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Brain changes occurring in aging can be indexed by biomarkers. We used cluster analysis to identify
subgroups of cognitively unimpaired individuals (n = 99, 64—93 years) with different profiles of the
cerebrospinal fluid biomarkers beta amyloid 1—-42 (Ap42), phosphorylated tau (P-tau), total tau, chiti-
nase-3-like protein 1 (YKL-40), fatty acid binding protein 3 (FABP3), and neurofilament light (NFL).
Hippocampal volume and memory were assessed across multiple follow-up examinations covering up to
6.8 years. Clustering revealed one group (39%) with more pathological concentrations of all biomarkers,
which could further be divided into one group (20%) characterized by tauopathy and high FABP3 and one
(19%) by brain p-amyloidosis, high NFL, and slightly higher YKL-40. The clustering approach clearly
outperformed classification based on AB42 and P-tau alone in prediction of memory decline, with the
individuals with most tauopathy and FABP3 showing more memory decline, but not more hippocampal
volume change. The results demonstrate that older adults can be classified based on biomarkers beyond

amyloid and tau, with improved prediction of memory decline.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Biomarkers play an increasingly important role in research on
age-related neurological conditions and diseases. Numerous studies
have consistently shown a marked decrease in cerebrospinal fluid
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(CSF) concentration of beta amyloid 1—-42 (Ap42) together with
increased total tau (T-tau) and phosphorylated tau (P-tau) in Alz-
heimer’s disease (AD) dementia and mild cognitive impairment
(MCI) cases showing progression to AD (Olsson et al., 2016). The
National Institute on Aging-Alzheimer’s Association’s (NIA-AA) new
research framework defines AD solely based on biomarkers
reflecting the core pathologies of AD, while clinical symptoms only
are used for staging of the disease (Jack et al., 2018). These criteria
rely on the amyloid/tau/neurodegeneration (A/T/N) classification
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scheme for the core AD biomarkers (Jack et al., 2016a), wherein CSF
AP42 reflects brain B-amyloidosis (Strozyk et al., 2003; Tapiola et al.,
2009), P-tau reflects tau pathology/neurofibrillary tangles (Buerger
et al, 2006; Tapiola et al, 2009), and T-tau reflects neuro-
degeneration (Hesse et al., 2001; Ost et al., 2006; Zetterberg et al.,
2006). CSF concentrations of AP42, T-tau, and P-tau are also
known to change even in cognitively well-functioning older adults
(Jansen et al., 2015; Toledo et al., 2015). Accordingly, cognitively
unimpaired older adults with abnormal amyloid and tau biomarkers
are defined as having preclinical AD based on the NIA-AA criteria.

However, with higher age also come other changes such as
neuroinflammation and different aspects of neurodegeneration
(Fjell et al., 2014; Wyss-Coray, 2016). Chitinase-3-like protein 1
(YKL-40) is mainly expressed in astrocytes in the human brain
(Bonneh-Barkay et al., 2010), and YKL-40 expressing astrocytes are
found close to activated microglia (Bonneh-Barkay et al., 2010).
Consequently, CSF YKL-40 is believed to be a biomarker of neuro-
inflammation (Baldacci et al., 2017; Dhiman et al., 2019). Fatty acid
binding protein 3 (FABP3) is expressed in neurons of the brain
(Pelsers et al., 2004), where it is involved in transport of fatty acids.
FABP3 is found in the cytosol, and it is released following cellular
injury; thus CSF FABP3 is considered a biomarker of neuronal
damage (Dhiman et al., 2019; Pelsers et al., 2004). Neurofilament
light chain protein (NFL) is a cytoskeletal component of neuronal
axons (Khalil et al., 2018). NFL is released from neuronal axons in
response to neuronal damage, and CSF NFL is believed to reflect
axonal degeneration (Dhiman et al., 2019; Khalil et al., 2018). CSF
YKL-40, FABP3, and NFL are not disease-specific biomarkers, and all
of them have been found to be increased in both acute and chronic
brain diseases (Baldacci et al., 2017; Bonneh-Barkay et al., 2010;
Bridel et al, 2019; Olsson et al., 2016; Pelsers et al., 2004;
Steinacker et al., 2004; Zetterberg et al., 2006). Although all the
above mentioned CSF biomarkers reflect at least partly separate
brain pathological processes, some processes may also be
interrelated.

Relationships between the core AD CSF biomarkers and
emerging CSF biomarkers like YKL-40, FABP3, and NFL in cogni-
tively unimpaired older adults have mainly been studied by
assessing correlations between the individual biomarkers. Our
knowledge about how CSF biomarkers may cluster is, however,
limited. Furthermore, acknowledging that most age-related brain
changes are the result of a number of different processes that
probably vary across individuals, it is a major task to be able to
group older adults according to their brain states.

Clustering analyses can be used to identify subgroups with mul-
tiple co-occurring biomarker features. Unfortunately, beyond Ap42
and tau (Nettiksimmons et al., 2010; Racine et al., 2016), we do not
know whether clustering analyses can be used to classify cognitively
unimpaired older adults in meaningful subgroups characterized by
partly different and partly overlapping brain pathology.

To address these questions, we first performed correlation and
clustering analyses to assess relationships between established and
emerging CSF biomarkers (Table 1) in order to examine how bio-
markers for different brain states are related at different superor-
dinate levels. Second, we used the CSF biomarkers to identify
participants with similar biomarker profiles using a blind, data-
driven clustering approach across participants. The rationale was
to test whether subgroups of older adults could be detected based
on biomarker profiles. Third, we assessed whether these subgroups
showed different trajectories of memory and hippocampal volume
change across multiple follow-up examinations distributed over an
interval up to 6.8 years. The performance of the clustering approach
in prediction of memory decline and hippocampal volume change
over time was compared to the NIA-AA classification based on
amyloid and tau.

Table 1
The studied biomarkers and the pathologies they represent

Biomarker Related pathological process
CSF AB42 Amyloid deposition
CSF FABP3 Neuronal damage

CSF phosphorylated tau
CSF total tau

CSF YKL-40

CSF NFL

Tau phosphorylation/tangle formation
Altered tau metabolism/neurodegeneration
Neuroinflammation

Axonal damage/neurodegeneration

Key: AB42, beta amyloid 1—42; CSF, cerebrospinal fluid; FABP3, fatty acid binding
protein 3; NFL, neurofilament light; YKL-40, chitinase-3-like protein 1.

