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ABSTRACT

When faced with microangiopathic haemolytic anaemia, thrombocytopenia and organ dysfunction, clinicians should suspect
thrombotic microangiopathy (TMA). The endothelial damage that leads to this histological lesion can be triggered by several
conditions or diseases, hindering an early diagnosis and aetiological treatment. However, due to systemic involvement in TMA
and its low incidence, an accurate early diagnosis is often troublesome. In the last few decades, major improvements have
been made in the pathophysiological knowledge of TMAs such as thrombotic thrombocytopenic purpura [TTP, caused by
ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin Type 1 motif, member 13) deficiency] and atypical
haemolytic uraemic syndrome (aHUS, associated with dysregulation of the alternative complement pathway), together with
enhancements in patient management due to new diagnostic tools and treatments. However, diagnosis of aHUS requires the
exclusion of all the other entities that can cause TMA, delaying the introduction of terminal complement blockers, which have
shown high efficacy in haemolysis control and especially in avoiding organ damage if used early. Importantly, there is
increasing evidence that other forms of TMA could present overactivation of the complement system, worsening their clinical
progression. This review addresses the diagnostic and therapeutic approach when there is clinical suspicion of TMA,
emphasizing complement evaluation as a potential tool for the inclusive diagnosis of aHUS, as well as for the improvement of
current knowledge of its pathophysiological involvement in other TMAs. The development of both new complement activation
biomarkers and inhibitory treatments will probably improve the management of TMA patients in the near future, reducing
response times and improving patient outcomes.
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INTRODUCTION

Thrombotic microangiopathy (TMA) is a histological lesion com-
mon to multiple diseases and with variable clinical presentation
due to its systemic nature [1, 2]. Recently, advances have been
made in the understanding of the pathophysiological mecha-
nisms involved [3, 4]. However, an accurate diagnosis and early
start of aetiological treatment able to change the natural history
of these serious conditions may be challenging. In addition, the
development of new-generation functional and genetic studies
has revealed an emerging role of the complement system—at
different levels and degrees—in the pathogenesis of many of
the entities that can produce TMA [5–10].

Given the high complexity of the clinical management of
patients with TMA, this review attempts to shed light on the di-
agnostic process when there is clinical suspicion and/or histo-
logical confirmation of TMA, and stresses the need for complete
and comprehensive assessment of complement activation.
Complement status evaluation will not only improve our patho-
physiological knowledge of the different TMA forms but could
also have diagnostic and therapeutic implications. Due to the
current development of multiple complement blockers [11, 12],
these data could eventually allow inclusive diagnosis and per-
sonalized medicine.

CLINICAL SUSPICION

Thrombotic microangiopathies are a group of disorders charac-
terized by non-immune intravascular haemolysis and ischae-
mic organ dysfunction. The classical laboratory findings are
thrombocytopenia (or >25% decrease in platelet count), result-
ing from platelet aggregation and consumption, and microan-
giopathic haemolytic anaemia (MAHA), resulting from
erythrocyte fragmentation in the microcirculation due to partial
occlusion by platelet aggregates [1, 13]. MAHA is defined by
the presence of schistocytes (fragmented erythrocytes) that can
be found on peripheral blood smear, reticulocytosis and a nega-
tive direct antiglobulin (Coombs) test. Other less specific labora-
tory findings for MAHA are: increased serum lactate
dehydrogenase (LDH), as a result of tissue ischaemia and cell
lysis; decreased haptoglobin levels, after its binding to circulat-
ing haemoglobin (Hb) realeased by haemolysis; and unconju-
gated hyperbilirubinaemia. The severity of all these findings
reflects the extent of microvascular platelet aggregation [14].

From a clinical point of view, most patients present with non-
specific symptoms that are a result of microvasculature injury.
TMA patients often present with high blood pressure and, in some
cases, with hypertensive retinopathy [2]. The results of coagulation
tests [prothrombin time (PT) and activated partial thromboplastin
time (aPTT)] are usually normal [13]. However, patients with very
severe disease associated with disseminated intravascular coagula-
tion (DIC) are the exception, as they frequently present with septic
shock and prolongation of PT and aPTT [13]. The most commonly
affected targets in TMA are the brain, kidneys, heart, skin and gas-
trointestinal system, although the clinical presentation can differ
depending on the underlying aetiology of the disease [2].

