental entire functions [15], i.e. entire
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maps with an essential singularity at ∞, although he realised that ”the already complex phe-
nomena that occur in the iteration of polynomials acquire here an even bigger complexity”. He
admitted to feeling overcome and only proved few general theorems. However, he realised the
presence of Baker domains and gave some examples.

At that time, Baker domains were called infinite Fatou components, essentially parabolic
domains or domains at ∞. In the above form the theorem was stated first by Baker, Kötus and
Lü (1991).

We shall give a proof of the classification theorem using the Denjoy-Wolff theory developed
in the previous sections.

Figure 5: A Julia set with a Baker domain of the left.[7]

Our last goal is to use Cowen’s classification to describe the dynamics in the different types
of Fatou components. Around attracting and parabolic fixed points and in Siegel disks the
dynamics are determinate up to conjugacy. The situation is different for Baker domains, where
several cases can occur, as it is shown in the next and final theorem.

Theorem. (Classification of Baker domains) Let B be a Baker domain of f and V ⊂ B
a fundamental set for f in B. Then, taking Ω = C or Ω = H, there exists a map ψ : B → Ω,
which is one-to-one in V , and a Möbius transformation φ : Ω → Ω, such that ψ ◦ f = φ ◦ ψ.
Moreover, Ω is unambiguously determined and φ is unique up to conjugation, and they can be
chosen among the following:

(a) Ω = C and φ(z) = z + 1. In this case, we say that B is doubly-parabolic.

(b) Ω = H and φ(z) = sz, with 0 < s < 1. In this case, we say that B is hyperbolic.

(c) Ω = H and φ(z) = z ± 1. In this case, we say that B is simply-parabolic.

We follow the proof of J. König [18] and we provide examples of the different types of Baker
domains.

vi



Anna



1 BACKGROUND ON COMPLEX ANALYSIS.

Here we give the main results in complex analysis that we use throughout this project. First
we start by defining the concept of holomorphic function.

Definition 1.1. Let S be C or Ĉ and V an open subset of S. Let us consider f : V → S. We
say that f is holomorphic at z ∈ V if the limit

lim
h→0

f(z + h)− f(z)

h

exists. In that case we denote it by f ′(z).

We say that f is holomorphic in V if it is holomorphic at all points of V . We define H(V )
to be the collection of analytic functions in V .

We remark that, in the previous definition, if S = Ĉ then the limit is taken with respect to
the spherical metric.

We refer to [19] for basic background on holomorphic maps. Nevertheless, we recall that
any holomorphic map f : V → S is open and analytic, i.e. it has a power expansion about any
z0 ∈ V . As a consequence, f is C∞ and all zeros of f are isolated. Holomorphic maps of the
Riemann sphere Ĉ are precisely the rational maps.

Given any holomorphic function f , we shall be interested in the sequence F = {fn}n of
iterates of f .

In general, when considering a family F of holomorphic functions, we use uniform conver-
gence on compact subsets, which is stronger than pointwise convergence. Let Ω be any open
subset of Ĉ.

Definition 1.2. A sequence of functions {fn} on Ω converges uniformly to a funtion f on
Ω if ∀ε > 0 ∃n0 such that ∀n ≥ n0, σ(fn(z)− f(z)) < ε ∀z ∈ Ω.

A sequence of functions fn on Ω converges uniformly on compact subsets (u.c.c) if
for every compact subset K in Ω, the restrictions fn�K converge uniformly.

The concept of equicontinuity is specially relevant. Intuitively, a family of functions is
equicontinuous at one point if the image of z0 is close to the image of z1, when z0 and z1 are
close enough, for all members of the family. We will also define the concept of normal family
because, by Arzelà-Ascoli theorem, it is equivalent to equicontinuous.

Definition 1.3. Let (X1, d1), (X2, d2) be metric spaces. A family F of maps of (X1, d1) into
(X2, d2) is equicontinuous at x0, if for every ε > 0, there is δ > 0 such that, for all x ∈ X1

and f ∈ F : if d1(x0, x) < δ, then d2(f(x0), f(x)) < ε.

We say F ⊂ H(Ω) is a normal family if every sequence {fn} in F contains a subsequence
that converges u.c.c. in Ω.

Theorem 1.4. (Arzelà-Ascoli) Let F be a family of holomorphic functions is normal in Ω
if and only if it is equicontinuous on every compact subset of Ω, with respect to the spherical
metric.

By Weierstrass Theorem, if F ⊂ H(Ω), then every limit function is also holomorphic in Ω.

Since we are considering the spherical metric, sequences can converge uniformly to∞. Then,
in the definitions of equicontinuity and normality, we allow fn → ∞. This is because we want
to have the concept of proximity of the iterates also for points that are close to ∞.

Montel’s Theorem gives us an easier characterisation for normal families. In particular,
bounded families are normal.
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Theorem 1.5. (Montel) Let F be a family of holomorphic functions on Ω. If there exist three
distinct points of Ĉ which are omitted by every f ∈ F , then F is normal.

In sections 4 and 5, we work with holomorphic self-maps of D, which therefore are bounded.
The next corollary tells us that, in this case, pointwise convergence is equivalent to convergence
u.c.c. So, when working with holomorphic self-maps of D we will only care about pointwise
convergence.

Corollary 1.6. If {fn}n is a sequence of bounded holomorphic functions on Ω converging
pointwise to f , then f is holomorphic and the convergence is u.c.c.

Proof. The family F = {fn}n is bounded so, by Montel’s Theorem, every subsequence of fn
has a convergent sub-subsequence. This limit must be f and it is analytic. Suppose now that
the whole sequence {fn}n does not converge to f u.c.c. Then there exists K ⊂ Ω compact and
ε > 0 such that for all n0 there exists n ≥ n0 and some z ∈ K such that |fn(z)− f(z)| ≥ ε. So
we can take a subsequence

{
fnj
}
j

and points zj in K such that
∣∣fnj (zj)− f(zj)

∣∣ ≥ ε, ∀j ≥ 1.

Therefore, the sequence
{
fnj
}
j

does not admit any uniformly convergent subsequence in K,

which is a contradiction. �

In section 6, we will work with entire functions, that is, functions that are holomorphic in the
whole plane C. As a consequence of Liouville’s theorem, entire functions must have a singularity
at ∞, either a pole or an essential singularity. The ones that have a pole at ∞ are polynomials
and the ones that have an essential singularity are transcendental entire functions. Polynomials
can be extended to holomorphic functions of Ĉ by defining ∞ to be the image of itself, whereas
transcendental entire functions cannot be extended to Ĉ. The two following theorems will be
used when working with entire functions.

Theorem 1.7. (Picard) Let f be an entire non-constant function. Then, f(C) = C or
f(C) = Cr {z0}, for some z0 in C.

Moreover, if f is transcendental, then for any neighbourhood U of∞, f(U) = C or f(U) = Cr {z0},
for some z0 in C.

Theorem 1.8. Let f be a transcendental entire function. Then, f2(z)− z has infinitely many
zeros in C.

Finally, we define harmonic function and state a result that we will use in section 6.4.

Definition 1.9. If G is an open subset of C, then a function u : G→ R is harmonic if u has
continuous second partial derivatives and

∂2u

∂x2
+
∂2u

∂y2
= 0.

Theorem 1.10. (Harnack’s inequality) Let V be an open subset of C and K a compact
subset of V . Suppose that h is a harmonic positive function in V . Then, there exists some C
depending only on V and K such that

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).
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2 CONFORMAL SELF-MAPS OF THE UNIT DISK.

Consider Ĉ = C ∪ {∞} and let Ω1, Ω2 be open subsets of Ĉ. We say f is a conformal map
between Ω1 and Ω2 if f : Ω1 → Ω2 is holomorphic and bijective.

The Möbius Transformations T (z) =
az + b

cz + d
, with a, b, c, d ∈ C and ad− bc 6= 0, are the

only conformal maps of Ĉ. It is easy to see that the composition and the inverse of Möbius
Transformations are Möbius Transformations. Therefore, they form a group with respect to
composition. One important property is that they map circles in Ĉ onto circles in Ĉ, where a
straight line in C is thought as a circle through ∞.

The conformal maps of C are the Möbius Transformations that fix ∞. Hence, c must be 0
and T (z) = az + b, with a, b ∈ C and a 6= 0. T can be thought as the composition of a rotation
and a translation.

We are going to focus on the conformal self-maps of D, that is:

Definition 2.1. f : D→ D is a conformal self-map of D if it is holomorphic and bijective.

Notice that the conformal self-maps of D form a group with respect to the composition.

Now we are going to prove the Schwarz Lemma, a powerful tool to work with self-maps of
D that fix the origin. As a corollary, we will obtain that the only conformal self-maps that fix
the origin are rotations.

Theorem 2.2. (Schwarz Lemma) Let f : D → D be a holomorphic function such that
f(0) = 0. Then:

|f(z)| ≤ |z| ∀z ∈ D and
∣∣f ′(0)

∣∣ ≤ 1.

The equality holds if and only if f(z) = eiθz, for some θ.

Proof. Consider the function g(z) =
f(z)

z
defined in D r {0}. Since lim

z→0
g(z) = f ′(0), g has a

removable singularity in z = 0 and it can be extended to an holomorphic map g̃ defined in D.

Now we notice that:

|g̃(z)| = |g(z)| = |f(z)|
|z|

≤ 1

r
∀ |z| = r, r ∈ (0, 1)

By the Maximum Modulus Principe, this inequality holds for all z with |z| ≤ r. Making
r → 1, |g̃(z)| ≤ 1 ∀z ∈ D. Therefore, |f(z)| ≤ |z| ∀z ∈ D. As f ′(0) = g̃(0) and |g̃(0)| ≤ 1, then
|f ′(0)| ≤ 1.

Suppose now that |f(z)| = |z| for some z ∈ D. Then, |g̃(z)| = 1 and by the Maximum
Modulus Principe, g̃(z) = eiθ, for some θ. The reciprocal is obvious.

�

Corollary 2.3. Let f : D→ D be a holomorphic function such that f(0) = 0. Suppose f is not
a rotation. Let K be a compact subset of D. Then, there exists k = k(K) ∈ (0, 1) such that
|f(z)| ≤ k |z| , ∀z ∈ K.

Proof. Consider the function g̃ as defined in the proof of Schwarz lemma. |g̃| is a continuous
function which takes positive real values so, by Weierstrass Theorem, |g̃| has a maximum, call
it k. Clearly, 0 < k. And k < 1 because, by Schwarz lemma, |f(z)| < |z|, so |g̃(z)| < 1 for all z
in K. �
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Corollary 2.4. The only conformal self-maps of D that fix the origin are the rotations, f(z) =
eiθz, with 0 ≤ θ ≤ π.

Proof. Applying Schwarz lemma to both f and f−1, we obtain |f(z)| ≤ |z| and |z| ≤ |f(z)|, so
|f(z)| = |z|. Therefore, f(z) = eiθz, for some θ. �

Now we are going to prove that there is an explicit formula for all the conformal self-maps
of D. With this formula, computing the fixed points of f and its dynamics will be quite easy.

Theorem 2.5. The conformal self-maps of D are of the form:

f(z) = eiϕfa(z) = eiϕ
z − a
1− az

with a ∈ D and 0 ≤ ϕ ≤ 2π.

Proof. Observe that fa is a Möbius Transformation, so it sends circles to circles in C∗. Let us
prove that the unit circle is invariant under fa:∣∣∣eiθ − a∣∣∣ =

∣∣∣eiθ − a∣∣∣ =
∣∣∣e−iθ − a∣∣∣ =

∣∣∣1− aeiθ∣∣∣
So |fa(z)| = 1, if z = eiθ. Therefore, fa(z) maps the unit circle onto itself and, since fa(a) = 0,
it maps D onto D. Therefore, fa is a conformal self-map of D.

Now consider h any self-map of D and let a ∈ D be such that h(a) = 0. Then, consider
h ◦ f−1

a . Since h(f−1
a (0)) = 0, corollary 2.4 applies and h(f−1

a (w)) = eiθw, for some θ. Writing
w = fa(z), h has the required form. �

2.1 Iteration of conformal self-maps of D.

With an explicit formula for the self-maps of D, we are able to compute its fixed points. Notice
that the conformal self-maps of D are well-defined in ∂D, so it makes sense to refer to a fixed
point of f in ∂D.

Suppose f 6= id. The fixed points of f satisfy the equation f(z) = z, that is:

az2 + (eiϕ − 1)z − aeiϕ = 0

If a = 0, the equation is (eiϕ−1)z = 0, whose only solution is z = 0, provided we have supposed
f 6= id, so eiϕ 6= 1. If a 6= 0, there are two solutions z1, z2 to the previous equation. They verify

z1z2 = −a
a
eiϕ ∈ ∂D (so |z1| |z2| = 1) and az1 + az2 = 1− eiϕ. In addition,

f ′(z1)f ′(z2) = e2iϕ 1− |a|2

(1− az1)2

1− |a|2

(1− az2)2
= e2iϕ (1− |a|2)2

(1− az1 − az2 + aaz1z2)2
= e2iϕ (1− |a|2)2

(1− 1 + eiϕ − eiϕaa)2
= 1

Therefore, one of the derivatives has modulus less or equal to 1.

This basic analysis shows us that there are three different situations:

1. f is elliptic, that is f has a unique fixed point z0 in D.
If z0 = 0, applying the Schwarz lemma, we obtain that f is a rotation with centre 0. So,
f(z) = eiθ ∀z ∈ D, for some θ. Then, the iterates of f are fn(z) = eiθnz ∀z ∈ D.

If z0 6= 0, let us conjugate f by the conformal map fz0(z) =
z − z0

1− z̄0z
. f̃ = fz0 ◦ f ◦ f−1

z0 is a

conformal self-map of D which maps 0 to 0. Then, f̃ is a rotation with centre 0: f̃(z) = eiθz.
The iterates of f̃ verify f̃n(z) = eiθnz and, since f = f−1

z0 ◦ f̃ ◦ fz0 , we obtain the iterates of
f : f = f−1

z0 (eiθn · fz0(z)) ∀z ∈ D.

4



2. f is parabolic, that is f has a unique fixed point z0 ∈ D. Using the conformal map

h(z) =
z0 + z

z0 − z
we can go over the right half-plane H as follows: f̃ = h−1 ◦ f ◦ h.

Notice that h cuts ∂D at z0 and maps ∂D to the axis {Im(w) = 0}, so that the opposed
point of z0 in ∂D, −z0, is mapped to 0. The points of D are mapped into H (see Figure 6).

h

h−1

z0

0

−z0

D

H

h(−z0)

h(0)

Figure 6: How the conformal map h from D to H.

The map f̃ is a conformal self-map of H which only fixes∞, so it has the form f̃(z) = z+ iβ,
for some β ∈ R. Notice that β 6= 0, because we are assuming f 6= Id. Iterating:

f̃n(z) = z + niβ ∀z ∈ H, lim
n→∞

f̃(z) =∞

So, ∞ is the only fixed point and it attracts every point in H. Returning to f , z0 is the only
fixed point of f in D and, for all point in D, their orbit will converge to z0.

3. f is hyperbolic, that is f has two fixed points z1, z2 ∈ ∂D. Using the conformal map

h(z) =
z − z1

z − z2
, we can go over some half-plane H∗: f̃ = h−1 ◦ f ◦ h.

We see that h cuts ∂D at z2 and extend to a straight line. This line will pass through 0, as
it is the image of z1.

h

h−1

z2

z1

D

H∗

h(z2)

Figure 7: How the conformal map h from D to H.

Hence, f̃ is a conformal self-map of H∗ which fixes 0 and ∞, so it must be f̃(z) = αz, for
some α ∈ R+. Moreover, α 6= 1 because otherwise f would be the identity. If α < 1, the
point 0 attracts every point in H∗, and if α > 1, ∞ is the global attractor. Therefore, z1 or
z2 is the global attractor for f in D, depending on the case.

In each of the cases above, there is one point, call it a, such that a ∈ D and fn(z)→ a, for all
z in D. We will see that we have the same situation for any map f : D → D, not only for the
conformal ones. This is actually the central result in this project.
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3 HYPERBOLIC GEOMETRY.

We are going now to define a new metric based on the condition that isometries must be precisely
the conformal self-maps of D. We call this new metric hyperbolic metric and we will see that
it has many advantages with respect to the euclidean one when working in D. For example, all
the holomorphic self-maps of D will be contractive with respect to this new metric.

The contents of this section can be found in the book [17].

We define the hyperbolic length of a path as the line integral of some density ρ(t) along this
path. Then, we force ρ be such that the conformal self-maps are the isometries of this metric.

Definition 3.1. Let γ be a path in the unit disk D joining the points p and q. We define the
hyperbolic length (or ρ-length) of this path as: ρ(γ) =

∫
γ ρ(t) |d(t)|.

In the same way, we define the hyperbolic distance (or ρ-distance) from p to q as the
infimum of ρ(γ), taken over all possible path γ from p to q.

From now on, to avoid confusions, we will use D(z0, r) to refer to an euclidean disk of center
z0 and radius r, and Dρ(z0, r) for the hyperbolic disk.

To get an explicit formula for the hyperbolic density ρ we are going to impose the conformal
mappings to be isometries with this metric. If f is a conformal self-map of D, then

ρ(f(t))
∣∣f ′(t)∣∣ = ρ(t) (3.1)

Now, as f : D → D is conformal, it must be f(z) = eiϕ
z − a
1− az

with a ∈ D and 0 ≤ ϕ ≤ 2π.

