

Final Degree Project
Biomedical Engineering Degree

Investigating the neural computations
underlying the learning of a delay

response task

Barcelona, 14th June 2021
Author: Leyre Azcárate Bescós

Director: Manuel Molano-Mazón
Co-Director: Albert Compte Braquets

Tutor: Roser Sala Llonch

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

2

Acknowledgements

I would like to thank all those who have helped me throughout the development of this project,
without whom none of this would have been possible.

I wish to express my special thanks of gratitude to my director, Manuel Molano-Mazón, who has
provided me with encouragement and patience throughout the duration of the project. I am
extremely grateful to him for helping, teaching and supporting me during the development of the
whole project.

I would also like to extend my gratitude to the co-director, Albert Compte, for providing an
experienced point of view, valuable assistance and guidance. Many thanks to Tiffany Oña, the PhD
of the group for her predisposition to help.

In addition, I would want to express my gratitude to my tutor Roser Sala, for her thoughtful
comments, given feedback, and recommendations.

Finally, and on a more personal note, I would like to thank my family and friends for their
unconditional support.

Thank you.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

3

Abstract

The behaviour of experimental animals reflects their physical and cognitive state. Animal models
are a fundamental tool and resource to study such states. When analysing behavioural studies,
different learning patterns can be distinguished: a gradual improvement or a sudden understanding.
The former is a progressive method used for developing a new behaviour by dividing it into several
stages. In addition to gradual improvement, learning also occurs by abrupt understanding, also
known as aha moment, which is defined as a moment of abrupt insight or discovery.
Lately, recent development of deep neural networks has had a remarkable impact on animal
research. One strategy that has emerged as a promising tool for investigating the behaviour of
animals performing a task is to study recurrent neural networks (RNNs) whose connection weights
have been optimized to perform the same tasks as trained animals.
In this work we have created simulated networks that emulate the learning processes in animals.
Specifically, we have trained Long Short-Term Memory (LSTM) networks, which are a special type
of RNN, with a shaping protocol on a Delayed Response (DR) task, that is a typical approach for
studying mice behaviour. For this purpose, we have used Reinforcement learning (RL), which
concerns goal-oriented algorithms.
In order to analyse both mice and RNNs behaviour patterns, we have focused on the aha moment
and compared their behaviours. We have complemented the study with an exploration of the effect
of shaping in RNNs training.

Keywords

Cognitive task, computational model, aha moment, recurrent neural network, training, mice,
learning.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

4

Index
1 Introduction .. 5
 1.1 Objectives ... 7
 1.2 Methodology ... 7
 1.3 Limitations and scope ... 9
 1.4 Location of the project .. 9
2 Background .. 10
 2.1 State-of-the-art .. 10
 2.1.1 Behavioural shaping .. 10

2.1.2 Insight learning ... 11
2.1.3 Curriculum learning in RNNs ... 11

 2.2 Previous work ... 13
 2.2.1 Mice training in a Delayed Response task following a Shaping Protocol 13
 2.2.2 Training Recurrent Neural Networks with different protocols in Delayed

Response Task ... 15
3 Market Analysis .. 16
 3.1 Animal model .. 16
 3.1.1 Restraints: Regulations and laws for the ethical use of animals in research ... 17
4 Conception Engineering ... 18

4.1 Project plan ... 18
4.2. Project basis .. 18

4.2.1 Artificial neural networks .. 19
4.2.2 Long short-term memory networks (LSTM) ... 21
4.2.3 Networks training ... 22

5 Detailed Engineering ... 25
 5.1 Analysing mice behaviour following a Delayed Response task 25
 5.1.1 Aha moments ... 27
 5.2 Task creation .. 28
 5.3 Training of RNNs .. 29

5.3.1 Shaping .. 29
5.3.2 No shaping ... 31

 5.4 Analysis of RNNs .. 31
 5.4.1 Aha moments ... 32
6 Results and Discussion ... 33
 6.1. Analysis of mice behaviour .. 33

6.1.1 Performance at stage change .. 33
6.1.2 Learning to categorize the stimuli .. 34
6.1.3 Aha moments ... 35
6.1.4 What causes aha moments? ... 36

 6.2. Analysis of networks learning (simulated data) ... 36
6.2.1 Learning to categorize the stimuli .. 37
6.2.2 Aha moments ... 38
6.2.3 What causes aha moments? ... 39

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

5

 6.3 Comparison between mice and networks behaviour .. 39
 6.4 Comparison between shaping and no shaping in networks 40

6.4.1 Importance of rollout value ... 40
6.4.2 Importance of punishment value .. 41

7 Project Implementation Schedule ... ¡Error! Marcador no definido.
8 Technical Feasibility .. 43
 8.1 Technical considerations .. 44
 8.2 SWOT Analysis .. 45

8.2.1 Strengths .. 45
8.2.2 Weaknesses .. 45
8.2.3 Opportunities .. 45
8.2.4 Threats ... 45

9 Economical Feasibility .. 46
 9.1 Expenses .. 46
 9.2 Budget .. 48
10 Regulations and Legal Aspects .. 49
11 Conclusions and future work ... 50

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

6

1 Introduction

Animal models are a fundamental tool and resource for scientists studying basic biological
processes, diseases, pathogenesis, novel techniques and toxicologic research [1]. A usual
experiment consists in training an animal to perform a task and recording its neuronal activity or
only just analysing its behaviour while it is performing the task. The tasks can vary their complexity
being able to be very specific, allowing the isolation of brain functions for the study of only one
cognitive system.

In behavioural studies of learning, a difference between gradual and sudden performance
improvements is frequently determined. Perceptual and motor skill learning is often characterized
by gradual, incremental improvement. On the other hand, noticeable improvements in performance
can occur suddenly, a phenomenon known as "insight". It is widely assumed that the neural
changes that underlie insight are fundamentally different from the plasticity that gives rise to the
more gradual forms of perceptual learning such as shaping. [2]

However, some tasks are too complex to be manageable by trial and error learning, and as a
consequence, external guidance, called shaping, is decisive. The aim of shaping is to teach a new
behaviour by breaking it into easily-achievable stages, which can be more or less depending on
the training protocol. Through shaping, animals can be taught novel behaviours, guided by a task
simplification.