2. Materials and methods
2.1. Participants

We recruited patients scheduled for elective gynecological
(genital prolapse), urological (benign prostate hyperplasia, prostate
cancer, or bladder tumor/cancer), or orthopedic (knee or hip
replacement) surgery in spinal anesthesia turning 65 years or older
the year of inclusion. Dementia, previous stroke with sequela,
Parkinson’s disease, and other neurodegenerative diseases likely to
affect cognition were exclusion criteria at baseline. Participants
were assessed with a multi-domain battery of cognitive tests before
surgery, including the Mini Mental Status Examination (MMSE)
(Folstein et al., 1975), Clock Drawing Test (Shulman, 2000), Word
List Memory Task (Morris et al., 1989), Trail Making Test A (TMTA)
and B (TMTB) (Reitan, 1955), and verbal fluency (FAS test and Ani-
mal Naming) (Spreen and Strauss, 1991). The median time from
cognitive assessment to surgery was 6 days (interquartile range
[IQR] 3—11). CSF samples were collected by the anesthesiologist in
conjunction with the spinal anesthesia. The participants also un-
derwent magnetic resonance imaging (MRI) after surgery. The
mean time between CSF sampling and MRI at baseline was 8 weeks
(standard deviation [SD] [range]: 6 [—20 to 24]). Participants were
tested with the same battery of cognitive tests annually and with
MRIs biennially for up to 6.8 years.

From all recruited participants, we selected only participants
with CSF data available for all biomarkers (AB42, T-tau, P-tau, YKL-
40, FABP3, and NFL). Furthermore, we performed a review of all
neurological diagnoses and MRI findings at baseline or occurring
though follow-up in the cohort. We excluded participants with
diagnoses/lesions that we found likely to affect cognition or mea-
sures of hippocampal volume (details in Supplementary Material).
As we wanted to study phenotypes in aging individuals without
clinical symptoms of neurodegenerative diseases, we also excluded
all participants who had received a diagnosis of dementia or MCI
during follow-up, had a cognitive impairment according to hospital
medical records, had developed other neurodegenerative diseases
during follow-up, and participants who, based on a cognitive
assessment in the study, had been offered referral to the hospital for
further cognitive assessment. Finally, from the remaining sample,
selection of participants cognitively unimpaired at baseline was
based on the following procedure: (1) we included all participants
with MMSE > 28, if also Clock Drawing Test score was >4 and Word
List Recall score was > —1.5 SD from the mean according to age, sex,
and education adjusted norms, and (2) we included participants
with MMSE < 28, if Clock Drawing Test score was >4, and also test
scores for Word List Recall score, TMTA, TMTB, FAS test, and Animal
Naming were > —1.5 SD from the mean according to norms. Our
selection resulted in 99 participants with CSF analyses available for
all biomarkers, of which 99 had been cognitively assessed one or
more times (median: 7 cognitive assessments; IQR 4—7, range 1-7),
and 85 had one or more MRIs (median: 3 MRIs; IQR 2—4, range
1—4). Demographics, cognitive test results, and CSF biomarker
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characteristics are shown in Table 2. Seventy-three participants
were excluded (see reasons in Fig. S1 and Supplementary text).
Excluded participants had poorer performance on MMSE and Word
List Recall compared to the included participants (Table S1). Age,
years of education, sex distribution, and CSF biomarker character-
istics did not differ.

2.2. Ethical considerations

The study was conducted in accordance with the Declaration of
Helsinki and approved by the Regional Committee for Ethics in
Medical Research in Norway (REK 2011/2052). All participants
provided written informed consent.

2.3. Magnetic resonance imaging acquisition and processing

T1-weighted MPRAGE 3-dimensional images were acquired
with a 1.5 T Siemens Avanto scanner using a 12-channel head coil
[repetition time (TR) = 2400 ms, echo time (TE) = 3.79 ms, field of
view = 240 mm, slice thickness = 1.20 mm, pixel size =
1.25 x 1.25 mm]. The same scanner was used at baseline and all
follow-ups. Images were processed with FreeSurfer (version 6.0)
and its specific longitudinal stream (https://surfer.nmr.mgh.
harvard.edu). For each MRI, the FreeSurfer pipeline performs a set
of automated procedures for the cortical reconstruction and volu-
metric segmentation, documented elsewhere (Dale et al., 1999;
Fischl et al., 2002). More specifically, the segmentation algorithm
assigns labels to all the brain regions of each individual scan, based
on an available probabilistic atlas obtained from a training set of
participants which has been accurately manually labeled (Fischl
et al., 2002). The hippocampal volume is defined from this avail-
able atlas. The FreeSurfer longitudinal stream includes methods
designed to minimize the bias to any time point in a participant and
which lead to increased statistical power, better separation of
groups based on atrophy, and higher reproducibility. These include
the generation of a subject-specific intermediate template followed
by a projection of each time point to this template (Jovicich et al.,
2013; Reuter et al., 2012).

2.4. CSF collection and analyses

CSF was collected in polypropylene tubes, centrifuged at room
temperature for 10 minutes, the supernatant aliquoted into poly-
propylene tubes, and frozen at —80 °C pending analyses. Samples
were sent on dry ice to the Clinical Neurochemistry Laboratory at
Sahlgrenska University Hospital, MéIndal, Sweden, for analyses. CSF

Table 2
Demographics

Demographics Cognitively unimpaired

older adults (n = 99)

Age at baseline (y) 72 (68—78)
Sex: male 1)

Education (y) 12-17)
MMSE score, baseline 28-30)

CERAD, Word List Recall score 8)

0(5
4(
9(
6 (5—
(512—866)
(
9 (
(
(

CSF Ap42 (pg/mL) 731

CSF FABP3 (pg/mL) 4. 56 3.36-5.93)
CSF P-tau (pg/mL) 46—75)
CSF T-tau (pg/mL) 347 272-486)

CSF YKL-40 (pg/mL)
CSF NFL (pg/mL)

225,210 (175,208—280,877)
1026 (794—1482)

Values are represented as median (interquartile range) and n (%).

Key: AB42, beta amyloid 1—42; CERAD, Consortium to Establish a Registry for Alz-
heimer’s disease; CSF, cerebrospinal fluid; FABP3, fatty acid binding protein 3;
MMSE, Mini Mental Status Examination; NFL, neurofilament light; P-tau, phos-
phorylated tau; T-tau, total tau; YKL-40, chitinase-3-like protein 1.

AP42, T-tau, and P-tau concentrations were measured using
INNOTEST enzyme-linked immunosorbent assay (ELISA; Fujirebio,
Ghent, Belgium), CSF NFL concentrations using a commercial ELISA
(UmanDiagnostics, Umed, Sweden), YKL-40 concentrations using a
commercial ELISA (R&D Systems, Minneapolis, MN), and FABP3
concentrations using an immunoassay with electro-
chemiluminescence detection (MSD Human FABP3 kit; Meso Scale
Discovery, Gaithersburg, MD). Analyses were performed by board-
certified laboratory technicians masked to clinical data. Intra-
assay coefficients of variation were 9%—13%. All participants had
detectable levels of all biomarkers.

2.5. Statistical analysis

We tested correlations between baseline age and CSF bio-
markers and between the CSF biomarkers using bivariate and par-
tial Spearman correlations in SPSS (version 25). These analyses
were undertaken to describe the structure of the data, not to test
specific hypotheses.

