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Abstract

This study is focused on the effects of pH on the production of volatile fatty acids (VFAs) and their distribution through the acidogenic
fermentation of source-sorted organic fraction of municipal solid waste (OFMSW) from a mechanical-biological treatment (MBT)
plant, and food waste (FW) from a university canteen. In semi-continuous lab-scale digesters using OFMSW at a hydraulic retention
time (HRT) of 3.5 days under acidic conditions (pH 6.0), the VFA concentration in the effluent increased to 9.8-11.5 g L' (V'S content
of the feedstock between 4.2 and 5.2% w/w), while its individual VFA profiling was similar to the influent which was already pre-
fermented (namely, C, 35-41%, C; 18-22%, C4 17-21%, and Cs 9-12%). When working with the same conditions but using FW as
feedstock, an effluent with a VFA concentration up to 11.5 g VFA L' (FW with a VS content of 5.5% w/w) and a stable distribution of
C, and C,4 acids (up to 60.3% and 12.9%, respectively) but with very low quantities of C5 and Cs acids (lower than 1.8 and 2.7%,
respectively) was obtained. Anaerobic batch tests using FW revealed that alkaline pH near 9 could lead to higher VFA production with
high acetic acid content when compared to pH 6. In the semi-continuous fermenters working at alkaline conditions (pH 9.5-10) using
OFMSW and FW, an enhanced solubilization of organic matter was registered with respect to the fermenters working under acidic
conditions. This fact was not reflected in a higher VFA production when using OFMSW as feedstock, probably due to free ammonia
inhibition, since OFMSW was mixed in the MBT plant with supernatant from anaerobic digestion of this biowaste. However, when
using FW, alkaline conditions lead to an enhanced VFA production with respect to the reactor working under acidic conditions, being
acetic acid the predominant product, which represented up to 91% of the VFA spectrum obtained.

Keywords Mechanical-biological treatment plant - OFMSW - PHA - Mesophilic temperature - Mixed microbial cultures - VFA
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Introduction generation resulting in vital environmental problems in the
world. These organic wastes include food waste (FW), which
The rapid growth of human population and the global econo-  is the majority proportion, paper waste, small-sized plant

my has led to a large amount of urban organic waste  waste, compostable materials, and other materials which are
made from the mentioned resources. According to Waste
Framework Directive (2008/98/EU), organic fraction of mu-
nicipal solid waste (OFMSW) and other easily biodegradable
solid substrates of urban origin have to be conveniently treated
to reduce their impact and to recover energy and materials
while disposal treatments (e.g., landfill or incineration) should
53 Joan Dosta be avoided. Landfilling has received criticizes due to green-

jdosta@ub.edu house gas emission. Food Agriculture Organization in 2011
claimed that FW had potential to emit more than 3.1 billion
tons of equivalent CO, and if FW was a country, it would be

Responsible editor: Ta Yeong Wu

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11356-019-05394-6) contains supplementary
material, which is available to authorized users.

Department of Chemical Engineering and Analytical Chemistry,

University of Barcelona, 08028 Barcelona, Catalonia, Spain the third biggest CO, producer in the world. Considering the
2 Water Research Institute, University of Barcelona, strong EU.commltment toward the .1mp1jcmentat10n of
08001 Barcelona, Catalonia, Spain European circular economy, OFMSW is an ideal feedstock

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-019-05394-6&domain=pdf
http://orcid.org/0000-0001-7696-4867
https://doi.org/10.1007/s11356-019-05394-6
mailto:jdosta@ub.edu

35510

Environ Sci Pollut Res (2019) 26:35509-35522

for biorefinery processes (Escamilla-Alvarado et al. 2017)
since it is composed by carbohydrates (simple sugars and
polysaccharides), proteins, and lipids that could be fermented
without much difficulty. In comparison with OFMSW, total
chemical oxygen demand (COD) of FW (90-170 g LYis
usually almost half than that of OFMSW (150-350 g L™)
(Elbeshbishy et al. 2011; Lee et al. 2014; Strazzera et al.
2018). In any case, these two solid wastes are interesting sub-
strates, as they are constantly generated with substantial
amount, and, regardless of its possible heterogeneity, they
could be efficiently treated through acidogenic fermentation
using mixed microbial cultures to produce valuable products
like volatile fatty acids (VFAs) and other short-chain organic
compounds such as alcohols or lactic acid (Tang et al. 2018,
2019).

The acidogenic fermentation is a process which is based on
hydrolysis and acidogenic phases from anaerobic digestion
(AD) process. The hydrolysis occurs when complex organic
matter (such as proteins, carbohydrates, and fats or oils) are
broken down into simpler organic monomers (sugars, amino
acids, and fatty acids) to be readily available for other bacteria.
In acidogenic fermentation of complex biodegradable sub-
strates, such as OFMSW and FW, the hydrolysis has been
identified as a rate-limiting step, which is calling for optimi-
zations of operating parameters during the process (Lim et al.
2008; Lee et al. 2014). In the acidogenic phase, the hydro-
lyzed organic monomers are consumed by groups of bacteria
to produce VFA. These VFAs have several applications such
as carbon source for biological nutrient removal (BNR) from
municipal wastewater (Fang and Liu 2018), bioenergy with
H, (Slezak et al. 2017), biogas production (Mu et al. 2017),
and biopolymer production (Valentino et al. 2015; Korkakaki
et al. 2016). Polyhydroxyalkanoates (PHAs), for example, are
a new generation of biopolymers which can be fully
biodegraded, thus reducing its environmental impact. These
PHA polymers are an interesting alternative to replace petro-
chemical derivative plastics which has raised awareness of its
disposal problem and several pollution concerns, since PHA
polymers and current commercialized plastics share similar
thermoplastic properties (Morgan-Sagastume et al. 2010). As
a future prospect, disposal of plastics waste can be minimized
when innovative and environmentally safe biodegradable
polymers are used in applications like packaging, agriculture,
and health industry (Ahmed et al. 2018). In fact, VFAs are
considered the most suitable substrates for PHA storage (Cai
etal. 2009), and consequently high yield of VFA will increase
the competence of bioplastics in the current plastics market.