Classically, thrombotic thrombocytopenic purpura (TTP) and
haemolytic uraemic syndrome (HUS), both entities occurring
with no associated underlying cause, have been classified as

primary TMA forms (Table 1). However, the classification of
TMAs is challenging and constantly evolving [3, 13, 15]. On the
basis of clinical findings, TTP often presents with ischaemia of
the brain or gastrointestinal tract, and rarely causes severe
acute kidney injury (AKI) [3]. Diagnosis of TTP relies on mea-
surement of very low plasma ADAMTS-13 (a disintegrin and
metalloproteinase with a thrombospondin Type 1 motif, mem-
ber 13) activity (<10%) [3]. However, when ADAMTS-13 testing is
unavailable and urgent therapy is needed, the PLASMIC score
can be used, which is a valuable clinical tool based on clinical
and laboratory findings [16]. If the predominant feature at pre-
sentation is severe AKI, then the disorder will most probably be
classified as HUS. The most common form (90% of HUS)—typical
HUS—is associated with bloody diarrhoea due to different
pathogens, especially Escherichia coli. Atypical HUS (aHUS) is an
ultra-rare disease (incidence 0.5–2 per million per year), and it is
based on a clinical diagnosis after the exclusion of other causes
of TMA. aHUS is caused by dysregulation of the alternative com-
plement pathway, of either acquired or genetic origin [13, 17, 18].

TMAs classified as secondary forms can occur in multiple
clinical settings (Table 1), among which the most important are:
autoimmune diseases; cancer and its treatment; pregnancy-
related TMA; solid organ transplantation (SOT) and haemato-
poietic cell transplantation (HCT); and multiple infections [13,
19].

HISTOLOGY

Because the histological findings of TMA are not pathogno-
monic, histological confirmation is not mandatory to establish
a diagnosis. Therefore, an aetiological diagnostic approach to
TMA can be initiated once suspicion is established. However, as
TMA can manifest as a diverse range symptoms and conditions,
histological confirmation is useful, especially when the clinical
presentation is uncommon or incomplete, as well as to deter-
mine prognosis [2]. Several organs may be affected by TMA, and
histopathological findings in all of them have been described in
the literature. Classic findings of TMA consist of endothelial cell
(EC) swelling, often associated with luminal fibrin thrombi, and
minimal or absent inflammation. Heart, lung and brain biopsies
have only been described in autopsies, whereas the skin, gastro-
intestinal tract and gingiva are the suggested sites for sampling,
whether or not there is a visible lesion [20–22]. Kidney tissue
can also be sampled and remains the gold standard for kidney
TMA diagnosis and to exclude other potential causes of kidney

Table 1. Primary and secondary TMA forms

Primary TMA Secondary TMA

TTP
Hereditary TTP, acquired/

immune-mediated TTP
HUS
Acquired HUS: infectious causes

(STEC-HUS, S. pneumoniae, Shigella,
etc.); antibody against CFH (aHUS)

Hereditary HUS: complement gene
mutations (aHUS)

Autoimmune diseases
Infections
Pregnancy
SOT
HCT
Methylmalonic acidaemia
Malignancy
Medications
Malignant hypertension
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injury. However, the decision to perform a kidney biopsy must
be individualized on a case-by-case basis, given that in patients
with suspected TMA there is a high bleeding risk, due to the
presence of high blood pressure, thrombocytopaenia and urae-
mia, among other factors. The histopathological findings in kid-
ney biopsy reflect tissue response to endothelial injury,

resulting in changes in different structures that progress over
time [23]. These changes can be categorized as below.

Glomerular changes

In the acute phases of TMA, ECs may appear swollen and fibrin-

platelet thrombi are identified within glomerular capillaries

FIGURE 1: Pathological findings of renal biopsy in acute and chronic TMA. (A) A thrombus is identified within glomerular capillaries (arrow head) (Masson’s trichrome,

60�). (B) Segmental mesangiolysis is indicative of active lesion (arrow head) (silver, 40�). (C) Chronic lesions show reduplication of GBM (arrow head) (silver, 60�). (D)

Necrosis of the arterial wall (arrow head) and glomeruli of shrunken appearance (Masson’s trichrome, 20�). (E) Artery show intimal thickening with concentric appearance

(‘onion-skin’) (haematoxylin and eosin, 60�) (F) Acute tubular necrosis (arrow head) is a finding resulting of ischemic changes (haematoxylin and eosin, 20�).
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(Figure 1A). Other findings such us detachment of the ECs from

glomerular basement membranes (GBMs), mesangiolysis or ne-

crosis can be observed (Figure 1B). If TMA persists, then ECs con-
tinue to produce basement membrane material, leading to GBM
remodelling with double contours and mesangial expansion,
resulting in a membranoproliferative glomerulonephritis-like
pattern indicative of chronic phases of TMA [24–26] (Figure 1C).

Vascular changes

When the arterioles and arteries are involved, intimal swelling,
mucoid change and proliferation, and necrosis of the arterial
wall or thrombi in the lumen are observed (Figure 1D). In this
context, glomeruli appear ischaemic and shrunken. In the
chronic phase, these changes may lead to concentric lamination
of intimal fibrosis causing ‘onion-skin’ appearance [24, 26]
(Figures 1E).

Tubulointerstitial changes

Acute tubular necrosis is a finding resulting from ischaemic
changes. Severe TMA cases can show cortical necrosis, which is
predictive of a poor outcome [25, 26] (Figure 1F).