Clustering analyses were performed in MATLAB (MathWorks
Inc). Clustering analysis is used to identify natural groupings of
similar variables from a data set. First, we calculated the distance
between variables using Spearman correlation, to account for non-
normal distribution of the data. We then used the “ward” or inner
squared distance as a linkage function to group the variables into
clusters. The variables were reordered with the optimal leaf order
and a hierarchical dendrogram was used to represent the clusters at
the different levels. To remove the effect of age from all CSF bio-
markers, we computed independent linear regressions of each
biomarker against age, and the residuals of these regressions were
used for the clustering analysis. The clustering approach was
completely data-driven. As the relationships between several of the
included CSF biomarkers are not known a priori, we did not impose
restrictions of the clustering algorithms.

We performed 2 cluster analyses:

Cluster analysis 1: We used cluster analysis to establish clusters
of CSF biomarkers with shared behavior across participants. In
this analysis, all the available CSF biomarkers were used as
variables and the participants as observations. The purpose of
this was to see which CSF biomarkers tended to go together
across different number of clusters.

Cluster analysis 2: In this analysis, we used the CSF biomarkers
to identify subgroups of participants. Thus, we ran the cluster
analysis to define groups of participants with the same profiles
of CSF biomarkers. Here, participants were used as variables and
the biomarker concentrations as observations. Thus, in cluster
analysis 1, we tested which biomarkers clustered together (the
CSF biomarkers were the variables), while in cluster analysis 2
we tested which participants clustered together (the partici-
pants were the variables).

The optimal number of clusters given by the Calinski-Harabasz
algorithm was 2 (i.e., our first hierarchical partition). Visual in-
spection of the hierarchical distribution of the dendrogram indi-
cated that each cluster could be further split into 2 clusters each,
and this was confirmed by running the Calinski-Harabasz algorithm
separately for each of the 2 main clusters. In order to characterize
the biomarker profile for each clustering-based subgroup of par-
ticipants, differences between the subgroups for each biomarker
were quantified by calculating Cohen’s d (the pairwise difference in
mean biomarker values between groups divided by the pooled
standard deviation weighted for group size). This was done to map
the relative contributions of the different biomarkers in the
grouping of participants. According to established rules of thumbs,


https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu

4 A.-V. Idland et al. / Neurobiology of Aging 93 (2020) 1-15

we considered effect sizes >0.80 as large, >0.50 as medium, and
>0.20 as small.

As an alternative to the clustering approach, we classified par-
ticipants into biomarker groups according to the NIA-AA criteria
(Jack et al., 2016a), where A+T+ represents amyloid and tau posi-
tivity, A-T+ represents amyloid negativity and tau positivity, and A-
T- represents amyloid and tau negativity. The criteria for amyloid
positivity (A+) was AB42 < 530 pg/mL and for tau positivity (T+) P-
tau > 60 pg/mL according to established cut-offs (Hansson et al.,
2006). T-tau was not used for classification of neurodegeneration
(N+), because of a very strong correlation between T-tau and P-tau
(r=0.96, p < 0.001).

Finally, we tested for intercept or slope differences in memory
and hippocampal volume over time as a function of biomarker
group by use of generalized additive mixed models (GAMM) run in
R (https://www.r-project.org) using RStudio (www.rstudio.com)
IDE. GAMM uses the package “mgcv” (Wood, 2006). Memory score
from Word List Recall, for up to 7 time points covering up to
6.8 years, was used as outcome variable, biomarker group (“clus-
ter”) as factor, participant-specific time since baseline as covariate,
and we included a time x biomarker group interaction term. Sex
and baseline age were included as covariates of no interest. Random
intercept was included. Separate analyses were run including
number of memory test sessions completed as a proxy to control for
practice effects. The same analyses were run for hippocampal vol-
ume across time, covering up to 6.81 years. The same variables and
covariates as for the memory analyses were included. In addition,
estimated total intracranial volume was included as an additional
covariate of no interest. All analyses were run with age x time as an
additional covariate, which in no instances had substantial impact
on the reported results, and these analyses were thus not included
in the manuscript. A major advantage of GAMM in the present
setting is that relationships of any degree of complexity can be
modeled without specification of the basic shape of the relation-
ship, and GAMM is thus especially well-suited to map trajectories of
neurocognitive variables which can be assumed to be non-linear
and where the basic form of the curve is not known (Fjell et al.,
2010). This means that if the trajectories of a given measure are
compared across groups of participants, GAMM will detect possible
slope differences around inflection points. GAMM fits are typically
evaluated and inspected based on p- and F-values, edf (effective
degrees of freedom) as a measure of the complexity of the curve, as
well as by inspecting the plotted graphs. We also used the package
“simr” in R to calculate how many annual examinations would be
required to detect differences in memory change between the
biomarker groups with 80% power for our sample with the given
effect sizes (Green and MacLeod, 2016).

3. Results
3.1. CSF biomarker correlations

CSF Ap42 did not correlate with age or any of the other CSF
biomarkers. CSF T-tau, P-tau, YKL-40, FABP3, and NFL were all
positively correlated with age (Table 3). Correlations between CSF
biomarkers were therefore adjusted for age. T-tau, P-tau, YKL-40,
NFL, and FABP3 were all positively correlated (Table 3). Such a
correlation pattern between the biomarkers suggested that it could
be possible to identify higher order structures in the data, that is,
clusters of biomarkers.

3.2. Cluster analysis 1: clusters of CSF biomarkers

The cluster analysis yielded different levels of separation of the
CSF biomarker clusters (Fig. 1). At level 1, one cluster was formed by

Table 3
CSF biomarker correlations
Biomarkers  Age AB42  FABP3  P-tau T-tau YKL-40  NFL
AB42 —-0.01 —
0.96
FABP3 0.26 0.15 -
0.01 0.15
P-tau 0.28 0.10 0.79 —
0.006 0.35 <0.001
T-tau 0.29 0.05 0.79 0.96 —
0.003 0.65 <0.001 <0.001
YKL-40 0.36 0.01 044 0.62 0.67 —
<0.001 0.94 <0.001 <0.001 <0.001
NFL 047 0.02 0.52 0.32 033 0.35 —
<0.001 0.87 <0.001 0.002 0.001 <0.001

Numbers represent Spearman’s rho and p-values for the first and second line,
respectively. Correlations between the CSF biomarkers are adjusted for age by
partial correlations. Bold indicates p < 0.05.

Key: Ap42, beta amyloid 1—42; CSF, cerebrospinal fluid; FABP3, fatty acid binding
protein 3; NFL, neurofilament light; P-tau, phosphorylated tau; T-tau, total tau; YKL-
40, chitinase-3-like protein 1.

AB42 and a second cluster by the remaining CSF biomarkers. At
level 2, the second group from level 1 was further subdivided into
one cluster consisting of FABP3, T-tau, P-tau, and YKL-40, and one
cluster formed by NFL. At level 3, the cluster formed by FABP3, T-
tau, P-tau, and YKL-40 was split into 2 clusters: 1 consisting of YKL-
40 only and 1 with the remaining CSF biomarkers (FABP3, T-tau,
and P-tau). At the final level, the tau biomarkers were separated
from FABP3.