On the other hand, insight learning is a category of cognitive learning in which the components of
a problem are mentally rearranged or restructured in order to arrive at a sudden understanding of
the problem and a solution, a concept developed to explain sophisticated behaviour that could not
be the result of trial-and-error learning. The “aha moment” is related to this sudden comprehension
of a problem or a situation that can bring to the solution. Although an insight may happen in the
absence of any pre-existing interpretation, insights are frequently the consequence of the
reorganization or restructuring of the elements of a situation or problem. It involves making a quick
transition from not understanding the nature of a complex issue to understanding its deeper
structure. [3]

In mice, the delayed response (DR) task is commonly used to examine its behaviour performing
a task. It is a test in which the subject responds based on previously stored internal representations
rather than information currently available in the environment. Typically, the organism receives a
brief visual or auditory stimulus that is then removed, and after a few seconds, the organism is then
presented with different response alternatives and is required to choose the one presented
previously to obtain a reward. This task is a typical approach to study working memory (WM),
which is a cognitive system that temporarily holds information and processes it. It allows to
complete any task that requires information manipulation in a short amount of time. Moreover, it
enables to keep track of the information needed right now and perform cognitive processes on it.
[4], [5]

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

7

But, how can we make better sense of animal behaviour by using what we know about the brain?
Scientists create Artificial Neural Networks (ANNs) to make computational models of the brain.
These networks mimic the architecture of a nervous system by connecting elementary neuron-like
units into networks in which they stimulate or inhibit each other's activity in much the same way
neurons do. Recurrent neural networks (RNNs) are a class of ANNs that are often used as a tool
to explain neurobiological phenomena, considering anatomical, electrophysiological and
computational constraints. Recently, there has been large progress in utilizing trained RNNs both
for computational tasks, and as explanations of neural phenomena. In contrast to real brains,
artificial neural networks offer full access to the "neural circuit". In spite of existing several
differences between both RNN and mice training, RNN can be used to better understand mice
behaviour. [6]

1.1 Objectives

The main aim of this project is to create a RNNs able to replicate the behaviour of mice that have
been trained to perform a DR task. The following specific objectives were set to achieve this major
goal:

- Understanding how shaping helps mice learn the task

- Investigating if and how mice undergo insight learning

- Understanding the fundamental principles of Artificial Neural Networks and Reinforcement
Learning

- Training Recurrent Neural Networks with the same shaping protocol used with mice

- Exploring the effect that shaping has on the Recurrent Neural Networks training

- Comparing network and mice behaviours when performing the same task and analysing

both conduct patterns, extracting their similarities and differences

1.2 Methodology

The project was performed under the supervision of Manuel Molano and Albert Compte and
consisted of the following stages:

- Stage 1; Bibliographic research: where several aspects of the study were examined. I
focused on research which uses animal models that have been conditioned to perform

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

8

operational tasks. Following that, I explored deep learning techniques used to train animal
models as well as RNN models trained to be as similar as possible to animal models. In
addition, I supplemented the bibliographic studies with a visit to the CELLEX, a biomedical
research centre located at the University of Barcelona's Faculty of Medicine, where the lab
group trains mice to perform cognitive tasks. This visit provided a new perspective and
helped me to reproduce the key features of the mice training. Moreover, the technical and
economical feasibility, timeline and normative aspects of this study were assessed.

- Stage 2; Mice Analysis: I aimed at understanding mice behaviour by means of analysing
several relevant parameters that were extracted from mice training. For that purpose, I
focused on the aha moments that happen in a specific time of the training.

- Stage 3; Networks developmental stage: creation of an environment for network training.
For that purpose, I used Python to simulate the DR task performed by mice. Though
previous studies, such as M. Fradera’s TFG, had already created an environment
mimicking the task, we decided to design a new one from scratch with the purpose of
creating a simpler and more efficient task. We arranged meetings with some group
researchers for the task implementation to ensure that all features present in the real mice
task were maintained in the networks' environment. These meetings were attended by the
project's director and co-director Albert Compte, as well as Tiffany Oña, a PhD student in
the group. Due to COVID-19, this project has been accomplished by daily meetings with
the director and monthly meetings with the rest of the group. Furthermore, I was able to
participate in some computational neuroscience and deep learning webinars organized by
external [7] and internal lab community organizers to gain expertise in the field.

- Stage 4; Networks Analysis: we deeply studied the information acquired from networks
training. Several parameters were compared in order to understand networks behaviour
and to compare their behaviour from mice.

- Stage 5; Editing stage: it consisted in writing the present report and it was organized in
the following way: First, I performed a literature review about Artificial Neural Networks and
Reinforcement Learning algorithms, and I analysed the market of animal models. Then, in
the detailed engineering section, I described all the work done during the developmental
stage. Last, I performed the conclusion of the whole project. This stage also included the
preparation of the oral presentation.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

9

1.3 Limitations and scope

As this is a final degree project, time has been an important limitation. This project has been carried
out from January 2021 until June 2021, for a total of six months.

Another large limitation has been the COVID-19 pandemic which has forced the project to be
performed remotely. Meetings with the tutors were online and the interaction through emails and
communication platforms such as Slack. Moreover, this has reduced the interaction with other
students performing similar projects at the lab in IDIBAPS where the project could have taken place.
Due to computational resources limitation, since I was using my laptop, we ran the networks in a
computer in the lab. Then, though training was performed in a lab’s computer, I had access to the
information in order to analyse the results.

The scope of this project, considering the limitations mentioned previously, included:

- Analysis of mice behaviour through a shaping protocol

- Study of the fundamental principles of ANN and RL

- Training RNNs on a DR task

- Analysis of aha moments in both mice and RNNs

- Comparison between RNNs and mice behaviour when performing the same task.

- Comparison and analysis of RNNs’ behaviour under shaping and no shaping

- Discussion of the results, errors detected and future work.