Then, f ′(z) = eiϕ
1− |a|2

(1− az)2
. Taking z = 0, we have f(0) = eiϕa and |f ′(0)| = 1− |a|2.

Applying (3.1) with t = 0, we obtain ρ(eiϕa) =
ρ(0)

1− |a|2
. To simplify the notation, we will

take ρ(0) = 1. Notice that it only depend on the modulus of the point we are considering:

ρ(a) =
1

1− |a|2
(3.2)

From the formula of the ρ−density and the definition of the ρ−distance, we can get a formula
to compute the hyperbolic distance between two points in D. First, suppose that one of this
points is the origin and the other is p 6= 0. Consider the straight segment γ0 that joins 0 and p,
γ0 = {tp, 0 ≤ t ≤ 1}. Then, the ρ−length of γ0 is:

ρ(γ0) =

∫
γ0

ρ(t) |dt| =
∫
γ0

1

1− t2 |p|2
|p| dt =

1

2
log

1 + |p|
1− |p|

Proposition 3.2. γ0 = {tp, 0 ≤ t ≤ 1} is the shortest path between 0 and p and, therefore:

ρ(0, p) =
1

2
log

1 + |p|
1− |p|

(3.3)

Proof. Suppose that γ is any path joining 0 and p. Consider any partition 0 = t1 < t2 < ... <
tn = 1 of the unit interval. Let P be the integral estimate of γ by the partition {ti}:

P =

n−1∑
i=1

ρ(γ(ti)) |γ(ti+1)− γ(ti)|

6



Let us project radially the points γ(ti), so they have the same modulus but lie on γ0, that is

γi0 = |γ(ti)|
p

|p|
. Observe that ρ(γ(ti)) = ρ(γi0).

Joining γi0 to γi+1
0 with straight segments, we obtain a path between 0 and p which may go

back and forward over itself, but remains on γ0. Then:

ρ(γ0) ≤
n−1∑
i=1

ρ(γi0)
∣∣γi+1

0 − γi0
∣∣ ≤ n−1∑

i=1

ρ(γ(ti)) |γ(ti+1)− γ(ti)| = P

Since the partition was arbitrary, ρ(γ0) ≤ ρ(γ). �

Now we are interested in getting a formula to compute the hyperbolic distance between any
two points in D. We are going to move them with an isometry, so that one of them is the origin.
Then, we can compute the distance between them, which must be the same as between the
original points.

Consider a,w ∈ D and fw(z) =
z − w
1− wz

. Let s be such that fw(a) =
a− w
1− wa

= s. Then,

ρ(a,w) = ρ(fw(a), fw(w)) = ρ(s, 0) =
1

2
log

1 + |s|
1− |s|

=
1

2
log

1 +
∣∣∣ w−a1−wa

∣∣∣
1−

∣∣∣ w−a1−wa

∣∣∣ .
Therefore, for any two points a,w ∈ D we have:

ρ(a,w) =
1

2
log
|1− aw|+ |w − a|
|1− aw| − |w − a|

. (3.4)

3.1 Properties of the hyperbolic metric.

Our next goal is to show that the distance defined is, in fact, a distance. Moreover, we prove
that D with this metric is a complete metric space. Notice that D with the euclidean metric is
not a complete metric space.

Proposition 3.3. D with the hyperbolic metric ρ is a complete metric space.

Proof. First we must check that ρ : D×D→ R defines a distance in D, which is straightforward
from the definition that ρ is symmetric.

Indeed, by formula (3.4), ρ is non-negative and it is zero only when the inside of the logarithm
is 1, that is, when w = a.

The triangular inequality comes from: ρ(p, q) = infγ ≤ infγr = ρ(p, r) + ρ(r, q), where γ
denotes any curve joining p and q and γr denotes any curve joining p and q through r.

It is left to see that any Cauchy sequence is covergent. Let {zn}n ⊂ D be a Cauchy sequence.
As D is compact, there exists a convergent subsequence with respect to the euclidean metric:
znk → z, for some z ∈ D. If z ∈ ∂D, then ρ(0, znk)→∞. But, since {zn} is a Cauchy sequence,
ρ(0, znk) must be bounded. Therefore, z ∈ D.

It remains to see that {znk}k converges to z also with the hyperbolic metric. Indeed, using
that |znk − z| → 0,

ρ(znk , z) =
1

2
log
|1− zznk |+ |z − znk |
|1− zznk | − |z − znk |

−→ 0

Since any Cauchy sequence with a convergent subsequence is convergent, {zn}n converges to p
with respect to the hyperbolic metric. �
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Proposition 3.4. The set of hyperbolic circles coincides with the set of euclidean circles in D.

Proof. First, consider the hyperbolic circle with center 0 and radius r:

Cρ(0, r) = {z ∈ D : ρ(0, z) = r} .

This is, by formula (3.3), an euclidean disk C(0, r′) with center 0 and euclidean radius r′ =
e2r − 1

e2r + 1
.

Recall that the isometries with respect to the hyperbolic metric are the Möbius transforma-
tions of D, so they send euclidean circles to euclidean circles.

So, if C is any hyperbolic circle Cρ(w, r), consider an isometry f with f(w) = 0. Then
f(Cρ(w, r)) = Cρ(0, r), so it is an euclidean circle C(0, r′) for some r′. Hence, Cρ(w, r) =
f−1(C(0, r′)) is an euclidean circle.

Conversely, suppose that C(w, r) is an euclidean circle. Consider a hyperbolic isometry f
such that f(w) = 0. Then, f(C(w, r)) = C(0, r′) for another radius r′. Hence, C(0, r′) =
Cρ(0, r

′′), and C(w, r) = f−1(Cρ(0, r
′′)) is a hyperbolic circle. �

As the last proposition is true for open disks (provided that their closure lies in D), we have
that the set of open hyperbolic disks coincides with the set of euclidean disks in D. Therefore,
the topology induced by the hyperbolic metric coincides with the one induced by the euclidean
metric.

So far we have built a metric in D, whose isometries are the conformal self-maps of D. Our
goal is to transfer this metric to any simply connected open subset of C. Indeed, let U be a
simply connected open subset of C, different from C. By the Riemann Mapping Theorem, there
is a conformal map ϕ : U → D. Hence, we define:

ρU (z, w) = ρ(ϕ(z), ϕ(w)), z, w ∈ U.

Clearly, it is invariant under conformal self-maps of U . Indeed, f is a conformal self-map of U
if and only if g = ϕ ◦ f ◦ ϕ−1 is a conformal self-map of D and,

ρU (f(z), f(w)) = ρ(ϕ(f(z)), ϕ(f(w))) = ρ(g(ϕ(z)), g(ϕ(w))) = ρ(ϕ(z), ϕ(w)) = ρU (z, w).

Lemma 3.5. Let {zn}n ⊂ U such that zn → ∂U , with respect to the euclidean metric. Then,
fixed r > 0, the euclidean diameter of DρU (zn, r) tends to 0.

Proof. Suppose first that U = D. Since {zn}n escapes from all K compact subset of D, we
can find n such that ρ(K, zn) ≥ r. Then, Dρ(zn, r) 6⊂ K. Repeating the same argument for

K = D(0, r), with r → 1, we get that the euclidean diameter of D(zn, r) must tend to 0 when
n tends to ∞.

Let us consider U 6= D and consider the Riemann Mapping ϕ : U → D. Then, {ϕ(zn)}n is a
sequence that escapes from all compact subset of D, so the euclidean diameter of Dρ(ϕ(zn), r)
must tend to 0 when n tends to ∞. Therefore, the euclidean diameter of DρU (zn, r) also tends
to 0. �

Finally notice that, the formula (3.4) is an increasing function of

dD(z, w) :=

∣∣∣∣ w − z1− wz

∣∣∣∣
We call dD the pseudo-hyperbolic distance in D. It is easier to work with this formula and
we don not lose the information of which points are closer or further. We do lose properties, for

8



example, it does not satify the triangular inequality, so it is not actually a distance. However,
it is symmetric and, for all z, w ∈ D, 0 ≤ dD(z, w) < 1. Moreover, it is equal to zero if and only
if z = w and it is equal to one if one point lies in ∂D.

By the process described above, we can define the pseudo-hyperbolic distance Since the right
half-plane H and D are conformally equivalent, we can think in the pseudo-hyperbolic distance
of two points in H as the distance between their corresponding points in D. Then,

dH(z, w) := dD

(
z − 1

z + 1
,
w − 1

w + 1

)
=
|z − w|
|z + w|

is the formula for the pseudo-hyperbolic distance in H. We will use DD(z0, r) and DH(z0, r) to
refer to disks with the pseudo-hyperbolic distance in D and H respectively.

3.2 The Schwarz-Pick Lemma.

Now we are going to prove one of the most powerful tools when working with holomorphic self-
maps of D: the Schwarz-Pick lemma. It says that all holomorphic self-maps of D are contractions
with respect to the hyperbolic metric. Moreover, they are strictly contractive if they are not
conformal.

Theorem 3.6. (Schwarz-Pick Lemma) Let f : D → D be an holomorphic function. Then,
f is both an infinitesimal and a global contraction with respect to the hyperbolic metric. That
is,

ρ(f(t)) ·
∣∣f ′(t)∣∣ ≤ ρ(t) ∀t ∈ D, and ρ(f(z), f(w)) ≤ ρ(z, w) ∀z, w ∈ D.

Proof. Consider g(z) = h(f(h0(z))), where h(z) =
z − f(t)

1− f(t)z
and h0(z) =

z + t

1 + tz
. Notice that

h(f(t)) = 0 and h0(0) = t. Hence g(0) = 0, then Schwarz lemma applies and |g′(0)| < 1.

By the chain rule g′(0) = h′(f(t)·f ′(t)·h′0(0), where h′(f(t)) =
1

1− |f(t)|2
and h′0(0) = 1−|t|2.

Thus, |g′(0)| =

∣∣∣∣∣f ′(t) · 1− |t|2

1− |f(t)|2

∣∣∣∣∣ =

∣∣∣∣f ′(t) · ρ(f(t))

ρ(t)

∣∣∣∣ ≤ 1 and, therefore, ρ(f(t)) · |f ′(t)| ≤ ρ(t).

It remains to see that f is a global contraction. We take z, w ∈ D and γ the shortest path
between z and w. Then f(γ) is a path joining f(z) and f(w), probably not the shortest one.
So,

ρ(f(z), f(w)) ≤ ρ(f(γ)) =

∫
f(γ)

ρ(t) |dt| =
∫
γ
ρ(f(t))

∣∣f ′(t)∣∣ |dt| ≤ ∫
γ
ρ(t) |dt| = ρ(γ) = ρ(z, w)

where the last inequality is due to the infinitesimal bound. �

Theorem 3.7. (Isometries) Let z, w ∈ D be such that ρ(f(z), f(w)) = ρ(z, w). Then, f is a
conformal self-map of D and equality holds for all z, w ∈ D.

Proof. Consider g(t) = h1(f(h0(t))), where h0(t) =
z + t

1 + zt
and h1(t) =

t− f(z)

1− f(z)t
. Notice that

g(0) = 0. Let us set w0 =
w − z
1− zw

. Then h0(w0) = w and g(w0) =
f(w)− f(z)

1− f(z)f(w)
.

By formula (3.4), we obtain that ρ(f(z), f(w)) = ρ(z, w) is equival to

∣∣∣∣ w − z1− zw

∣∣∣∣ =

∣∣∣∣∣ f(w)− f(z)

1− f(z)f(w)

∣∣∣∣∣.
Hence, |w0| = |g(w0)|. By Schwarz lemma, g is a rotation, and therefore, f is conformal. �
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Hence, we have proved that f : D→ D is a hyperbolic isometry if and only if it is a conformal
self-map of D.

Corollary 3.8. (Strict contractions) Let K be a compact subset of D and f : D→ D be holo-
morphic but not conformal. Then, there exists k = k(K), k ∈ (0, 1) such that: ρ(f(z), f(w)) ≤
kρ(z, w) ∀z, w ∈ K.

Proof. It is enough to prove it for compact sets of the form K = D(0, r), r ∈ (0, 1), because
any compact K ′ can be put inside a closed ball.

Let us fix z1, z2, z3 ∈ K. We can take ε > 0 such that D(zi, ε) are pairwise disjoint and

consider, for i = 1, 2, 3, the functions fi : K rD(zi, ε)→ R, defined by fi(z) =
ρ(f(zi), f(z))

ρ(zi, z)
.

For each i, the function is well-defined and continuous, since the denominator is never zero.
Moreover, it is positive and, by Schwarz-Pick lemma, fi(z) < 1 ∀z ∈ K r D(zi, ε). As
KrD(zi, ε) is a compact subset of D, by Weierstrass Theorem, there exists ki < 1 the maximum
of fi.

Now take k = max ki < 1. We claim that ∀z, w ∈ K, ρ(f(z), f(w)) ≤ kρ(z, w). If z, w /∈
D(zi, ε) for any i, it is clear. Suppose now that z ∈ D(z1, ε) and w ∈ D(z2, ε). As D(zi, ε) are

pairwise disjoint, then z, w /∈ D(z3, ε) and
ρ(f(zi), f(z))

ρ(zi, z)
< k3 < k. �

Note that at this point we can already prove convergence of the iterates to any fixed point
in D if this exists.

Corollary 3.9. Let f : D→ D be holomorphic but not conformal and suppose there exists a ∈ D,
a fixed point of f . Then, for all z ∈ D, fn(z)→ a.

Proof. We can suppose that a = 0, otherwise we can conjugate f by a Möbius transformation
that brings a to 0. Fixed any point z ∈ D, consider K = D(0, r) compact subset of D such
that z ∈ K. Then, by Corollary 2.3 to Schwarz lemma, f(K) ⊂ K and there exist k ∈ (0, 1)
such that |f(z)| ≤ k |z|. Iterating f , we get that |fn(z)| ≤ kn |z|. Therefore, fn(z) → 0, when
n→∞, as desired. �
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4 THE DENJOY-WOLFF THEOREM.

In previous sections, we proved that if f is a conformal self-map of D, but not elliptic, all
orbits converge to the same fixed point. We also proved this result for self-maps not necessarily
conformal with a fixed point in D. Our goal in this section is to prove the Denjoy-Wolff Theorem,
which asserts this is true for every holomorphic self-map of D.

Theorem 4.1. (Denjoy-Wolff Theorem) Let f be an holomorphic self-map of D, that is not
an elliptic automorphism. Then, there is a ∈ D, such that ∀z ∈ D, fn(z)→ a.

The point a is called the Denjoy-Wolff point of f .

The original proofs due to A. Denjoy and J. Wolff can be found in [11] and [25]. However,
we follow the ideas of a modern proof given by A. Beardon, for which we refer to [9] and [21].

Recall that, by Corollary 1.6 to Montel’s Theorem, pointwise convergence implies uniform
convergence on compact subsets. Therefore, the sequence of iterates fn converges to a uniformly
on compact subsets of D.

As mentioned before, we know this result for conformal maps and for those which have a
fixed point in D. Now we are going to focus on those which are not conformal and have no fixed
point in D. We remark that we are not assuming that f has a continuous extension to ∂D.

We need two preliminary lemmas.

Lemma 4.2. Let f : D → D be a holomorphic function, not conformal. Let w ∈ D be a point
such that fn(w)→ a ∈ D. Then, for all z in D, fn(z)→ a.

In other words, if the orbit of one point converges, all orbits have the same limit.

Proof. If a ∈ D, it is an immediate consequence of Corollary 3.9. Hence, suppose a ∈ ∂D. Set
ε > 0. Since lim

n
fn(w) = a, there exists n1 such that ∀n ≥ n1, |fn(w)− a| ≤ ε

2 .

On the other hand, for z ∈ D arbitrary there exists some r such that z ∈ Dρ(w, r). By
Schwarz-Pick lemma, for all n ≥ 1, fn(z) ∈ Dρ(f

n(w), r). Since fn(w)→ a ∈ ∂D, by lemma 3.5
|fn(z)− fn(w)| → 0. Therefore, there exists some n2 such that ∀n ≥ n2, |fn(z)− fn(w)| ≤ ε

2 .

Finally, if n0 = max {n1, n2}, for all n ≥ n0

|fn(z)− a| ≤ |fn(z)− fn(w)|+ |fn(w)− a| ≤ ε

2
+
ε

2
= ε

So fn(z)→ a, as desired. �

We remark that this lemma is also true for any simply connected open subset, since lemma
3.5 was proven for any simply connected open subset.

Lemma 4.3. Let f : D → D be analytic, but not conformal. Then, either fn(z) → ∂D ∀z ∈ D
or there is a fixed point z0 ∈ D.

Proof. Suppose there is a point w ∈ D such that fn(w) 9 ∂D. Then there is a compact subset
L ⊂ D such that fn(a) ∈ L for infinitely many n. Now we take a compact subset K with
L ∪ f(L) ⊂ K ⊂ D. As K is compact, there will be a constant k = k(K) < 1 such that
ρ(f(z1), f(z2)) ≤ kρ(z1, z2), for all z1, z2 ∈ K . As L ∪ f(L) ⊂ K and fn+1 = f ◦ fn, we have:

0 ≤ ρ(fn+2(w), fn+1(w)) ≤ kρ(fn+1(w), fn(w)), for all n such that fn(w) ∈ L.