DIFFERENTIAL DIAGNOSIS

When there is clinical suspicion and/or histological confirma-
tion of TMA, a broad and rapid differential diagnosis must be
made to achieve an aetiological diagnosis and reduce delay in

administering early specific treatment. With the aim of improv-
ing TMA management, we propose an algorithm describing the
sequence of all the complementary tests that should be carried
out according to patient characteristics and clinical settings
(Figure 2).

TTP

The cause of TPP is an ADAMTS-13 deficiency, which can be
congenital or acquired. This deficiency results in unusually
large von Willebrand factor (VWF) multimers and, therefore, a
high risk of platelet thrombi in small vessels. Measurement of
ADAMTS-13 activity and inhibitors is crucial to confirm the di-
agnosis of hereditary and autoimmune TTP, but there are still
uncertainties about the interpretation of these data.
Importantly, ADAMTS-13 activity is usually normal or modestly
reduced (>20%) in pregnancy [27] and other forms of TMA asso-
ciated with severe sepsis, HCT, systemic lupus erythematosus
(SLE), disseminated malignancy, recent surgery, severe liver im-
pairment and DIC [28–30]. Partial ADAMTS-13 deficiency (be-
tween 10% and 60% of activity) was found in 50% of aHUS
patients and Shiga toxin (Stx)-producing Escherichia coli HUS (Stx
E. coli HUS; STEC-HUS) [31]. The commercially available techni-
ques to measure ADAMTS-13 activity, autoantibodies and anti-
gen (Ag) differ, depending on the laboratories. Regarding
activity, fluorogenic assays based on the use of a peptide con-
taining 73 amino acid residues from the central A2 domain of
VWF (FRETS-VWF73) as a substrate, conjugated with

FIGURE 2: TMA management algorithm. When there are TMA signs, clinical and laboratory evaluation is needed to achieve an aetiological diagnosis and specific treat-

ment. ADAMTS-13 activity assessment is urgent, and if <10%, a TTP should be diagnosed, followed by specific treatment. If Stx is detected, then diagnosis of STEC-HUS

should be followed by supportive therapy. This supportive therapy, among early start of aetiological treatment, follows the differential diagnosis of all secondary TMA

forms. When aHUS is suspected (by exclusion of other TMA forms), a complete evaluation of complement should be performed, eculizumab being the first-line treat-

ment. Complement assessment though both in vitro evaluation of C5b-9 deposits on ECs and soluble C5b-9 levels is strongly encouraged in all cases of TMA, when pos-

sible. Especially in secondary forms, where if the patient shows complement overactivation and no response to the treatment of choice, a second-line treatment

consisting of administration of complement terminal blockers may be contemplated. If complement assessment is not available—in secondary TMA forms—a thera-

peutic approach with eculizumab may be also considered (in the absence of response to aetiological treatment).ADAMTS-13, a disintegrin and metalloproteinase with

a thrombospondin Type 1 motif, member 13; AF-ab, Anti-phospholipid antibodies; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus; CMV, cytomeg-

alovirus; EBV, Epstein–Barr virus; HIV, human immunodeficiency virus.
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fluorescence energy resonance transfer (FRETS), offers quick
and reproducible results [32]. The International Society of
Thrombosis and Haemostasis guidelines establish that when
plasma ADAMTS-13 activity is <10 IU/dL (often referred to as
10% of normal ADAMTS-13 activity), the diagnosis of TTP is
more likely [33]. Autoantibodies against ADAMTS-13, usually
immunoglobulin G, are the cause of acquired TTP, a rare auto-
immune disease [34]. These antibodies show inhibitory activity
primarily mediated by their binding to ADAMTS-13 spacer do-
main, critical for VWF recognition. However, there are also anti-
bodies that may cause rapid clearance of ADAMTS-13.
Regarding ADAMTS-13 Ag, the concentrations of this enzyme in
human plasma range from 0.7 to 1.4 lg/mL (3.5–7.0 nM) [35] and
can be severely reduced or even non-existent in congenital TTP.
This very rare condition, with a prevalence of �0.05–0.4/100 000,
is transmitted by autosomal recessive inheritance [36].

STEC-HUS

The most common cause of HUS, particularly in children, is Stx-
producing bacteria, especially E. coli serotype O157:H7 [37].
STEC-HUS is usually initiated a few days after clinical gastroen-
teritis (typically bloody diarrhoea) caused by STEC. Stx, a potent
cytotoxin, apparently initiates the disease process, playing a
central pathophysiological role damaging ECs from the vascula-
ture [6], among red cells and platelets [18]. This damage could
constitute triggers leading to enhanced complement activation.
The clinical manifestations of Stx-induced HUS overlap with
those of other related syndromes, but the molecular mecha-
nisms differ considerably. Accurate diagnosis of STEC infections
is important for the appropriate management of infected
patients. Candidates for the detection of all STEC serotypes in-
clude chromogenic agars, enzyme immunoassays, quantitative
real-time polymerase chain reaction (qPCR) and, most recently,
methods of whole-genome analysis [38].