1.4 Location of the project

The project has been developed in collaboration with the Theoretical Neurobiology of Cortical
Circuits research group at Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). It
has been performed at distance with the help of daily virtual meetings with Manuel Molano-Mazón,
a postdoctoral researcher, and the co-direction of Albert Compte, the lab group's principal
investigator, who assisted in the project's direction.
Roser Sala Llonch, Assistant Professor at the University of Barcelona's Department of Biomedicine,
tutored and supervised this project.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

10

2 Background

Whereas some behavioural characteristics are innate, many are learned from experience.
Scientists define learning as a relatively permanent change in behaviour as a result of experience.
An animal learns and is able to respond and adapt to a changing environment. If an environment
changes, an animal's behaviours may no longer achieve results. The animal is forced to change its
behaviour. It learns which responses get desired results and changes its behaviour accordingly.

In order to have a better understanding of the field of animal learning, some concepts such as
shaping and insight learning will be defined in this section.

2.1 State-of-the-art

2.1.1 Behavioural shaping

Operant conditioning, also known as instrumental conditioning, is a method of learning attributed
to Skinner [8], where the consequences of a response determine the probability of it being
repeated. Through operant conditioning, a behaviour which is rewarded will likely be repeated, and
a behaviour which is punished will occur less frequently. Skinner also introduced a new term called
“reinforcement”, which means that a behaviour which is reinforced tends to be repeated and a
behaviour which is not reinforced tends to be extinguished. Besides, he argued that the principles
of operant conditioning can be used to produce extremely complex behaviour if rewards and
punishments are delivered in such a way as to encourage moving an organism closer and closer
to the desired behaviour each time.

Shaping, which is a variant of operant conditioning also developed by Skinner, is a powerful
method in which novel behaviour (target behaviour) is created through successive reinforcement
of behaviours, which become more and more similar to the target behaviour. Instead of waiting for
a subject to perform a desirable behaviour, any behaviour that leads to it is rewarded. For example,
Skinner found that, in order to teach a rat to push a lever, any movement in the direction of the
lever had to be rewarded, until finally, the rat was trained to push a lever. Through shaping, animals
can be taught impressive and novel behaviours. The capacity to form sameness and difference
concepts was previously thought to be uniquely human. But now we know that even insects have
this capacity [9].

Over the last decade, inspired by experiments on behaving primates, increasingly sophisticated
procedures for performing robust perceptual behaviours have been developed for mice. In
comparison to primates, in mice brain, cell-type-specific neurobiology is becoming routine.
Transgenes can be directed at particular types of neurons. Then, these transgenes can be used to
identify cell-types during recordings and to control circuit nodes during behaviour. As far as it is
known, mice and other higher mammals have similar microcircuit organization of the brain [10].

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

11

2.1.2 Insight learning

When solving a problem, almost everybody has had the "aha moment”. After working on a difficult
problem for some time, the solution appears in an unexpected flash.

Insight learning does not concern gradual shaping or trial and error. Instead, internal organizational
processes occur that cause new behaviour. The term ‘insight’ refers to a clear and sudden
understanding of how to solve a problem. Humans are used to undergoing these experiences,
however, animals are also able to experience these insight moments. Psychological research on
insight in animals begins with studies on chimpanzees by Köhler (1921), who agreed that insight
learning is achieved through cognitive processes, rather than interactions with the outside world.
An animal is said to show insight if an interval of poor performance with no clear tendency of
improvement is followed by a sudden, abrupt and marked increase in performance.

In early 80s, learning was considered to be the result of reproductive thinking. This means that an
organism reproduces a response to a given problem from previous experiences. Insight learning,
on the other hand, does not directly depend on past experiences to solve a problem. Although
previous experiences can aid in the process, an insight or innovative idea is needed to solve the
problem. Despite a long history of study in the nature of insight experiences, there is still discussion
over the specific mechanisms that distinguish problem solving that is accompanied by insight from
problem solving that is not. A common distinction is that non-insightful solutions emerge from
methodical, goal-directed, and strategic or analytic processes that are accessible to conscious
awareness, while insight-based solutions do not. Nevertheless, evidence from several studies [11,
12] suggest that analytic processes are involved even in problems whose solution is followed by a
sudden sense of insight, causing doubt on the usefulness of this distinction.

Most researchers [13, 14] believe that insight differs from trial-and-error or algorithmic problem-
solving. The question of whether insight is a distinct type of problem-solving involving at least some
distinct cognitive mechanisms, or whether it is simply an epiphenomenon based on the same
cognitive mechanisms as non-insight solutions, continues to be debated.

2.1.3 Curriculum learning in RNN

Animals learn much better when the examples are presented in a meaningful order that explains
gradually more concepts and step by step more complex ones than if notions are presented
randomly.

As explained before in 2.1.1 section, by selecting which examples to present and in which order to
present them to the learning system, one can guide training and significantly accelerate learning.
Then, when talking about machine learning, one can think of the following question: can machine
algorithms benefit from a similar training strategy? This idea of training a learning machine with a
curriculum is similar to shaping: starting small, learning easier aspects of the task, and gradually
increasing the difficulty level.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

12

From a cognitive perspective, the question of guiding the learning of a recurrent neural network for
learning a simple language and increasing its ability along the way was recently revisited, with
evidence for faster convergence using a shaping technique [15]. Also making use of a shaping
method, Hazy et al. [16] and O’Reilly et al. [17], suggested one of the most efficient and effective
architectures in their prefrontal, basal ganglia, working memory (PBWM) model. They
demonstrated their model with the 12-AX task, an abstract and hierarchical variant of the
continuous performance working memory task that they created specifically for the purpose. The
difficulty of this task emerges from its hierarchical organization, which concerns many subroutines.
12-AX task was also used in Krueger and Dayan [18], however, they studied shaping in a
moderately complex hierarchical working memory task, demonstrating that it offers significant
advantages for learning comparing with medium-term to long-term temporal demands. In this case,
shaping evidenced benefits such as the speed, the better generalization over time and a higher
flexibility in the face of task changes such as reversals. However, they also showed that shaping
alone without the support of an allocation mechanism, can perform worse than no shaping.