3.3. Cluster analysis 2: subgroups of participants identified by CSF
biomarkers

We ran the cluster analysis to identify subgroups of participants
with similar biomarker characteristics. We found that the partici-
pants could be divided in 2 main groups: group 1 (n = 60) and
group 2 (n = 39), respectively (Fig. 2). To map out the relative
contributions of each biomarker to the grouping, Cohen’s d was
calculated for each biomarker (Table 4). Group 2 participants were
characterized by more pathological biomarker results for all bio-
markers, with Cohen’s d > 0.80—considered a large effect size—for
all except NFL, where Cohen’s d was >0.20 (small effect size). These
differences should be interpreted as descriptions of the pattern of
biomarker differences most contributing to the grouping. Mean
biomarker concentrations in group 2 exceeded pathological
thresholds for P-tau (>60 pg/mL) and T-tau (>350 pg/mL) (Hansson
et al.,, 2006), and the mean AB42 concentration approached the
pathological threshold of AB42 (<530 pg/mL) (Hansson et al.,
2006). Accordingly, all A+T+ individuals were found in group 2
(Table 4). Group 1 had on average normal values for all core AD
biomarkers (AB42, P-tau, T-tau). There were no differences in age,
seX, years of education, or cancer morbidity between group 1 and 2
(Table S2).

In a second level analysis, each group was further divided in 2
smaller groups: group 1.1 (n = 24), group 1.2 (n = 36), group 2.1
(n = 20), and group 2.2 (n = 19). The group of participants with
generally more pathological biomarker values (group 2) was split
into one subgroup (group 2.2) with more pathological values of tau
(T-tau, P-tau) and FABP3, and one (group 2.1) with more patho-
logical values of AB42 and NFL and tendencies to higher levels of
YKL-40 (Cohen’s d = 0.28) (Table 5). Mean biomarker concentra-
tions in both group 2.1 and group 2.2 exceeded the pathological
thresholds for P-tau and T-tau referred above. Only group 2.1 had an
average AP42 concentration satisfying usual criteria for amyloid
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Fig. 1. Correlations and hierarchical clustering of CSF biomarkers. Abbreviations: Ap42, beta amyloid 1—42; CSF, cerebrospinal fluid; FABP3, fatty acid binding protein 3; NFL,
neurofilament light; P-tau, phosphorylated tau; T-tau, total tau; YKL-40, chitinase-3-like protein 1.

0.8
Group 1 Group 2
0.4
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Fig. 2. Hierarchical clustering of participants. Left panel: Subject-wise correlation matrix and dendrogram of the groups at the different levels. Right panel: Mean z-scores of each
variable within each group. The z-scores are calculated for the current sample, yielding a sample sum of 0 and a standard deviation of 1, thus the groups tend to approximately
mirror each other around the y = 0 axis when the group sizes are similar. Abbreviations: A42, beta amyloid 1—42; FABP3, fatty acid binding protein 3; NFL, neurofilament light; P-
tau, phosphorylated tau; T-tau, total tau; YKL-40, chitinase-3-like protein 1.
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Table 4

Differences in CSF biomarkers between 2 subgroups based on cluster analysis
Biomarkers Group 1 (n = 60) Group 2 (n = 39) Cohen’s d

Mean SD Mean SD

AB42 (pg/mL) 812 150 538 189 1.65
FABP3 (pg/mL) 431 1.57 593 223 0.88
P-tau (pg/mL) 53 15 76 22 1.27
T-tau (pg/mL) 317 104 499 179 1.32
YKL-40 (pg/mL) 209,512 67,132 277,101 86,599 0.90
NFL (pg/mL) 1155 678 1491 1083 0.39
Biomarker status n % n % p-value
A+ (AB42 < 530 pg/mL) 4 7 25 64 <0.001
T+ (P-tau > 60 pg/mL) 15 25 25 64 <0.001
A+T+ 0 0 13 33 <0.001

Means are based on raw data. Bold indicates Cohen’s d > 0.50, italics indicates Cohen’s d > 0.20. p-values were calculated using 7 test.
Key: A+, amyloid positivity; AB42, beta amyloid 1—42; CSF, cerebrospinal fluid; FABP3, fatty acid binding protein 3; NFL, neurofilament light; P-tau, phosphorylated tau; SD,
standard deviation; T+, tau positivity; T-tau, total tau; YKL-40, chitinase-3-like protein 1.

positivity, although the concentration in group 2.2 was also close to
the pathological threshold. Group 2.1 participants also had mean
NFL values of 1831 pg/mL, close to an established cut-off value of
1850 for this age-range (Yilmaz et al., 2017). The proportion of
A+T+ participants was around 35% in both groups 2.1 and 2.2
(Table 5).

The participants in groups 1.1 and 1.2 had less pathological
biomarker values than the participants in 2.1 and 2.2, but could still
be differentiated. Group 1.1 had more pathological levels of FABP3
and tau, while group 1.2 had more pathological levels of AB42 and
slightly higher levels of NFL (Cohen’s d = 0.37) (Table 5). There were
no differences in YKL-40 between group 1.1 and 1.2. Group 1.1 had
mean tau levels above the pathological thresholds, and the pro-
portion of T+ individuals was significantly higher than in group 1.2
(Table 5). These findings parallel the results from the comparison
between group 2.1 and 2.2, with higher tau and FABP characterizing
one group and more pathological levels of AB42 characterizing the
other, although it must be noted that mean levels in group 1.2 were
still not close to amyloid positivity.

Group 2.1 was significantly older than groups 1.1 and 2.2,
otherwise there were no differences in age, sex, years of education,
or cancer morbidity between the 4 clustering-based subgroups
(Table S3).

To test whether our results were impacted by participant se-
lection, we re-ran the clustering analyses including all participants
that were classified as cognitively unimpaired at baseline (n = 116)
(i.e., including also individuals who were later diagnosed with MCI
or dementia). We found that the individuals could still be divided
into 2 and 4 subgroups, and that these groups showed biomarker

characteristics similar to the groups in our main analyses (Fig. S2
and Tables S4 and S5).

3.4. Differences in hippocampal atrophy between the biomarker
subgroups

In the full sample, GAMM with time since baseline (interval) as
predictor, including random effects for intercept, showed that
hippocampal volume was significantly reduced over time in a
slightly accelerated fashion (edf = 2.2, F = 168.5, p < 2 x 10716),
Significant atrophy was seen for both groups in the 2-cluster so-
lution (group 1: edf = 1.8, F= 109.7, p < 2 x 10~'%; group 2: edf =
11, F = 132.8, p < 2 x 107'%). Directly comparing hippocampal
change over time between the groups from the 2-cluster solution,
there were no significant differences in hippocampal volume loss
over time (F = 1.0, p = 0.32), and no main group effect difference
(p = 0.63) (Fig. 3). We repeated the analyses, comparing volume
change pairwise between the groups from the 4-cluster solution,
finding no significant effects (all p’s > 0.20).

