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1. Introduction 

Systems in conditions of equilibrium strictly follow the rules of thermodynamics (Callen, 
1985). In such cases, despite the intricate behaviour of large numbers of molecules, the 
system can be completely characterized by a few variables that describe global average 
properties. The extension of thermodynamics to non-equilibrium situations entails the 
revision of basic concepts such as entropy and its related thermodynamic potentials as well 
as temperature that are strictly defined in equilibrium.  Non-equilibrium thermodynamics 
proposes such an extension (de Groot & Mazur, 1984) for systems that are in local 
equilibrium. Despite its generality, this theory is applicable only to situations in which the 
system manifests a deterministic behaviour where fluctuations play no role. Moreover, non-
equilibrium thermodynamics is formulated in the linear response domain in which the 
fluxes of the conserved local quantities (mass, energy, momentum, etc.) are proportional to 
the thermodynamic forces (gradients of density, temperature, velocity, etc.). While the linear 
approximation is valid for many transport processes, such as heat conduction and mass 
diffusion, even in the presence of large gradients, it is not appropriate for activated 
processes such as chemical and biochemical reactions in which the system immediately 
enters the non-linear domain or for small systems in which fluctuations may be relevant.  
To circumvent these limitations, one has to perform a probabilistic description of the system, 
which in turn has to be compatible with thermodynamic principles. We have recently 
proposed such a description aimed at obtaining a simple and comprehensive explanation of 
the dynamics of non-equilibrium systems at the mesoscopic scale. The theory, mesoscopic 
non-equilibrium thermodynamics, has provided a deeper understanding of the concept of 
local equilibrium and a framework, reminiscent of non-equilibrium thermodynamics, 
through which fluctuations in non-linear systems can be studied. The probabilistic 
interpretation of the density together with conservation laws in phase-space and 
positiveness of global entropy changes set the basis of a theory similar to non-equilibrium 
thermodynamics but of a much broader range of applicability. In particular, the fact of its 
being based on probabilities instead of densities allows for the consideration of mesoscopic 
systems and their fluctuations. The situations that can be studied with this formalism 
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include, among others, slow relaxation processes, barrier crossing dynamics, chemical 
reactions, entropic driving, non-linear transport, and anomalous Brownian motion, 
processes which are generally non-linear. From the methodological point of view, given the 
equilibrium properties of a system, this theory provides a systematic and straightforward 
way to obtain stochastic non-equilibrium dynamics in terms of Fokker-Planck equations. 
To set the groundwork for the development of the formalism, we discuss first the basic 
concepts of mesoscopic non-equilibrium thermodynamics and proceed afterwards with the 
application of the theory to non-equilibrium radiative transfer at the nanoscale. 

2. Mesoscopic non-equilibrium thermodynamics  

Mesosocopic non-equilibrium thermodynamics is based on the assumption of the validity of 
the second law in phase-space, which requires the appropriate definition of the non-
equilibrium entropy 

 .

.
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( ) ( , )ln
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B eq
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S t k t d S ,

ρρ ρ= − +∫ ΓΓ ΓΓ  (1) 

where ( , )tρ Γ  is the probability density of the system with Γ  a point of the phase space of 

the system, .eqS  is the equilibrium entropy of the system plus the thermal bath and .( )eqρ Γ  is 

the equilibrium probability density. Note here that the non-equilibrium entropy given 

through Eq. (1) constitutes the expression of the Gibbs entropy postulate (de Groot & 

Mazur, 1984).  In general, the phase-space point is a set of internal coordinates which 

univocally determine the state of the system. For a particle or a meso-structure, the set of 

internal coordinates could include the position and velocity of the particle, number of 

constituent atoms (as in the case of clusters), reaction coordinates, geometrical parameters, 

or any other mesoscopic quantity characterizing the state of the meso-structure 

(Pagonabarraga et al., 1997), (Rubí & Pérez-Madrid, 1999).  
Changes in the entropy are related to changes in the probability density which, since the 
probability is conserved, are given through the continuity equation 

 ( , ) ( , ).t t
t
ρ∂ ∂= − ⋅∂ ∂ JΓ ΓΓ  (2) 

The continuity equation defines the probability current ( , )t=J Γ  whose expression follows 

from the entropy production. 