Although shaping is widespread as a method of training subjects to perform complex behavioural
tasks, its effects in computational models have not been extensively investigated. This may be due
in part to the greater complexity of problems now being considered. In particular, recent work on
learning programs with neural networks has relied on curricula to advance to longer or more
complicated tasks. One reason for the slow adoption of curriculum learning is that its effectiveness
is highly sensitive to the mode of progression through the tasks [19]. However, complete access to
the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, has
converted trained networks into a useful tool for biological circuits and a beneficial platform for
theoretical investigation [20].

In spite of trying networks to behave as similar as possible to mice, there is a stochastic factor
which is highly difficult to mimic. Belkaid et al. [18] have shown that animals are able to produce
variable, unpredictable choices, especially when the reward delivery rule changes, is stochastic or
is based on predictions about their decisions. Dominant theories of behaviour and particularly
reinforcement learning (RL) rely on exploitation, which designates the process of repeating
previously rewarded actions.

Task-trained artificial recurrent neural networks (RNNs) provide a computational modelling
framework of increasing interest and application in computational systems, and cognitive
neuroscience. RNNs can be trained, using deep-learning methods, to perform cognitive tasks used
in animal and human experiments and can be studied to investigate potential neural
representations and circuit mechanisms underlying cognitive computations and behaviour [21].

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

13

2.2 Previous work

This project is the continuation of two experiments conducted in the experimental neuroscience
research groups at IDIBAPS in recent years.

2.2.1 Mice training in a Delayed Response task following a Shaping Protocol

The first study was conducted by Tiffany Oña, a PhD student of the IDIBAPS' Cortical Circuit
Dynamics group, who trained mice to perform a delayed-response task using a shaping protocol.
Information was introduced to mice as sound stimulus from both left and right sides during the DR
task. Mice had to incorporate these stimuli and respond by licking one of the two available ports
(left or right) after a variable delay to report which one was larger. Mice were rewarded with water
if they got the answer correct. If the answer was wrong, the punishment was a 2-second timeout
before the next hearing.

Figure 1: DR task training protocol is divided into 4 sections: 1. Fixation: the time it takes to start the trial; 2.
Stimulus: the sound is played; 3. Delay: the time it takes for a decision to be made after the sound has been played;
4. Choice: the mouse can choose between the two ports by licking one of them.

The mice training was split into sessions by T. Oña. These sessions lasted approximately 300 trials,
with the training sessions taking place on consecutive days. She divided the task into simpler sub-
tasks using a shaping protocol because the whole task was too difficult for mice to complete all at
once. T. Oña experimented with various training protocols before beginning the training to find the
best shaping technique for mice learning. The final protocol included four stages, as well as an
initial lick teaching stage to help the mice get used to it.

Nevertheless, T. Oña never trained mice in stage 4. Each stage had an objective that must be
accomplished in order to move to the next one. However, the shaping protocol was created so
gradual that the mice did not realize they were changing from one stage to the next one.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

14

STAGE DESCRIPTION OBJECTIVE
Lick teaching The mouse can obtain water

from both lick-ports and it has
to alternate at least every 3
licks.

Allow the animal to
understand that the lick-port
offers a reward and
habituation to head-
restriction.

Stage 1 Trial structure is introduced.
Sound starts playing and after
300ms (ensure that they
actually hear something), they
can answer by licking one of
the ports. The first answer is
not penalized, so they can
keep exploring until finding
which port gives reward.

Categorization learning:
animals learn to associate the
sound origin with reward
distribution. Animals naturally
start understanding that there
is a pattern and start showing
asymmetric first lick, meaning
that they tend to lick the
corresponding port more than
the incorrect one on the first
try.

Stage 2 Similar to the previous stage
but now the first lick counts.
This means that the animal
has to lick the correct port on
the first try, otherwise it will
have to wait until the next trial.

Categorization learning:
animals continue to learn to
associate the sound origin
with reward distribution.
Introduction of punishment (2s
timeout) and only “one
chance” tries to consolidate
the pattern.

Stage 3 Slowly start introducing the
delay component. In animals,
there are some sessions
needed to habituate to motor
movement. Once they are
used to it, trials are classified
in three different difficulties
corresponding to different
delay lengths. Initially, the
delay lengths are equivalent,
but they increase
nonuniformly if the animal
keeps performing well until
reaching a random distribution
of trials of 0s, 1s and 3s
duration.

Timing learning. Mice learn
that, even though they know
the correct answer, they have
to wait until showing it.

Stage 4 Introduction of ambiguity in
the sound. Instead of coming
from either left or right, sound
comes from both sides at
different intensity volumes.

Coherences (sound
difficulty). Animals are able to
perform the task with
ambiguity in the sound.

Table 1: Stages from shaping protocol developed by T. Oña

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

15

2.2.2 Training Recurrent Neural Networks with different protocols in Delayed
Response Task

The second study is a Final Degree Project carried out by Marta Fradera Pruna under the
supervision of Manuel Molano and Albert Compte (2020) in the Theoretical Neurobiology of Cortical
Circuits research group. M. Fradera used Long Short-Term Memory networks to model the actions
of mice performing a DR task. She used Reinforcement Learning (RL) to train the networks.

After confirming that the model can learn the task, she trained the networks using various shaping
protocol variants, including training without shaping, with the aim of identifying the most relevant
phases in the protocol, as well as those that may be ignored. She complemented the research by
analysing the behaviour of the models after training.

This study aimed to see how the computational strategy formed by the networks varies significantly
depending on whether they were trained with or without shaping.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

16

3 Market Analysis

Task-trained artificial recurrent neural networks (RNNs) provide a computational modeling
framework of increasing interest and application in computational systems and cognitive
neuroscience. RNNs can be trained to perform cognitive tasks used in animal experiments and can
be studied to investigate potential neural representations and circuit mechanisms underlying
cognitive computations and behaviour [22].