Autoimmune diseases

The main systemic disorders related to TMA are systemic
scleroderma (SSc) and SLE, with or without associated antiphos-
pholipid syndrome (APS). Their diagnosis requires the perfor-
mance of a complete clinical assessment and autoimmune
panel, including: serum antinuclear antibodies (ANA), anti-
double-stranded DNA (ds-DNA) antibodies (using Crithidia luci-
liae indirect immunofluorescence test) and anti-extractable
nuclear Ag antibodies, including anti-Sm, anti-SSA, anti-SSB
and anti-RNP antibodies (the latter associated with overlap con-
nective tissue diseases), as well as serum complement factors
(C3, C4 and CH50) for SLE diagnosis; antitopoisomerase I (anti-
Scl-70) antibody, anticentromere antibody (ACA) and anti-RNA
polymerase III antibodies for SSc diagnosis; and anti-cardiolipin
antibody, anti-b2GP-1 antibody and lupus anticoagulant (LA) for
APS diagnosis [39].

Infections

Many systemic infections have been identified as a TMA-
causing agent [40]. Among them, the most important ones are:
numerous viral infections (outlined in Figure 2); bacterial infec-
tions such as bacterial endocarditis, spotted fever rickettsiosis
or infections caused by Streptococcus pneumoniae (the latter
shows a positive Coombs test as a differentiating feature); and
infections caused by red blood cell parasites (Plasmodium falcipa-
rum, Plasmodium vivax). In each particular case, and depending

on the clinical suspicion, different diagnostic tests should be
performed (serological tests, qPCR, cultures, etc.) [41].

Pregnancy-associated TMA

There are different circumstances in which TMA can occur dur-
ing pregnancy. Haemolysis, Elevated Liver enzymes and Low
Platelets (HELLP) syndrome, which usually occurs after the 20th
week of pregnancy, is defined by the coexistence of thrombocy-
topenia, MAHA and liver damage. It can be associated with pre-
eclampsia, defined by new-onset hypertension and proteinuria,
with or without end-organ dysfunction. If seizures occur in a
patient with preeclampsia, then the diagnosis changes to
eclampsia [42]. Moreover, pregnancy may trigger new-onset TTP
or a relapse, especially in the first trimester [8]. Additionally, in
up to 20% of women, onset of aHUS occurs during the post-
partum period [43–45]. In this case, it is hypothesized that there
are different complement system regulatory proteins on the
placental surface, and that their loss in conjunction with com-
plement overactivation during delivery may be a perfect trigger
[46].

SOT and HCT

Aetiological diagnosis is challenging because TMA may be asso-
ciated with several triggers, such as ischaemia–reperfusion in-
jury and antibody-mediated rejection in the case of SOT, or
induction treatment and graft-versus-host prevention regimens
in HCT. Opportunistic infections and immunosuppressive treat-
ment, mainly related to calcineurin and mammalian Target of
Rapamycin (m-TOR) inhibitors, could be the cause of TMA in
both transplantation modalities. TMA associated with HCT is
especially recognized to be associated with excessive comple-
ment activation, likely triggered by endothelial injury, and new
evidence suggests neutrophil extracellular trap (NETs) forma-
tion as the mechanistic link between these two entities [47].
NETs are deposits of antimicrobial proteins on a single DNA
framework released by activated neutrophils [48], and can acti-
vate complement via both alternative and non-alternative path-
ways [49]. Levels of NETs are measured through quantification
of circulating ds-DNA in a quick and easy assay, and could
eventually constitute a new marker to be considered in the di-
agnosis of TA-TMA.

Methylmalonic acidaemia and/or aciduria

This is an uncommon and heterogeneous congenital metabolic
disorder of cobalamin (vitamin B12), resulting in methylmalonic
acid and homocysteine accumulation in blood and tissues, with
increased urinary excretion of both compounds. In this setting,
endothelial damage is caused by high homocysteine levels,
among other factors. Confirmatory genetic testing should be
performed in patients with positive metabolic screening [50].

Malignancy

If there is any symptomatic suggestion of malignancy or a his-
tory of cancer in the context of TMA, it is imperative to perform
diagnostic tests (CT scan, bone marrow study, serum tumour
markers). The evaluation of TMA in patients with cancer fo-
cuses on two principal aetiologies: (i) cancer-induced TMA,
commonly caused by systemic metastases due to microvascular
obstruction by tumour cells; and (ii) chemotherapy-induced
TMA, caused by dose-dependent toxicity (with gradual onset of
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TMA signs), or by an immune-mediated reaction (drug-depen-
dent antibodies), the latter leading to rapid onset of TMA [51].