3.5. Memory differences between the biomarker subgroups

In the full sample, GAMM with time since baseline (interval) as
predictor, including random effects for intercept, controlling for
baseline age and sex, showed that memory scores, measured as
number of words recalled, followed an inverted U-shaped trajectory
over the 6.8-year interval (edf = 2.9, F = 11.65, p = 7.22 x 1077;
Fig. 4). The initial increase is likely due to practice effects. Thus, we
re-ran the analyses, also controlling for practice effects using

Table 5

Differences between 4 subgroups based on clustering analysis
Biomarkers Group 1.1 (n = 24) Group 1.2 (n = 36) Cohen’s d Group 2.1 (n = 20) Group 2.2 (n = 19) Cohen’s d

Mean SD Mean SD Mean SD Mean SD

Ap42 888 136 762 139 0.91 472 122 606 223 0.75
FABP3 5.45 1.59 3.54 0.99 1.52 5.31 2.06 6.59 2.26 0.59
P-tau 63 14 47 13 1.21 67 19 87 20 1.02
T-tau 379 88 275 93 1.15 431 164 571 170 0.84
YKL-40 205,901 80,065 211,920 58,047 0.09 289,103 88,997 264,468 84,517 0.28
NFL 1004 317 1256 827 0.37 1831 1380 1133 448 0.71
Biomarker status n % n % p-value n % n % p-value
A+ 0 0 4 11 0.14 15 75 10 53 0.15
T+ 12 50 3 8 <0.001 10 50 15 79 0.06
A+T+ 0 0 0 0 — 7 35 6 32 0.82

Means are based on raw data. CSF concentrations of biomarkers are measured in pg/mL. Bold indicates Cohen’s d > 0.50, italics indicates Cohen’s d > 0.20. p-values were

calculated using %2 or Fisher’s exact test.

Key: A+, amyloid positivity; AB42, beta amyloid 1-42; FABP3, fatty acid binding protein 3; NFL, neurofilament light; P-tau, phosphorylated tau; SD, standard deviation; T+, tau

positivity; T-tau, total tau; YKL-40, chitinase-3-like protein 1.
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Fig. 3. Longitudinal change in hippocampal volume across biomarker groups. Upper panel: GAMM-fitted change slope in hippocampal volume for group 1 and group 2 across time.
Lower panel: Hippocampal volume slopes for each of the groups in the 4-cluster solution. Abbreviations: GAMM, generalized additive mixed models.

number of test sessions completed. This showed a linear negative
effect of interval on memory score (edf = 1.0, F = 12.06, p = 0.0006),
and a positive but gradually reduced effect of number of test ses-
sions as a proxy for practice effects (edf = 2.0, F = 21.24, p =
6.55 x 1078).

After having established the trend for the change in memory
scores over time in the total sample, we tested whether memory
differed between biomarker groups in terms of intercept or slope,
co-varying for baseline age and sex (Fig. 5, Table 6). Comparing
group 1 and group 2, we found a significant difference in slope (edf =
1.0, F = 4.7, p = 0.030) if practice effects as indexed by number of
follow-up test sessions were included as covariates, and a trend if
not (p = 0.098). Plotting the results showed more memory decline in
the group (group 2) with the more pathological biomarkers.

Pairwise comparisons between the memory trajectories from each
of the groups in the 4-cluster solution showed significantly more
memory decline for group 2.2 compared to group 1.2 (p = 0.014)
(Fig. 6). Group 2.2 was the group with the highest levels of tau and
FABP3, while group 1.2 was the group with the lowest levels of the
same biomarkers. No other differences between groups in memory
trajectories were seen. The proportion of participants followed up
with cognitive assessment did not differ between the 4 cluster-based
biomarker groups at any of the 7 time points (p = 0.76).

3.6. Memory and hippocampus changes in NIA-AA defined
biomarker groups

As an alternative to the clustering approach, we classified par-
ticipants as AD (A+/T+, n = 19), AT+ (n = 27), and normal AD
biomarkers (A—/T—, n = 32), based on cut-offs defined above. We
tested if the groups A+T+ or A-T+ showed different changes in
hippocampal volume or memory over 6.8 years compared to the
A-T- group. For neither hippocampal volume (edf = 1.0, F = 0.59,
p = 0.44, n = 130 observations) nor memory (edf = 1.0, F = 0.04,p =
0.84, n = 278 observations) were significant slope differences seen
between A+T+ versus the A—T— group. The result was the same if
number of test sessions was entered as a proxy for practice effects
(p = 0.63). There was a tendency for A—T+ participants to show
more memory decline over time compared to the A-T— group
(edf =1, F= 2.9, p = 0.089), with the p-value dropping just below
0.05 when number of test sessions was included (p = 0.040). No
effect of A—T+ on hippocampal volume change was found (p =
0.16). To assess whether the lack of difference in memory trajec-
tories between the AD group (A+/T+) based on biomarkers as
described by NIA-AA and the normal AD biomarker group was due
to too short follow-up interval or too small sample, we ran power
simulations based on the observed effects (see Supplemental
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Fig. 4. Longitudinal change in memory function in the full sample. Upper panel: Memory scores over time in the full sample. Left bottom panel: Estimated memory performance
over time corrected for practice effects. Bottom right panel: Estimated practice effects plotted over time.

Information for details). These simulations showed than even if we
follow the participants over 15 years, we would not find a signifi-
cant difference in memory slope between the AD group defined by
the NIA-AA criteria versus the normal AD biomarker group (12%
power at o. = 0.05 with 15 time points spanning 15 years) (Fig. 7).
This shows that it is unlikely that the biomarker defined AD group
and the normal AD biomarker group will experience different
changes in memory function over the next 15 years. We also tested
how increasing the number of participants included in the analyses
would affect the power to detect slope differences between the
groups. These simulations demonstrated that with a sample size of
1050 participants, power to detect an effect was no more than 13%.
Thus, while the clustering approach was able to define subgroups of
participants with different biomarker profiles showing significant
differences in memory slope, using the NIA-AA criterion for AD, we
were not able to detect differences, and this is highly unlikely to be
due to short follow-up interval or a limited sample size.

4. Discussion

This study on biomarkers in cognitively unimpaired older adults
has 3 key findings. First, clustering analysis of biomarkers showed
that the novel CSF biomarkers NFL, FABP3, and YKL-40 clustered
with T-tau and P-tau, whereas ApP42 was separated out in an in-
dependent cluster. Second, clustering analyses of participants
identified 2 main biomarker profiles, where one biomarker group
had more abnormal levels of all biomarkers compared to the other
biomarker group. At the 4-cluster level, the group with more
pathological biomarkers was split into one group characterized by
tauopathy and FABP3 and one group by brain B-amyloidosis, NFL,

and YKL-40. Third, the group with tauopathy and FABP3 showed
more memory decline over 6.8 years compared to a group with less
pathological biomarker levels. The clustering-based classification of
the participants yielded better predictions of memory decline
across the subsequent 7 years than a canonical classification based
on positivity for both amyloid and tau.