Moreover, the models created in this project can be used either for testing hypotheses about neural
circuits as well as for predicting animal behaviour in operant tasks, making it easier for the purpose
of designing shaping protocols. Pharmaceutical companies, which regularly use animals for their
experiments, will be specially interested in predicting animal behaviour for their studies,
representing one of the main stakeholders.

The algorithm is principally aimed at healthcare and biomedical facilities, as well as
pharmaceutical companies that conduct behavioural neuroscience research.

However, understanding aha moment principles and why they appear can provide interesting
information to be used in different areas such as education or marketing. Comprehending why they
appear can be a key tool in education in order to generate them and ease the learning process.
Furthermore, other areas such as marketing are extremely interested in identifying the moment
when new users first realize the value of their products.

3.1 Animal model

The animal model Market was valued at over USD 14.9 billion in 2019 and is projected to develop
at a rate of over 7.5 percent between 2020 and 2026. The rising prevalence of chronic diseases,
as well as the rise in drug side effects, have enhanced market growth.

Humanized mouse models are being developed in greater numbers as the market for personalized
medicines grows. Furthermore, increased understanding of the use of animal models has resulted
from government initiatives in various academic and research institutions.
Moreover, the current COVID-19 pandemic is an unprecedent public health threat, prompting an
increase in vaccine and antiviral drug research and development. As a result, large numbers of
animals are used to check the effectiveness and safety of vaccines and antiviral drugs prior to
conducting human trials. COVID-19 epidemic is expected to have a major effect on the mice model
market for vaccine and antiviral drug research and development. Mice models are the best small
animal models for hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, and cytomegalovirus
(CMV), among other viruses.

Mice model market is especially expanding due to physiological similarities of mice to humans
coupled with their ease of maintenance and breeding in the laboratory. Mice's genome is easily

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

17

modified and analysed, making them an excellent option for genetic testing studies in immunology
and inflammation, oncology, central nervous system research, and diabetes research [23].
Because of the wide availability of transgenic mice that allow cell-type specific targeting, the mouse
is a leading model system for mammalian circuit neuroscience [24]. Mice have recently become an
advantageous animal model because of advances in both neuroimaging and genetic technologies,
and because mice provide a large population of test subjects for behavioural screening [25].

Part of the most well-known names in the animal modelling industry are: Genoway SA, Eurofins
Scientific SE, Crown Bioscience, Inc., Envigo CRS SA, and Transposagen Biopharmaceuticals,
Inc. To expand their scope, these companies are engaging in acquisitions, mergers, and takeovers.
Fortification strategies for brand new products are also being used by these players to improve
their position in the global market. [26]

3.1.1 Restraints: Regulations and laws for the ethical use of animals in research

Research on basic animal biology and ecology is essential for increasing our understanding and
for enhancing species conservation. However, it often causes the pain or death of many animals.
[27]

Implementation of laws and regulations for animal protection and welfare has imposed restrictive
practices and bans on the use of animals for different purposes. In the last five years, many
countries have banned the use of animals in the cosmetic industry. [28]

However, studies agree that when deciding whether to use animals in experiments, we should only
consider the importance of the purpose of the experiment, the quality of the research setup,
including a consideration of which animals offer the best translation to the human situation, and the
effects on the animals' interests. [29]

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

18

4 Conception Engineering

4.1 Project plan

As previously mentioned, our work is based on a previous study performed by M. Fradera which
consisted of using RNNs to model actions of mice performing a delayed response task. In order to
follow her project and obtain new results, we have trained RNNs on an analogous task to the one
performed by mice. However, the code created to perform the task and to train the model was
improved from M. Fradera because we have tried to simplify it and make a simpler but more efficient
version.

First, we have explored mice training, then, we have designed the same task for networks analysing
the same features. Concerning networks’ training, in the first instance we have implemented the
same shaping protocol as mice, and we have explored how different modifications in parameters
can modify networks’ learning. Following, we have not included the shaping protocol to examine
networks behaviour in these conditions and become conscious of how much shaping influences.

In the case of mice, we have had access to data from real experiments, from where we have
selected the more relevant information for our study. Regarding networks, the developed pipeline
followed these steps: first, we have started with the task design in order to create a task for the
RNNs similar to the one performed by mice. For that purpose, we have given some observations
to the network that determine the action choices. As a consequence of this choice, the environment
provides a (positive or negative) reward. Then, an analysis of the results obtained from the training
of the networks has been performed. Finally, networks results have been compared with the ones
previously obtained of real mice.

4.2. Project basis

Humans do not start thinking all over again every second. You comprehend each word as you read
this essay based on your comprehension of previous words. You do not throw everything out and
start over from the beginning. This issue is addressed by recurrent neural networks.

In order to deeply understand how recurrent neural networks work, it is essential to comprehend
the principles on which RNN are based, beginning from the explanation of terms such as machine
learning, deep learning and artificial neural networks. Therefore, in this section, the main concepts
of machine learning are described.

Imagine you need to assemble a table and chair that you bought. How are you going to do it?
Obviously, you will read the instruction manual that was given to you. You will create the entire set
by following the instructions. If you do not have the instruction manual, you will have to figure out
how to assemble the table and chairs on your own. These conditions are similar to machine
learning, which uses advanced algorithms that learn a task without being explicitly designed to do

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

19

it. It usually does so by finding meaningful patterns in the dataset. Machine learning is divided into
three categories: supervised, unsupervised, and reinforcement learning.

- Supervised learning: it uses labelled training data and a collection of training examples to
deduce a feature. They are designed to learn by example. The name “supervised” learning
originates from the idea that training this type of algorithm is like having a teacher
supervising the whole process.

- Unsupervised learning: technique in which the model does not require supervision. It helps
to find all kinds of unknown patterns of data. Clustering and association are types of
unsupervised learning.

- Reinforcement learning: it is an area of machine learning that involves agents that should
take certain actions from within an environment to maximize or attain some reward. As
mentioned above, this was the methodology used for the study.