Medications

In most cases, TMA is caused by dose-dependent direct en-
dothelial damage (non-immune-mechanism). The most
frequent forms of drug-induced TMA are summarized in
Table 2 [52].

Malignant hypertension

A direct damage of the endothelium is produced in this entity.
Ocular fundus study may show hypertensive retinopathy

Grades III–IV. In these patients, optimal blood pressure control
is the most critical initial management and may be the only

treatment required. If, after optimal blood pressure control,
there is no improvement in platelet count, other causes of TMA
must be considered [2].

aHUS

This entity is caused by a dysregulation of alternative comple-
ment pathway over cell surfaces [presence of complement pro-
teins mutations or antibodies against complement factor
H (CFH)], damaging ECs through complement terminal phase

activation/membrane attack complex (MAC) formation [19, 53].
aHUS diagnosis is by exclusion of other TMA forms.

Table 2. Main drug-induced TMA

Cancer therapies Immunosuppressants Others

Cytotoxic agents:
gemcitabine, mytomicin C

Calcineurin inhibitors:
cyclosporine, tacrolimus

Biological agents:
adalimumab, imatinib

VEGF inhibitors:
bevacizumab, sunitinib

m-TOR inhibitors:
sirolimus, everolimus

Antibiotics:
ciprofloxacin, metronidazole, nitrofurantoin, trimethoprim/sulfamethoxazole

Proteasome inhibitors:
bortezomib, carfilzomib

Commonly used drugs: ibuprofen, ketorolac, clopidogrel, simvastatin, oestrogen/
progesterone

FIGURE 3: Complement system. The complement system is the first line of physical defence against pathogens and altered host cells and is composed of a cascade of

several plasmatic and membrane proteins expressed on the cell surface. There are three different pathways through which the complement system can be activated:

the classical, the lectin and the alternative pathway (upper part of the image). Each of the pathways leads to the activation of C3 convertase that cleaves C3 into C3a

and C3b, which binds Factor B and generates active convertases on targeted surfaces. The terminal complement cascade is then initiated by the cleavage of protein C5

by C5 convertase, followed by C5a release (potent anaphylotoxin) and C5b-9 molecule assembly, forming the MAC. This structure becomes inserted into the target cell

lipid bilayer and induces cell lysis through proton influx. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, com-

plement regulatory proteins or complement deficiencies, whether genetic or acquired. Soluble C5b-9 levels and C5b-9 deposition induced by patient activated plasma

on ECs in vitro are two of the most promising complement monitoring tools used to provide insight into the integrity of the entire complement reaction cascade.
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COMPLEMENT ASSESSMENT IN TMA

Complement is a part of the innate immune surveillance sys-
tem (Figure 3), its main functions being chemotaxis, opsoniza-
tion, clearance of immunocomplexes and cell lysis through
MAC formation. Complement dysregulation has been linked to
several forms of TMA [5–10]. Therefore, we suggest a study of
complement in all TMA patients, immediately after diagnosis
and before any specific treatment (Figure 2). Among all the labo-
ratory tests for complement assessment (discussed below), we
strongly recommend, when possible, analysis of C5b-9 deposition
on ECs in culture and quantification of soluble C5b-9 levels as
useful markers of terminal complement pathway overactivation
[54–60] (Figure 3). Although this assessment is not a quick proce-
dure, and is not commercially available, knowledge of comple-
ment involvement may critically reduce diagnostic times when
aHUS is strongly suspected (Figure 4), and could offer an

alternative therapeutic process when there is a lack of response
to initial treatment in other forms of TMA [10, 61–63] (Figure 2).

Functional analysis

Complement functional analyses provide insight into the integ-
rity of the entire complement reaction cascade. These tests are
suitable for investigating suspected complement deficiencies
and must be interpreted in the context of the complete comple-
ment picture. However, there is still an open discussion about
the utility of complement functional tests as biomarkers of com-
plement activation in both TMA debut and response to therapy.
Complement assays are performed on serum or plasma samples.
It is important to maintain the samples on ice in order to limit
the amount of ongoing tick-over. Functional complement activity
assays are used as screening tests and are based on the ability of
complement to induce lysis of erythrocytes.

FIGURE 4: Clinical case—complement assessment in TMA for early aetiological treatment. A 52-year-old man, with a past medical history of pancreatic ductal adeno-

carcinoma (cT1cN0M0), was treated with surgery and concomitant gemcitabine from March to August 2017. After 2 months, he showed nephrotic syndrome, MAHA,

thrombocytopenia and progressive kidney failure. A kidney biopsy confirmed TMA both in the glomerulus and arterioles with negative immunofluorescence. To make

a rapid differential diagnosis, we ruled out TTP (ADAMTS-13 activity: 87%), STEC-HUS (negative Stx detection), infections (negative cultures) and autoimmune diseases,

among other causes of TMA. Concomitantly, we performed a complement assessment with plasma levels of complement components (C3, C4, CH50 and C5b-9) and