4.1. Relationships between CSF biomarkers

We assessed the relationship between the established AD bio-
markers AP42, reflecting amyloid deposition, T-tau, reflecting
neuroaxonal degeneration, and P-tau, reflecting phosphorylation
state of tau and possibly neurofibrillary tangle pathology, and the
novel biomarkers YKL-40, reflecting neuroinflammation, FABP3,
reflecting neuronal damage, and NFL, reflecting axonal injury.
Interestingly, the cluster analyses revealed a principal divide be-
tween AP42 and the rest of the biomarkers. Although T-tau, P-tau,
YKL-40, FABP3, and NFL clustered together at the highest level,
AB42 was separated in a single cluster. Thus, in cognitively unim-
paired older adults, the less established CSF biomarkers clustered
with P- and T-tau, while showing no relationships to Ap42. Such a
divide between AB42 and other CSF biomarkers including FABP3
and P-tau has also been shown using clustering analyses in a cohort
with individuals from the entire AD cognitive continuum (Harari
et al., 2014). Furthermore, lack of relationship between AB42 and
the Tau-proteins in cognitively unimpaired adults has also been
found in previous studies (Roe et al., 2013; Xiong et al., 2016),
although weak to moderate negative correlations have also been
reported (Bos et al., 2019; Pettigrew et al., 2015; Soldan et al., 2019).
Non-existent relationships between AB42 and YKL-40 (Olsson et al.,



A.-V. Idland et al. / Neurobiology of Aging 93 (2020) 1-15

Group 1
O _
w -
o
Q
T ©7
O
o
)
S <
s 4
=
N -
o -
I I I I I I I 1
0 1 2 3 4 5 6 7
Time (years)
Group 1.1 Group 1.2

0 2 4 6 8
0 2 4 6 8

0 2 4 &6 0 2 4 6

Group 2

N_
[
I I ) I I I I 1
0 1 2 3 4 5 6 7
Time (years)
Group 2.1 Group 2.2
- - u
«© «©
[{e] [3e) L]
u
< s
o o
I e
0 2 4 8 0 2 4 8

Fig. 5. Longitudinal change in memory function across biomarker groups. Upper panel: GAMM-fitted change slope in memory score for group 1 and group 2 across time. Lower
panel: Memory slopes for each of the groups in the 4-cluster solution. Abbreviation: GAMM, generalized additive mixed models.

2013a), NFL (Bruno et al., 2012), and FABP3 (Olsson et al., 2013b) in
cognitively unimpaired individuals are also in agreement with
previous studies, but weak negative (Alcolea et al., 2015a; Bos et al.,
2019) and weak positive (Alcolea et al., 2015a; Kern et al., 2019)
correlations have also been shown in some larger studies. The

Table 6
Change in memory as a function of biomarker group
Models edf F p slope p main effect
Two-group model
Time 2.8 11.12 237 x 1076
Group 2 versus 1 13 3.65 0.098* 0.13
Four-group model
Group 1.1 versus 1.2 1.0 2.78 0.10 0.68
Group 1.2 versus 2.1 1.0 2.20 0.14 0.57
Group 1.2 versus 2.2 1.0 $6.05 0.01 0.11
Group 2.1 versus 2.2 1.0 0.76 0.38 0.32

GAMMs were run to test effects of biomarker group on changes in memory per-
formance over time. Changes in memory performance were tested against time and
then it was tested whether the effect of time on memory differed between
biomarker groups. Baseline age and sex were used as covariates of no interest.
Key: edf, effective degrees of freedom (a measure of deviation from linearity);
GAMM, generalized additive mixed models.

2 p < 0.030 if practice effects were corrected for.

cluster analysis results show that these less established biomarkers
cluster with the Tau proteins, independently of amyloid pathology.

The very high correlation between T-tau and P-tau was ex-
pected, being consistent with previous studies of cognitively un-
impaired adults (Blennow et al., 1995; Bos et al., 2019; Soldan et al.,
2019). The strength of this correlation (r = 0.96) suggests that these
2 CSF tau-markers are statistically collinear in cognitively unim-
paired older adults. The neuronal injury biomarkers, NFL and
FABP3, were positively correlated both with each other and also
with T-tau and P-tau, supporting their role as neurodegeneration
biomarkers even in cognitively unimpaired older adults. This
finding is in agreement with previous studies of cognitively un-
impaired adults showing positive correlations between tau-
proteins and NFL (Bos et al., 2019; Kern et al., 2019; Melah et al.,
2016), and FABP3 (Olsson et al., 2013b), respectively. NFL was the
first biomarker to separate from the cluster with tau biomarkers,
supporting the hypothesis that CSF NFL provide information on
neurodegeneration that is at least partly different from CSF T-tau
(Mattsson et al., 2016). Interestingly, the neuroinflammation
biomarker YKL-40 was also positively correlated with all the neu-
rodegeneration biomarkers, indicating a link between neuro-
inflammation and neurodegeneration in aging. Previous data
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Fig. 6. Memory trajectories across biomarker groups. The memory trajectories from Fig. 5 plotted as a function of biomarker group overlaid in the same plot to allow inspection of

differences. Dotted lines illustrate 95% confidence interval.

showing positive correlations between YKL-40 and T-tau and P-tau
in cognitively unimpaired adults (Alcolea et al., 2015a; Bos et al.,
2019; Melah et al., 2016; Olsson et al., 2013a), and in neurodegen-
erative diseases (Craig-Schapiro et al., 2010; Hall et al., 2018;
Nordengen et al.,, 2019; Wennstrom et al., 2015), and studies
finding associations between elevated YKL-40 and white matter
degeneration (Racine et al.,, 2019), brain atrophy (Alcolea et al.,
2015b, 2017; Janelidze et al., 2018; Swanson et al., 2016), and
cognitive function (Bos et al., 2019; Janelidze et al., 2018; Sala-
Llonch et al., 2017), provide further support for this link both in
aging and neurodegenerative diseases. The association between
YKL-40 and tau has been shown in both A+ and A— cognitively
normal individuals (Alcolea et al., 2015a), suggesting that the link
between neurodegeneration and neuroinflammation is indepen-
dent of amyloid deposition. Positive correlations between YKL-40
and NFL (Bos et al, 2019; Melah et al, 2016) in cognitively

normal adults have also been reported previously, whereas this is,
to our knowledge, the first study to explore the relationship of
FABP3 to YKL-40 and NFL in a cognitively unimpaired population.
Positive correlations of FABP3 with YKL-40 and NFL have, however,
previously been reported in populations including patients (Bjerke
et al., 2011; Harari et al., 2014).

