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Abstract: The similarity patterns in the physicochemical
properties of copper–lead and copper–zinc borate
glasses were identified by means of finding similarity
within the objects of study using multivariate statistical
analysis. As exploratorymethods ofmultivariate analysis,
cluster analysis, principal components analysis, and two-
way clustering were applied for a set of copper–lead and
copper–zinc borate glasses. Specific correlations among
the physicochemical properties of copper glasses were
interpreted. In particular, the effect of Pb and Zn doping
metal ion in copper glasses in the structural and
mechanical properties is identified. Interestingly, the
degree of lead content determines two kinds of glasses
with specific physicochemical properties.

1 Introduction

In the design of glass compositions, transition metals
oxides being a constitutional part of the glass systems
could play a dual role related to their physicochemical
and structural properties (coordination number, different
redox state at specific conditions, etc.) [1–8].

Oxide glasses exhibit interesting properties such as
density, elastic moduli, hardness, glass transition tem-
perature, and liquid fragility, and the changes in chemical

composition cause significant alternations in all measured
physical properties. It was also found that the change of
copper content in copper–lead borate glasses results in a
slow disproportionation of B-containing groups due to
change in the coordination number of Cu+when compared
with Cu2+ ions. It causes changes in the physicochemical
properties such as hardness, thermal stability, density,
thermal expansion coefficient, and chemical durability.
Zinc metaborate glasses are subject to an enhanced
disproportionation of metaborate in other structural units
since the leadmetaborate series exhibit different structural
alternations [9–16].

Specific changes in the physicochemical parameters
of the borate glasses due to changes in their chemical
composition could be subject to another experimental
data approach, namely, intelligent data analysis (ex-
ploratory data mining) [17,18]. This option is rarely used
in the analysis of the properties of noncrystalline
materials. Multivariate statistics methods such as cluster
analysis (CA) or principal components analysis (PCA)
offer a new opportunity for data modeling, classification,
and interpretation. They are superior with respect to
their information content to the traditional correlation
analysis if relationships between physicochemical prop-
erties and chemical composition are sought.

Research objectives in the current work may be linked
with a validation of the efficiency of exploratory data
analyses to study and interpret a set of experimental data
from the literature source including values for different
physicochemical parameters in different copper–zinc and
copper–lead metaborate glass series. In addition, rela-
tionships for chemical composition versus physicochem-
ical parameters are evaluated by regression analysis.

2 Methods

2.1 Multivariate statistical methods

In the present study, two multivariate statistical methods
were used: CA and PCA.
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CA is a well-known approach for searching simi-
larity patterns (called clusters) within the data approach
to reveal groups of similarity (clusters) within large
data sets. The identification of the similarity groups
makes it possible to better interpret specific relations
between the objects of the study (glass types) or among
the parameters characterizing them (physicochemical
variables).

Three different modes of clustering were applied:
hierarchical cluster, nonhierarchical cluster, and two-
way CA.

Hierarchical CA is a nonsupervised method for
linkage of objects in clusters that follows a simple
algorithm:
• normalization of the raw experimental data (to avoid
differences in dimensionality which could deteriorate
the clustering; usually the z-transform procedure is
applied);

• introduction of a similarity measure (Euclidean dis-
tances or squared Euclidean distances are often
calculated as a measure of object similarity);

• choice of linkage procedure (among many options we
have chosen the Ward’s method of linkage);

• selection of criteria for determination of the cluster
significance, as the Sneath’s criterion based on the
Dmax distance in the similarity matrix.
The output plot of the analysis is called a dendro-

gram, which allows the visual determination of sig-
nificant clusters for later interpretation. No preliminary
conditions are introduced for hierarchical clustering [19].

Nonhierarchical clustering belongs to supervised
pattern recognition methods. It requires a preliminary
determination of the number of clusters to which the
objects (or variables) should belong. Therefore, it
demands a priori hypothesis for the number of clusters
for the proper preselection of the number of clusters
based on expert opinion or preliminary information. The
K-means clustering was conducted, which could be
considered both as supervised and unsupervised cluster
approaches. It aims to separate the objects into a
preliminary chosen number of clusters so that each
object belongs to the cluster with the nearest distance
that represents the prototype of the cluster. This
procedure is iterative.

Two-way clustering is also used in the present study.
It is useful in cases where both objects and variables are
expected to contribute simultaneously to discover mean-
ingful patterns for the clusters. The resulting structure
(clusters) is by nature not homogeneous. However, it is
recognized by some researchers that this method offers a
powerful tool for exploratory data analysis since it

makes possible (like other multivariate statistical ap-
proaches such as correspondence analysis) to reveal
relationships among the clusters of objects and the
clusters of variables.

PCA (very similar to factor analysis) is a linear
dimensionality reduction strategy, which introduces new
directions in the original data space, making it possible
to project the data in a lower-dimensionality space
formed by new linearly uncorrelated variables called
principal components or latent factors [20]. It is worth
mentioning that the main application of this analysis is
to reduce the number of variables and to detect structure
in the data set, which allows classifying objects or
variables. Therefore, PCA is applied as a data reduction
method [19,20].

Ethical approval: The conducted research is not related
to either human or animal use.

3 Results

3.1 Hierarchical CA

The input data set consists of 16 borate glass samples
(eight of them with Pb doping and eight with Zn doping)
described by 11 parameters (physicochemical vari-
ables) [21].

The goal is to reveal patterns of similarity among the
different glass samples or among their physicochemical
descriptors.