Many researches on production of VFA have been carried in
the last decades, focusing on fermentation strategies, process
configuration, metabolic pathway analysis, and microbial char-
acterization (Dias et al. 2006; Akaraonye et al. 2010; Korkakaki
et al. 2016). Specific studies on process operational parameters,
i.e., pH, temperature, hydraulic retention time (HRT), and
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organic loading rate (OLR), have been carried out (Jiang et al.
2013; Hao and Wang 2015; Wang et al. 2016) because of re-
markable influences on generation of desired products caused by
changing these process variables. Based on previous findings,
these parameters lead to different metabolic pathways to produce
a certain number of carbon-chain fatty acids. During the
acidogenic fermentation process, pH can affect not only hydro-
lysis, but also acidogenesis (Neyens et al. 2004; Jiang et al. 2013)
and can highly influence the VFA yield and distribution (Dareioti
et al. 2014). Therefore, the optimal pH for acidogenic fermenta-
tion will favor these two steps to promote VFA production.
Moreover, pH is important to avoid methanogenic bacteria ac-
tivities, for example, operating the reactor out of the optimal pH
range of 7.0-8.2 for methane production (Angelidaki and
Sanders 2004; Chaganti et al. 2011). Also, several researches
have proved that methanogenesis can be inhibited by increasing
or decreasing to an extreme pH (Yuan et al. 2006; Wang et al.
2014). Fang and Liu (2002) and Jiang et al. (2013) suggested
acidic pH as a predominant condition for VFA optimization.
Nevertheless, some studies (Cai et al. 2009; Jie et al. 2014,
Garcia-Aguirre et al. 2017) have demonstrated that alkaline pH
could promote higher VFA production than acidic pH.
Moreover, depending on the downstream application, proper
tuning on the working pH of acidogenic fermentation process
should be considered in order to promote VFA generation and to
adjust the desired individual VFA percentage in the fermentation
broth. If the fermentation effluent is sent to produce PHA, acetate
and butyrate tend to form hydroxybutyrate (HB) monomers,
whereas the presence of propionate and valeric lead to the for-
mation of hydroxyvalerate monomers (Bengtsson et al. 2008;
Jankowska et al. 2015). Poly-3-hydroxybutyrate (PHB) and
poly-3-hydroxyvalerate (PHV) biopolymers have very distinct
characteristics in terms of heat resistance, elasticity, durability,
and transparency, among others (Chanprateep et al. 2010; Chee
et al. 2010; Bugnicourt et al. 2014).

The objective of this study was to evaluate VFA production
in acidogenic fermentation using (i) source-sorted OFMSW
from a full-scale mechanical-biological treatment (MBT)
plant in the metropolitan area of Barcelona, and (ii) FW from
a university canteen. By considering the adjustment of pH
value, a comparison between individual VFA compositions
(acetic, propionic, butyric, and valeric acids) was assessed to
observe the effect of changes when mixed microbial cultures
were used.

Materials and methods
Substrate and inoculum
The source-sorted OFMSW used in this research was collect-

ed from a MBT plant in the metropolitan area of Barcelona. In
this plant, the source-sorted OFMSW was pre-treated to
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remove certain undesired materials and to perform basic op-
erations, such as particle size reduction, adjustment of the
water content of the feedstock to the wet AD process, and
removal of precipitable inerts (e.g. sand, clay, and glass) and
floating materials (e.g., plastics) as described in Astals et al.
(2013). It is important to highlight that in this MBT plant, the
total solids (TS) adjustment was performed by using the liquid
fraction of anaerobically digested OFMSW of the same plant,
which provides extra alkalinity to this substrate (Gottardo
et al. 2017), but also a high NH;—N content. Once it was
collected, the pre-treated OFMSW was kept in the refrigerator
of laboratory at 4 °C until its use. Table 1 shows the main
characteristics of the collected OFMSW in three collection
periods (Al, A2, and A3).

The other substrate used in this research was FW collected
from a university canteen. In order to minimize the great var-
iability that could be found in FW, the collection of this or-
ganic waste was performed approximately every 14 days at
the end of the week and immediately blended with deionized
water and shredded (Bosch, MMB66G5M) in the laboratory.
Minimum amount of water was added in this step in order to
obtain a concentrated feedstock. The shredded FW was stored
in refrigerator at 4 °C. When it was needed for feeding, proper
quantity of deionized water was added to dilute it and to con-
trol the total solids contents. The main characteristics of FW
are summarized in Table 2 according to its collection periods
(BI to BS).

In the start-up of semi-continuous acidogenic fermenters
treating OFMSW, the inoculum used was obtained from a
lab-scale acidogenic fermenter treating residual organic matter
(ROM) (Dosta et al. 2018). The effluent of the continuous
stirred-tank reactor treating OFMSW at pH 6 was used as
inoculum to start up the lab-scale fermenters treating FW.
The effluent of the fermenter treating FW at pH 6 was used
to inoculate batch tests of FW.

Semi-continuous acidogenic fermenters

Two jacketed lab-scale reactors with an effective working vol-
ume of 4.5 L and mechanically stirred (using IKA-Werker,
RW 16 basic functioning at approximately 170 rpm) were
used as fermentation reactors at mesophilic conditions work-
ing with source-sorted OFMSW and FW. These fermenters
were initially operated to test the influence of pH in the
acidogenic fermentation process of OFMSW at an HRT of
3.5 days (Dosta et al. 2018) working at (i) acidic pH near 6
(namely, 5.63—6.34) and (ii) alkaline pH near 10 (namely,
9.82-10.01). In fermenter working with OFMSW under acidic
conditions, no external chemical addition was needed for pH
control due to the buffer capacity of the collected OFMSW.
When treating the same substrate at pH 10, concentrated so-
dium hydroxide (NaOH) solution (10 M) was dosed manually
once per day right after the feeding was performed. To start up

the fermenters, the inoculum was kept stirring for 24 h under
mesophilic conditions (35 °C) to acclimate again the inoculum
(which was previously stored at 4 °C for about 4 weeks). The
equivalent quantity of substrate (OFMSW) was fed manually
to fermenters once per day (fed-batch culture). The effluent of
fermenters were characterized every day except weekend. To
avoid a pressure drop inside the fermenters and the entrance of
air during the draw-off operation, nitrogen gas was flushed
during effluent extraction and substrate feeding operations.