4.2. Grouping of participants based on biomarker profiles

Clustering analyses, based on objective biomarker measures and
blind to any cognitive evaluation, revealed one group, consisting of
39% of the total sample, with more abnormal concentrations of all
biomarkers. Although normative data are not available for all the
biomarkers, this group had pathological mean levels of AB42, T-tau,
and P-tau according to previously established criteria (Hansson
et al,, 2006) and all A+T+ individuals were found in this group.
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Fig. 7. Memory slope in AD versus no-AD. Participants were divided in an “AD” group based on amyloid and tau (A+/T+) and a no-AD group (A—/T—). Left panel shows the
estimated differences in memory trajectories over 15 years. Middle panel shows how power to detect a slope difference between AD and no-AD increases as a function of number of
follow-ups. Right panel shows how power increases as a function of sample size. Abbreviations: A+, amyloid positivity; A-, amyloid negativity; AD, Alzheimer’s disease; T+, tau

positivity; T-, tau negativity.
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Further clustering analyses separated a group of participants with
non-pathological mean biomarker concentrations (group 1.2),
consisting of 36% of the sample. Studies show that there may be a
proportion of older adults that never develops amyloid or neuro-
degenerative pathology (Jack et al., 2014; Khachaturian et al., 2004),
and future studies on such groups of very low-risk older adults may
give cues on how to prevent development of various brain pa-
thologies (Vemuri, 2018). However, the proportion of individuals
without pathology may be over-estimated in our sample, as we did
not include cases with clinical diagnoses and those who progressed
to MCI, dementia, and other neurodegenerative diseases during
follow-up. Also, we cannot exclude that some of the participants
with a non-pathological biomarker profile may develop patholog-
ical biomarkers later.

The 3 remaining groups represented different patterns of
increased or pathological mean biomarker values. Group 1.1 was
the least pathological of these, showing evidence for slight tauop-
athy. The most pathological group in the 2-cluster solution was
divided into one group characterized by more pathological values of
tau (T-tau, P-tau) and FABP3 (group 2.2), and one with more
pathological values of AB42 and NFL, and tendencies to higher
levels of neuroinflammation (YKL-40) (group 2.1). Although the
mean tau levels in group 2.1 were clearly lower than in group 2.2,
they still exceeded pathological thresholds. Accordingly, group 2.1
participants on average satisfied the NIA-AA criterion for AD (Jack
et al,, 2018). The participants in group 2.1 also had mean NFL
values close to an established cut-off value of 1850, and slightly
higher concentrations of YKL-40, suggesting ongoing neuro-
inflammation and axonal degeneration in addition to brain B-
amyloidosis and tau pathology. Emerging evidence suggests that
neuroinflammation in concert with AD neuropathology may
contribute to the development of clinical symptoms (Craig-
Schapiro et al,, 2010; Heneka et al,, 2015; Merluzzi et al., 2018),
possibly through contributing to neurodegeneration (Alcolea et al.,
2015b; Heneka et al., 2015; Janelidze et al., 2018).

The tauopathy found in 3 of the 4 identified groups may partly
be age-related (Crary et al., 2014; Lowe et al., 2018), such as in
primary age-related tauopathy, although preclinical phases of other
tauopathies cannot be excluded (Arendt et al., 2016). As tau was
measured in CSF, we could not assess the patho-anatomical loca-
tion, that is, whether it is spread outside the medial temporal lobe.
Group 2.2 was characterized by a neurodegeneration biomarker
pattern with tauopathy and elevated FABP3, and was the group
with highest mean levels of tau and FABP3. Such a pattern of
neurodegeneration can represent normative, age-expected brain
changes. Group 1.1 and 2.2 may also, according to some systems, be
classified as suspected non-Alzheimer pathophysiology (SNAP)
(Jack et al., 2016b), in which, for example, clinically silent cerebral
microvascular disease, hippocampal sclerosis, or aging-expected
processes could be responsible for the neurodegeneration. It
should, however, be noted that group 2.2 on average had Ap42
levels in a gray zone around the pathological threshold for amyloid
positivity, and accordingly around 50% of the individuals in this
group were amyloid positive, suggesting this group could also
represent AD. Contrary, none of the individuals in group 1.1 were
amyloid positive, supporting that this group represents SNAP.

The present results suggest that patients can be divided into
subgroups based on their biomarker profiles also beyond amyloid
and tau. This yields more extensive information about patients than
what can be obtained by using biomarkers in isolation. Interest-
ingly, all the 6 CSF biomarkers differed between at least 2 of the
groups with a relatively large effect size, suggesting that all have
contributed to the clustering results. We did not attempt to cluster
the participants based on a subset of the CSF biomarker to test if any
was redundant. Except P-tau and T-tau, which are statistically

almost collinear, it seems that inclusion of all the biomarkers con-
tributes to the different biomarker profiles of the subgroups.
Although the use of biomarker clustering in a clinical setting would
depend on the study of long-term clinical outcomes, such as pro-
gression to MCI or dementia, clustering may be a promising
approach to identify patients with various biomarker profiles for
clinical trials, intervention studies, and in the clinic to improve
diagnosis and prognosis.

This biomarker-based grouping of the participants suggests that
linear staging of CSF biomarkers, where the biomarkers become
abnormal at different times in an ordered sequence, does not apply
to the present data. It is possible that a well-defined clinical
endpoint can follow a fixed chain of events in an orderly fashion. In
cognitively unimpaired older adults, however, biomarkers do not
seem to adhere to a fixed linear staging. Unfortunately, we do not
have longitudinal data on the biomarkers in combination with
different clinical endpoints, which would be necessary for proper
staging of the biomarkers.

4.3. Biomarker profiles in prediction of hippocampal volume change
and memory decline

The full sample showed an inverted U-shaped trajectory of
memory scores over the 6.8-year interval since the baseline testing.
As practice effects are well-known to increase performance on
memory tests in longitudinal studies (Ronnlund et al., 2005), we
attempted to tear apart real change in memory from practice-
induced inflation of the scores. This analysis showed a linear
decline in the corrected scores, accompanied by a decelerating in-
crease due to repeated test exposure. Testing the difference in
memory trajectories between the 2 main groups, the group with
most pathological biomarkers showed slightly more memory
decline over the examination interval than the group with the least
pathological biomarkers. Examining this pattern in more detail in
the 4-cluster solution, the group with most tauopathy and highest
FABP3 showed significantly more memory decline compared to the
group with normal biomarker levels. This indicates that a high
degree of neuronal damage is the biomarker feature most predic-
tive of memory decline in cognitively unimpaired older adults.
Earlier clustering studies of cognitively normal adults have also
found that subgroups with more neurodegeneration or tauopathy
show greater rates of cognitive decline, for example, greater
memory decline in a subgroup mainly characterized by lower Ap42
and higher P-tau (Racine et al., 2016), and greater global cognitive
decline in a subgroup characterized by more brain atrophy, more
white matter hyperintensities, lower AB42, higher T-tau, and higher
P-tau (Nettiksimmons et al., 2010). FABP3, YKL-40, or NFL has never
been used for clustering of cognitively unimpaired adults. Yet, a
recent study clustering individuals from the entire cognitive con-
tinuum using CSF NFL, YKL-40, and the core AD biomarkers re-
ported that a subgroup characterized by high T-tau and P-tau, but
not AB42 levels, included almost 50% of all patients with respec-
tively MCI and AD dementia (Toschi et al., 2019). High levels of each
of the 3 less established biomarkers have, however, been associated
with cognitive decline or development of cognitive impairment in
cognitively normal adults (Bos et al., 2019; Harari et al., 2014; Kern
et al., 2019; Sala-Llonch et al., 2017).