11



As ρ(f(z), f(w)) < ρ(z, w) for all z, w ∈ D, we have that

0 ≤ ρ(fn+1(w), fn(w)) ≤ kmρ(f(w), w),

where m ≤ n is the number of times that the iteration lies in L. Making n tend to ∞, m tends
to ∞ too, so ρ(fn+1(w), fn(w)) → 0. Therefore, fn(w) and fn+1(w) will have the same limit
when n tends to ∞.

As fn(w) lies in K for infinitely many n′s, we can take a subsequence {fnk(w)}k ⊂ K.
Since K is compact we can suppose it convergent (if not, we can take a sub-subsequence), so
lim
k→∞

fnk(w) = a, for some a ∈ K.

Then, as f is continuous and fnk and fnk+1 have the same limit:

a = lim
k→∞

fnk+1(w) = f( lim
k→∞

fnk(w)) = a

So, a ∈ K ⊂ D is a fixed point and the lemma is proved. �

4.1 The proof of the Denjoy-Wolff Theorem.

As f is not conformal and has no fixed points in D then, by lemma 4.2, ∀z fn(z) → ∂D. It
remains to be shown that the orbit of 0 accumulates in one unique limit point in ∂D.

For ε ∈ (0, 1), let us consider:

fε : D→ D
z 7→ (1− ε) · f(z)

fε

D
fε(D)

B(0, r)

Figure 8: How fε maps D into a compact disk B(0, r).

This map is holomorphic but not conformal. Therefore, fε is a contraction with respect to
the hyperbolic metric: ρ(fε(z), fε(w)) < ρ(z, w), ∀z, w ∈ D.

We can suppose fε(D) ⊂ D(0, r), for some r ∈ (0, 1), where D(0, r) is the euclidean closed
disk with centre 0 and radius r. Then fε(D(0, r)) ⊂ D(0, r). So, we can consider the function
restricted to D(0, r), which is compact. The Brouwer fixed-point theorem2 applies and fε has
some fixed point zε in D(0, r), but it must be in fε(D).

Remark. The fixed point of fε is unique.

Proof. Suppose that fε has two fixed points zε, z
′
ε ∈ D, then ρ(zε, z

′
ε) = ρ(fε(zε), fε(z

′
ε)) <

ρ(zε, z
′
ε), a contradiction. �

Let us consider a sequence {εk}k such that εk → 0 when k →∞. Let {zεk}k be the associated
sequence of fixed points and a ∈ D any limit point of this sequence. There exists at least one
of them, because D is compact.

2See [8]
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Remark. If a ∈ D, then a is a fixed point of f .

Proof. As f is continuous in D and zεk is a fixed point of fεk :

a = lim
k→∞

zεk = lim
k→∞

fεk(zεk) = lim
k→∞

(1− εk)f(zεk) = f( lim
k→∞

zεk) = f(a)

Therefore, a ∈ ∂D, as we assumed that f had no fixed points in D. �

For each ε, let us define: Dε = {w ∈ D : ρ(zε, w) < ρ(0, zε)}, the hyperbolic disk with centre
zε and radius ρ(0, zε). We observe that 0 ∈ ∂Dε. By proposition 3.4, Dε is also an euclidean
disk, with probably another centre and radius.

Remark. The disks Dε are invariant under fε, that is, fε(Dε) ⊂ Dε.

Proof. As f is contractive with respect to the hyperbolic metric, ρ(fε(w), zε) = ρ(fε(w), fε(zε)) <
ρ(w, zε), for all w ∈ D. �

Taking the previous sequence {εk}k, we can build an associated sequence of euclidean disks
{Dεk}k. Any limit disk D of this sequence will be an euclidean disk, with 0 ∈ ∂D, invariant
under f an tangent to ∂D. Observe that D has only one tangent point to ∂D, or otherwise,
D = D and 0 /∈ ∂D.

Remark. D is unique.

Proof. Suppose that this is not the case, so there exist D1 and D2 such that they are distinct,
tangent to ∂D (at diferent points), 0 ∈ ∂D1 ∩ ∂D2, f(D1) ⊂ D1 and f(D2) ⊂ D2.

There are two cases.

a) If D1∩D2 = {0}. As 0 ∈ D1∩D2, there exist {wn} ⊂ D1 such that wn → 0 and {zn} ⊂ D2

such that zn → 0. Using that f is continuous in D, f(wn) → f(0) and f(zn) → f(0), so
f(0) ∈ D1 ∩D2 = {0}. Thus, 0 is a fixed point of f in D, a contradiction.

b) If D1 ∩D2 6= {0}. Then D1 ∩D2 ⊂ D is compact, connected and invariant under f . By
the Brouwer fixed-point theorem, f has a fixed point in D1 ∩D2, a contradiction.

�

D1 D1 D2

D2

Figure 9: The two cases that appear supposing D is not unique.

Now, let a be the point such that {a} = ∂D ∩D. Since 0 ∈ D and fn(D) ⊂ D, fn(0) ∈ D,
for all n. We know that the orbit of 0 accumulates in ∂D, but {a} = ∂D ∩ D. Therefore,
fn(0)→ a, when n→∞, and by lemma 4.2 the proof is finished.
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4.2 Limit at the Denjoy-Wolff point.

If the Denjoy-Wolff point a is in D, f is well-defined and holomorphic at a. Suppose now that
a ∈ ∂D. We are interested in computing the limit (and later, the derivative) in some sense
of f at a. We cannot consider the usual definition of limit, because the function may not be
defined in ∂D. Therefore, we are going to consider the radial limit (which is taken approaching
a from the radial line) and the angular limit (which is taken approaching a from a so-called
Stolz angle).

Definition 4.4. A Stolz angle at a ∈ ∂D is a region:

∆ = {z ∈ D : |Arg(1− az)| < α, |z − a| < ρ}

with 0 < α < π
2 and ρ < cos 2α.

The exact shape of this region is irrelevant. The important fact is that all the points in ∆
are at a finite hyperbolic distance of the radial segment [0, a].

D
a

∆

0

Figure 10: Example of a Stolz angle at a.

Definition 4.5. Let f : D→ Ĉ. Then, f has radial limit b ∈ Ĉ at a ∈ D if lim
r→1−

f(ar) = b.

Moreover, if lim
z→a, z∈∆

f(z) = b, for all ∆ Stolz angle at a, we say that f has angular limit

b ∈ Ĉ at a ∈ D. Then we write f(a) = b.

The following result shows that, for bounded functions, if the radial limit exists, the angular
limit also exists and they are equal.

Theorem 4.6. Let f be a bounded analytic function in D. Then, if lim
r→1−

f(ar) = b, then f

has angular limit b at a.

Proof. The proof can be found in [22]. �

The following lemma will be useful to compute the radial limit in the Denjoy-Wolff point.
The original proof can be found in [26].

Theorem 4.7. (Wolff Lemma) Let f : D→ D be holomorphic without fixed points in D. Let
a ∈ ∂D be the Denjoy-Wolff point of f .

Then, if D ⊂ D is a disk tangent to ∂D at a, f(D) ⊂ D. That is,

1− |z|2

|a− z|2
≤ 1− |f(z)|2

|a− f(z)|2
, ∀z ∈ D. (4.1)
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D
a

f

f̃

H

h(z) = a+z
a−z

h−1(z) = a z−1
z+1

Figure 11: Tangent disks at a in D are equivalent to vertical straight lines in H.

Before starting the proof of Theorem 4.7, we are going to see that (4.1) is equivalent to
f(D) ⊂ D, for all disks D ∈ D tangent to ∂D at a. It is easier to deal with this problem in

the right half-plane H. Consider the conformal map h(z) =
a+ z

a− z
from D to H, mapping the

Denjoy-Wolff point a to ∞. Let f̃ = h ◦ f ◦ h−1 be the corresponding self-map of H. It is clear
that a tangent disk to ∂D at a goes to a vertical straight line in H. Therefore, f(D) ⊂ D, for
all disks D ∈ D tangent to ∂D at a is equivalent to Re(w) ≤ Re(f̃(w)), for all w ∈ H.

Let w = h(z) ∈ H, for some z ∈ D. Then, Re(w) = 1−|z|2

|a−z|2 and

Re(f̃(w)) = Re(f̃(h(z))) = Re(h(f(z))) =
1− |f(z)|2

|a− f(z)|2
.

Hence the equivalence is proven.

Proof of Theorem 4.7. As in the proof of the Denjoy-Wolff Theorem, let fε(z) = (1 − ε)f(z)
and zε ∈ D be the fixed point of fε. Consider some euclidean disk D tangent to ∂D at the
Denjoy-Wolff point a. Hence, there is some δ ∈ (0, 1) such that D = D(δa, 1 − δ), where we
have used that δ |a| = 1. Taking z ∈ D∪∂D, we have |z − δa| = 1−δ, so we are able to compute

explicitly the value of δ: δ =
1− |z|2

2− 2Re(az)
.

D a

δa

1− δ

Figure 12: Schematic representation of D in terms of δ.

Now, for each zε, consider hε(z) =
z − zε
1− zεz

. Let f̃ε = hε ◦ fε ◦ h−1
ε . Since f̃ε is a self-map of

D and f̃ε(0) = 0, Schwarz lemma applies and
∣∣∣f̃ε(z)∣∣∣ ≤ |z| ∀z ∈ D. Applying this inequality to

the point hε(z) ∈ D, we have |hε(fε(z))| ≤
∣∣∣∣ z − zε1− zεz

∣∣∣∣.
15



Hence, hε(fε(z)) lies in the euclidean disk of radius ρε =

∣∣∣∣ z − zε1− zεz

∣∣∣∣ and center the origin.

Therefore, fε(z) is in the disk hε ({w ∈ D : |w| ≤ ρε}). An easy calculation shows that this is

the disk of euclidean center c(ε) =
1− ρ2

ε

1− ρ2
ε |zε|

2 zε and radius R(ε) =
1− |zε|2

1− ρ2
ε |zε|

2 ρε.

Computing explicitly the center and the radius and taking limits when ε→ 0:

1− ρ2
ε |zε|

2 =
(1− |zε|2)(1 + |zε|2 − 2Re(zεz))

|1− zεz|2

c(ε) =
1− ρ2

ε

1− ρ2
ε |zε|

2 zε =
1− |z|2

1 + |zε|2 − 2Re(zεz)
−−−→
ε→0

1− |z|2

2− 2Re(az)
a = δa

R(ε) =
1− |zε|2

1− ρ2
ε |zε|

2 ρε =
|1− zεz|2

1 + |zε|2 − 2Re(zεz)

∣∣∣∣ z − zε1− zεz

∣∣∣∣ −−−→ε→0

|z − a|2

2− 2Re(az)
= 1− 1− |z|2

2− 2Re(az)
= 1− δ

Therefore, |f(z)− δa| ≤ 1− δ, for all z ∈ ∂D ∩ D. Thus, f(∂D) ⊂ D. Since this is verified
for all disks tangent to ∂D in a, we have f(D) ⊂ D. Finally, since f is holomorphic and non
constant, by the Open Mapping Theorem, f(D) ⊂ D. �

Corollary 4.8. (Existence of radial limit at the Denjoy-Wolff point) Let f : D→ D be
holomorphic with Denjoy-Wolff point a ∈ ∂D. Then, lim

r→1−
f(ra) = a.

Proof. By the previous theorem, each tangent disk to ∂D at a is mapped into itself. So, making
the radius infinitely smaller, we get that lim

r→1−
f(ra) = a. �

4.3 Derivative at the Denjoy-Wolff point.

We are going to define the angular derivative in a similar way that we have defined the angular
limit and comptuting it at the Denjoy-Wolff point a, when it lies in ∂D.

Definition 4.9. Let f be analytic in D. We say that f has angular derivative b ∈ Ĉ at

a ∈ ∂D if the angular limit f(a) 6=∞ exists and lim
z→a, z∈∆

f(z)− f(a)

z − a
also exists, for each Stolz

angle ∆ at a. Then we write b = f ′(a).

With the following theorem we are able to compute the angular derivative at a ∈ ∂D.

Theorem 4.10. (Julia-Wolff lemma) Let f be holomorphic in D with angular limit f(a) at
a ∈ ∂D. If f(D) ⊂ D and f(a) ∈ ∂D, then f ′(a) exists and

0 < a
f ′(a)

f(a)
= sup

z∈D

1− |z|2

|a− z|2
|f(a)− f(z)|2

1− |f(z)|2
≤ ∞

Moreover,
1

f ′(a)
= inf

x>0

Re(f(x+ iy))

x
.

Proof. The proof can be found in [22]. �

Corollary 4.11. (Angular derivative at the Denjoy-Wolff point) Let f : D → D be
holomorphic with Denjoy-Wolff point a ∈ D. Then, 0 < f ′(a) ≤ 1.
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Proof. Since a is the Denjoy-Wolff point of f , by 4.8, f(a) = a. Applying the previous theorem
and Wolff lemma (4.7), we have: 0 < f ′(a) ≤ 1. �

Notice that the Denjoy-Wolff theorem does not discard the existence of others fixed point in
the border ∂D. Nevertheless, if they exists, their derivative is larger than 1, as we show in the
following lemma.

Lemma 4.12. Let f : D→ D be holomorphic, not a Möbius Transformation, with Denjoy-Wolff
point a. If b 6= a, b ∈ ∂D and lim

r→1−
f(rb) = b, then lim

r→1−
f ′(rb) > 1.

Proof. First, we note that, by theorem 4.10, f ′(b) exists and 0 < f ′(b) ≤ ∞.

Suppose that a is in D. We can assume, without loss of generality, that a = 0 and b = 1.

Let f̃(z) =
f(z)

zk
, where k ≥ 1 is the multiplicity of 0 as a zero of f . Then, f̃ is an analytic

map of D into D and lim
r→1−

f̃(r) = 1. Therefore, lim
r→1−

f ′(rb) = lim
r→1−

krk−1f̃(r) + rkf̃ ′(r) =

k + lim
r→1−

f ′(rb) > 1.

Now, suppose a ∈ ∂D. We can assume, without loss of generality, that a = −1 and b = 1.
Let f̃(z) = 1

2(f(z)−f(−z)). f̃ is an analytic map of D into D with f̃(0) = 0 and lim
r→1−

f̃(r) = 1.

So we are in the previous case and, therefore, lim
r→1−

f̃ ′(r) > 1. Then, by the definition of f̃ ,

lim
r→1−

f(ra)+ lim
r→1−

f̃(rb) > 2. But since a is the Denjoy-Wolff point of f , f ′(a) ≤ 1, and therefore

lim
r→1−

f ′(rb) > 1. �
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5 FUNDAMENTAL SETS AND CONJUGACIES.

Up to now, we proved the Denjoy-Wolff Theorem, which asserts that, given a holomorphic self-
map of D, either it is conjugate to a rotation or all orbits converge to the same point, namely
to the Denjoy-Wolff point. In the second case, now the question is how the orbits converge to
the Denjoy-Wolff point.

In general, given a dynamical system we are not able to compute a explicit solution for the
orbit of any initial condition. Our aim is to give a description of the orbits, although we cannot
find an explicit formula for them. We want to describe the dynamics qualitatively.

The tool that we have to describe the dynamics qualitatively are the conjugacies. We say
that a map f : U → U is conformally conjugate to a map g : V → V if there is a conformal
map ϕ : U → V such that g = ϕ ◦ f ◦ ϕ−1. We call the map ϕ a conjugacy between f and
g. The maps f and g can be thought as the same map seen in different coordinate systems. It
comes straightforward from the definition that fn and gn are also conjugate. Qualitatively, the
dynamics of both maps f and g is the same.

Given a dynamical system in D defined by f , we want to find a conformal conjugacy be-
tween f and another map, g, that is expected to be as simple as possible. The simplest maps
are the Möbius Transformations, which are studied in detail in section 2. Obviously, in gen-
eral we cannot expect to find a conformal conjugacy between the given map f and a Möbius
Transformation, because it would imply that f is conformal. However, we will prove that such
conjugacy exists in an appropriate neighbourghood of the Denjoy-Wolff point.

Therefore, our goal in this section is to study the behaviour of a self-map of D, f , in some
neighbourhood of its Denjoy-Wolff point a. This neighbourhood should be small enough so that
f is conjugate to a Möbius Transformation, but large enough that fn(K) belongs to V with
a finite number of iterations, for each compact subset K. We call it fundamental set and the
formal definition follows:

Definition 5.1. Let f be a map of a domain ∆ ⊂ C into itself, we say V is a fundamental
set for f on ∆ if V is an open, connected, simply connected subset of ∆ such that: f(V ) ⊂ V
and for every compact set K ⊂ ∆, there is a positive integer n so that fn(K) ⊂ V .

Fundamental sets are often also called absorbing domains.

In the following, we use the notations f(a) and f ′(a), where a is the Denjoy-Wolff point of
f . When a lies in D, the image and the derivative at a are well-defined. However, if a ∈ ∂D,
f(a) and f ′(a) refers to the angular limit and the angular derivative at a.

The following theorems claim the existence of fundamental sets and explain how the self-map
of D is conjugate to a Möbius Transformation of the complex plane or the unit disk.

Theorem 5.2. [Cowen] (Existence of fundamental sets) Let f : D → D be analytic,
nonconstant and not conformal, with Denjoy-Wolff point a. If f ′(a) 6= 0, there is a fundamental
set V for f in D such that f is univalent on V .