4.2.1 Artificial neural network

Artificial Neural Networks (ANNs) are machine learning models inspired by the architecture of brain
circuits and formed by a set of units (neurons) that are connected via "synapses'' with an arbitrary
weight. These weights can be modified through training so the network can learn to do an arbitrary
task. When networks have more than 2 layers we can talk about deep learning.

A neural network is a model that consists of a large number of neurons that are connected to one
another. Each node represents an activation function, which is a type of output function. The
weighting value for passing the connection signal is represented by the connection between any
two nodes, which is equal to the memory of the artificial neural network. Network's performance
varies depending on the network's connection method, weight value, and activation function [30].
For each unit, every input has an associated weight that defines its relative importance. When
receiving the inputs, a basic unit (processing element) applies a linear transformation plus an
activation function to compute the output. The linear transformation is computed through the
following equation: 𝑧	 = 	𝑤𝑥 + 	𝑏, where 𝑥 is a vector containing the inputs (𝑥!, 𝑥" …, 𝑥#), 𝑤 is
a vector containing the corresponding weights for each input (𝑤!, 𝑤" …, 𝑤#), and 𝑏 is the bias
vector. The neural network model is trained by optimizing the vector 𝑤 using the input and output
that we already have. Once 𝑧 is computed, an activation function is applied (e.g. Rectified Linear
Unit, sigmoid or tanh) to obtain the final output (𝑦), as indicated in the following equation, where 𝑔
is the activation function: 𝑦	 = 	𝑔(𝑧)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

20

Figure 2: Neural network model. Every input (𝑥!, 𝑥" …, 𝑥#) is given with a different weight (𝑤!, 𝑤" …,𝑥#) and bias
(𝑏) is the bias vector. With these parameters we can compute z. Then, in order to obtain the output (𝑦), an activation
function is applied (𝑔 in this case).

Neurons are arranged into layers and each layer contains a different number of neurons. The same
inputs are given to all units in a layer, but with different weights. Each unit generates a result. The
resulting collection of outputs is then used to feed another layer, and so on until the network reaches
the final processing layer (or output layer), which generates the network's final output.

Figure 3: ANN architecture. Every input (𝑥!, 𝑥" …, 𝑥$) generates a result which will feed the next layer (𝑧!, 𝑧" …,
𝑧%). This value will depend on the weight applied (𝑤!, 𝑤" …,𝑥#)

ANNs can present 2 main architectures: feedforward and recurrent. Regarding feedforward Neural
Networks, the information is allowed to move in only one direction, from the input nodes through
the hidden nodes and to the output nodes. However, Recurrent neural networks (RNNs) form a
class of ANN models which are especially convenient to perform cognitive tasks which unfold
across time, common in psychology and neuroscience, such as ‘decision-making’ or ‘working-
memory’ tasks.

Figure 4: Main architectures for ANNs. RNNS can have information traveling in both directions by introducing loops
in the network whereas in Feed-forward NNs there is no feedback, i.e., the output of any layer does not affect that
same layer.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

21

RNNs are made up of a network of loops that allow information to be predicted [31]. Previous
information is easily accessible to recurrent neural networks. The activity of the RNN model is
connected to the networks’ activity at the previous time. Consequently, the activity of neurons in
the network is affected not only by the current stimulus, but also by the current state of the network.
The hidden state ℎ$ at t determines the model performance. It is determined by the input 𝑥$ at t
and the hidden state ℎ$%! at t - 1.

Figure 5: RNN working principle. The activity of neurons is connected to neurons’ activity at previous time.

4.2.2 Long short-term memory networks (LSTM)

LSTMs are a special type of RNN, capable of learning long-term dependencies, i.e., those problems
for which the desired output depends on inputs presented at times far in the past. All recurrent
neural networks have the shape of a chain of repeating modules of neural networks. This repeating
module in standard RNNs will have a very simple structure, such as a single tanh layer.

Figure 6: The repeating module of a standard RNN

However, in LSTMs, in spite of having this chain-like structure, the repeating module has a different
structure. In this case, instead of having a single neural network layer, there are four interacting in
a very special way.

Figure 7: The repeating module in an LSTM which contains four main units: a cell, an input gate, an output gate and
a forget gate. The cell remembers values over arbitrary time and the three gates regulate the flow of information into
an out of the cell

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

22

The key of the LSTM model is the cell state (𝑐$), which only suffers some minimal interactions, and
it is often unchanged. The LSTM is able to remove or add information to the cell state, meticulously
regulated by structures called gates. This system employs various gates to dynamically learn when
the network forgets historical data and when it needs to be updated with new data. These gates
are a way to selectively allow information to pass through and are composed of a sigmoid neural
net layer and a multiplication operation. The sigmoid layer can reach values ranging from 0 to 1,
indicating how much of each component should be allowed to pass. A LSTM has three of these
gates in order to control the cell state.

4.2.3 Networks training

RNNs are typically trained using supervised learning (SL) techniques, which consist of learning
from a training set of labelled examples. Supervised learning is very effective and can be used in
almost any situation. Nonetheless, a dataset is required, and it is insufficient for learning from
interaction.

In SL each example has two parts: an input object and a desired output that specifies the
appropriate action for the system to take in that situation (the label). Because the desired outputs
for given inputs are known, the network can be trained to produce them using gradients computed
using the backpropagation algorithm. RNNs use optimising strategies, such as gradient descent to
minimize a loss/cost function, which evaluates how well an algorithm models a dataset. The loss
function computes the error for a single training example whereas the cost function is the average
of the loss functions for all the training samples. The reason for doing this is because a lower error
between the actual and the predicted values means that the algorithm has learned the task. Thus,
when calculating the error of the model during the optimization process, a loss function must be
chosen. In one dimension it is quite easy to find the loss function but when increasing dimensions,
it is not as simple, and we need to use gradient descent. Gradient descent, which is an algorithm
to search for this minimum, is one of the most widely used optimization techniques, and it is the
most frequent method for optimizing neural networks. The gradient of a function simply measures
the change in the function caused by a small variation in its parameters. In machine learning, we
use gradient descent to update the parameters of our model. Parameters refer to coefficients in
Linear Regression and weights in neural networks. Essentially, the algorithm uses two pieces of
information to reach the minima:

- The direction to go
- The size of the step to reach the destination (bigger or smaller)

The algorithm is able to make these decisions by means of derivatives, which are calculated as the
slope of the graph at a particular point. Therefore, if we are able to compute this gradient, we will
be able to compute the desired direction to reach the minima.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

23

Figure 8: Gradient descent representation for an example loss function (𝑌	 = 	𝑋"). Gradient descent is an algorithm
that looks for the minimum of the function by means of the direction and the size of the step to reach the destination.
It measures the change in the function caused by a small variation in its parameters.