Moreover, group 2.2 may have brain B-amyloidosis. The pre-
dictive value of brain f-amyloidosis for later cognitive or clinical
symptoms is however controversial (Morris et al., 2018). Although
brain B-amyloidosis may be a risk factor for cognitive decline
(Hedden et al., 2013), up to 40% of cognitively unimpaired older
adults have brain f-amyloidosis (Jansen et al., 2015), depending on
the age of the participants. Likely, amyloidosis has to be accompa-
nied with neurodegeneration or tau pathology in order to result in
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dementia and cognitive decline (Burnham et al., 2016; Desikan
et al,, 2012; Merluzzi et al,, 2018; Soldan et al., 2019). Therefore,
we cannot exclude that the combination of gray zone amyloid
positivity and neuronal damage is responsible for more memory
decline in group 2.2. However, the A—T+ group showed a tendency
toward more memory decline compared to the group with normal
AD biomarkers—an effect that reached significance if correction for
practice effects was done—suggesting that the association between
neurodegeneration and memory decline in this sample is inde-
pendent of amyloid pathology. Furthermore, group 2.1 with lowest
Ap42 (i.e., most amyloid pathology), and also tauopathy and axonal
degeneration, and group 1.1 with slight tauopathy, showed only
age-expected changes in memory performance over time. This
finding also underscores the fact that older adults can have good
cognitive function for their age, and show age-expected changes in
memory function over several years, despite biomarker profiles
indicating amyloid, tau, and/or neurodegeneration pathology.

Interestingly, comparing memory change between the group
with AD according to the NIA-AA A+/T+ criterion with the group
with normal AD biomarkers (A—/T—), we did not observe any dif-
ference. This finding differs from several previous studies reporting
that cognitively normal individuals with both amyloid and tau
pathology show accelerated cognitive decline compared to those
with one or none of these pathologies (Desikan et al., 2012; Soldan
etal., 2019). Actually, simulations showed that even if we follow the
participants for 15 years after baseline, or increase the sample size
to above 1000 participants, it is unlikely that we would see a dif-
ference in memory slope between the biomarker defined AD group
and the non-AD group. Thus, while the clustering approach was
able to define subgroups of participants with different biomarker
profiles that showed more memory decline over time, no differ-
ences in memory outcome was seen using a simple AD versus non-
AD dichotomy based on AB42 and P-tau alone. These results
demonstrated that the clustering approach, taking advantage of
multiple biomarkers beyond amyloid and tau, clearly outperformed
the NIA-AA AD biomarker classification system in prediction of
memory decline.

There were no differences between any of the clustering-based
biomarker groups or the NIA-AA defined groups in hippocampal
volume trajectories, suggesting that none of these biomarker pro-
files were associated with more than age-related hippocampal at-
rophy. Others have, however, reported that A+T+ cognitively
normal individuals show accelerated hippocampal atrophy
compared to A—T— and A—T+ individuals (Gordon et al., 2016). The
relationship between novel biomarkers and medial temporal lobe
atrophy is less studied, but higher NFL (Mattsson et al., 2016;
Pereira et al., 2017), YKL-40 (Alcolea et al., 2015b; Swanson et al.,
2016), and FABP3 (Desikan et al., 2013) have been associated with
medial temporal lobe atrophy in populations including both
cognitively unimpaired and impaired individuals. We have previ-
ously shown an association between higher NFL levels and higher
hippocampal atrophy rates in individuals from the same cohort
(Idland et al., 2017), and one study found no relationship between
YKL-40 and hippocampal volume in cognitively unimpaired adults
(Melah et al., 2016). However, the relationship between medial
temporal lobe atrophy and FABP3 has never been assessed in a
cognitively unimpaired population. Previous research has shown
that cognitively normal individuals with amyloid pathology show
steeper memory decline if they also have pathological hippocampal
volumes (Bilgel et al., 2018; Burnham et al., 2016). Accordingly, we
speculate that the key to understand why some biomarker groups
with amyloid and/or tau positivity only showed age-expected
memory decline is that these participants did not show higher
than age-expected hippocampal atrophy. Although followed for up
to 6.8 years, there were no differences between any of the

biomarker groups in hippocampal volume trajectories. Differences
would have been expected if the sample also had included partic-
ipants showing cognitive impairment such as in Alzheimer’s de-
mentia. We propose that older adults may uphold age-expected
cognitive function for many years, even when harboring patho-
logical biomarker profiles, as long as hippocampal atrophy is within
the age-expected range.

4.4. Strengths and limitations

The inclusion of cognitively unimpaired adults only, constitutes
both a strength and a weakness, causing the sample probably to be
more homogenous than the general population, which likely
affected both the clustering of biomarkers and the clustering of
participants. Thus, the conclusions drawn are valid for cognitively
unimpaired older adults only—the clusters may be different if
examined in populations of participants with MCI or dementia.
Furthermore, it is possible that exclusion of the few individuals who
progressed to MCI, dementia, and other neurodegenerative diseases
during follow-up may in part have impacted the associations of
clustering-based biomarker groups and NIA-AA defined biomarker
groups to hippocampal volume and memory change, for example,
the lack of associations between biomarker groups and hippo-
campal volume change and between NIA-AA defined groups and
memory. Yet, if these individuals were included, the results would
very much depend on the etiology and severity of decline of these
individuals, and we believe the results we present will have a
higher probability of being replicated. On the other hand, the
sample consisted of surgical patients including some patients who
had cancer surgery, which also may reduce the generalizability of
the results, although the consequences of this is difficult to assess.
Nevertheless, we did not find any differences in cancer morbidity
between the biomarker groups. Strengths of our work include
measurement of both established and novel biomarkers, and mul-
tiple longitudinal measures of hippocampal volume and memory
over 6.8 years. We also used a data-driven method, rather than
defined cut-off values, to assess relationships between biomarkers.

5. Conclusion

Here we show that CSF biomarkers of AD pathophysiology can
be grouped in superordinate clusters, and that AP42 is the
biomarker with the least connections to other established as well as
more novel CSF biomarkers. Using a large collection of CSF bio-
markers enabled us to identify subgroups of participants with
different biomarker profiles. This clustering-based grouping of
participants outperformed biomarker profiling based on the NIA-
AA AD classification system in predicting memory change over
6.8 years. The analyses of changes in memory function further
showed that older adults may uphold age-expected cognitive
function and hippocampal integrity even when harboring abnormal
biomarker profiles, such as tauopathy, underscoring the complex
relationship between cognitive function, maintenance, resilience
and brain health in aging (Stern et al., 2018). Understanding the
conditions for maintained cognitive function in aging despite
various types of brain changes will be a major task for future
research.
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