Theorem 5.3. [Cowen] (Nature of fundamental sets) Let f : D→ D be analytic, noncon-
stant and not conformal, with Denjoy-Wolff point a. Suppose f ′(a) 6= 0. Then there exists:

1. a fundamental set V for f on D,

2. a domain Ω, that can be either the complex plane or the unit disk,

3. a Möbius transformation φ mapping Ω onto Ω

4. and an analytic map σ from D to Ω

such that:
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a) σ and f are univalent in V ,

b) σ(V ) is a fundamental set for φ on Ω

c) and the following diagram is commutative:

D f //

σ

��

D

σ

��
Ω

φ // Ω

Moreover, φ is unique up to conjugation by a Möbius transformation mapping Ω onto Ω, and
φ and σ depend only on f , not on the particular fundamental set V .

In addition, we will see that σ can be defined in a so that σ is continuous in V ∪ {a}. Then,
Ω and φ can be chosen from the following:

CASE 1. Ω = C, σ(a) = 0 and φ(z) = sz with 0 < |s| < 1.

CASE 2. Ω = C, σ(a) =∞ and φ(z) = z + 1.

CASE 3. Ω = D, σ(a) = 1 and φ(z) =
(1 + s)z + (1− s)
(1− s)z + (1 + s)

with 0 < s < 1.

CASE 4. Ω = D, σ(a) = 1 and φ(z) =
(1± 2i)z − 1

z − 1± 2i
.

We dedicate the next sections to prove Theorems 5.2 and 5.3, after some preliminary results.

A more delicate issue is to decide which of the cases correspond to a given map f and it is
discussed in section 5.4. We will see that Case 1 takes places if and only if the Denjoy-Wolff
point lies in D. Hence, the others occur when a ∈ ∂D. To distinguish among them, we use the
derivative at a and the concept of nontangential convergence, which we define next.

The contents of this section can be found in the paper [10]. For more background in non-
tangential convergence we refer to [22].

5.1 Nontangential convergence.

Up to this point we have discussed the convergence to the Denjoy-Wolff point. In what follows,
we discuss the different types of convergence.

Definition 5.4. Let {zn}n ⊂ D and lim
n
zn = a, where a ∈ D. We say that the sequence zn

converges nontangentially to a if sup
n
|Arg(1− azn)| < π

2 .

Otherwise, we say that the sequence converges tangentially to a.

Notice that a sequence converges nontangentially if and only if there exists some Stolz angle
∆ at a such that zn ∈ ∆, for all n.

Sometimes we prefer to work in the right half-plane H, so it is useful to translate the definition
of nontangential convergence to H. We may suppose that a = 1, if not conjugate with an
appropiate rotation. Consider h(z) = 1+z

1−z , a conformal self-map of D onto H mapping 1 to ∞.
The straight lines that define the Stolz angle intersect at 1 (and at∞, because they are straight
lines), so are mapped to cirles intersecting in h(1) = ∞ (so they are, in fact, straight lines)
and in h(∞) = −1. Call wn = xn + iyn = h(zn) the points of the sequence in H. Therefore,

nontangentially convergence to ∞ in H means sup
n

∣∣∣ ynxn ∣∣∣ <∞.
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D H
h(z) = 1+z

1−z

Figure 13: A Stolz angle in D and its corresponding region in H.

The following result is a technical lemma. However, it is important to remark that it gives

a bound for the quotient
∣∣∣y
x

∣∣∣ for all points in DH(w, r).

Lemma 5.5. Let z = x+ iy, w = u+ iv ∈ H.

If dH(z, w) ≤ r < 1, then x ≥ u1− r
1 + r

and |y| ≤ |v|+ 2ru

1− r2
.

Proof. Taking into account that dH(z, w) =

∣∣∣∣z − wz + w

∣∣∣∣, the proof is straightforward. �

Lemma 5.6. Let f : D→ D be holomorphic with Denjoy-Wolff point a ∈ ∂D. If lim
r→1−

f ′(ra) = s < 1,

then ∀z ∈ D the sequence fn(z) converges nontangentially to a.

Proof. Consider ϕ the corresponding self-map of H. Given z0 ∈ H, let ϕ(z) = zn = xn + iyn.
Since lim

x→∞
ϕ(x) = ∞. Note that the radial limit in D is equivalent to taking the limit in H

through the real axis, so we have that lim
x→∞

ϕ(x) =∞ and c = lim
x→∞

ϕ(x) =
1

s
. By theorem 4.10,

xn+1 = cxn, for all n.

Let us set r = dH(z1, z0) < 1. By Schwarz-Pick lemma, dH(zn+1, zn) ≤ dH(zn, zn−1) ≤ ... ≤ r.

By lemma 5.5,
|yn+1 − yn|
xn+1 − xn

≤M , for all n. Then,
|yn − y0|
xn − x0

≤M (it is easily seen geometrically,

with M thought as the slope of the straight line joining zn and z0 and taking into account that

zn is always in the left of zn+1). Since xn →∞, we have for all n:
|yn|
xn
≤ |yn|

xn
+
|y0|

xn − x0
≤M ′,

for some M ′.

Therefore, the sequence ϕn(z0) converges nontangentially to ∞. �

Lemma 5.7. Let f : D → D be holomorphic with Denjoy-Wolff point a ∈ ∂D. Suppose that
for some z0 ∈ D the sequence fn(z0) converges nontangentially to a. Then, for all K compact
subset of D, the sequence fn(z) converges nontangentially to a, for all z ∈ K.

Proof. Taking ϕ the corresponding self-map of H, we have z0 ∈ H such that ϕn converges to

infinity nontangentially. Calling ϕn(z0) = zn = xn + iyn, we have

∣∣∣∣ ynxn
∣∣∣∣ ≤M <∞.

On the other hand, given K compact subset of H, there is r < 1 such that dH(z, z0) ≤ r for
all z ∈ K. By Schwarz-Pick lemma, dH(z, zn) ≤ r for all z ∈ ϕn(K). By lemma 5.5, writing

z = x + iy,
∣∣∣y
x

∣∣∣ ≤ |yn|
xn

1 + r

1− r
+

2r

1− r
= M ′, being M ′ a bound that depend on M and r,

20



but it is uniform for all the points in K and does not depend on n. Therefore, ϕn converges
nontangentially to ∞. �

This last result tells us that if we have nontangential convergence for some point z0 ∈ D, we
have it for all the points in D. Conversely, to have tangential convergence in z0 we need to have
it for all the points in D. Therefore, checking which type of convergence we have in one point
is enough to determine it for all D.

5.2 The proof of Theorem 5.2.

We are going to distinguish two cases, depending on if a lies in D or not.

First suppose that a ∈ D. If a = 0, by Schwarz lemma and since f ′(a) 6= 0, we have that
0 < |f ′(a)| < 1. By Schwarz lemma we also know that each euclidean disk with centre 0 is
invariant by f . The non-vanishing of the derivative at 0 guarantees that we can find ε > 0 small
enough that f is one-to-one in D(0, ε).

D(0, ε) is open, connected and simply connected. By Schwarz lemma, f(D(0, ε)) ⊂ D(0, ε)
and f is one-to-one there. It is left to see that for each K ⊂ D compact, there exists n such
that fn(K) ⊂ D(0, ε).

By 2.3, there is k ∈ (0, 1) such that |f(z)| ≤ k |z|. Hence, |fn(z)| ≤ kn |z| and, since kn → 0,
there exists n0 such that |fn0(z)| < ε and, therefore, fn0(z) ∈ D(0, ε).

Thus, taking V = D(0, ε), V is a fundamental set for f in D.

Suppose now that a 6= 0. Conjugating by fa(z) =
z − a
1− az

:

D f // D
a � //

fa
��

a

fa
��

D f̃ // D
0 � // 0

Then, f̃(0) = 0 and 0 <
∣∣∣f̃ ′(0)

∣∣∣ < 1, so we can take V = f−1
a (D(0, ε)).

Suppose now that a ∈ ∂D. Without loss of generality we can assume a = 1. By Julia Wolff
Theorem (4.10), s = lim

r→1−
f ′(ra), with 0 < s ≤ 1. We are going to divide the proof into three

steps. First we will see that for any K ⊂ D compact we can find N such that f is one-to-one in
∞⋃
n=N

fn(K). Note that this set is invariant by f . Second, taking {Kk}k exhaustion for compacts

of D, we are going to construct a sequence of nested open subsets Uk such that fn(Kk) ⊂ Uk
for all n ≥ N , f|Uk is one-to-one and f(Uk) ⊂ Uk. Third, we will use these open subsets to
construct the fundamental set V .

1. For each compact subset, we find the required N .
We are going to use this result due to Pommerenke [22].

Theorem 5.8. Let ϕ be a self-map of H, with angular derivative c ≥ 1 at ∞. Let S be
a Stolz angle at ∞. Set 0 < δ < 1 and 0 < λ < ∞. Let ϕn(1) = xn + iyn and Sn =

{x+ iy : δxn ≤ x <∞ and |y − yn| ≤ λxn}. If G = S ∪
∞⋃
n=1

Sn, then there is ρ > 0 so that

ϕ is univalent in G ∩ {w : |w| > ρ}.
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Using the conformal map h(z) =
1 + z

1− z
, we can move our problem to the right half-plane:

D f //

h

��

D

h

��
H ϕ // H

Let K be any compact subset of D, there exists some r < 1 such that |z| < r, for all z ∈ K.
Consider Dr = h({z : |z| < r}). Notice that Dr are euclidean disks in H with different radius
and centers, but 1 ∈ Dr, ∀r. With respect to the pseudo-hyperbolic metric in H (dH), they
are disks with center 1 and radius r. Then, by Schwarz-Pick lemma, ϕn(Dr) ⊂ DH(wn, r),
where ϕn(1) = wn = xn + iyn.

It is an easy calculation to check the following inclusion:

DH(wn, r) =

{
w :
|w − wn|
|w + wn|

< r

}
⊂ {w = x+ iy ∈ H : x > δ and |y − yn| < λxn} =: Sn

where δ =
1− r
1 + r

and λ =
2r

1 + r
.

Let G = S ∪
∞⋃
n=1

Sn, where S is any Stolz angle at ∞. Since ϕ is a self-map of H and it has

angular derivative 1
s ≥ 1 at infinity, by Pommerenke’s Theorem 5.8, there is ρ > 0 such that

ϕ is one-to-one in G ∩ {w : |w| > ρ}.

Since ϕ → ∞ uniformly on compact subsets of H, there is N such that
∞⋃
n=N

ϕn(h(K)) ⊂

G ∩ {w : |w| > ρ}. Thus, ϕ is one-to-one in
∞⋃
n=N

ϕn(h(K)), so f is one-to-one in
∞⋃
n=N

ϕn(K).

2. Construction of the sequence of open subsets {Uk}k.
For k ≥ 2, let Kk =

{
z : |z| ≤ 1− 1

k

}
and

◦
Kk =

{
z : |z| < 1− 1

k

}
. Let m ≥ 2 be the smallest

integer such that f(0) ∈
◦
Km. We will build, by induction in k, a sequence of subsets of the

unit disk: Um ⊂ Um+1 ⊂ ... ⊂ Uk, such that Uk is open, connected, ∃Nk such that for all

n ≥ Nk, f
n(
◦
Kk) ⊂ Uk, f|Uk is one-to-one and f(Uk) ⊂ Uk.

� Base case (k = m): Applying the previous reasoning we can find a positive integer Nm

such that f restricted to
∞⋃

n=Nm

fn(Km) is one-to-one. Take Um =
∞⋃

n=Nm

fn(
◦
Km).

Clearly, Um is open, f|Um is one-to-one and f(Um) ⊂ Um. By construction, ∀n ≥ Nm,

fn(
◦
Km) ⊂ Um. We must see that Um is connected.

Since f is continuous, fn(
◦
Km) is connected for all n. By the choice of m, f(0) ∈

◦
Km and

f(0) ∈ f(
◦
Km). Applying successively f , we have that fn(0) ∈ fn−1(

◦
Km) and fn(0) ∈

fn(
◦
Km). Thus, Um is connected.

� Inductive step: Suppose we have Um ⊂ Um+1 ⊂ ... ⊂ Uk−1 that satisfy the required
properties and we are going to construct Uk.

Taking Kk and applying the previous reasoning we can find N ′k ≥ Nk−1 such that f re-

stricted to
∞⋃

n=N ′k

fn(Kk) is one-to-one. Take U ′k =
∞⋃

n=N ′k

fn(
◦
Kk).

Note that U ′k does not fulfill the required conditions because we do not know if Uk−1 ⊂ U ′k.
Taking Uk = U ′k ∪Uk−1 does not solve our problem because we do not know if the function
is one-to-one here.
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Consider L = Uk−1 r U ′k ⊂ D. L is compact and, therefore, f(L) is also compact. Since fn

converges uniformly on compact subsets to a ∈ ∂D, so we can find Nk ≥ N ′k such that:

∞⋃
n=Nk+1

fn(
◦
Kk) ∩ f(L) = ∅

Take Uk = Uk−1 ∪
∞⋃

n=Nk

fn(
◦
Kk). Then, Uk is open and Uk−1 ⊂ Uk. By the construction of

Uk, f
Nk(

◦
Kk) ∈ Uk and f(Uk) ⊂ Uk.

We have to see that Uk is connected. Uk−1 is connected (by induction hypotesis) and
∞⋃

n=Nk

fn(
◦
Kk) also. Since fNk(0) ∈

∞⋃
n=Nk−1

fn(
◦
Kk−1) ⊂ Uk−1 and fNk(0) ∈

∞⋃
n=Nk−1

fn(
◦
Kk−1),

Uk is connected.

Uk−1

∞⋃
n=N′

k

fn(
◦
Kk)

∞⋃
n=Nk

fn(
◦
Kk)

Figure 14: Schematic represetation of the choice of N ′k and Nk.

It is left to see that f|Uk is one-to-one. Suppose we have α, β ∈ Uk with α 6= β. If α, β ∈ Uk
or α, β ∈

∞⋃
n=N ′k

fn(
◦
Kk), then f(α) 6= f(β). Suppose α ∈

∞⋃
n=Nk

fn(
◦
Kk) ⊂

∞⋃
n=N ′k

fn(
◦
Kk) and

β /∈
∞⋃

n=N ′k

fn(
◦
Kk), so β ∈ L. Then, f(α) ∈

∞⋃
n=Nk+1

fn(
◦
Kk) and f(β) ⊂ L. Since we have

chosen Nk so that the previous sets are disjoint, f(α) 6= f(β). Thus, f is one-to-one in Uk.

3. Construction of the fundamental set V .

Having built the sets Uk, for k = m,m + 1, . . . , we can define V ′ =
∞⋃
n=m

Uk. V ′ is an open

connected subset of D, with f(V ′) ⊂ V ′ and in which f is one-to-one. Moreover, for each

K ⊂ D compact, since K ⊂
◦
Kn for some n, then fNn(K) ⊂ Un ⊂ V ′.

Our problem is that V ′ may not be simply connected. We take V = V ′∪(holes of V ′). Clearly,
V ′ is open, connected, simply connected and for all K, there is n such that fn(K) ⊂ V . We
have to see that f is one-to-one in V and that f(V ) ⊂ V .

As a corollary to the Argument Principle,3 we have that to see if an analytic function is one-
to-one on a region, it is enough to check it on its boundary. Given a hole of V ′, take a simple
curve γ in V ′ surrounding the hole. Since f is one-to-one in γ, it is one-to-one in the points
surrounded by it, in particular in the hole. Applying the same argument to all the holes of
V ′, we get that f is one-to-one in V .

Finally, f(V ) ⊂ V is a direct consequence of the Mean-Value Property.

And this finishes the proof.

3See, for example [19].
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5.3 The proof of Theorem 5.3.

Since f ′(a) 6= 0, by Theorem 5.2, there exists V fundamental set for f on D such that f is
univalent on V . Once we saw the existence of a fundamental set V ⊂ D we are now interested
in proving that the dynamics on V are conjugate to the dynamics of a Möbius Transformation.
This is precisely the content of Theorem 5.3.

To do so, we are going to focus on the points in V , where we know that f is univalent. Our
problem is that some point in V may not be in the image of f , others in the image of f2... So
we are going to build an abstract surface S that contains the (abstract) preimages of all the
points in V so every point of S is in the image of fn.

We will introduce S as a set of points and give it topological and analytic structure, so it
will be a Riemann surface. Moreover, it will be simply connected and compact. Then, by the
Uniformization Theorem, S will be conformally isomorphic to either D or C (that will be our
domain Ω) by a conformal map ρ. We will then have

V
f //

π

��
σ

��

V

π

��
σ

��

S
ψ //

ρ

��

S

ρ

��
Ω

φ // Ω

Finally, we will prove that we can extend σ to all points in D and prove the uniqueness up to
conformal conjugation.

1. Construction of the Riemann surface S.

(a) Construction of S as a set of points.
Our goal is to build an abstract surface S in which f is bijective. To do so, we are going to
add the preimages of all point of V , so that each point in S is in the image of fn. However,
we have to do it respecting the previous structure in V , so if z = fn(w), for some z and w,
the same has to happen to the analogous points in S.
If n,m ∈ Z and z, w ∈ V we say that (z, n) ∼ (w,m) if there exists some k such that
fn+k(z) = fm+k(w). Necessarily, k ≥ max {−n,−m}, because only the positive iterations
of f are defined. Due to the univalence of f , if there exists k ≥ max {−n,−m} such that
fn+k(z) = fm+k(w), then it happens for all k ≥ max {−n,−m}.
We use the notation [(z, n)] to denote the equivalence class containing (z, n). Now, we
define S : = {[(z, n)] : z ∈ V, n ∈ Z}.