As said before, we use Reinforcement learning (RL) as the learning strategy for our networks. It is
an area of machine learning concerned with how agents require taking actions in an environment
in order to maximize the cumulative reward. It is one of three basic machine learning paradigms,
next to supervised learning and unsupervised learning. Reinforcement learning comes into play
when examples of desired behaviour are not available but where it is possible to score examples
of behaviour according to some performance criterion. This method approximates in the best way
how mice learn the task, by receiving reward every time they do a correct action. RL models have
advanced our understanding of how animals learn and make decisions, and how the brain supports
some aspects of learning. When using RL, networks only receive sparse feedback (a reward or a
punishment, for correct and error choices, respectively), without being explicitly told the correct
answer. Any RL task is defined by three things: observations, actions and rewards. Observations
are a representation of the current world or environment of the task. Actions are something a RL
agent can do to change the environment and rewards are what the agent receives for performing
the right actions. The observations, actions and rewards are then transformed in a dataset. It differs
from other computational approaches in that it emphasizes an agent's learning from direct
interaction with its environment. The objective is to learn a “policy”, something which tells which
action to take from each state in order to maximize the reward [32]. The reward is necessary to tell
the system which state-action pairs are good or not. This reward can have a different value for the
agent depending on the moment when it is received. The discount or gamma parameter (γ) is
used to indicate how much the agent values future rewards, being γ=0, if the agent only cares about
his first reward, or γ=1 if it values all rewards equally.

Backpropagation Through Time (BPTT) is an algorithm used to update the weights of certain
types of RNNs. The backpropagation training algorithm aims to reduce the error of a neural
network's outputs in comparison to any predicted output in response to corresponding inputs by
modifying the weights of the network. However, one of the drawbacks of BPTT is that as the number
of time steps increases, the computation also increases. As a result, the overall model would
become noisier. Hence, Truncated Backpropagation Through Time method (TBPTT), which is
a modified version of BPTT, is the approach chosen for our study. By using it, the sequence is

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

24

processed one time step at a time, and periodically the BPTT updates is performed for a fixed
number of time steps, which is called rollout [33]. The rollout is the number of steps we use to
update network weights, in other words, how much do we look back in time to learn.

Moreover, deep neural networks can be trained with RL where we convert rewards and
observations into labels and samples and apply standard SL techniques to increase the probability
of doing the actions that maximize reward and decrease the probability of actions that decrease
the reward.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

25

5 Detailed Engineering

In this project, we have developed a parallel analysis between both mice and networks behaviour
with the aim of comparing them. First, with the purpose of understanding mice behaviour, we have
performed a deep exploration of several parameters extracted from mice training. During this
research, we have studied the aha moments that enable mice to learn to categorize. On the other
hand, we have followed the same protocol to train RNNs as similar as possible to mice. With these
results, we have studied the same features in mice and RNNs in order to compare them.
Then, with the purpose of determining how much shaping affect RNNs, we have performed an
exhaustive analysis of parameters such as the punishment and the rollout. The following section
will describe all the details necessary to understand the process. All the algorithms are written in
the Python programming language and are public and available on GitHub [34, 35, 36].

5.1 Analysing mice behaviour following a Delayed Response task

The objective of this first research is to understand and analyse relevant parameters extracted from
mice training in order to compare it with RNN. In order to analyse mice behaviour, two scripts have
been used. They are located in different GitHub repositories (‘CV-Learning’ and ‘ngym_shaping’)
under the same name of ‘mice_behav_analysis.py’ [34].

First, we have tried to understand some variables obtained from mice by means of representing
different features, such as the accuracy over sessions for each subject. At this point, we have
realized that we were losing information by looking at sessions, so we have changed our point of
view and started looking at the trials (each session is equivalent to 400/500 trials).

At the end of each trial, performance takes a value of 1 if the answer is correct and 0 if is incorrect.
In order to obtain a more visual value of the performance, and to properly observe the evolution of
the network, we have performed a convolution to smooth the performance values. The vector with
the performance values is convolved with a vector of values 1/convolution_window and length
convolution_window, following the discrete convolution operation:

(𝑎	 ∗ 	𝑣)[𝑛] 	= 	 4 𝑎[𝑚]𝑣[𝑛 − 𝑚]
&

'(%&

Moreover, the analysis of these plots indicates that the stage in which subjects stayed the longest
time is 3. Then, we have analysed motor and delay variables, which are only active in stage 3.
Since only in stage 3 the motor is activated and we could find delays, this was the stage that could
offer us more information. Then, we decided to create an additional fourth stage in order to
subdivide stage 3 into two. In this way, the fourth stage would be generated when two conditions
were met: subject is at stage 3 and motor 6.0 is on. After doing this extra division of the stages, we
realized that at some point mice’s behaviour started to be strange, and T. Oña confirmed this was
due to the fact that a lot of them suffered surgeries at some point of the training. Therefore, we

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

26

decided to consider these events (surgery, sickness, wounds) and remove all the information stored
after they happened. In order to confirm our results, we decided to add more data and confirm our
results with more mice. For this reason, more mice were trained and added to the experiment. In
view of this, two batches of ten (from N19-N28) and six mice (from C17-C22) were added. As a
result, we obtained a detailed study of mice behaviour.

In figure 9 we can see an example of a subject whose performance is represented in different
colours depending on the stage it is. Represented in dashed vertical lines we can observe if the
mouse has suffered any event, as in this case it has been submitted to a surgery and has been
sick. Also in vertical lines we can observe the session change, due to the fact that there is one
every 400/500 trials.