Assuming local equilibrium in Γ -space, variations of the entropy Sδ  are related to changes 

in the probability density ( , )tρ Γ . By performing variations over our non-equilibrium 

entropy given through Eq. (1) and taking into account that . 0eqδρ =  and . 0eqSδ = , we obtain 
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where we have introduced the non-equilibrium chemical potential 
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with eqμ being the equilibrium chemical potential. For the photon gas we will consider in 

the next section, this quantity vanishes at equilibrium due to the massless character of these 

quasi-particles. Since T S Fδ δ− = , with F  being the non-equilibrium free energy, from Eq. (3) 

we obtain 

 ( , ) ( , )F t t d ,δ μ δρ= ∫ Γ Γ Γ  (5) 

which shows the direct relation existing between the free energy and the non-equilibrium 
chemical potential. Hence, Eq. (3), which constitutes the Gibb’s equation of thermodynamics 
formulated in the phase-space, underlines the non-equilibrium chemical potential in 
physical terms. From Eqs. (2) and (3) we obtain the entropy production 

 
( , )

( , ) 0
t

S t d
t T

μ∂ ∂⎡ ⎤= − ⋅ ≥⎢ ⎥∂ ∂⎣ ⎦∫ J ΓΓ ΓΓ  (6) 

as the product of a thermodynamic current and the conjugated thermodynamic force 

( , ) / /t Tμ∂ ∂⎡ ⎤⎣ ⎦Γ Γ . The sign of entropy production determines the direction of evolution of 

the system and from this same quantity we infer linear laws relating thermodynamic 

currents and conjugated forces in the absence of non-local effects 

 ( ) ( ),
,

t
t ,

T

μ∂= − ⋅ ∂J L
ΓΓ Γ  (7) 

with ( )ρL  being the matrix of Onsager coefficients which, as required for the second law,  

should be positive-definite. The phenomenological law, Eq. (7), together with the expression 

of the non-equilibrium chemical potential, Eq. (4), lead to the Fick’s law of diffusion 

formulated in the mesoscale 

 ( ), ( )t ,ρ ρ∂= − ⋅ ∂J DΓ Γ  (8) 

where ( ) /Bkρ ρ=D L  is the matrix of diffusion coefficients. When Eq. (8) is substituted into 

the continuity equation (2), we obtain the diffusion equation for the probability distribution 

function 

 ( , ) ( )t .
t
ρ ρ ρ∂ ∂ ∂= ⋅ ⋅∂ ∂ ∂DΓ Γ Γ  (9) 

This equation governs the evolution of the probability distribution in the space of the 
internal coordinates and constitutes the basis for the study of the stochastic dynamics of the 
non-equilibrium system. 

In the case where the equilibrium probability density is a non-homogeneous quantity, 

i.e. ( )/eq Bexp k Tρ φ−∼ , Eq. (8) becomes 

 ( ), ( )
B

t
k T

ρρ ρ φ∂ ∂⎛ ⎞= − ⋅ −⎜ ⎟∂ ∂⎝ ⎠J DΓ Γ Γ  (10) 

and instead of Eq. (9) we write 
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 ( , ) ( ) ,
B

t
t k T

ρρ ρ ρ φ⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞= ⋅ ⋅ −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦DΓ Γ Γ Γ  (11) 

the Fokker-Planck equation for evolution of the probability density in Γ -space which 

includes a drift term /φ∂ ∂Γ related to the potential B eqk T logφ ρ= − .  In this sense, by 

knowing the equilibrium thermodynamic potential of a system in terms of its relevant 

variables it is possible to analyze its dynamics away from equilibrium. A particularly 

interesting circumstance is the case of a purely entropic barrier, often encountered in 

biophysics and soft-condensed matter. 