During the operation of the fermenters treating OFMSW,
another lab-scale fermenter (4.5 L) was set up to investigate
the possible inhibition due to organic loading rate (OLR) and
VFA. This fermenter was fed with OFMSW and worked at pH
near 6 without external chemical addition. When the produc-
tion of VFA was stable, diluted OFMSW with deionized water
at 50% in volume was fed to check if the specific production
of VFA per volatile solids (VS) fed was maintained. Finally,
undiluted OFMSW was used again as feeding.

After these experiments with OFMSW, purged biomass
from the fermenter working at pH 6 was used to inoculate
two new fermenters fed with FW. The acidogenic fermenters
of FW were operated under the same operational conditions as
for OFMSW: HRT of 3.5 days, once per day feeding,
mesophilic temperature (35 °C), and at acidic and alkaline
pH (near 6 and 10, respectively). Alkalinity is a key control
parameter to operate digesters in the optimum pH conditions
for VFA production (Ratanatamskul and Saleart 2016), but the
poor alkalinity of the FW was unable to avoid a high pH
descent during fermentation. To overcome this problem,
NaHCOj; was added since it increases buffer capacity and it
is partially basic when dissolved in water. However, if
NaHCO; was only used for pH adjustment, especially in fer-
menter working at pH 10, high quantities would be needed.
For this reason, strong alkaline (NaOH) addition was com-
bined with NaHCO; dosage. In this study, depending on the
difference between the pH of reactor and its pre-set value,
different doses of NaHCO; (5, 10, or 15 g Lfl) was added
tothe FW:5¢g L' when PHset point — PHefrtuent Was <0.1;10 g
L' when PHset point — PHefruent Was <0.2;and 15 g L' when
PHiet point PHeftuene was < 0.5.

Batch fermentation tests

Batch tests were carried out to assess the influence of pH on
the production and distribution of VFA at short-term condi-
tions. Identical serum bottles with a working volume of 200
mL were filled with inoculum and substrate according to their
volatile solids contents to obtain a ratio of 1:1 by weight. This
value was similar to the one used by Ji et al. (2010), but
instead of using a ratio based on volatile suspended solids
(VSS) content, in this study, VS basis was applied. Each con-
dition evaluated in the batch tests was performed by duplicate
and the duration was set at 10 days based on Garcia-Aguirre
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Table 1 Characteristics of the

OFMSW used in this study in Parameter Units Period Al Period A2 Period A3

every collection period
Total solids (TS) % wiw 6.60 + 1.46 5.63+0.76 6.41+0.59
Volatile solids (VS) % wiw 5.15+1.25 4.18+£0.63 4.87+0.53
Soluble COD (sCOD) gL™ 7239 +11.15 72.75 +18.47 57.50
Volatile fatty acids (VFAs) gL™ 10.12£0.90 8.61+0.78 9.62 +1.57
Alkalinity g CaCO; L™ 499 +0.51 - 481+0.18
TAN g NH~NL™ 2.84+0.85 2.31+0.54
pH - 6.06 £0.11 6.75+£0.11 5.85+0.04

et al. (2017) results and considering that the HRT of the semi-
continuous fermenters (3.5 days) was almost triplicated.
These bottles were placed in an incubator (Memmert, Pass-
through ovens UF750) running at 35 °C and VFA analysis
was performed every day from day O to 7 and on day 10 to
check the progress of VFA production. According to the pH
conditions (pH 4, 6, 7.5, 9, 10, 11, and uncontrolled), concen-
trated solutions (10 M) of hydrochloric acid (HCI) and NaOH
were used to adjust pH to their pre-set value. The measure-
ment and adjustment of pH were performed on the days when
VFA analysis was carried out. After that, each bottle was
flushed with nitrogen gas for 1 min to avoid the entrance of
air in the headspace and was closed with PTFE-Butyl septum.

Analytical methods

TS, VS, and soluble chemical oxygen demand (sCOD) were
analyzed in accordance with the standard methods 2540B,
2540E, and 5220D, respectively (APHA 2012). Alkalinity
was determined through titration method (0.2 mL per 10 s)
until pH 4.3 by using pH-Burette 24 (Crison) with 0.1 M HCI.
The pH of reactor was measured with pressurized gel-
electrolyte electrodes (Mettler Toledo, HA405-DPA-SC-S8/
225). For total ammonium nitrogen (TAN) concentration de-
termination, sample was centrifuged at 4,000 rpm for 15 min,
the supernatant was filtered through 0.45-um pore size regen-
erated cellulose syringe filter. Proper dilution factor was ap-
plied to have it in between 1 and 100 ppm which was deter-
mined using high-performance ammonium ion selective

electrode (Thermo Scientific, Orion 9512HPBNWP). Free
ammonia nitrogen (FAN) concentration was calculated con-
sidering a dissociation constant for the ammonium ion (pK,)
of 8.95 at 35 °C (Yun et al. 2016). For VFA analysis, the
filtered sample was acidified with 85% phosphoric acid and
diluted 10-fold. VFA was measured using gas chromatograph
(Shimadzu, GC-2010 plus) equipped with capillary column
(Nukol™, 15 m x 0.53 mm x 0.5 wm) and flame ionization
detector (FID). Initially, the temperature of capillary column
was 80 °C, it was heated by 10 °C per minute to 110 °C
followed by 15 °C per minute to 145 °C and then by 20 °C
per minute to 190 °C. The temperatures of injector and detec-
tor were 280 °C and 300 °C, respectively. Helium was carrier
gas, hydrogen was fuel gas, and synthetic air was oxidizing
gas. Acetic, propionic, isobutyric, butyric, isovaleric, valeric,
isocaproic, caproic, and heptanoic acids were those VFA
which could be detected by the programmed method for this
gas chromatograph.