also with C5b-9 deposition evaluation on ECs culture [57]. Complement levels were within the normal range, but 5 days after admission, we identified significant depo-

sition of C5b-9 on EC (3.2 6 0.2-fold increase, P<0.05) (Figure 4) (A). Despite these results, we spent 4 weeks in the initial management of TMA and especially ruling out

tumour recurrence (tumour markers, PET-CT) and gemcitabine-induced TMA. MAHA, thrombocytopenia, kidney failure and nephrotic syndrome persisted despite sup-

portive therapy and plasma exchange (18 sessions). Finally, we reached a clinical diagnosis of aHUS by exclusion. At that point (November 2017), we started eculizumab

following the data sheet, with TMA haematological response (normalization of platelet count, LDH, haptoglobin and reticulocytes) after 2 weeks, and normal kidney

function with complete remission of nephrotic syndrome after 4 weeks, as well as a negativization of C5b-9 deposits (Figure 4) (B). Three months after admission, ge-

netic study revealed a CFI mutation (heterozygous variant in exon 5, c.739T>G [p.Cys247Gly] considered as pathogenic) and risk haplotypes in heterozygosis for CFH

and MCP. After 29 months, the patient maintained haematological and kidney remission on eculizumab. In conclusion, complement assessment in all TMA cases (the

proposed algorithm in Figure 2) could critically reduce diagnostic times for aHUS (supporting physician suspicion) and establish the therapeutic potential of comple-

ment blockade in secondary TMA forms when aetiological treatment—if available—fails.
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C5b-9 deposition on ECs in culture. This technique is used to
screen for complement abnormalities. It was set up using aHUS
as the gold standard disease in which complement is dysregu-
lated over cell surfaces. Furthermore, it has been proven useful to
monitor eculizumab treatment in aHUS patients, and to assess
complement involvement in severe preeclampsia and HELLP syn-
drome or to exclude complement as a pathophysiological factor
in malignant hypertension [57]. To evaluate complement activa-
tion, human dermal microvascular EC line CDC/EU. HMEC-1
(HMEC) [64] is seeded on gelatin-covered glass coverlips. Cells are
washed with test medium [54] and are then incubated with acti-
vated plasma (a-plasma), obtained by mixing patients’ plasma
with control pooled sera (1:1) and diluting the mix with test me-
dium. Control samples consist of mixing healthy plasma from
donors with pooled serum from controls. Then, cultures are
washed and fixed with paraformaldehyde. For C5b-9 detection,
immunostaining is performed with an anti-human complement
C5b-9 complex antibody followed by a fluorescent conjugated
secondary antibody and DAPI. The area covered by C5b-9 depos-
its is calculated from fluorescent micrographs and expressed as
the average fold increases of each condition versus control. This
test is a modification of that developed by Noris et al. [54] but
takes advantage of the multiple links between the complement
and the clotting system [65] to enhance C5b-9 deposition and re-
duce the coefficient of variation obtained for each sample.
However, a laboratory that offers this evaluation needs to have
ECs in culture available constantly.

Total haemolytic complement (CH50) assay. This assay anal-
yses the functional ability of serum complement components to
lyse sheep red blood cells (SRBCs) pre-coated with rabbit anti-
sheep antibodies. Therefore, it mainly evaluates the classic
complement activation pathway. In this assay, serial dilutions
of the sample are made and incubated with SRBC and the
results are reported as the reciprocal of the dilution at which
50% haemolysis occurs (CH50) [66]. Low levels of CH50 may oc-
cur due to congenital complement deficiencies, increased con-
sumption of complement components or insufficient synthesis
of complement factors, and during infections, disease exacerba-
tion in patients with SLE and in patients with immune complex
diseases such as glomerulonephritis. Haemolytic and enzyme-
linked immunosorbent assays are currently commercially avail-
able [67].

Complement alternative pathway (AP50) assay. This assay
incubates serial dilutions of patients’ sera with rabbit or guinea
pig erythrocytes in conditions that specifically activate the al-
ternative pathway [68]. A low AP50 result is associated with de-
ficiencies in FB, FD, FH and properdin, glomerulonephritis,
aHUS, STEC-HUS and consumption of complement proteins
[67].

Modified Ham test. The principle of this technique is that
paroxysmal nocturnal haemoglobinuria cells are more sensitive
to alternative pathway of complement due to due to deficiency
of complement regulatory proteins. The incubation of cells with
this deficiency with sera from aHUS patients is supposed to re-
sult in a significant increase of nonviable cells compared with
serum from healthy controls [69].