(b) Introduction of a topology.
If U is an open subset of V and n ∈ Z, let B =

{
RUn
}

be a basis for a topology in S, where
RUn = {[(z, n)] |z ∈ U}. We must check that B defines indeed a topology in S.

First we observe that S can be written as a union of elements of B. Taking U = V , which
is open, S =

⋃
n∈Z
RVn .

We also must check that ∀w∗ ∈ RW1
m1
∩ RW2

m2
, there exists one element of B such that it is

in RW1
m1
∩ RW2

m2
and w∗ belongs to it. Suppose w∗ ∈ RW1

m1
∩ RW2

m2
, then w∗ = [(w1,m1)] =

[(w2,m2)], with w1 ∈ W1 and w2 ∈ W2. We have p = fk+m1(w1) = fk+m2(w2), where
k = max {−m1,−m2}. So Y = fk+m1(W1) ∩ fk+m2(W2) is a neighbourhood of p. Then
RY0 = RW1

k+m1
∩RW2

k+m2
and RY−k = RW1

m1
∩RW2

m2
, with w∗ ∈ RY−k.
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We note that S with this topology verifies the second axiom of countability, that is, there
exists a countable basis. Since V is an open subset of C, the euclidean topology on V
admits a countable basis {Um}m∈N. Then,

{
RUmn

}
m∈N,n∈Z is a basis of our topological

space and it is countable.

We also note that S with this topology is a Hausdorff space. Let z1∗ = [(z1, n1)] and
z2∗ = [(z2, n2)] with z1∗ 6= z2∗. Let k = max {−n1,−n2}, then (z1, n1) ∼ (fk+n1(z),−k)
and (z2, n2) ∼ (fk+n2(z),−k). Therefore we can choose U1 and U2 disjoint open subsets
of V such that fk+n1(z1) ∈ U1 and fk+n2(z2) ∈ U2. Then RU1

−k and RU2
−k are disjoint open

neighbourhoods of z1∗ and z2∗ respectively.

(c) Introduction of an analytic structure.
Let us introduce an analytic structure to S by defining the coordinate charts cn : V → S,
with cn(z) = [(z, n)]. We note that cn is one-to-one. In fact, if [(z, n)] = [(w, n)], then
fn(z) = fn(w) and z = w, because f is univalent in V .

We have to prove that cn is continuous with respect to the topology defined in S. We have to
see that, ifRUn is an open subset of S, then c−1

m (RUn ) is an open subset of V . If n = m is quite
obvious, so suppose n 6= m. ConsiderRUn∩RUm =

{
[(z, n)] ∈ RUn : ∃w ∈ U (z, n) ∼ (w,m)

}
.

Since we are dealing with a topology, RUn ∩RUm is open and it can be written as the union
of open subsets of the basis B:

⋃
i∈I
RWi
m = R∪Wi

m = RWm , where W =
⋃
i∈I

Wi is an open

subset of V . Then, c−1
m (RUn ) = W and, as it is open, we have proved that cm is continuous.

cn cm

c−1
m ◦ cn

V V

cn(V )

cm(V ) S

Figure 15: How the coordinate charts and the transition maps act on V and S.

Since V is locally compact and S is Hausdorff, cn is an homeomorphism between V and
cn(V ). We notice that the union of all the charts is S.

It is left to see that the transition maps are holomorphic, that is, we have to see that
c−1
m ◦ cn and c−1

m ◦ cn are holomorphic on their domain of definition. Suppose n = m + l,
with l ≥ 0. Then, c−1

m ◦ cn is well defined in V , because all the points of fn(V ) belong to
fm(V ). Now: c−1

m (cn(z)) = c−1
m ([(z, n)]) = c−1

m ([(z,m+ l)]) = c−1
m (
[
(f l(z),m)

]
) = f l(z),

which is holomorphic in V .
Finally, as f l is one-to-one in V , c−1

n ◦ cm is holomorphic in f l(V ), which is the domain of
definition of c−1

n ◦ cm.

(d) S is simply connected.
Suppose γ : [0, 1] → S is a loop on S. Since γ([0, 1]) is compact, then there is n ∈ Z
such that γ([0, 1]) ⊂ cn(V ). But cn(V ) ∼= V , which is simply connected (by definition of
fundamental set). Then, γ ∼ 0 in cn(V ), so γ ∼ 0 in S.

(e) S is not compact.
We must prove that there exists a sequence of points in S that does not have any convergent
subsequence.
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Consider z∗k = [(z,−k)], with k ∈ N and z 6= a. Set n ∈ Z and U open subset of V with
compact closure. Suppose z∗k ∈ RUn for all k > −n, that is f−k(z) ∈ fn(U). Therefore, for
all k > −n, z ∈ fn+k(U), contrary to the fact that fn converges uniformly on U to a.

The contradiction comes from supposing that z∗k ∈ RUn for all k > −n. Thus the sequence
z∗k can have at most finitely many terms in any open subset with compact closure of S, so
it cannot have a convergent subsequence n S.

We have already proved that S is a Riemann surface, that it is simply connected and not
compact. Therefore, by the Uniformization Theorem, S is conformally isomorphic to either
the complex plane C or the unit disk D.

2. The maps ψ and π.
Let us define:

π : V −→ S ψ : S −→ S

z 7−→ [(z, 0)] [(z, n)] 7→ [(f(z), n)]

We observe that both π and ψ are holomorphic. Moreover, ψ is well defined, as it does not
depend on the representative we choose. In fact, if (z, n) ∼ (w, n), then fn(z) = fm(z) and
fn+1(z) = fm+1(z), so ψ([(z, n)]) = [(f(z), n)] = [(f(w),m)] = ψ([(w,m)]).

Both π and ψ are one-to-one, due to the univalence of f in V . In addition, ψ is onto on S
because [(z, n)] = [(f(z), n− 1)] = ψ([(z, n− 1)]). Clearly, ψ ◦ π = π ◦ f .

V
f // V

z � //

π

��

f(z)

π

��
S

ψ // S

[(z, 0)] � // [(f(z), 0)]

Moreover, we observe that π(V ) is a fundamental set for ψ on S. Indeed, if K ⊂ S is compact,
we can find n ∈ Z such that K ⊂ cn(V ), then ψn(K) ⊂ π(V ).

3. The maps φ and σ, and the domain Ω.
We already know that S is conformally isomorphic to either D or C. We call Ω this domain.
Then there exists ρ : S → Ω conformal. We define σ : V → Ω as σ = ρ ◦ π and φ : Ω → Ω as
φ = ρ ◦ ψ ◦ ρ−1.
Clearly, φ is conformal and, therefore, it is a Möbius transformation. The map σ is one-to-one
and φ ◦ σ = σ ◦ f . Moreover, σ(V ) is a fundamental set for φ on Ω.

4. Extension of the functions from V to D.
Since V is a fundamental set for f on D, there exists n large enough that fn(z) ∈ V , where
σ is defined. Once we are in Ω, we know that φ is bijective, so we can compose with φ−n.

D fn // D
z � //

σ

��

fn(z) ∈ V
σ

��
S Ω

φ−noo

φ−n(σ(fn(z))) σ(fn(z))�oo

26



We have to check if the extension is well defined. We already know that, for z ∈ V ,
φ−k(σ(fk(z))) = σ(z). But, if we have z ∈ D, not necessarily in V , with fn(z) ∈ V
and fm(z) ∈ V , n 6= m, we obtain the same σ(z). Indeed, suppose n = m + k, then
φ−n(σ(fn(z))) = φ−m(φ−k(σ(fk(fm(z))))) = φ−m(σ(fm(z))).
The extension of σ is holomorphic because it is the composition of holomorphic functions.

5. Uniqueness up to conformal conjugation.
Suppose that Ṽ is another fundamental set for f on D and consider the corresponding domain
Ω̃ and the maps φ̃ and σ̃.

V
f //

σ

��

V

σ

��

Ṽ
f //

σ̃

��

Ṽ

σ̃

��
Ω

φ // Ω Ω
φ̃ // Ω

Consider K = {t · f(0) : 0 ≤ t ≤ 1}. K is compact and connected. Moreover, ∀N ,
∞⋃
n=N

fn(K)

is connected. Indeed, fn(K) is connected and fn(f(0)) = fn+1(0 · f(0)) ∈ fn(K)∩ fn+1(K).

Since V and Ṽ are fundamental sets for f , there exists N such that
∞⋃
n=N

fn(K) ∈ V ∩ Ṽ . Let

W be the connected component of V ∩ Ṽ that contains
∞⋃
n=N

fn(K) ∈ V ∩ Ṽ . Clearly W is a

fundamental set for f on D. Hence, σ(W ) and σ̃(W ) are fundamental sets for φ and φ̃ on Ω
and Ω̃.

Let us define

τ : Ω −→ Ω̃

z 7−→ φ−n(σ̃(σ−1(φn(z))))

where n is large enough that φn(z) ∈ σ(W ). It is well-defined because it does not depend on
which n we choose.

Since τ is a conformal map between Ω and Ω̃, then Ω = Ω̃. Therefore, τ is a Möbius
transformation, φ̃ = τ ◦ φ ◦ τ−1 and σ̃ = τ ◦ σ in V .

And this finishes the proof.

5.4 Classification of the dynamics in the fundamental set.

First we claim that φ cannot have any fixed point apart from the ones of f . This is not obvious
because we could have a fixed point in Ω r σ(D), so it would not be a fixed point of f , but we
claim this cannot happen. We will use the setup and notation introduced in section 5.3.

Proposition 5.9. φ has a fixed point in Ω if and only if f has a fixed point in D and, in this
case, the fixed point of φ is σ(a), where a is the Denjoy-Wolff point of f .

Proof. If p is a fixed point of φ in Ω, since ρ is a conjugacy, p = ρ([(z, n)]), where [(z, n)] is a
fixed point of ψ in S. Hence, (z, n) ∼ (f(z), n), so z is a fixed point of f in V ⊂ D.

Conversely, if f has any fixed point in D, it must be the Denjoy-Wolff point a. Then, a ∈ V
and (a, n) ∼ (a,m), for all n,m. [(a, n)] is a fixed point of ψ in S, so p = ρ([(a, n)]) is a fixed
point of φ in Ω. �
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Notice that φ cannot be a rotation. Otherwise, for each w ∈ Ω, the sequence φn(w) has w as
a limit point, contrary to the fact that fn(z)→ a. Moreover, if we define σ(a) = lim

n
φn(σ(z)),

for some z ∈ D, σ is continuous in D∪{a}. Notice that the limit is well-defined, because by the
Denjoy-Wolff theorem, all z ∈ D converge to the same point under iteration of f .

Considering the facts above, which Möbius Transformations φ : Ω→ Ω can we have?
First, consider Ω = C. The conformal mappings of C onto C are the polynomials of degree one:
φ̃(z) = αz + β, with α 6= 0. We distinguish two cases:

CASE 1. If α 6= 1, φ̃ has one fixed point z∗ =
β

1− α
∈ C. Conjugating by h(z) = 1− β

1− α
,

we get that φ̃ is conjugated to φ(z) = αz. Then, σ(a) = 0 and 0 < |α| < 1, because
a must be mapped to the fixed point and it must be attracting.

C

Figure 16: CASE 1. Schematic representation of the function φ(z) = αz.

It is easy to prove that α1z and α2z, with 0 < |αi| < 1 and α1 6= α2, cannot be
conformally conjugated.

CASE 2. If α = 1, then φ̃ has no fixed points in C, so σ(a) = ∞. Moreover, φ̃(z) = z + β,

with β 6= 0, is conjugate to φ(z) = z + 1 by h(z) =
z

β
. We note that φ′(∞) = 1.4

Note that αz and z+ 1 are not conformally conjugate because they have a different
number of fixed points. Therefore, Case 1 and Case 2 are actually different cases.

C

Figure 17: CASE 2. Schematic representation of the function φ(z) = z + 1.

4The procedure to calculate the derivative at ∞ will be explained in the next chapter.
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Consider now Ω = D. First notice that φ cannot have any fixed point in D. Otherwise it will
be conjugate to a rotation, contradicting our assumptions. Since D is conformally equivalent
to the right half-plane H, we will work with the Möbius Transformations of H onto H without
fixed points in H.

CASE 3. If there are two fixed points, we can suppose φ(z) = sz up-to conjugation, with
s > 1 and σ(a) =∞.

Thinking it as a self-map of D it is φ(z) =
(1 + s)z + (1− s)
(1− s)z + (1 + s)

, and σ(a) = 1.

We note that φ′(1) = s.

H D

h(z) = z−1
z+1

h−1(z) = 1+z
1−z

Figure 18: CASE 3. Schematic representation of the function φ(z) = sz in H and its transformation to a
function in D. Thus we see the dynamics in D, what was difficult to see from the formula.

CASE 4. If the only fixed point of H is ∞, then φ is a translation and it is conjugated either
to φ1(z) = z + i or to φ2(z) = z − i. In both cases, since the fixed point is ∞,
σ(a) =∞.

It is easy to prove than φ1 and φ2 are not conformally conjugated.

Thinking them as self-maps of D, they are φ1(z) =
(1− 2i)z − 1

z − 1− 2i
and φ2(z) =

(1 + 2i)z − 1

z − 1 + 2i
. In both cases, σ(a) = 1.

We note that φ′(1) = 1.

H D

h(z) = z−1
z+1

h−1(z) = 1+z
1−z

Figure 19: CASE 4. Schematic representation of the function φ1(z) = z + i in H and its transformation to a
function in D.

29



Observe that the four cases can actually occur. For Cases 1, 3 and 4, take f = φ and
σ = Id. For Case 2 take f(z) = σ−1(σ(z) + 1), where σ is the conformal map of D onto the

right half-plane H. Namely σ(z) =
1 + z

1− z
and f(z) =

1 + z

3− z
.

D
C

h(z) = z+1
z−1

h−1(z) = z−1
z+1

Figure 20: Schematic representation for the function f and how σ transfers it to C. We see that in C it is

equivalent to the translation z + 1.

Now that we know the possible cases, the logical question to ask is: Given a self-map of
D, do we know in which case we are? The easiest case is the first one: the case in which
we have an inner fixed point in Ω which correspond to an inner fixed point in D.

Proposition 5.10. Let f , φ and Ω as in Theorem 5.3. Then, Ω = C and φ(z) = sz (Case 1)
if and only if the Denjoy-Wolff point a is in D and f ′(a) = s.

Proof. Since in Case 1 there is a fixed point in Ω, it must correspond to a fixed point in D.
Conversely, if we have a fixed point in D we must be in Case 1, because it is the only one with
an inner fixed point.

Noting that φ′(0) = s and σ′(a) 6= 0 (because it is one-to-one in a neighbourhood of a),
differentiating σ(ϕ(a)) = φ(σ(a)), we obtain f ′(a) = s. �

To distinguish the cases in which a ∈ ∂D, we need the following theorem. It asserts that,
with stronger conditions of regularity, φ′(a) behaves as expected.

Theorem 5.11. Let f , φ and Ω as in Theorem 5.3. Let a ∈ ∂D be the Denjoy-Wolff point of
f . If f ′ can be defined at a so that it is continuous in D ∪ {a}, then:

φ′(σ(a)) = lim
r→1−

f ′(ra)

Proof. The proof can be found in [10], page 81. �

As a corollary, we can distinguish Case 3 from the others, because is the only one with
a ∈ ∂D and derivative φ′(σ(a)) = s < 1.

Corollary 5.12. Let f be an holomorphic self-map of D with Denjoy-Wolff point a ∈ ∂D. If .

If f ′(a) = s < 1, we may take Ω = D and φ(z) =
(1 + s)z + (1− s)
(1− s)z + (1 + s)

(Case 3).

Finally, the following theorem allows as to decide between Case 2 and Case 4 in some cases.
We will see that sometimes it is inconclusive.
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Theorem 5.13. Let f be an holomorphic self-map of D with Denjoy-Wolff point a ∈ ∂D.
Suppose f ′ can be defined at a so that it is continuous in D ∪ {a} and f ′(a) = 1. Then, if for
some z0 ∈ D, fn(z0)→ a nontangentially, then Ω = C (Case 2).

Proof. The proof can be found in [10], page 84. �

We note that the converse is not true. We can be in Case 2 and have tangential convergence.
However, if we are in Case 4 we have tangential convergence. The maps φ1 and φ2 defined

in Case 4 are examples. We saw that f(z) =
1 + z

3− z
is an example of Case 2 and it has

nontangential convergence. For an example of Case 2 with tangential convergence we may take
f(z) = σ−1(σ(z)+1), where σ is a conformal map of D onto {z = x+ iy : x > 0,−x < y <

√
x}.

Note that by the Riemann Mapping Theorem, σ exists.

D
σ−1

σ

Figure 21: Schematic representation of f(z) = σ−1(σ(z) + 1), where σ is a conformal map of D onto

{z = x+ iy : x > 0,−x < y <
√
x}. It does not try to be accurate, but to give an idea of the tangential con-

vergence in D. Since σ is conformal, it preserves angles, so we have tangential convergence for the points near the

upper branch. Recall that tangential convergence for one point implies that all the points converge tangentially.
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6 CLASSIFICATION OF THE FATOU COMPONENTS OF
ENTIRE FUNCTIONS.

The aim of this section is to use the Denjoy-Wolff Theorem and the Cowen’s classification of
fundamental domains in a more general setting.