In Figure 1, the hierarchical dendrogram for linkage
of 11 variables is presented (z-transformed raw data;
squared Euclidean distances as similarity measures;
Ward’s method of linkage, and Sneath’s test of cluster
significance).

Three clusters could be interpreted:
C1: Cg – packing density and CuO (%mol).
The essential role in glass properties is related to the

atomic packing density (Cg). The atomic packing density
is described as the ratio between the minimum theore-
tical volume occupied by the constituting ions and the
effective volume of the glass. The correlation of Cg with
the copper content is readily observed on the dendro-
gram. One could conclude that this tendency is general
for the Cu-containing glass network. For CuO levels
above 20mol%, Cg tends to level-off, and no further
accumulative behavior was detected (Supporting
Information).
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For the case of the glass system with lead, the packing
density decreases for above 20mol% of PbO. This
observation is a consequence of the structural properties
and the increasing significance of the packed structure
pattern in the packing density.

C2: glass transition temperature Tg, K: elastic
modulus, glass, 〈U0/V0〉 volume density of energy
(equation (4) from SI); 〈U0/V0〉 volume density of energy
(equation (5) from SI); E, Young’s modulus, G, Shear
modulus, Poisson ration.

The similarity between glass transition temperature
Tg and elastic modulus, glass K, is depicted on the
dendrogram (Figure 1). The K is directly related to the

external force required to compress or extend intera-
tomic distances in opposition to the internal forces that
seek to establish equilibrium interatomic distance.

The K is directly related to the external force
required to compress or extend interatomic distances in
opposition to the internal forces that seek to establish
equilibrium interatomic distance.

The elastic properties of glasses define many of their
mechanical properties. Besides, the thermal or pressure
change of the bulk (K), shear (G), and Young (E) moduli
offers information on the variations in the atomic glass
structure. This cluster reveals a strong correlation among
these physical properties. The values of the constants K,
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Figure 1: Hierarchical dendrogram for clustering of 11 physicochemical parameters.

Figure 2: Hierarchical dendrogram for clustering of 16 glass samples.
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Projection of the variables on the factor-plane (  1 x   2)

 Active

 dens

 Cg

 Tg

 CTE

 Uo Uo/Vo
 Uo/Vo

 E
 G

 Poisson ratio

 K

-1.0 -0.5 0.0 0.5 1.0

Factor 1 : 89.43%

-1.0

-0.5

0.0

0.5

1.0

Fa
ct

or
 2

 : 
 6

.1
2%

Figure 3: Projection of 11 variables on the plane described by factor 1 vs factor 2.

Projection of the cases on the factor-plane (  1 x   2)
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Figure 4: Projection of 16 cases on the plane described by factor 1 vs factor 2.
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G, E as well as of the Poisson’s ratio could be measured
experimentally by various methods for solids, including
mechanical deformation or sound wave propagation
techniques. For liquids, the elastic constants can be
obtained from velocity measurements of high-frequency
sound waves. These explanations are directly supported
by the results of the hierarchical CA.

In the last cluster, C3, the similarity pattern is
formed between density and coefficient of thermal
expansion (CTE). This linkage could be used to model
new Cu glasses with particular thermal characteristics.
C3 is a very homogeneous cluster since C1 and C2 could
be considered as one bigger cluster, which could be
divided into two subclusters.

Figure 2 represents the hierarchical clustering of the
glass samples (objects of the study). There is a well-
expressed separation between Pb- and Zn-glass types. It
could be stated that higher concentrations of Pb (PCB 20
and PCB 30) form an intermediate cluster between both
classes of samples and are closer to the Zn type of glass
rather than to Pb type of glass. This should be explained
by specific relationships among the physicochemical
parameters.

3.2 PCA

The z-transformed dataset was also subject to PCA. It
was found that three principal components explain over
95% of the total variance of the system. Figure 3 shows
the projection of the variables on the plane of factors 1
and 2, and Figure 4 shows the projection on the plane of
the objects.

In general, most of the groupings observed by
hierarchical CA are confirmed by PCA. It is readily seen
that CTE and density variables form a well-expressed
group since all other variables belong to another class.

The same conclusion is valid for the projection of the
objects, that is, well-expressed separation of Pb and Zn
cases with an intermediate position of PCB 20 and
PCB 30).

The relationship between glass samples and physi-
cochemical characteristics is demonstrated by a two-way
clustering approach. It reveals how close the clusters of
cases (glass systems) are connected with the clusters of
variables (physicochemical parameters). Thus, discrimi-
nant parameters for each glass cluster could be extracted.

The foremost object for separation of the glass samples
into two classes is the variances in the physicochemical
parameters. Pb-glasses are characterized by the highest

values of density and CTE since Zn-glasses show the lowest
level of these two characteristics. Again, PCB 20 and PCB
30 differ from the Pb-glass pattern having low values of
CTE and density.

All other physicochemical parameters reveal their
higher levels for the Zn-glasses class and lower ones for
the Pb-glasses class.

4 Conclusions

The present study has used intelligent data analysis to
elucidate the relationship between the copper–lead and
copper–zinc borate glasses with different copper con-
tents. Several correlations among glasses and their
physicochemical properties based on multivariate ana-
lysis techniques as CA, PCA, and two-way clustering
were obtained. This allows for identifying the effects of
Pb and Zn doping metal ions in copper glasses in the
structural and mechanical properties. One cluster is
identified for Zn-doped glasses, whereas two clusters
with differentiated properties are identified with copper
glasses doped with Pb.
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