Quantification of individual complement components
and regulators and activation markers

Unfortunately, the quantification of levels of the different com-
plement components in serum is not a straightforward ap-
proach in TMA diagnosis, as soluble levels are not reliable
biomarkers of complement activation in any form of TMA,

including aHUS [58]. However, comprehensive knowledge of dif-
ferent complement components or/and complement activation
marker levels could provide hints about possible complement
pathway overactivation. The quantification of the majority of
individual complement components can be performed through
standard immunochemical assays [70]. C3 and C4 plasma levels
have been available in routine diagnostic laboratories for deca-
des. Low levels of these two components are associated with a
number of pathologies such as aHUS (C3 consumption only in
30–50% of patients), TTP, STEC-HUS and glomerulonephritis,
among others [67, 70, 71]. The quantification of Factor B levels
could provide information regarding which pathway is actively
consuming C3. Properdin quantification is available only in spe-
cialized laboratories, but knowledge of its levels could be useful
as it is the only positive regulator of the alternative pathway
and its levels could be reduced in cases of complement activa-
tion. The decay products of C3, C4, C5 and Factor B can be quan-
tified in specialized laboratories and offer information about
the activation state of the complement system. The main draw-
back to its use in clinical practice is that, in general, decay prod-
ucts have a very short decay time or half-life. From all the
complement activation molecules evaluated, soluble C5b-9
(sC5b-9) may reflect the overall activation of the complement
system as the activation of any of the three initiating comple-
ment pathways ultimately leads to the generation of the MAC.
However, there are discrepant conclusions regarding the clinical
value of this assay, especially in aHUS. Palomo et al. [57] and
Noris et al. [54] reported that sC5b-9 is not a suitable biomarker
of complement activation in aHUS as they found no correlation
between levels of this molecule and clinical progression of the
disease. Contrarily, Volokhina et al. [59] and Cataland et al. [60]
suggested sC5b-9 as a helpful biomarker to confirm clinical di-
agnosis of aHUS as levels were elevated in patients at the acute
phase of the disease and comparable to healthy controls when
patients were in remission. Bu et al. [58] reported data suggest-
ing that increased sC5b-9 levels are indicative of active disease
(positive predictive value, 89%) but should be used in the con-
text of other complement assays (negative predictive value,
46%).

Genetic analysis

Molecular and genetic complement study is mandatory in
patients with clinical suspicion of aHUS [23], reinforcing the di-
agnosis if pathogenic variants or CFH antibodies are identified
(50–60% aHUS patients), and allowing genetic counselling and
offering genotype–phenotype correlations that predict progno-
sis, treatment response and post-transplant recurrence risk
[72]. Genetic testing must be carried out in reference

Table 3. Genetic and acquired complement abnormalities in aHUS

Complement regulatory
factors

Complement
activation

factors

Coagulation-
related
factors

CFH C3 THBD
CFH/CFHR hybrid gene CFB DGKE
CFI PLG
MCP
Anti-CFHantibodies

CFHR, complement factor H related; CFI, complement factor I; MCP, membrane

cofactor protein; C3, complement component C3; CFB, complement factor B;

THBD, thrombomodulin; DGKE, diacylglycerol kinase epsilon; PLG, plasminogen.
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complement laboratories, capable of identify genetic variants,
risk haplotypes, complex genomic rearrangements and hybrid
genes (Table 3). Its main limitations are its high cost and long
response time; therefore, clinical diagnosis of aHUS, by exclu-
sion, and initiation of an aetiological treatment should never be
delayed. In other forms of TMA, there is increasing evidence of
the presence of genetic variants in complement proteins that
could be related to its pathophysiology [73–76]. However, there
are no cost–effectiveness studies that allow a universal recom-
mendation to carry out these studies in all TMA cases.

TREATMENT OF DIFFERENT TMA FORMS
Primary TMA forms

TTP. The mainstay treatment for hereditary TTP is plasma infu-
sion to raise ADAMTS-13 activity. Regarding acquired TTP, cur-
rent standard management consists in therapeutic plasma
exchange (TPE). TPE involves removal of the patient’s plasma by
apheresis and replacement with donor plasma, thus removing
ADAMTS-13 autoantibodies and replacing plasma with normal
ADAMTS-13 activity. The duration of TPE and the number of
procedures required to achieve remission, defined by the recov-
ery of the platelet count, is highly variable. Immunosuppressive
agents are routinely added to TPE for the treatment of acquired
TTP; however, there are limited data from high-quality clinical
trials to direct the most appropriate use of these treatments [17,
77]. Glucocorticoids are thought to speed up the recovery be-
cause they reduce the production of both ADAMTS-13 inhibitor
(auto-antibody) and cytokines production. The administered
dose of glucocorticoids varies according to the severity of TTP
presentation; for severe cases, high dose of glucocorticoids is
given, starting with pulses of intravenous methylprednisolone
and tapering the dose to oral prednisone afterwards. Typically,
the regimen is prednisone 1 mg/kg/day orally followed by a
rapid taper over 3–4 weeks once a normal platelet count has
been achieved. In combination with the above measures, rituxi-
mab (anti-CD20 antibody) is also indicated in patients with pre-
sumptive and/or confirmed diagnosis of acquired TTP, since
available data suggest that it has a beneficial effect in prevent-
ing disease relapse, and possibly in hastening the response to
therapy. However, along with the sparse data, the need for par-
enteral administration and drug cost are conditioning factors
that have to be taken into consideration when rituximab is pre-
scribed [17, 77].