Up to now, we worked with holomorphic self-maps of the unit disk D, which can be thought
as a very restrictive kind of maps. However, by the Riemann Mapping Theorem, any self-map
of any simply connected region of the complex plane is conjugate to a self-map of the unit disk,
where the results we proved apply.

In this chapter, we deal with entire functions, that is holomorphic maps defined in the whole
complex plane C. Given an entire map f , we are interested in the dynamical system defined
by f . Our goal is to study the long-term behaviour of the points of the complex plane under
the iteration of f . A special case are the fixed points, that is the points that remain motionless
under f . We study them in section 6.1. This will give us some ideas about how the points that
are close to fixed points move under the iteration of f , but we will not be able to describe the
dynamics globally yet.

To study globally the dynamical systems, we need the concepts of Fatou and Julia sets, that
are introduced in section 6.2. The idea is that we will split the plane into two different invariant
sets, namely the Fatou and Julia sets. The Fatou set contains the points where the function is
well-behaved and the Julia set, the points where it is chaotic.

We are interested in the connected components of the Fatou set, that we will prove to be
simply connected. In particular, for those which are invariant under f , we can conjugate f to a
self-map of the unit disk. Applying the Denjoy-Wolff Theorem, we will be able to describe the
dynamics on the Fatou components. The classification of the Fatou components depending on
its dynamics (Theorem 6.11) is the main result of this chapter.

Finally, we use Cowen’s classification of fundamental sets to describe the dynamics inside
each Fatou component. As we will see, the interesting dynamics happen in the so-called Baker
domains, where all the types of convergence can occur. This is studied in detail in section 6.6.

We refer to [4], [9] or [21] for general background in complex dynamics. The content specifi-
cally related to entire functions can be found in [6] and [16]. The classification of Baker domains
can be found in [18].

6.1 Local Theory.

Let f : C → C be a holomorphic mapping. We write f0 = id and fn = f ◦ fn−1. Given any
point z ∈ C we define its orbit as the set of points

{
z, z1 = f(z), z2 = f2(z), ...

}
.

We say that z0 is a fixed point of f if f(z0) = z0. The number λ = m(f, z0) = f ′(z0) is
called the multiplier of f at the fixed point z0. It allows us to classify the fixed points into
three types: attracting (|λ| < 1), repelling (|λ| > 1) or neutral (|λ| = 1). Among the neutral
fixed points, we distinguish the rationally neutral (if λ is a root of the unity) and the irrationally
neutral (otherwise).

A point z0 is called periodic if fn(z0) = z0, for some n. The minimal n > 0 such that this
equality is true is called the period of z0. The fixed points of f are periodic points of period one.
More generally, z0 has period n if and only if z0 is a fixed point of fn but not of any lower-order
iterate. The orbit {z0, z1, ..., zn−1} is called a cycle. As we have done with the fixed points, we
can classify the cycles into attracting, repelling or neutral, according to their multiplier as fixed
points of fn. By the chain rule, λ = m(fn, z0) = (fn)′(z0) = f ′(z0) · ... ·f ′(zn−1). Therefore, the
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derivative (fn)′ has the same value at each point of the cycle, and we can speak of attracting,
repelling or neutral cycles.

A point z0 is pre-periodic if it is not periodic under f but some image, say fm(z0) is. That
is to say that fk(z0) 6= z0 for all k, but there exist m,n such that fm+n(z0) = fm(z0).

In what follows we study a little more in detail the different types of fixed points. We want
to see that what we have defined as attracting or repelling fixed points actually attract or repel
close points. Since the periodic points of f are fixed points of fn for some n, the following
description extends to periodic points.

6.1.1 Attracting fixed points.

If z0 is an attracting point under f , then there exists ρ such that |f ′(z0)| < ρ < 1. Hence,
taking z in a small enough neighbourhood of z0, we have:

|f(z)− z0|
|z − z0|

=
|f(z)− f(z0)|
|z − z0|

< ρ

That is to say, |f(z)− z0| < ρ |z − z0|. So f(z) is closer to z0 than z. Repeating the argument
inductively, we get that |fn(z)− z0| < ρn |z − z0| and, therefore, the iterates fn restricted to
some neighbourhood of z0 converge uniformly to z0.

We define the basin of attraction of an attracting fixed point z0, denoted by A(z0), as the
set of points that converge to z0 under f . That is:

A(z0) =
{
z : fn(z) −→

n
z0

}
We observe that A(z0) is open. In fact, since z0 is attracting , there exists U open neighbour-
hood of z0 where fn converge uniformly to z0 and A(z0) =

⋃
n
f−n(U), where f−n(U) is to be

understood as f−n(U) = {z ∈ C : fn(z) ∈ U}. The immediate basin of attraction of z0,
denoted by A∗(z0), is defined as the connected component of A(z0) that contains z0.

In the case of an attracting cycle {z0, z1, ..., zn−1}, its basin of attraction is defined as the
set consisting of all the points z such that the successive iterates fn(z), f2n(z), ... converge
towards a point of the cycle. That is:

A({z0, .., zn−1}) =

{
z : fnk(z) −→

k
zi, for some i

}
We remark that, if fnk(z) −→

k
z0 , then fnk+i(z) −→

k
zi, for 0 < i < n. Therefore, although the

definition of the basin of attraction of a cycle only considers the convergence of one subsequence
(namely, the iterates which are multiple of n), the convergence of the other subsequences is
unequivocally determined.

A special case is the super-attracting fixed points, that is the fixed points that have
multiplier λ = 0. The dynamics around them is the same as if they were attractive. The main
difference is that f has local inverse near z0 if it is attracting, but not if it is super-attracting,
since the map has local degree 2 or larger.

6.1.2 Repelling fixed points.

Suppose now that z0 is a repelling fixed point of f . Then, |f ′(z0)| > 1. So, in a small enough
neighbourhood of z0, |f(z)− f(z0)| > |z − z0|. Therefore, points close to z0 get away from it, at
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least during the first iterations. This does not mean that the orbit cannot return, but it is true
that we can build some neighbourhood U of z0 such that the orbits of the points of U escape
from U after some iterates.

Since f is one-to-one in a neighbourhood of z0, one can consider the branch g of f−1 which

fixes z0, and then z0 is an attracting fixed point of g with multiplier
1

f ′(z0)
.

6.1.3 Rationally neutral fixed points.

We defined a fixed point z0 as rationally neutral if its multiplier λ is a root of the unity. First
suppose that λ = 1. Conjugating by a proper map, we can suppose that z0 = 0 and write:

f(z) = z + azn+1 + (higher terms), a 6= 0

The integer n + 1 ≥ 2 is called the multiplicity of the fixed point. By definition, the fixed
points with multiplier λ 6= 1 have multiplicity 1.

By the Inverse Function Theorem, since f ′(0) = 1, we can find a neighbourhood N of 0 so
that f : N → N ′ = f(N) is a diffeomorphism. Since N and N ′ are open neighbourghoods of
the origin, its intersection is also an open neighbourhood of the origin.

Definition 6.1. Let U be a connected open subset such that U ⊂ N ∩N ′. U is an attracting
petal for U at the origin if:

f(U) ⊂ U ∪ {0} and ∀z ∈ U, fn(z)→ 0

U ′ is called a repelling petal for f if U ′ is an attracting petal for f−1.

Theorem 6.2. (Leau-Fatou Flower Theorem) Suppose that the origin is a fixed point with
multiplicity n+ 1 ≥ 2. Then, there exist n disjoint attracting petals Ui and n disjoint repelling
petals U ′i such that the union of these 2n petals and the origin form a neighbourhood N0 of the
origin.

Moreover, these petals alternate with each other such that Ui only intersects U ′i and U ′i−1.

Proof. We say that v ∈ C is an attracting direction if avn is real and positive. Then, ignoring
the higher order terms, f(v) = v(1+avn), so |f(v)| < |v| and arg(f(v)) = arg(v). On the other
hand, v is a repelling direction if avn is real and positive. Since avn = 1 and avn = −1 have
n different solutions, there exists n equally spaced attracting directions which are separed by n
equally spaced repelling directions.

Now, consider the change of coordinates z 7→ w = −1
nazn . Then, the sector between two

repelling directions in the z-plane will correspond to the whole w-plane minus the negative real
axis. In particular, the part of a neighbourhood of the origin between two consecutive repelling
directions correspond to a neighbourhood of ∞ in the slit w-plane.

The corresponding map in the w-plane is g(w) = w
(
1 + 1

w + o
(

1
w

))
= w + 1 + o(1). So, for

all ε > 0, there exists r > 0 such that |f(w)− (w + 1)| < ε for all w, |w| > r. Taking ε small
enough, we can take M > r such that U = {w = u+ iv, u > M} is an attracting petal. Indeed,
f(U) ⊂ U and, for all z ∈ U , f(z)→∞. �

As a consequence of this theorem, we have that in each attracting petal Ui, f
n
|Ui converges

uniformly towards the origin. On the other hand, all the orbits that start in a repelling petal
U ′i must escape from it. This tells us that there cannot be any periodic orbit totally contained
in N0 (apart from the origin, that is a fixed point).
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h

z-plane w-plane

Figure 22: The correspondance, by h, of a neighbourhood of the origin to a neighbourhood of ∞.

h−1

w-plane z-plane

r

U

h−1(U)

Figure 23: How we choose the petal U and its preimage by h.

Each attracting petal Ui determines a parabolic attracting basin Ωi that consists in all
the points that each orbit eventually falls into Ui and, therefore, converge towards the fixed
point through Ui.

Suppose now that the multiplier λ is different from 1. Therefore, λ is a root of the unity

and we can write λ = e
2πi p

q , where p
q is a fraction in lowest terms. As above, supposing that

the fixed point is the origin, we can write:

f(z) = λz + ...

If we compute the q-fold iterate:

f q(z) = z + azm+1 + ... where a 6= 0

Then, m(f q, 0) = 1 and we are in the previous case. Therefore, f q has m attracting petals and
m repelling petals. The set of attracting petals Ui is forward invariant under f , but not each
petal, which are invariant under f q. Therefore, f permute the petals in cycles of length q.

6.1.4 Irrationally neutral fixed points.

Now we are interested in irrationally neutral fixed points, that is the ones with multiplier
λ = e2πiξ, where ξ /∈ Q. We will classify them depending on if f is locally linearizable around
them or not.

We say that f is locally linearizable around a neutral fixed point with multiplier λ, if
there exists a conjugacy h from f to g(z) = λz, in a small enough neighbourhood of z0. That is

h ◦ f(z) = λh(z),

for z in a neighbourhood of z0.

Theorem 6.3. Let z0 be a fixed point of f with multiplier λ, |λ| = 1. Then, f is locally
linearizable around z0 if and only if the family of iterates {fn}n is normal in some neighbourhood
of z0.
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Proof. We may assume z0 = 0. If there exists such conjugation, {fn}n must be bounded in
some neighbourhood of the origin, so the family of iterates restricted to this neighbourhood is
normal.

Conversely, suppose {fn}n is normal in some neighbourhood of the origin. Therefore, it is
equicontinuous near 0. So, for each ε > 0, there is some δ > 0 such that: if |z| < δ, |fn(z)| < ε,
for all n. For each n ≥ 1, consider:

φn(z) =
1

n

n−1∑
j=0

λ−jf j(z).

Observe that, for all n and for |z| < δ, |φn(z)| < ε. So the family {φn}n is normal and
contains a convergent subsequence that converges uniformly to a function φ. Since φn(f(z)) =
n+ 1

n
λφn+1(z)− λz

n
, we obtain φ ◦ f = λφ. �

Definition 6.4. We say that an irrationally neutral fixed point z0 is a Siegel point if it is
locally conjugate to an irrational rotation g(z) = λz. The maximal neighbourhood of z0 on
which f is conjugate to the irrational rotation is called the Siegel disk.

If such conjugation is not possible, we say that z0 is a Cremer point.

6.2 Global Theory. Fatou and Julia sets.

Once we analysed the local behaviour of the dynamics around the fixed points, we want to
study the dynamics in a more global sense.

Given a entire map f , we use it to split the complex plane into two disjoint invariant sets,
namely the Fatou set and the Julia set. The Fatou set is the set on which the function is
well-behaved, in the sense that each point behaves similarly to the points around it. On the
other hand, the Julia set is the set of points where the behaviour of the function is chaotic and
the behaviour of one point cannot be predicted by the behaviour of the points around it.

Now we give a formal definition of the Fatou and Julia sets.

Definition 6.5. Let f : C→ C be a nonconstant holomorphic map.

Take z0 ∈ C. If there is a neighbourhood U of z0 so that the sequence of iterates {fn}n
restricted to U forms a normal family, we say that z0 belongs to the Fatou set F (f).

Otherwise, if no such neighbourhood exists, we say that z0 belongs to the Julia set J(f).

It is straightforward from the definition that the Fatou set F (f) is open and, therefore, the
Julia set J(f) is closed.

Theorem 6.6. For any integer p ≥ 1, the Fatou set and the Julia set for f and for fp coincide.
That is, F (fp) = F (f) and J(fp) = J(f).

Proof. We write g = fp. First, we observe that F (g) ⊂ F (f), because {gn, n ≥ 1} is a subfamily
of {fn, n ≥ 1}, so it is going to be normal wherever {fn, n ≥ 1} is.

To see the other inclusion, for any k ≥ 0, we consider the family Fk =
{
fk · gn, n ≥ 1

}
. Fk

is normal wherever {gn, n ≥ 1} is. Therefore, Fk is normal in F (g) and F0∪ ...∪Fp−1 too. But

F0 ∪ ... ∪ Fp−1 =
p−1⋃
k=0

{
fk · gn, n ≥ 1

}
= {fn, n ≥ 1}. Thus, {fn, n ≥ 1} is normal in F (g), so

F (f) ⊂ F (g). �
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Now we are going to see the property of invariance of the Julia and Fatou sets. We begin
by defining the different types of invariance. If f is a map of C into itself and E is a subset of
C, E is forward invariant if f(E) ⊂ E and backward invariant if f−1(E) ⊂ E. We remark that
f−1(E) means the set of the preimages of all the points in E. We say that E is completely
invariant if it is both forward and backward invariant.

Theorem 6.7. Given a holomorphic map f , its Fatou set is completely invariant under f .
Consequently, the Julia set is also completely invariant under f .

Proof. Let z ∈ F (f) and we consider a neighbourhood U of z such that U ⊂ F (f). Therefore,
the sequence of iterates {fn}n restricted to U forms a normal family, so any subsequence
admits a convergent sub-subsequence in U . By the Open Mapping Theorem, f(U) is open. We
consider any subsequence {fnk}k in f(U). Then,

{
fnk+1

}
k

is a subsequence in U , that admits a

convergent sub-subsequence
{
f
nkj+1

}
j
. Then,

{
f
nkj
}
j

is a convergent subsequence of {fnk}k.
Therefore, f(z) admits a neighbourhood f(U) where {fn}n is normal, so f(z) ∈ F (f).

Applying the same argument to
{
fnk−1

}
k

and taking into account that f−1(U) is open, we
get that all the preimages f−1(z) admit a neighbourhood f−1(U) where {fn}n is normal. �

In the following proposition we classify the periodic points depending on if they belong to
the Fatou or to the Julia set.

Theorem 6.8. Let f be holomorphic and z0 a periodic point of f . Then, if z0 is an attracting
periodic point or a Siegel periodic point, it belongs to the Fatou set of f . Moreover, the entire
basin of attraction or the Siegel disk is contained in the Fatou set.

On the other hand, if z0 is repelling, parabolic or a Cremer periodic point, it belongs to the
Julia set.

Proof. We may assume that z0 is a fixed point.

First let z0 be an attractive fixed point. For any z in the basin of attraction A(z0), we can
find a neighbourhood of z, with its closure contained in A(z0). In such neighbourhood, {fn}n
converge uniformly to z0. So, for all z ∈ A(z0), z belongs to the Fatou set.

Now, let z0 be a repelling fixed point, so f ′(z0) = a > 1. Thus, (fn(z0))′ = an → ∞.
If we suppose that {fn}n form a normal family in some neighbourhood of z0, there would
exist a subsequence that converge to an homormorphic function g. It satisfies: g(z0) = z0 and
g′(z0) = lim

n→∞
(fn(z0))′ = ∞, what is a contradiction. Therefore, there does not exists any

neighbourhood of z0 where the family of iterates is normal, so z0 belongs to the Julia set.

Let us suppose that z0 is a parabolic fixed point. Without loss of generality, we can suppose
z0 = 0 and f ′(0) = 1. We can write f as: f(z) = z + azp + · · · , with a 6= 0. By induction,
f(z) = z + nazp + · · · and (fn)(p)(0) = p!na →

n
∞. Hence, {fn}n cannot be normal in any

neighbourhood of the origin. Otherwise, some subsequence would converge to an holomorphic
function g with g(0) = 0 and g′(0) =∞. Therefore, 0 belongs to the Julia set.

The case of irrationally neutral fixed points is straighforward from Theorem 6.3. �

We notice that ∂A(z0) belongs to the Julia set of f , for any attracting point z0. In fact,
since the points of A(z0) converge to z0 but not in its complementary, any neighbourhood of a
point in ∂A(z0) contains points which converge to z0 and points that not.

Theorem 6.9. J(f) is the closure of the repelling periodic points of f .
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Proof. It is easy to see that periodic points of f are dense in J(f), the difficulty comes in proving
that there are infinitely many repelling periodic points.