Results and discussion
Effect of pH in the acidogenic fermentation of OFMSW

Table 3 shows the main characteristics of the obtained fermen-
tation effluent in both digesters in different collection periods
of the OFMSW. As observed in Table 3, the acidogenic fer-
mentation of this substrate increased its VFA concentration
but not in a large extent: an increase of 13.9-16.9% and

Table 2 Characteristics of the FW used in this study in every collection period

Parameter Units Period B1 Period B2 Period B3  Period B4 Period BS  Period B6  Period B7  Period B8
Total solids % wiw 43+0.7 59 43+0.6 5.0% 5617 73+1.1* 73+03% 6.6+0.5%
Volatile solids % wiw 4.1+0.7 5.6 4.1+0.6 4.1% 52+1.7%  61+£08*% 57+02% 55+04%*
Soluble COD gL™! 15.8+12.7 324 36.7+133 23.6+6.7 40.1+68 37.0+29 387+43 323+147
Volatile fatty acids gL 1.0+04 19+04 14+03 0.7+0.1 1.1+02 1.0+£0.0 12+0.1 1.5+0.2
TAN mg NH,*N L 153.0 81.0+24.6 48.7 155+45 341+48 504+13 267+62
pH - 4.8+0.1 44+04 42+0.1 42+0.1 57+13% 58+03% 6.6+08%* 6.5+0.8%*

*TS and VS analyzed after the addition of external alkalinity (NaHCOs)

**pH measurement in periods B5 to B8 was performed after the addition of NaHCO;
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9.8-15.3% was recorded at acidic and alkaline conditions re-
spectively. This was related to the fact that the source-sorted
OFMSW used in this study came from a MBT plant of the
Barcelona Metropolitan Area and it had a high concentration
of VFA, in the range of 8.61-10.12 g L' (see Table 1).

Figure 1 shows the evolution of the total VFA concentra-
tion in the effluents of fermenters working at pH 6 and 10. Due
to VFA production, a drop of pH until values of 5.63—6.34 was
obtained in the fermenter working under acidic conditions
without external control. Although some studies indicate that
higher VFA production could be obtained under alkaline con-
ditions than under acidic conditions (Lee et al. 2014; Garcia-
Aguirre et al. 2017), in this study, the results showed that the
VFA production under pH 10 was not as high as what could be
expected, reaching a similar VFA production and distribution
of individual VFAs to the obtained at pH 6.0 (see Table 3). As
stated in Table 3, the sSCOD was higher in the fermenter work-
ing at pH 10 than in the fermenter working at lower pH,
because hydrolysis was favored at the alkaline pH (Li et al.
2018; Liu et al. 2018; Zou et al. 2018). In alkaline pH, a strong
repulsion exists between extracellular polymeric substances
(EPS) followed by release of carbohydrate and protein from
internal cell to the environment (Yu et al. 2008; Feng et al.
2014; Yuan et al. 2015). The increase of sCOD at pH 10 was
in the range of 14.6-28.0 which is in agreement with results
obtained by other authors despite the type of substrate (Yu
et al. 2008; Marin et al. 2010; Yuan et al. 2015), varying
between 20% and 49-fold. Although an enhanced solubiliza-
tion of organic matter was reported with respect to the fermen-
ter working at pH near 6 (18.2-23.2% higher), under alkaline
conditions, it was not observed an increase of the ratio
CODvya/sCOD with respect to the reactor working under
acidic conditions, since the solubilization of COD did not
significantly impact in a higher production of VFA. Besides,
the average NH,*—N concentration of the reactor working at
pH 6 (3.07-3.21 g NH,*~N L") was similar to that obtained
in the OFMSW fed, but it was lower in the reactor working at
pH 10 (between 2.32 and 1.61 g NH,*~N LY due to ammo-
nia stripping. Furthermore, the much higher free ammonia
concentration inside the reactor working at pH 10 may lead
to a strong inhibition of acidogenic bacteria (Bai et al. 2017).
In fact, ammonium concentration over 5000 mg L ! has been
reported as toxic to anaerobic bacteria, including acidogens
(Yu and Fang 2001; Lee et al. 2014), although nitrogen is
essential for biomass growth.

Jiang et al. (2013) studied the OLR effect on VFA produc-
tion and showed that the reactor’s operation when using FW at
a high OLR of 15.5 g VS (L day) ' was unstable because the
fermentation broth was very viscous. This led to some unde-
sirable fluctuations during the experiment and caused difficul-
ties on the way to find out the optimal process conditions,
especially in the batch tests. In the present study, the experi-
ment was carried out at roughly 17.5 g VS (L day) ' which

was higher than the value reported by Jiang et al. (2013). To
clarify if the low increase of VFA was due to high OLR or
VFA inhibition, an additional experiment was performed in a
separate semi-continuous fermenter working at pH near 6
without external chemical control. In this reactor, undiluted
OFMSW (from period A3) was fed for 30 days until reaching
a constant operation (see Fig. 2), and afterwards diluted
OFMSW with deionized water at 50% v/v was used as sub-
strate, observing a consequent decrease of the obtained VFA
concentration and a tendency to reach the same ratio of total
VFA ctfiuent’ VSinfiuent- After a 10-day feeding with diluted
OFMSW, the digester was fed again with undiluted
OFMSW reaching VFA concentrations in the range of the
stage before the dilution. Hence, this assay proved that there
was not inhibition due to OLR or VFA since the VFA produc-
tion during the dilution period decreased with time and be-
came approximately half of that without dilution.