Recently, caplacizumab, a humanized monoclonal anti-VWF
antibody with subcutaneous route of administration, has been
approved by the Food and Drug Administration (FDA) (February
2019) for acquired TTP treatment. Caplacizumab targets the A1
domain of VWF and blocks its interaction with platelet glyco-
protein 1b, thereby preventing the formation of microvascular
thrombosis in small arterioles and capillaries. In clinical prac-
tice, caplacizumab is reserved for patients who present with se-
vere features of TTP. Although the benefit of caplacizumab is
greatest when given earlier in the course of disease, it should be
given under the guidance of an experienced clinician since it is
associated with side effects (mainly, risk of bleeding) and signif-
icant cost. However, because it does not affect the underlying
cause of acquired TTP, the above-explained co-treatments to re-
move the antibodies are required along with caplacizumab [78].
In this regard, it has to be noted that the sequencing of adjunc-
tive therapies are yet to be characterized, since there are limited
data from prospective, randomized trials to direct the most ap-
propriate use of these treatments.

STEC-HUS. Supportive therapy based on hydration, fluid and
electrolyte management, antihypertensive drugs and renal re-
placement therapy (if needed), is the treatment of choice for
STEC-HUS [79].

aHUS. Treatment with complement blockade (Anti-C5) has
significantly improved clinical outcomes in this ultra-rare dis-
ease, in both paediatric [80, 81] and adult patients [82–84]. In
this regard, treatment with eculizumab was approved by the
FDA in 2011, and actually remains the first-line treatment for
aHUS patients. It has to be emphasized that early eculizumab
use is associated not only with high haematological response,
but also with organ dysfunction recovery (especially kidney
function) [85, 86]. Ravulizumab, a long-acting complement in-
hibitor, was subsequently developed, thereby requiring less fre-
quent infusions than eculizumab, and demonstrating also rapid
haematological and renal improvement. It received regulatory
approval for aHUS in 2019 [79]. All patients treated with C5
inhibitors must be immunized with meningococcal vaccines
(both ACYW135 and serogroup B) at least 2 weeks prior to ad-
ministering the first dose of eculizumab. For patients who must
receive the treatment emergently, prophylactic antibiotics to
prevent meningitis may be administered until the vaccinations
take effect.

When complement blockers are not available, TPE must be
early started after aHUS diagnosis, until anti-C5 treatment could
be administered. Also, if aHUS is mediated by auto-antibodies
against CFH, immunossuppresants and TPE should be consid-
ered, in conjunction with the above-explained therapies.

Secondary TMA forms

In secondary TMA forms, the treatment of choice should aim to
correct the underlying disease together with supportive care.

It has been suggested there is a possible benefit of TPE for
some secondary TMA forms, including those related with auto-
immune conditions, HCT, pregnancy and drug-induced TMAs,
all of them having a potential immune-mediated endothelial
damage as a common pathologic mechanism. However, limited
published information exists, and in most cases, American
Society for Apheresis guidelines categorizes the use of TPE as a
Category III indication; that is, the role of TPE is uncertain, and
decision-making should be individualized [87].

Importantly, there is increasing evidence that secondary
TMA forms could present complement system dysregulation,
leading to an endothelial damage. Although experience is
scarce, cases of secondary TMA of distinct aetiology (including
TMAs secondary to pregnancy, drugs, transplant, humoral re-
jection and systemic diseases) refractory to the conventional
treatment with good response to eculizumab have been
reported [10, 47, 61, 62, 88–90]. In these settings, demonstration
of terminal complement overactivation (C5b-9 monitoring)
could be a powerful tool in the decision-making process regard-
ing the potential use of complement inhibitors (Figure 2).

CONCLUSIONS

Major advances in the pathophysiological knowledge of entities
such as TTP and aHUS have allowed a clear improvement in pa-
tient prognosis. However, in many other causes of TMA, the un-
derlying pathogenic process is still unknown. Furthermore,
despite progress achieved in aHUS, its diagnosis continues to be
by exclusion, sometimes delaying the start of high-impact treat-
ment. To improve the management of patients with TMA, we
recommend a clinical algorithm, with special emphasis on
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terminal complement pathway monitoring at the beginning of
the diagnostic process. This review—as a practical guide in the
diagnostic process of TMA—will evolve with the development
of new biomarkers and treatments, but its application will allow
a better understanding of the role of complement in the patho-
genesis of these serious systemic processes with potential ther-
apeutic interventions.
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61. Cavero T, Rabasco C, López A et al. Eculizumab in secondary
atypical haemolytic uraemic syndrome. Nephrol Dial
Transplant 2017; 32: 466–474
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