We prove that periodic points of f are dense in J(f). Suppose that U is an open subset such
that U ∩ J(f) 6= ∅ and U does not contain any periodic point of f . We may assume that U
does not contain no Picard’s exceptional value (in the case of transcendental entire functions)
nor zeros of the derivative.

If ϕ1, ϕ2 are two different branches of f−1 in U , since there are no periodic points in U ,

gn =
fn − ϕ1

fn − ϕ2

omits the values 0, 1,∞ in U . By Montel’s Theorem, {gn}n is normal in U , and hence so is
{fn}n, a contradiction. SO periodic points must be dense in U .

For the proof of the existence of infinitelly many repelling fixed points, we refer to [4] or [9]
for the rational functions, and to [16] for transcedental entire functions. �

By a Fatou component of a holomorphic function f we mean any connected component
of the Fatou set of f .

Proposition 6.10. If U is a Fatou component of f , then f(U) is also a Fatou component.

Proof. If U is a Fatou component, then U is open and ∂U ⊂ J(f). Since F (f) and J(f) are
completely invariant under f , f(U) ⊂ F (f) and f(∂U) ⊂ J(f). Moreover ∂f(U) ⊂ f(∂U).
Hence f(U) must be a Fatou component. �

Therefore, we can think that f defines a dynamical system on the Fatou components. If U
is a Fatou component of f , there are several possibilities for its orbit under f :

1. If fn(U) = U for some n ≥ 1, then we call U a periodic component of f .

2. If fm(U) is periodic for some m ≥ 1 but U is not periodic, we say that U is a pre-periodic
component of f .

3. Otherwise, fn(U) ∩ fm(U) = ∅, for all n 6= m. In this case, we call U a wandering
domain.

Our goal is to prove the following theorem that classifies the periodic Fatou components of f ,
where f is an entire function. We recall that, among the entire functions, we distinguish the
polynomials from the transcendental entire functions, as we saw in section 1. We remark that
case 4 in the classification can only occur when the function is transcendental.

Theorem 6.11. (Classification of Fatou components) Let f be a entire function, but not
a linear polynomial, and U be a periodic Fatou component of period k. Then exactly one of the
following holds:

1. U contains an attractive periodic point z0 and fnk → z0 uniformly on compact subsets of
U . Then U is a component of the basin of attraction of z0.

2. ∂U contains a parabolic periodic point z0 and fnk → z0 uniformly on compact subsets of
U . Then U is a component of the parabolic basin of attraction of z0.

3. There is an z0 ∈ U irrationally neutral periodic point and fk|U is conformally conjugate to
an irrational rotation. Then, U is a Siegel disk.
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4. If f is transcendental, U can also be a Baker domain. That is fnk(z) → ∞ uniformly
on compact subsets of U .

One important step of the proof is to show that all periodic components are simply connected
and therefore, by the Riemann Mapping Theorem, conformally equivalent to D, where the
Denjoy-Wolff Theorem applies. Proving the simply connecteness requires different arguments
depending on if the function is a polynomial or transcendental but, after that, the proof of the
theorem finishes equal in both cases.

We remark that, if {U1, . . . , Un} is a cycle of Fatou components, they would be all of the
same type. Indeed, if none of them is a Baker domain, we will have a cycle {p1, . . . , pn} of
periodic points with the same multiplier. On the other hand, if U is a Baker domain, f(U)
must be a Fatou component without any periodic point in f(U), so f(U) is a Baker domain.

6.3 Polynomials.

The aim now is to prove the following proposition, which asserts that all bounded Fatou com-
ponents of a polynomial are simply connected.

Proposition 6.12. Let f be a polynomial of degree d ≥ 2, and U be a bounded Fatou component
of f . Then U is simply connected.

Figure 24: The Julia set of the polynomial P (z) = z4 + z. [20]

First we show that polynomials can be extended to holomorphic maps of Ĉ. Indeed, holo-
morphic maps of Ĉ are the rational maps, and polynomials are rational maps. Hence, given f
polynomial, it can be extended to Ĉ by defining f(∞) = lim

|z|→∞
f(z) =∞

Therefore, ∞ is a fixed point of f . We are interested in computing its multiplier, but we do
not know how to differentiate the function at ∞.

To do so, we consider the change of coordinates h(z) = 1/z. It moves ∞ to 0. Consider
g = h−1 ◦ f ◦ h, so g(z) = 1

f( 1
z )

. Then, ∞ is a fixed point of f if and only if 0 is a fixed point

of g. In this case, we define m(f,∞) = g′(0). We remark that we can find a neighbourhood of
g(0) = 0 that does not contain ∞, so g′(0) can be computed without problems.

Proposition 6.13. Let f be a polynomial of degree d ≥ 2. Then, ∞ is a super-attracting fixed
point of f . That is m(f,∞) = 0.

Proof. We have already seen that ∞ is a fixed point of any polynomial. It remains to compute
its multiplier.
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As we have seen before, we may consider g(z) = 1
f( 1

z )
. In our case, if f is a polynomial of

degree d ≥ 2: f(z) = a0 + a1z + ...+ adz
d. Therefore:

g(z) =
1

f
(

1
z

) =
zd

ad + ...+ a0zd

Taking into account that d ≥ 2, it is easy to check that m(f,∞) = g′(0) = 0. �

Therefore, it makes sense to consider the basin of attraction of ∞, A(∞), which belongs to
the Fatou set of f . Moreover, we deduce that the Julia set of a polynomial is bounded.

Recall that if a point z belongs to the Julia set of f , in each neighbourhood U of z the family
{fn}n is not normal. As a direct consequence to Montel’s Theorem, there cannot exist three
diferent values omitted by all the fn|U in the family, otherwise it would be normal. Therefore,

there exists a, b ∈ Ĉ such that

Ĉ r {a, b} ⊂
⋃
n

fn(U).

This phenomenon is known as the blow-up property of the Julia set and it is the key to prove
the following propositions.

Proposition 6.14. The Julia set J(f) of any rational function f is non-empty.

Proof. Suppose f of degree d ≥ 2. Assume that the Julia set J(f) is empty, so {fn}n is normal

in Ĉ. Therefore, there exists a convergent subsequence {fnj}j . Its limit function g must be

holomorphic in Ĉ, so it must be a rational function. If g is constant, then the image of fnj is
eventually contained in a small neighbourhood of the constant value, which contradicts Liouville
Theorem. If g is not constant then, by Hurwitz Theorem, there exists n0 so that, for all n ≥ n0,
fn has the same number of zeros than f . But that is impossible because fn has degree dn. �

Proposition 6.15. Let f be a rational function of degree d ≥ 2. If z0 belongs to the Julia set
J(f), then the set of all the bakward iterates of z0 is dense in J(f).

Proof. We take any point w ∈ J(f) and U some neighbourhood of it. We have to see that U
contains some preimage of z0. By the blow-up property, there exist some a, b ∈ Ĉ such that:

Ĉ r {a, b} ⊂
⋃
n

fn(U).

Therefore, if z0 is neither a nor b, there exist some N > 0, such that z0 ∈ fN (U) and for some
z ∈ U , f−N (z0) = z.

We should consider the case of z0 being a or b. Since {a, b} is completely invariant under f
and f is surjective, there are two options: they are both fixed points or it is an orbit of period 2.
If a is a fixed point of f , then a is a zero of multiplicity d of f−a. So f(z)−a = (z−a)d+· · · and
f ′(a) = 0. Then a belongs to the Fatou set, so z0 6= a. Similarly, we argue that z0 6= b. For the
case that {a, b} is a periodic orbit, a is a zero of multiplicity d of f−a, so f(z)−a = (z−b)d+· · ·
and f ′(b) = 0. Similarly, f ′(a) = 0, so the multiplier m(f, {a, b}) = f ′(a)f ′(b) = 0. Therefore,
{a, b} belongs to the Fatou set, so z0 can be neither a nor b. �

Proposition 6.16. Any completely invariant subset of J(f) is dense in J(f).

Moreover, if D is a union of Fatou components that is completely invariant, then J(f) = ∂D.
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Proof. The second statement is a direct consequence of the first. Indeed, since D is completely
invariant, ∂D is also completely invariant, which is closed and a subset of J(f). Applying the
first statement, J = ∂D = ∂D.

For the first statement, we take J1 subset of J(f), which is completely invariant. By 6.15,
for all z ∈ J1,

⋃
n
f−n(z) is dense in J , but J1 is completely invariant, so

⋃
n
f−n(z) ⊂ J1. Then,

J1 is dense in J . �

As a consequence of theorem 6.8 and proposition 6.16, we get that, for any attracting fixed
point z0, J = ∂A(z0). Clearly, A(z0) is completely invariant under f , so ∂A(z0) is completely
invariant too. It is contained in the Julia set because any neighbourhood of any point in ∂A(z0)
contains points that converge to z0 and points that not, so the family of iterates cannot be
normal. In particular, we have J = ∂A(∞).

Finally, we are ready to prove the main result of this section, Proposition 6.13, which asserts
that all bounded Fatou components of a polynomial are simply connected.

Proof of Proposition 6.13. First, we are going to prove that U 6⊂ A(∞). Suppose, on the
contrary, U ⊂ A(∞). Since in ∂U the iterates do not tend to ∞, there exists M such that
|fn(z)| < M , for all z ∈ ∂U . By the Maximum Modulus Principle, fn cannot tend to ∞ in U ,
so U ⊂ A(∞).

Now, since U is not simply connected, there is a non-contractible curve γ in U . We call
V the bounded connected component of C r γ. Since γ 6⊂ A(∞), there exists M such that
|fn(z)| < M , for all z ∈ γ. By the Maximum Modulus Principle, |fn(z)| < M , for all z ∈ V . As
we have seen before, J(f) = ∂A(∞), so V contains points of A(∞) and that is a contradiction.
Therefore, bounded Fatou components of a polynomial must be simply connected. �

6.4 Transcendental Entire Functions.

Our goal now is to prove the following theorem, that claims that the periodic Fatou components
of a transcendental map are simply connected.

Theorem 6.17. Let f be a transcendental entire function and U a multiply connected Fatou
component of f . Then, U is a wandering domain.

Figure 25: The Julia set of an entire function, with a Baker domain. [7]

We observe that we cannot follow the same strategy that in polynomials, because the func-
tions cannot be extended continuously to Ĉ. Indeed, transcendental entire maps have a essential
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singularity at ∞ and, by Picard’s Theorem (1.7), the image of any neighbourhood of ∞ is the
whole complex plane excluding, at most, one point. Hence, the function has a chaotical be-
haviour around ∞.

The idea of the proof of Theorem 6.17 is the following. First, we prove that the Julia set of
a transcendetal entire function is non-empty and, in fact, unbounded (Theorem 6.18). Second,
we show that in multiply connected Fatou components, fn → ∞ (Proposition 6.19). Third,
we prove that multiply connected Fatou components are bounded (Proposition 6.22). With all
these preliminary results, we will be able to prove the theorem.

The proof of Theorem 6.17, as well as the previous results, can be found are due to A. Baker
an can be found in its papers [2] and [3], and also in the book [16].

Theorem 6.18. Let f be a transcendental entire function. Then J(f) contains an infinite
number of points and it is unbounded.

Proof. Consider g = f2. Since J(g) = J(f), we have to prove that, given R > 0, J(g) ∩D 6= ∅,
where D = {z : |z| > R}. By Theorem 1.8, g(z)−z has infinitely many zeros in C. They cannot
accumulate in the finite part of the plane, so there are infinitely many zeros in D, and hence we
can take distinct a1, a2 ∈ D such that g(a1) = a1 and g(a2) = a2. Applying Picard’s Theorem
(1.7) to {z : |z| < |a1|} we can find b ∈ D such that g(b) = a1 and b 6= a1.

D0
a1

a2

b

R

Figure 26: Schematic representation of the subset D0.

Set D0 = {z : R ≤ |z| ≤ |a1|+ |a2|+ |b|+ 1}, so a1, a2, b ∈ D0. We suppose J(g) ∩ D0 = ∅
and we are going to find a contradiction. Since D0 does not contain points of the Julia set,
{gn}n is normal in D0, so a1 and a2 are either attracting fixed points or Siegel points.

Suppose a1 is attracting, then there exists C = {z : |z − a1| < r}, with C ⊂ D0 and gn → a1

uniformly in C. On the other hand, since {gn}n is normal in D0, there exists some convergent
subsequence gnk to some function h. As gn → a1 in C, it must be h ≡ a1 in C and, by analytic
continuation, h ≡ a1 in D0, in particular h(a2) = a1. But this is impossible because gn(a2) = a2

for all n. Therefore, a1 must be a Siegel point, and a2 too, by the same argument.

Now, suppose a1 is a Siegel point. There exists C = {z : |z − a1| < r} ⊂ D0 and we can
find a subsequence {gnk}k so that gnk(z) → z uniformly in C. By normality, there exists a
convergent subsequence of {gnk}k to a function h. We have h(z) = z in C and, by analytic
continuation, h(z) = z in D0. In particular, h(b) = b, but gn(b) = a1 for all n. We have reached
a contradiction, so it must be J(g) ∩D0 6= ∅ and the theorem is proved. �

Proposition 6.19. Let f be a transcendental entire function and U a multiply connected Fatou
component of f . Then, fn →∞ in U .
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Proof. Suppose that fn 9∞ in U , that is, there exists some subsequence {fnk}k that remains
bounded. So there exists M such that |fnk(z)| < M , for all z ∈ U and for all k.

Consider a non-contractible curve γ in U and denote by V the bounded component of Crγ.
Since f is holomorphic in V , the Maximum Modulus Principle applies and |fnk(z)| < M , for
all z ∈ V . Therefore, the derivatives (fnk)′ are bounded in V .

On the other hand, by Theorem 6.9, there must be repelling points in V . As we have seen
in the proof of Theorem 6.8, (fn)′(z) tends to ∞ if z is repelling. And that is a contradiction
with the fact that (fnk)′ are bounded in V . �

Lemma 6.20. Let f be a transcendental entire function and U a multiply-connected Fatou
component of f . Suppose γ is a non-contractible curve in U , then there exists n0 such that
Ind(fn(γ), 0) > 0 for all n ≥ n0.

Proof. First, we remark that, since fn → ∞ in γ, for n big enough 0 /∈ fn(γ), it makes sense
to consider Ind(fn(γ), 0).

Now, suppose that there exists some sequence {nk}k such that Ind(fnk(γ), 0) = 0 for all nk.
By the Argument Principle, fnk has not any zero surrounded by γ. Then, by the Minimum
Modulus Principle, fnk → ∞ inside γ. And this is a contradiction because there are points of
the Julia set inside γ. �

Lemma 6.21. Let f be an entire function. Suppose that {γn}n is a collection of closed curves

such that γn →∞ and Ind(γn, 0) > 0. Then, if |f(z)| < |z|C for all z ∈ γn, f is a polynomial.

Proof. From each curve γn we can extract a Jordan curve which surrounds the origin. Therefore,
we can think we have a collection of Jordan curves {γ̃n}n such that Ind(γ̃n, 0) = 1, γ̃n → ∞
and γ̃n ∩ γ̃n+1 = ∅. We consider the space between two consecutive curves and we call it V .

V

γ0

γ1 γ̃1

γ̃0

Figure 27: From the non simple curves on the left, we can extract the ones on the right that are simple and

surround the origin. V is the spaces between any consecutive curves.

Consider the function

g(z) =
f(z)

zC
.

It is holomorphic in V and |g(z)| < 1, for z ∈ ∂V . By the Maximum Modulus Principle, |g| < 1
in V so, for all z ∈ V , |f(z)| < |z|C . Applying the same argument to all the curves γ̃n, we have
the previous inequality for all the points in the unbounded connected component of Cr γ̃0. So
there exists R > 0 and a positive integer m such that:

|f(z)| < |z|m , ∀z ∈ {w : |w| > R} .

So, for all r > R, by Cauchy’s inequalities, we have:∣∣∣f (m)(z)
∣∣∣ ≤ m! sup|z|=r |f(z)|

rm
=
m! |z|m

rm
= m!, ∀z ∈ D(0, r).
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Making r → ∞, we get that
∣∣f (m)

∣∣ is bounded in C. By Liouville’s Theorem, f (m) must be
constant. Hence, f is a polynomial. �

Proposition 6.22. Let f be a transcendental entire function and U an unbounded Fatou com-
ponent of f . Then, U is simply connected.

Proof. Suppose that U is unbounded and multiply connected, so there is a Jordan curve γ non-
contractible in U . For n large enough, Ind(fn(γ), 0) > 0 and fn|γ → ∞, hence fn(γ) intersects

U . As fn(γ) ⊂ F (f), fn(γ) ⊂ U for all n big enough. Therefore, U is invariant under f .

Take V a connected bounded open subset of U such that γ and f(γ) are in V and V ⊂ U . By
Harnack’s inequality (1.10) applied to hn(z) = ln |fn(z)|, we get that for z ∈ γ and w ∈ f(γ),

|fn(w)| ≤ |fn(z)|C , ∀n ≥ n0.

On the other hand, by lemma 6.21, for all n ≥ n0 there is a ∈ γn such that |f(a)| > |a|C .
Setting a = fn(z0), for some z0 ∈ γ and f(z0) = z1 ∈ f(γ), we have:

|fn(z1)| > |fn(z0)|C .

So we reached a contradiction and U must be simply connected. �

Finally, we finish the proof of Theorem 6.17.