Figure 3 shows the average concentrations of individual
VFA of the influent (OFMSW) and in the effluents of both
fermenters (pH 6 and pH 10). Unexpectedly, the average con-
centration of each particular VFA was very similar between
feeding and effluent. By comparing their composition in per-
centage, the differences were only in small extent. Due to the
high concentration of VFA in the feeding, after acidogenic
fermentation, only a small increment of VFA concentration
was detected in the effluent. Regarding these results, the
OFMSW collected from MBT plant could be pre-fermented
if its processing might fulfill the required conditions for hy-
drolytic and acidogenic activity. Prefermentation of OFMSW
could be performed not only by the inherent microorganisms
present in this biowaste, but also by the hydrolytic and
acidogenic microorganisms present in the recirculated AD
supernatant (mesophilic conditions) during the pre-treatment
process (with duration of several hours). However, to better
understand this prefermentation process in the MBT plant, a
detailed study should be carried out with the aim to investigate
if there is any special pre-treatment unit after the arrival of
fresh OFMSW and before its feeding to anaerobic digestion
where acidogenic fermentation takes place.

To sum up, the overall increase of VFA concentration was
lower than 20% based on the VFA concentration of substrate.
As a result, the ratio (C, + C4)/(C3 + Cs) was in the range of
1.7-2.2 and did not give much change based on that ratio of
the influent. The effluent had considerable amount of total
VFA concentration (9.8-11.5 g L") with a proper distribution
among acetic, propionic, butyric, and valeric acids (namely,
C, 3641%, C3 18-22%, C4 13-21%, and Cs 7-12%), to be
used as feedstock of PHA production. Table SI (in the
Supplementary Material) summarizes a complete individual
VFA composition on COD basis. Finally, the ratio of VFA
with respect to the soluble COD (CODya/sCOD) in the fer-
mentation effluent was lower under alkaline conditions at pH
10 (16.5-19.8) than under acidic conditions at pH 6 (23.0—
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Table3  Characteristics of the obtained effluent for the OFMSW acidogenic fermentation process under mesophilic conditions (35 °C) at pH 6 and 10
Parameters Units Mesophilic fermenter at acidic pH (6) Mesophilic fermenter at alkaline pH (10)

Period A1l Period A2 Period A3 Period A1l Period A2 Period A3
Alkalinity g CaCO; L™ 5.28+0.14 - 544 £0.15 9.83 £0.65 9.00 10.60 = 0.87
TAN g NH, /N L 3.07+£0.10  321+£0.07 — 2.32 +£0.63 1.61 +0.40
Free ammonia mg NH;-N L! 7.52+0.31 1.54+0.04 - 2134.13 £745.10  1418.63 +453.16
pH - 5.98 £0.26 6.34+£0.21 5.63 £0.05 9.90 £0.16 10.01 £0.15 9.82 £0.09
sCOD gL 7837+1094 67.73+£948 — 92.72+£28.89 83.48+18.94 -
CODya/sCOD % 23.00+4.19  2320+3.64 - 16.51 £2.81 19.78 +4.05 -
VFA gL 11.53+£0.53 9.75+0.94 1125+£0.62 11.11+£0.52 9.71 £1.03 11.09 + 1.68
(Cy+CPIC3+Cs)  — 1.67 +£0.22 1.89+0.08  2.00+0.13 1.91 £0.07 1.90 +£0.10 221+0.15
Acetic acid % 3527+4.68 4073 +1.68 3823+3.32 38.68+1.13 41.17+1.25 41.11 £241
Propionic acid % 22.05+234  2075+1.12 1823+0.36 20.06+0.41 20.88 + 1.00 17.98 +0.89
Butyric acid % 19.79 £ 1.42 16.60+1.32 2048+2.18 1636+0.31 13.04 £ 1.98 18.63 £ 2.65
Valeric acid % 11.60 +1.14 9.64+0.84 1190+ 1.38 825+0.20 7.19 +£0.63 8.76 £ 1.54
Other acids % 1129 £2.40 1228 +£1.24 11.16 +1.81 16.65+0.51 17.72+1.22 13.52 +1.87

23.2) due to a higher hydrolysis of organic matter under alka-
line conditions (Yuan et al. 2015).

Effect of pH in the acidogenic fermentation of FW
Batch fermentation tests using FW

Considering the prefermentation observed in the OFMSW
collected in a MBT plant and the possible free ammonia inhi-
bition of acidogenic fermentation working under alkaline con-
ditions, the feedstock of the acidogenic fermenters was
substituted for FW which is considered one of the major com-
ponents of OFMSW and is usually characterized by a low
nitrogen-to-carbon ratio (Mu et al. 2017). To study the effect
of pH on the acidogenic fermentation of FW at short-term
conditions, several batch tests under pH conditions between
4 and 11 were carried out as stated in the “Batch fermentation
tests” section (using FW and inoculum of the lab-scale fer-
menters during period B6). Figure 4 shows the profiles of
VFA production and pH of these batch tests, which is in ac-
cordance to that obtained by Zheng et al. (2018), who reported

Fig. 1 VFA production in
mesophilic acidogenic fermenters
treating OFMSW at acidic and
alkaline pH (6 and 10,
respectively)
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an optimum pH of 8.0 when treating kitchen wastewater at 21
+ 1 °C. As observed in this figure, at pH 9 and 7.5, the incre-
ment of VFA concentration was approximately doubled to
10.9gL "and 10.6 g L', respectively, on day 10 with respect
to their initial values. Zhang et al. (2005) also reported a
higher rate of hydrolysis and acidogenesis of kitchen waste
at neutral pH (7) with respect to lower (5) or higher (10, 11)
pH values. VFA production in 10 days was also high at pH 6
(8.5g L"), pH 10 (7.4 g L"), and pH between 5.1 and 5.5
without external chemical addition (7.0 g LY. However, at
pH 4 and 11, VFA productions were very limited and became
the lowest among all, demonstrating that under these extreme
values of pH, the production of VFA was not favored since
acidogenic bacteria cannot survive under extremely acid (pH
3) or alkaline (pH 12) conditions (Strazzera et al. 2018).
Regarding pH profiles, on the first 3 days, the assays with
higher VFA production, namely at pH 6, 7.5, and 9,
experimented some pH fluctuations and pH decreased drasti-
cally from 6.0 to 4.8, from 7.5 to 5.3, and from 9.0 to 5.1,
although every day the pH was adjusted to the set point. These
sudden pH drops could affect the production of VFA and even