3. Thermal radiation 

Thermal radiation is a long-studied problem in the field of macroscopic physics. The 
analysis based on equilibrium thermodynamic grounds led to Planck’s blackbody radiation 
law. In addition, as Planck already realized, there are some limitations to his law due to the 
finite character of the thermal wavelength of a photon, i.e. when diffraction effects are 
negligible (Planck, 1959). In fact, once the characteristic length scales are comparable to the 
wavelength of thermal radiation Planck’s blackbody radiation law is no longer valid. In such 
a situation, the finite size of the system may give rise to non-equilibrium effects. In order to 
better understand these effects it becomes necessary to employ a non-equilibrium theory.  
The aforementioned finite-size effects become evident in all kinds of nanostructures where 
radiative heat transfer occurs. Radiative heat transfer in nanostructures constitutes an issue 
that, owing to the rapid advancement of nanotechnology, is the object of great research 
activity. Understanding and predicting heat transfer at the nanoscale possesses wide 
implications both from the theoretical and applied points of view. There is a great variety of 
situations involving bodies separated by nanometric distances exchanging heat in an 
amount not predicted by the current macroscopic laws. We can mention the determination 
of the cellular temperature (Peng et al., 2010), near-field thermovoltaics (Narayanaswamy & 
Chen, 2003) and thermal radiation scanning tunneling microscope (De Wilde et al., 2006), 
just to cite some examples. In most of these cases the experimental length scales are similar 
to or even less than certain characteristic sizes of the system, i.e. the so-called near-field 
limit. For example, for two interacting nanoparticles (NPs) we would consider the distance 
between them as the experimental length scale and their diameter as the characteristic size 
of the system.  Near-field radiative heat transfer becomes manifest through an enhancement 
of the power absorbed, which exceeds in several orders of magnitude the blackbody 
radiation limit (Rousseau et al., 2009).  
The current literature on the subject of radiative energy exchange at the nanoscale is based 
on the validity of the fluctuation-dissipation theorem (Callen & Welton, 1951), (Landau & 
Lifshitz, 1980), (Joulain et al., 2005). In the dipole-dipole interaction approximation, dipole 
moments fluctuate since they are embedded in a heat bath. Consequently, the incident field 
also fluctuates as well as the energy of a pair of dipoles. Since this quantity is proportional 
to the dipole moment squared, its second moment is proportional to the dipole-dipole 
correlation function, which follows from the fluctuation-dissipation theorem. This 
procedure constitutes the so-called fluctuating electrodynamics (Domingues et al., 2005). 
Expressions for the fluctuation-dissipation theorem can also be found even when the dipolar 
approximation is no longer valid since due to the particular charge distribution, higher 
order multipoles become important (Pérez-Madrid et al., 2008). Such as in the case of two 
interacting NPs illustrated in Fig. 1. 
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Fig. 1. Schematic illustration of the interaction between two nanoparticles (NP1 and NP2) at 

temperatures 1T  and 2T , respectively. Each nanoparticle is assimilated to a multipole 

moment (moments ( )
1

lM  and ( )
2

mM ) and  separated by a distance d  between their centres 

For extremely short length scales, since the relaxation processes involved in the absorption 
and emission of radiation does not follows a Debye law related to a definite relaxation time, 
the fluctuation-dissipation theorem ceases to be valid and a collective description becomes 
necessary.  
In the following Sections, we will present a non-equilibrium thermo-statistical theory 
describing the heat exchange at the nanoscale in the framework of mesoscopic non-
equilibrium thermodynamics based on the assumption of the validity of the second law and 
the existence of local regression laws at the mesoscale (Reguera et al., 2006). 

4. Mesoscopic non-equilibrium thermodynamics of thermal radiation 

In this section, we will apply the mesoscopic non-equilibrium theory developed in the 

previous section to study the heat exchange by thermal radiation between two parallel 

plates at different temperatures separated by a distance Td λ4 , where /T Bc k Tλ = ¥  is the 

thermal wavelength of a photon (see Fig. 2). For such distances, diffraction effects can be 

neglected safely 
 

 

Fig. 2. Schematic illustration of the radiation exchanged between two materials maintained 

at different temperatures, 1T  and 2T , separated by a distance d  

Let us consider the photon gas between two plates at local equilibrium in phase-space. We 

will assume that the photons do not interact among themselves. The gas is then 

homogeneous and a phase-space point is merely → pΓ and thus, the diffusion matrix 
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reduces to a scalar ( )D Γ , the diffusion coefficient. Additionally, if there are only hot and 

cold photons at temperatures 1T  and 2T , respectively, then 

 ( ) ( ) ( )2 2 1 1
ˆ ˆ, ( ) ( )J p t J t p p J t p p ,δ δ= − + −  (12) 

i.e., the system reaches a state of quasi-equilibrium. Thus, integration of Eq. (8) taking into 
account (12), leads to 

 ( ) ( )1 2
1 2

1 2

ˆ ˆ( ) ( )
, , ,

J t J t
p t p t

D D
ρ ρ+ = −  (13) 

with ˆ ˆ( ) ( )J t t= u Ji  and u  being the unit vector normal to the walls. Additionally, 1D  and 