Proof of Theorem 6.17. It is straightforward from propositions 6.19 and 6.22. Indeed, if there
exists k such that fk(U) = U and fn → ∞ in U , it must be ∞ ∈ U , but this contradicts the
fact that U is bounded. �

6.5 The proof of Thereom 6.11.

We can suppose f(U) = U . In the case of polynomials, if U = A(∞), then fn(z)→∞, for all
z ∈ U , so it corresponds to the first case. Hence, we can suppose that U is simply connected. As
U 6= C, by the Riemann Mapping Theorem, there exists ϕ : U → D. Therefore, f is conformly
conjugate to g := ϕ ◦ f ◦ϕ−1. Then, g is a self-map of D so, by Denjoy-Wolff theorem, we have
the following cases:

a) There is a unique fixed point p ∈ D of g and, for all z ∈ D, gn(z) → p. Going back
to U , that implies that ϕ−1(p) ∈ U is the only fixed point of f and, for all z ∈ U ,
fn(z)→ ϕ−1(p). It corresponds to the first case.

b) There exists a point p ∈ ∂D such that, for all z ∈ D, gn(z)→ p.

c) There is a conjugation between g and a rational rotation. Then, there is some n such
that gn = idC. By analytic continuation gn, and therefore fn, would be the identity in
D, and that is not possible because we are avoiding the trivial case of f being a linear
polynomial. Hence, this case never occurs.

d) There is a conjugacy between g and an irrational rotation. Then, U is a Siegel disk and
it corresponds to the third case.

Our goal is to see that case (b) corresponds to the second or the fourth case in the theorem.
We remark that the function ϕ given by the Riemann Mapping theorem may not be extendible
to the boundary and ϕ−1(p) may not exist.
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First we notice that, if we are in case (b), then fn(z) → ∂U , for all z ∈ U . Indeed, let z
be any point in U and K any compact subset of U . Then ϕ(z) is a point in D and ϕ(K) a
compact subset of D. As we are supposing that case (b) applies, there exists some n such that
ϕ(fn(z)) = gn(ϕ(z)) /∈ ϕ(K). Then, fn(z) /∈ K and, as it happens for any compact subset of
U , fn(z)→ ∂U .

Second, we are going to proof that, in fact, all the orbits converge to a unique point in the
boundary. That is that there exists some p ∈ ∂U such that, for all z ∈ U , fn(z) → p. By
lemma 4.2, it is enough to prove that, for some w ∈ U , its orbit converges to a single boundary
point. By Schwarz-Pick lemma, if ρU (w, f(w)) < r, then ρU (fn(w), fn+1(w)) < r for all n.
Since fn(w) → ∂U , by lemma 3.5,

∣∣fn(w)− fn+1(w)
∣∣ → 0. We know that f is continuous in

U except at most in one point, ∞, which can only occur in the case of U being an unbounded
component of a transcendental entire function. Since U is compact (as a subset of Ĉ), there
exists some limit point of {fn(w)}n in U . If there exists some limit point p where f is defined,
it must be a fixed point of f :

p = lim
n
fn(w) = lim

n
fn+1(w) = f(lim

n
fn(w)) = f(p).

But fixed points are isolated and limit sets are connected, hence fn(w) must converge to p. On
the other hand, if there is no limit point of {fn(w)}n where f is defined, the only possibility
is fn(w) → ∞. In this case, we have that U is a Baker domain (case 4 in the theorem). We
remark that this can only happen with transcendental entire functions in unbounded Fatou
components.

Observe that p cannot be attracting, since p ∈ J(f), so |f ′(p)| ≥ 1. On the other hand, p
cannot be repelling, since it attracts all the points in U , so |f ′(p)| ≤ 1. Therefore, |f ′(p)| = 1.

Finally, we are going to proof that f ′(p) = 1. Intuitively, we expect f ′(p) = 1 to hold
because, since |f ′(p)| = 1, f acts like a rotation about p on a small neighbourhood of p and, as
f(U) = U , this rotation must be trivial. Now we prove it rigorously.

We can assume that p = 0 and ∞ ∈ ∂U . We can take a connected subset W of U , forward
invariant by f and with f|W one-to-one. Indeed, since |f ′(0)| = 1, f is one-to-one in some
neighbourhood of 0 and fn → 0 uniformly on compact subsets. Then, we take V any open
subset of U such that for some z ∈ V , f(z) ∈ V . Then, for some N ,

W =
∞⋃
n=N

fn(V )

has the required properties.

Then, consider z0 ∈W and, for all n ≥ 1, we define:

ϕn : W −→ Ĉ

z 7−→ ϕn(z) =
fn(z)

fn(z0)

We remark that, for all n, ϕn(z0) = 1.

Remark. The family {ϕn}n is normal in W .

Proof. First, ϕn does not take the values 0 and ∞ in W , because fn does not. Since ϕn is
one-to-one in W , because f is, and ϕn(z0) = 1 for all n, then ϕn does not take any of the values
0, 1,∞ in W r {z0}. Then, {ϕn}n is normal in W r z0.

To proof that {ϕn}n is normal in W it is enough to see that it is normal in some neigh-
bourhood of z0. Let D := D(z0, r), for some r > 0 such that D ⊂ W and let C := ∂D. By
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normality, we can find a subsequence
{
ϕnj
}
j
, which converges uniformly on compact subsets

to some function ϕ on W r {z0}. Then we have

ϕnj (z) =
1

2πi

∫
C

ϕnj (w)

w − z
dw −→ 1

2πi

∫
C

ϕ(w)

w − z
dw,

and the convergence is uniform. Defining ϕ(z0) = 1, it follows that ϕnj converges uniformly on
compact subsets to ϕ on W . �

Having proved the normality of {ϕn}n, we can assume that there exists some subsequence
ϕnj converges uniformly on compact subsets to ϕ on W . Then,

ϕn(f(z)) =
fn(f(z))

fn(z0)
=
fn(f(z))

fn(z)

fn(z)

fn(z0)
= ϕn(z)

fn(f(z))

fn(z)
= ϕn(z)

fn(f(z))− f(0)

fn(z)− 0
.

So, when n → ∞, ϕ(f(z)) = f ′(0)ϕ(z). Since ϕn are one-to-one on W , by Hurwitz Theorem,
ϕ must be constant or one-to-one in W . If ϕ is constant in W , then it must be ϕ ≡ 1, as
ϕ(z0) = 1. Therefore, f ′(0) = 1, as we wanted to proof.

Now assume that ϕ is one-to-one in W . Setting λ = f ′(0), we have ϕ(f(z)) = λϕ(z) and
ϕ(fn(z)) = λnϕ(z). Evaluating in z0, it gives us ϕ(fn(z0)) = λnϕ(z0) = λn. Since |λ| = 1,
there exists an increasing sequence of integers {mj}j such that λmj → 1 (because either λm = 1

for some m or {λn}n is dense in S1). Then, ϕ(fmj (z0)) = λmj → 1. Since 1 ∈ ϕ(W ) and
ϕ(f

m
j (z0)) ∈ ϕ(W ) and ϕ is invertible in W (because it is one-to-one), fmj (z0)→ z0 ∈W . This

is a contraction with the fact that fn(z) → 0 ∈ ∂U , for all z ∈ U . So ϕ must be constant and
the theorem is proved.

6.6 Application of Cowen’s Theorem: Classification of Baker domains.

Finally, we classify the Baker domains according on the dynamics inside them. Since they
are simply connected, all the theory developed in section 5 applies. We will also see that for
the other types of Fatou components the dynamics near the fixed point are not subject to
classification since they do not depend on the map.

We follow the ideas of the paper [18]. For more examples on Baker domains, see [5] and [12].

Indeed, if we take any Fatou component of f , different from A(∞) in the case of polynomials,
it need to be simply connected. By the Riemann Mapping Theorem, there exists a conformal
map ϕ : U → D, so f is conformally conjugate to g = ϕ ◦ f ◦ ϕ−1. Since g is a self-map of D,
Cowen’s Theorem 5.3 applies, so there exists a fundamental set for g in D where g is one-to-one.
We take V ⊂ U so that ϕ(V ) is such a fundamental set. Moreover, we know that g|ϕ(V ) is
conjugate by σ to some Möbius Transformation of Ω, with Ω = C or Ω = D. Writing ψ = σ ◦ϕ,
we have:

V ⊂ U f //

ϕ

��
ψ

""

V ⊂ U

ϕ

��
ψ

||

ϕ(V ) ⊂ D g //

σ

��

ϕ(V ) ⊂ D

σ

��
ψ(V ) ⊂ Ω

φ // ψ(V ) ⊂ Ω

Since σ is one-to-one in the fundamental domain, ψ is one-to-one in V , so ψ conjugates f and
φ in a neighbourhood of the fixed point.
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When the fixed point lies in U is easy to describe the dynamics around it. If we take U to
be a Siegel disk, we know that it is conjugate to an irrational rotation, so we must take Ω = D
and φ an irrational rotation. Moreover, the only possible fundamental set V is V = U .

On the other hand, if the fixed point is attracting, it corresponds to a fixed point of a non-
conformal self-map of D, so we must take Ω = C and φ(z) = λz, where λ is the multiplier of
the fixed point.

Figure 28: In the left, the dynamics in a Siegel disk. In the right, the dynamics in some neighbourhood of an

attracting fixed point.

Suppose now that the orbits in U converge to a parabolic fixed point p of multiplicity n ≥ 1.
Then, f ′(p) = 1 and, by Theorem 6.2, there are n equally spaced attracting directions separed
by n equally spaced directions. Therefore, U is placed between two repelling directions, and it
contains a petal. The petal is a fundamental set, so its dynamics must be conjugate to some
Möbius transformation of either C or D.

On the other hand, f ′(p) = 1. Assuming that the Denjoy-Wolff point of g is 1 ∈ D, so ϕ
extends continuously to U ∪ {p} with ϕ(p) = 1, then:

lim
r→1−

g′(r) = lim
r→1−

(
ϕ ◦ f ◦ ϕ−1

)′
(r) = lim

r→1−
ϕ′(f(ϕ−1(r)))f ′(ϕ−1(r))

1

ϕ′(r)
= ϕ′(p)f ′(p)

1

ϕ′(p)
= 1.

Therefore, it must be Case 2 or Case 4 in Cowen’s classification. However, since the points
of the attracting direction converge nontangentially, it is Case 2. So we must take Ω = C and
φ(z) = z + 1.

Figure 29: The dynamics around a parabolic fixed point.

The case of U being a Baker domain is different because f is not defined at ∞. Beforehand,
it can correspond to Cases 2, 3 or 4 in Cowen’s classification and, actually, all occur.

We denote by H the upper half-plane.
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Theorem 6.23. (Classification of Baker domains) Let B be a Baker domain of f and
V ⊂ B a fundamental set for f in B. Then, taking Ω = C or Ω = H, there exists a map
ψ : B → Ω, which is one-to-one in V , and a Möbius transformation φ : Ω → Ω, such that
ψ ◦ f = φ ◦ ψ. Moreover, Ω is unambiguously determined and φ is unique up to conjugation,
and they can be chosen among the following:

(a) Ω = C and φ(z) = z + 1. In this case, we say that B is doubly-parabolic.

(b) Ω = H and φ(z) = sz, with 0 < s < 1. In this case, we say that B is hyperbolic.

(c) Ω = H and φ(z) = z ± 1. In this case, we say that B is simply-parabolic.

As we show in the following theorem, if the function is one-to-one in a Baker domain, then
it cannot be doubly-parabolic.

Theorem 6.24. (Classification of univalent Baker domains) Let B be a Baker domain
of f and suppose that f|B is one-to-one. Then B must be hyperbolic or simply-parabolic.

Proof. Since f|B is one-to-one and f(B) = B, we have that f : B → B is conformal. Taking
ϕ a conformal map between B and H, f is conjugate to ψ = ϕ ◦ f ◦ ϕ−1, which is a Möbius
transformation of H without fixed points in H.

Then, by the unicity in Theorem 5.3, Ω = H. So it must be Case 3 or Case 4, which
correspond to hyperbolic and simply-parabolic, respectively. �

We remark that, applying the same argument that in this last theorem, we can deduce that
f cannot be one-to-one in U , when U is a fixed Fatou component with an attracting or parabolic
fixed point. Therefore, there is a point in U when f ′ vanishes.

Finally, we present examples of the different types of Baker domains.

Example 6.25. (Doubly-parabolic) Let us consider the map:

f(z) = z + e−z.

It is semi-conjugate to g(w) = we−w by the map h(z) = e−z = w, as follows:

z
f //

h

��

z + e−z

h

��
w

g // we−w

First, we analyse the map g. Its only fixed point is the origin, and it has multiplier g′(0) = 1.
Therefore, it is parabolic and, since g(w) = w−w2+O(w3) near the origin, there is one attracting
and one repelling direction and a parabolic basin of attraction A. The real axis is invariant
under g and, for x < 0, g(x) < x and, for x > 0, 0 < g(x) < x. Therefore, the positive real axis
is contained in A.

Returning to the map f , we observe that the preimages of R− under e−z are the horitzontal
lines {Im(z) = (2k + 1)π, k ∈ Z}. They are invariant under f and their points converge to ∞
to the left. Each strip R× ((2k− 1)π, (2k+ 1)π), k ∈ Z, contains a preimage of A and therefore
a preimage of the attracting direction, that is a straight line whose points converge to ∞ to
the right. The following figure shows an outline of the dynamics, and we deduce that it is a
doubly-parabolic Baker domain.
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Figure 30: On the left, an outline dynamic plane of g, with the parabolic basin of the origin and the atracting

and repelling directions. On the right, an outline dynamic plane of f , with a Baker domains on each horitzontal

strip.

Example 6.26. (Hyperbolic) Let us consider the map:

f(z) = 2− log 2 + 2z − ez.

Note that f is semi-conjugate to g(w) = 1
2w

2e2−w by the map h(z) = ez = w, as follows:

z
f //

h

��

2− log 2 + 2z − ez

h

��
w

g // 1
2w

2e2−w

The map g has two fixed points: 0 and 2, which is super-attracting. Consider its immediate
basin of attraction A(0), which its preimage by ez consists on a Baker domain B. It contains
some left half-plane {Re(z) < z0}, for some z0.

Observe that, for z with |z| big enough, the map f acts like f̃(z) = 2z. Therefore, B must
be hyperbolic.

ez

Figure 31: On the left, an outline dynamic plane of g, with the immediate attracting basin A(0). On the right,

an outline dynamic plane of f , with the hyperbolic Baker domain on the left.

Example 6.27. (Simply-parabolic) Let us consider the map:

f(z) = α+ z + ez, α ∈ C.

It is semi-conjugate to g(w) = eαwew by the map h(z) = ez = w, as follows:

z
f //

h

��

α+ z + ez

h

��
w

g // eαwew

49



The map g has an only fixed point at the origin, with mutiplier eα. It can be taken α = iθ,
θ ∈ R, so that the origin is a Siegel point. Therefore, there is a neighbourhood of the origin
where the orbits rotate around it.

Coming back to f , we see that the preimages of this Siegel disk under ez correspond to an
invariant domain U that contains a left half-plane {Re(z < x0)}, for some x0. The orbits inside
the Siegel disk correspond to almost vertical lines in U , whose points converge vertically to ∞.
Thus, U is a simply-parabolic Baker domain.

ez

Figure 32: On the left, an outline dynamic plane of g, with the Siegel disk around 0. On the right, an outline

dynamic plane of f , with a Baker domain on the left.
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CONCLUSIONS.

Finally, I proceed to provide an overview of the project. I comment some of the results in a
more personal and informal way than when they are discussed in the dissertation.

First of all, since the study of dynamical systems is a branch of mathematics characterised
by its multidisciplinary, in this project we use material studied in many different subjects of
the degree. Apart from background in Complex Analysis and Dynamical Systems, we also need
some tools developed in Differential Geometry, such as the Hyperbolic metric, or in Topology,
such as all the properties of topological spaces used in Cowen’s proof. With that in mind, it was
interesting to see a practical usage for some of these results and examples of some topological
concepts that I had not seen before appear out of their context.

Our main goal was to study the proof of the Denjoy-Wolff theorem. Provided that most
of the necessary knowledge had not been studied in the degree, I had to devote some sections
to preliminary results. Therefore, I studied some properties of holomorphic functions that are
useful when dealing with iteration, such as the Schwarz-Pick lemma. It is almost magic that
changing the metric implies that holomorphic functions are contractions. In general, when
working with holomorphic functions, there appear many surprising properties, different to the
ones of real analytic functions. Such properties are precisely the ones that allow us to prove
many of the theorems presented in this project.

In the last chapter of the dissertation, we dealt with the Fatou and Julia set of entire
functions, that is complex dynamics in a more global sense. We saw that, as Fatou said [15],
the degree of complexity is even bigger when dealing with transcendental entire functions, due to
the essential singularity at∞. However, it is also more exciting because there appear interesting
phenomena such as Baker domains or wandering domains, which bring wealth to the dynamics.

We focused on what can be seen as a drop of water in the middle of the ocean: during this
project I realised the large extent of this branch of the mathematics. Without going too far, the
theorem of classification can be extended to rational functions, with the appearance of Herman
rings, or it can be proved that rational functions have no wandering domains. What seemed
to me as a side note in the course of Mathematical Models, is actually a huge active field of
research.
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[26] J. Wolff, Sur une géneralisation d’un théorème de Schwarz, Comptes rendus hebdomadaires
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