mOFMSW pH 6 OFMSW pH 10
PERIOD Al E PERIOD A2 E PERIOD A3
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the composition of VFA generated in the following days. In
fact, at the beginning of the batch test, acidogenic bacteria
were undergoing acclimation with new environment (different
pH medium) and in this adaption period, there are normally
some fluctuations and instability of fermentation broth
(Garcia-Aguirre et al. 2017). However, after the third day,
pH variations in the batch became small, within the range of
+ 0.3 from their pre-set values. Nonetheless, continuous gen-
eration of VFA and existence of high concentration of soluble
organics (Lissens et al. 2004; Zhang et al. 2005) were pulling
the equilibrium to a partially acidic pH. This was proven when
the conditions of pH 6 and uncontrolled pH only dropped
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Fig. 3 Average concentration of individual VFA (a) and their
composition (b) in the influent and effluents of acidogenic fermenters
of OFMSW at pH 6 and pH 10 (considering all the experimental period)

during the first day of this experiment and then they increased
very slowly day to day afterwards as compared to pH 7.5 and
pH 9 which reduced with a slightly faster rate.

pH is a well-known operational parameter which can affect
the production of VFA and its composition since it has great
influence on hydrolysis and acidogenic fermentation (Atasoy
et al. 2018; Begum et al. 2018; Zhao et al. 2018). At the same
time, it can also lead to various metabolism pathways to pro-
duce different concentrations of individual VFA (Zhou et al.
2018). Figure 5 shows the composition of each individual acid
on day 10. In the tests carried out at highly acidic (pH 4) or
alkaline (pH 11) conditions, the final concentration and distri-
bution of VFA were very affected by the initial conditions of
the experiment. Among the rest of the tests, the highest per-
centage of acetic acid was recorded at pH 9 and 10, with
60.5% and 60.2% of acetic acid, respectively. Lower pH
values yielded lower proportions of acetic acid in the individ-
ual VFA distribution: 56.7% (pH 5.1-5.4), 52.0% (pH 6), and
51.1% (pH 7.5). This is consistent with the results of Zhang
et al. (2005), who also observed that pH 9 and 11 intensely
favored acetic acid production over other VFAs in comparison
to the fermentation broth obtained at pH 5 and 7 when treating
kitchen waste at 35 °C.

Caproic and butyric acids were also produced considerably
in the acidogenic fermentation tests and changed when the
operating pH increased. Caproic acid production in the
biorefinery context still has space for development since there
are only few studies published related to this short-chain fatty
acids. At the two pHs close to neutrality (pH 6 and pH 7.5),
approximately 15% of butyric and 20% of caproic acids were
produced in 10 days. For butyric acid production, it went
downwards when the pH decreased to 5.1-5.5 (9.3%) as well
as when the pH increased to 10 (9.5%). These results were in
accordance with those from Jiang et al. (2013). For caproic
acid production, the concentration changed without showing a
clear and predictable shift. The highest concentration of VFA
was produced at pH 9, but most of them was acetic acid with
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60.5%, being butyric and caproic acids at 12.8% and 14.8%
respectively. Minorities like propionic (4.6%), isovaleric
(4.0%), and isobutyric (2.0%) were also detected. Increasing
from pH 9 to 10, not much difference in acetic (60.2%) was
observed, butyric (9.5%) was roughly 3% lesser, and more
proportion of caproic acid (20.8%) was produced.

To sum up, more butyric acid was generated at pH 6 and
7.5 and it decreased when the pH was raised. More than 48%

Fig. 5 Total VFA concentration @
(a) and average individual VFA
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of VFA produced was acetic acid, and its highest percentage
was found at pH 9 and pH 10. As a result, it can be concluded
that the pH condition affected not only the VFA production,
but also its composition. However, it should be noted that
these experiments were performed at short-term conditions
using an inoculum used to work under pH 6.0 (which already
had an initial VFA content), so a general tendency could be
observed but should be confirmed under long-term operation.

(5.1-5.5)* 6 7.5 9 10 11
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Semi-continuous acidogenic fermenters using FW

The characterization of FW in the periods analyzed in this
study (based on its collection from periods B1 to BS) is shown
in Table 2. TS concentration was approximately 4.3% w/w in
the first period (B1) with more than 95% being volatile solids
(VS). In the third working period (B3), similar solid contents
were registered, but in periods B4 to B8, slightly higher TS
(ranging from 5.0 to 7.3%) and VS (ranging from 4.1 to 6.2%)
were recorded (in these periods, the TS content was calculated
after external addition of NaHCO3, and consequently approx-
imately 80% of them were VS). As mentioned in the
“Substrate and inoculum” section, VS was adjusted in the
feeding by adding deionized water, and its value was main-
tained between 4.1 and 6.1%. The initial VFA concentration
of FW was low, ranging from 0.7 to 1.9 g L™"'; TAN concen-
tration was lower than 160 mg NH,~N L' and its pH was in
the range of 4.2-5.8.

To start-up the acidogenic fermenters, the fermentation-
mixed liquor, which was previously treating OFMSW at pH
6, was used to inoculate two new semi-continuous reactors for
the fermentation of FW. Due to the characteristics of FW, pH
was adjusted both at pH 6 and 10 using NaHCO3 and NaOH
(as stated in the “Materials and methods” Section), although
co-fermentation of the collected OFMSW of this study and FW
could also be considered to balance the unfavorable TAN con-
centration of OFMSW while reducing or even avoid the exter-
nal alkalinity needs for FW. In fact, some studies have reported
successful co-fermentation of FW and OFMSW at pilot scale
under acidic conditions compensating the deficit of alkalinity
of these substrates with other feedstock such as waste activated
sludge (Garcia-Aguirre et al. 2019; Valentino et al. 2019).