2D  correspond to the diffusion coefficient of hot and could photons. From here,, by 

introducing the net current ( )J t  defined through 

 
1 2

1 2 1 2

ˆ ˆ( ) ( ) ( )J t J t J t
,

aD D D D
= +  (14) 

where a  is a dimensionality factor, or equivalently  

 1 2 2 1
ˆ ˆ( ) ( ) ( ),J t aD J t aD J t= +  (15) 

according to Eq. (13) we obtain 

 1 2 2 1( ) ( , ) ( , ) .J t aD D p t p tρ ρ= − −⎡ ⎤⎣ ⎦  (16) 

Term-by-term comparison of Eqs. (15) and (16) leads to the identification of the currents 

 1 1 1
ˆ ( ) ( , )J t D p tρ=  (17) 

and 

 2 2 2
ˆ ( ) ( , )J t D p tρ= −  (18) 

Therefore, 

 1 2 1 2 2
ˆ ( ) ( , )D J t D D p tρ= −  (19) 

represents the fraction of photons absorbed at the hot surface from the fraction 2
ˆ ( )J t  of 

photons emitted at the cold surface. Likewise, 

 2 1 1 2 1
ˆ ( ) ( , )D J t D D p tρ=  (20) 

represents the fraction of photons absorbed at the cold surface from the fraction 1
ˆ ( )J t  of 

photons emitted at the hot surface.  
For a perfect absorbed, i.e. the ideal case, 1 2 1D D= =  and if the temperatures 1T  and 2T  

remain constant, hot and cold photons will reach equilibrium with their respective baths 
and the probability current will attain a stationary value 
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 . 1 . 2( ) ( , ) ( , )st eq eqJ a T Tω ρ ω ρ ω= −⎡ ⎤⎣ ⎦  (21) 

where 

 . 3

( , )
( , ) 2eq

N T
T

h

ωρ ω =  (22) 

with h  being the Planck constant and ( , )N Tω  the averaged number of photons in an 

elementary cell of volume 3h  of the phase-space given by the Planck distribution (Planck, 

1959), 

 
1

( , ) .
exp( / ) 1B

N T
k T

ω ω= −¥
 (23) 

Moreover, the factor 2 in Eq. (22) comes from the polarization of photons. The stationary 

current (21) provides us with the flow of photons. Since each photon carries an amount of 

energy equal to ω¥ , the heat flow 12Q  follows from the sum of all the contributions as 

 12 ( )stQ J d ,ω ω= ∫ p¥  (24) 

where ( / ) pcω=p ¥ Ω , with pΩ  being the unit vector in the direction of p . Therefore it 

follows that by taking  / 4a c=  

 12 1 2( ) ( , ) ( , )
16

p
c

Q d d T T ,ω ω θ ω θ ωπ= Λ −⎡ ⎤⎣ ⎦∫ Ω  (25) 

with ( , ) ( , )T N Tθ ω ω ω= ¥  being the mean energy of an oscillator and where 2 2 3( ) / cω ω πΛ =  

plays the role of the density of states. By performing the integral over all the frequencies and 

orientations in Eq. (25) we finally obtain the expression of the heat interchanged 

 ( )4 4
12 1 2Q T T ,σ= −  (26) 

where 2 4 3 2/60Bk cσ π= ¥  is the Stefan constant. At equilibrium 1 2T T= , therefore 12 0Q = . 

This expression reveals the existence of a stationary state (Saida, 2005) of the photon gas 

emitted at two different temperatures. Note that for a fluid in a temperature gradient, the 

heat current is linear in the temperature difference whereas in our case this linearity is not 

observed. Despite this fact, mesoscopic non-equilibrium thermodynamics is able to derive 

non-linear laws for the current. In addition, if we set 2 0T = in Eq. (26), we obtain the heat 

radiation law of a hot plate at a temperature 1T in vacuum (Planck, 1959) 

 4
1 1Q T .σ=  (27) 

5. Near-field radiative heat exchange between two NPs 

In this section, we will apply our theory to study the radiative heat exchange between two 

NPs in the near-field approximation, i.e. when the distance d  between these NPs satisfies 

both Td λ<  and the near-field condition 2 4R d R< <
# #

, with R  being the characteristic radius 
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of the NPs. These NPs are thermalized at temperatures 1 2T T=  (see Fig. 3). In particular we 

will compute the thermal conductance and compare it with molecular simulations 

(Domingues et al., 2005). 
 