Table 4 and Table 5 show the composition of effluents of
semi-continuous fermenters working at pH 6 and 10, respec-
tively. Table SII and SIIT (in the Supplementary Material)
show the complete VFA distribution analysis in COD basis
for both fermenters. At the beginning of this experiment, the
TS and VS decreased gradually in both fermenters since FW
in period B1 had slightly lower TS and VS percentages than
OFMSW. Most fluctuations were observed in period B1 when
there was changing of substrates from OFMSW to FW.
During this start-up stage, there was still remaining unfer-
mented or insoluble organic matter from OFMSW. Adding
FW into this liquid mixture might prompt unstable broth with
high remaining organic matter which may provoke negative
impacts to the system (Mata-Alvarez et al. 2014). FW is usu-
ally characterized by a low nitrogen-to-carbon ratio and, con-
sequently, TAN in the effluent during period B1 and from B3
to B8 was below 700 mg NH,*~N L' at both pH 6 and pH
10. However, the collected FW in period B2 contained a sig-
nificant quantity of meat residues which represented an im-
portant source of proteins to the acidogenic fermentation pro-
cess, leading to an unusual peak of TAN in the effluent.

Figure 6 panels a and b show the production of VFA of FW
at pH 6 and pH 10. The fermenter working at pH 6 had an
operating period of 126 days, while for pH 10, it was 57 days.
As observed in this figure, the VFA production in the
acidogenic fermentation of FW was distinct from one period
to another. In this regard, it should be taken into account that
this process was started up from the reactor treating OFMSW,
so the microbial cultures of this reactor were adapted to the
new substrate. Therefore, period B1 of anaerobic fermentation
of FW can be considered a start-up period for semi-continuous
acidogenic fermentation of FW. Due to the heterogeneity of
FW, when the substrate collected changed from one period to
another, the shift in acid distribution was noticed.

In the second period (period B2), the highest production
was observed, reaching an average VFA concentration of
11.73+237g VFAL ' atpH 6 and 9.33 £ 1.75 g VFA L™
at alkaline pH, which were almost the double of that obtained
in period B1. It is important to highlight that during period B2,
the effluent pH in alkaline conditions was 7.9 + 0.8; therefore,
a lower production of VFA could be related to the difficulties
to remain pH value near 10. When using FW from the second
collection (period B2), butyric acid (32.7%) became compet-
itive with acetic acid (31.9%) and this could not be seen in the
any other period. Considerable amount of protein-rich organic
waste in FW collected during period B2 could be related to a
higher production of both acetic and butyric acids (Feng et al.
2014). Percentages of propionic acid (8.1%) and valeric acid
(10.3%) progressively decreased, which affected the ratio be-
tween odd and even carbons in the VFAs, a parameter that
should be taken into account if the VFAs are to be used in
PHA production.

During the third period in which the FW had a lower VS
content than in the previous period, VFA production at alka-
line pH between 9.5 and 10 (7.92 + 4.93 g VFA L") was
always higher than that at pH 6 (4.74 + 2.31 g VFA LY.
This tendency remained the same during period B4 when
pH was between 9.2 and 10, which is consistent with the
short-term pH effect observation during fermentation batch
tests and the findings of Park et al. (2014) who reported that
alkaline pH can improve hydrolysis of organic matter and
provide readily fermentation substrate for acidogenic
bacteria for VFA production. In fact, Zheng et al. (2013) re-
ported an increased functional bacteria population involved in
sludge hydrolysis and acidification at pH 10 in comparison to
uncontrolled pH, as well as a decreased methanogenic ar-
chaea, which lead to a higher VFA production under this
pH. Figure 7b shows the average percentage of every single
VFA at alkaline conditions where it is observed that during
periods B2 to B4, the predominant concentration shifted
completely to acetic acid, which increased from 82.0 to
90.9%. This might be due to the preference of
phosphoroclastic degradation pathway and these findings
had been reported in some literatures (Agler et al. 2011;
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Table 4  Characteristics of the FW semi-continuous fermenter effluent at acidic pH (6) under mesophilic conditions

Parameters Units Effluent at pH 6
Period B1 Period B2 Period B3 Period B4 Period BS Period B6  Period B7  Period B8
Alkalinity g CaCOs L - - 0.78+0.78 197+030 322+0.67 — -
TAN mg NH; "N 473 1075 652 +288 440 618 £272 517 £42 670 + 40 390 +210
L
Free mg NH;— 0.05 1.29 051+0.29 038 036+0.20 039+0.04 0.61=+ 0.39+0.27
ammonia NL! 51.43
pH - 495+028 6.03+056 5.84+053 589+0.60 571+033 583+027 591+0.16 5.95+0.20
sCOD g Lt 56.42 + 38.08 43.58 + 36.17+0.17 44.74 +6.87 48.09 + 49.92 + 48.53 +
35.39 11.51 3.68 2.51 1.62
CODvyrpa/ % 12.98 £9.70 59.12 23.55+524 14.60+1.94 20.82+4.10 2228+ 26.83 + 29.50 +
sCOD 3.08 2.40 1.81
VFA gL™! 4.66+1.13 11.73+ 4.74+231 3.65+0.67 546+046 734+0.85 9.60+0.57 942+1.26
237
(Cy + Cy)/ - 3.68+522 5824565 9.74+562 21.61+ 1549 £2.46 18.77+ 20.32 + 2191 +
(C3+Cs) 10.15 2.25 2.80 7.00
Acetic acid % 63.61 + 3230+ 49.63 +£8.70 56.72+2.99 53.80 + 56.10 + 60.34 + 59.00 +
17.58 2.86 12.18 9.24 3.73 2.81
Propionic % 10.11 +£6.25 850+2.21 333+1.77 1.17+154 181+0.19 130+0.10 122+0.11 0.96+0.57
acid
Butyric acid % 1146 +£440 3242+ 11.51+1.60 11.87+1.10 12.63+3.35 11.72+ 12.92 + 11.40
1.17 1.87 1.90 141
Valeric acid % 750+244 998+090 4.60+1.33 246+037 266+0.59 233+043 242+0.31 249+0.32
Other acids % 732+293 16.80+ 3093 +3.35 27.78+1.50 29.1+£4.08 2855+ 23.14+1.51 26.15+
1.79 291 1.28

Dahiya et al. 2015; Garcia-Aguirre et al. 2017) showing
values up to nearly 75% of acetic acid. Moreover, acetic
acid percentage was even higher than the one observed
during the batch assays, suggesting an adaptation of mi-
crobial community under this new environment. This fer-
mentation broth would be especially interesting for bio-
logical heterotrophic denitrification, where acetic acid is

preferred, followed by butyric and propionic acid
(Elefsiniotis and Wareham 2007).