 

Fig. 3. Illustration of two interacting nanoparticles of characteristic radius R  separated by a 

distance d  of the order nm 

Since in the present case diffraction effects cannot be ignored D1 and D2 must be taken as 

frequency dependent quantities rather than constants and hence, Eq. (25) also applies, now 

with 2 2 3
1 2( ) ( ) ( ) /D D cω ω ω ω πΛ = . This density of states differs from the Debye 

approximation 2 2 3/ cω π  related to purely vibration modes and is a characteristic of 

disordered systems which dynamics is mainly due to slow relaxing modes. Analogous to  

similar behaviour in glassy systems, we assume here that (Pérez-Madrid et al., 2009) 

 2 2
1 2( ) ( ) exp( ) ( )RD D A B ,ω ω ω δ ω ω= −  (26) 

where the characteristic frequency A  and the characteristic time B  are two fitting 

parameters, and 2 /R c dω π=  is a resonance frequency.  
The heat conductance is defined as 

 
1 2

122
12 0

1 2

( )
( ) / lim

T T

Q
G T R ,

T T

ωπ →= −  (29) 

where 0 1 2( ) / 2T T T= +  is the temperature corresponding to the stationary state of the 

system.  Therefore,  

 ( ) ( )
2

2 2
02 2

12 0 2
0

/
( ) exp .

4 sinh / 2

B R R B
R

R B

k R k T
G T A B

c k T

ω ωωπ ω
⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦

¥
¥

 (30) 

In  Fig. 4, we have represented the heat conductance as a function of the distance d  between 

the NPs of different radii. This figure shows a significant enhancement of the heat 

conductance when d  decreases until 2D , which, as has been shown in a previous work by 

means of electromagnetic calculations and using the fluctuation-dissipation theorem (Pérez-

Madrid et al., 2008), is due to multipolar interactions.  In more extreme conditions when the 

NPs come into contact to each other, a sharp fall occurs which can be interpreted as due to 

an intricate conglomerate of energy barriers inherent to the amorphous character of these 

NPs generated by the strong interaction. In these last circumstances the multipolar 

expansion is no longer valid. 
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Fig. 4. Thermal conductance G12 vs. distance d reproducing the molecular dynamics data 
obtained by (Domingues et al., 2005). The grey points represent the conductance when the 
NPs with effective radius R = 0.72, 1.10, and 1.79 nm are in contact. The lines show the 

analytical result obtained from Eq. (30) by adjusting A  and B  to the simulation data 

6. Conclusions 

The classical way to study non-equilibrium mesoscopic systems is to use microscopic 
theories and proceed with a coarse-graining procedure to eliminate the degrees of freedom 
that are not relevant to the mesoscopic scale. Such microscopic theories are fundamental to 
understand how the macroscopic and mesoscopic behaviours of the system arise from the 
microscopic dynamics. However, these theories frequently involve specialized mathematical 
methods that prevent them from being  generally applicable to complex systems; and more 
importantly, they use much detailed information that is lost during the coarse-graining 
procedure and that is actually not needed to understand the general properties of the 
mesoscopic dynamics. 
The mesoscopic non-equilibrium thermodynamics theory we have presented here starts 
from mesoscopic equilibrium behaviour and adds all the dynamic details compatible with 
the second principle of thermodynamics and with the conservation laws and symmetries 
inherent to the system. Thus, given the equilibrium statistical thermodynamics of a system, 
it is a straightforward process to obtain Fokker-Planck equations for its dynamics. The 
dynamics is characterized by a few phenomenological coefficients, which can be obtained 
for the particular situation of interest from experiments or from microscopic theories and 
describes not only the deterministic properties but also their fluctuations. 
Mesoscopic non-equilibrium thermodynamics has been applied to a broad variety of 
situations, such as activated processes in the non-linear regime, transport in the presence of 
entropic forces and inertial effects in diffusion. Transport at short time and length scales 
exhibits peculiar characteristics. One of them is the fact that transport coefficients are no 
longer constant but depend on the wave vector and frequency. This dependence is due to 
the existence of inertial effects at such scales as a consequence of microscopic conservation 
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law. The way in which these inertial effects can be considered within a non-equilibrium 
thermodynamics scheme has been shown in Rubí & Pérez-Madrid, 1998. 
We have presented the application of the theory to the case of radiative heat exchange, a 
process frequently found at the nanoscale. The obtention of the non-equilibrium Stefan-
Boltzmann law for a non-equilibrium photon gas and the derivation of heat conductance 
between two NPs confirm the usefulness of the theory in the study of thermal effects in 
nanosystems.  
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