After day 57, the fermenter working at pH 10 was stopped
for operation since it was clearly observed that these condi-
tions highly favored acetic acid domination in the fermenta-
tion broth. Therefore, only the fermenter operating at pH 6
was kept in order to assess the evolution of total VFA

Table 5 Characteristics of the

FW semi-continuous fermenter Parameters Units Effluent at alkaline pH (with control to pH 10)

effluent at alkaline pH under

mesophilic conditions Period B1 Period B2 Period B3 Period B4
Alkalinity g CaCO; L™ - - - 5.81+0.26
TAN mg NH,*N L™ 875.0 4453 +£838  394.0
Free ammonia mg NH;-NL™' - 67.2 354.0+85.7 2563
pH - 8.64 +£0.97 7.87+0.75 9.54+0.46 9.22+£0.32
sCOD gL 61.42+4247 4487 49.51+2.52 4197 +495
CODypa/sCOD % 1440+1132 3142 20.50+4.84  19.26+1.98
VFA gL 524 +1.50 9.33+1.75 7.92+4.93 6.19 £ 1.38
(Co+CHIC3+C5) - 385+1.83 13.01£239  1449+648  20.14+2.53
Acetic acid % 56.39+12.81 81.55+1.85 83.75+£7.64 90.63+0.82
Propionic acid % 12.24 +£4.48 2.77+0.64 226+0.73 1.96 £0.25
Butyric acid % 16.14 +4.08 821 +1.56 6.90 +2.81 3.84+£0.25
Valeric acid % 7.61 £2.57 3.68 £0.44 4.18+0.97 2.74 +0.28
Other acids %o 7.62 +£2.25 3.79+£0.53 2.91+0.77 0.83 = 0.06
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afterwards. This fermenter at pH 6 was under observation to
further investigate the relation between collection period and
total VFA production. The VFA production started to increase
after the 60th day, varying between 4.39 and 11.5 g VFAL ™!,
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which was related to an increasing VS concentration in the
feedstock (from 4.1% in period B4 to 6.1% in period B6 and
afterwards nearly maintained in this value). These results also
proved that an increase in OLR maintaining the HRT lead to
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higher VFA production, but in this study did not highly affect
the VFA distribution, as observed in Fig. 7a. Between periods
B3 and B8, acetic acid was the dominant product among VFA
(49.6-60.3%), followed by caproic acid (27.0-28.3%) and
butyric acid (10.9-12.6%). These results are consistent with
those obtained by Venkateswar Reddy and Venkata Mohan
(2012) when working with fresh unfermented FW and residual
fermented FW. The concentrations of propionic and valeric
acids were minority in periods between B3 and B8, and low
valeric acid production could reflect the FW had small amount
of protein (Shen et al. 2017). Moreover, during these periods,
the ratio CODypa/COD; ranged from 14.6 to 29.5% which are
similar values than the obtained when working with OFMSW.
In summary, higher VFA production was observed during
semi-continuous acidogenic fermentation of FW at pH 9.5-10
when compared to pH 6 and the acetic acid concentration
represented up to 91% of the total VFA produced. The imple-
mentation of pH near 6 in the acidogenic fermentation of FW
generated an effluent with a stable composition distribution of
acetic and butyric acids (up to 60.3% and 12.9%, respectively)
during more than 70 days of operation (periods B4 to BS).

Conclusions

The source-sorted OFMSW collected from a full-scale MBT
plant had a VS content of 4.18-5.15% and a VFA concentra-
tion in the range of 8.6-10.1 g L™'. During mesophilic
acidogenic fermentation of this substrate working at an HRT
of 3.5 days at a pH near 6 without external chemical addition,
the VFA concentration was increased by 13.9—-16.9% and had
a composition of individual VFA similar to that of influent (C,
35-41%, C5 18-22%, C4 17-21%, and Cs 9-12%).
Therefore, this effluent had a proportion (C, + C4)/(Cs + Cs)
~ 1.7-2.0 and CODypa/sCOD around 23%. A dilution assay
revealed that there was no inhibition due to VFA in the fer-
menter working at acidic conditions.

Although a higher solubilization of COD was obtained
under alkaline conditions (18.2-23.2% higher than that in
acidic pH), no improvement in the VFA production was de-
tected when using OFMSW, which could be caused by a high
NH,*-N concentration (> 2.0 gN LY leading to free ammo-
nia inhibition. This unusual high alkalinity and ammonium
content in the collected OFMSW was related to the fact that
OFMSW was mixed in the MBT plant with supernatant from
anaerobic digestion of this biowaste.

Anaerobic batch tests using FW from a university canteen
revealed that, in the acidic range of pH tested (4—6), improved
VFA production was obtained at pH 6. However, higher VFA
production was obtained at pH 9, with a higher content in
acetic acid, which was confirmed when working with semi-
continuous fermenters treating FW.

@ Springer

In the semi-continuous acidogenic fermentation of FW, the
mesophilic digesters experienced a 30-day start-up period be-
fore a more stable VFA production was obtained. Under alka-
line conditions, ammonia inhibition was avoided due to rela-
tively low NH,*-N concentration (0.7 gN L Yand 14-16%
higher COD solubilization was observed with respect to acidic
conditions, which lead to a higher VFA production character-
ized by a high content of acetic acid, up to 91%. When work-
ing under acidic conditions, an effluent with a VFA concen-
tration up to 11.5 g VFA L™ (FW with a VS content of 5.5%
w/w) and a stable distribution of C, and C, acids (up to 60.3%
and 12.9%, respectively) but with very low quantities of C;
and Cs acids (lower than 1.8 and 2.7%, respectively) were
obtained, with a ratio CODyga/sCOD that could reach values
around 29.5%.
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