Figure 9: Accuracy by trials of subject considering misses and events. Gray lines correspond to session changes
and coloured dashed lines to events (red: surgery; green: sick; blue: wounds).

After analysing the accuracy for different stages, we have decided to focus on stage changes in
order to understand how much stage change affects the performance. Then, as in stage changes
it is very difficult to perceive where mice learn, we have examined stage 1, where categorization
takes place, which is the stage where mice learn that the right and left ports are in different
positions.

With the purpose of defining when this categorization takes place, we have defined when mice
have learned the assignment whereas when they are choosing the correct decision by chance. We
have defined lower (Start of learning period) and upper (End of learning period) thresholds, so if
the performance goes from being below the low threshold to above the upper threshold means that
mice have learned.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

27

Figure 10: Lower and upper thresholds which determine if the subject has learnt. Lower and upper thresholds are set
to 0.6 and 0.75 respectively. Moreover, the difference between them corresponds to the learning time needed, being
able to classify the learning into slower (gradual) or faster (abrupt).

By means of exploring the time from one threshold to the other we can determine that some mice
learn faster than others. Moreover, we can observe that learning does not always follow the same
pattern so it can be more gradual or more abrupt. Then, we focused on these fast training (aha
moments).

5.1.1 Aha moments

Aha moments are defined as the sudden comprehension from not understanding a problem to
understanding its deeper structure. In our case, we can detect them by means of the lower and
upper performance thresholds. If these thresholds are close enough, we will find an aha moment.
The two requirements necessary to find an aha moment:

- A sequence of 10 trials (window_aha) with an average performance above 0.75.
- A difference between the previous and the after performance of 0.2.

Figure 11: Aha moment representation for mice performance. To find an aha moment two conditions must be
fulfilled: a sequence of 10 trials with an average performance above 0.75 and a mean performance difference
between before and after the aha moment of 0.2.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

28

The sudden increase of the performance is associated with a streak of correct choices. For mice,
we have determined the aha moment as the change in performance from values with a performance
difference above 0.2. Moreover, we have defined a variable for the window of the aha moment, so
we were able to change it and see how this affected the number of aha moments detected. We
have established this window to 10 trials.

The major question when studying aha moments is why they appear. There may exist some
common pattern, such as repetitions, in all these aha experiences which is the origin of the learning.
For that hypothesis, we have studied what happens before this moment. We have explored the
probabilities of choosing right or left, and we have compared it to the probability of choosing
the correct answer randomly by chance.

5.2 Task creation

As previously mentioned, neural networks’ principal aim is to simulate as much as possible mice
behaviour performing a delayed response task (DR). In order to achieve this goal, we have created
the same task, which consists of combining two different stimuli and reporting which one is larger
after a fluctuating delay. The task creation was performed on a script which is located in the
‘ngym_shaping’ Github repository under the name of ‘DR_stage.py’ [35].

The process of developing the task has consisted of mimicking as much as possible the training
that Tiffany Oña uses for the mice, which is possible following a shaping protocol that helps mice
to learn. First, we have defined the task of interest, and then, we have trained a recurrent neural
network (RNN) to perform the task.

The environment provides our agent with some input observations at each time step. Then, the
agent must choose between one of three possibilities (the same as mice): fixation, left or right
(corresponding to left and right ports in mice task). After that, the environment provides positive or
negative feedback to the agent after taking an action. This feedback helps the agent learn how to
act in order to get the most positive reward, which is done by means of adapting the network's
parameters in order to find the optimal input-output relation. Punishment was set to zero unless it
was specified, so as positive (+1) and no negative reward (0) were given at the end of the trial
depending on whether the agent’s choice was the same as the network’s ground truth.

As T. Oña did, we separated the task into trials. In our setup, each trial lasted 600 ms (plus a
variable delay) divided into time-steps of 100 ms. More in detail, each trials always followed the
same structure composed of four different intervals:

- Fixation period: during this time, animals must withhold their lick for the trial to start. If
they keep licking, the mice will not pass to the next step. (200 ms)

- Stimulus period: the stimulus is presented to the agent (400 ms)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

29

- Delay period: delay component is introduced to the task. After the stimulus, a waiting
period is applied before letting the agent answer, so it must retain the information. The
delay is variable. (0, 1000, 3000 ms)

- Decision period: the agent makes a choice (200 ms)

5.3 Training of RNNs

After defining the task of interest, the recurrent neural network (RNN) model is trained to perform
the task. The process by which the network model updates its parameters in order to find the best
input-output relationship is referred to as network training. Indeed, though several methods may
be used to perform the training, the approach chosen for this project is reinforcement learning (RL).
During the training phase in RL, the network communicates with the environment: the agent outputs
an action at each time-step, and the environment responds with a reward and an observation.
Moreover, as explained in section 4.2.2, we have trained the networks using the training algorithm
Truncated Backpropagation through time.

Then, we must specify the model we would employ. The used RL algorithm and the desired policy
network must be defined when creating the model. The chosen policy is LSTMPolicy, a policy object
that uses an LSTM architecture to enforce actor-critic.

Finally, TensorFlow toolbox is necessary to train the generated model. Model training was run in
the lab’s computer on a script which is located in the ‘ngym_shaping’ Github repository under the
name of ‘example_neurogym_rl.py’ [35]. Later, information was stored for further analysis.

5.3.1 Shaping

Task difficulty is managed by four stages, where the higher the stage, the higher the complexity.
In consequence of the agent's performance, the stage increases. This means that when the
performance stays above a threshold (in our case 0.75) during an established number of sessions,
the stage increases. Nevertheless, if the performance does not accomplish the minimum of
sessions above the threshold, the process is restarted.

- Stage 0: During the decision period, agents are rewarded by performing either a left or
right action. The agent cannot repeat the same action more than three times in a row to
ensure that all acts are linked to the reward. Otherwise, it will not be rewarded again until
it switches sides. The main objective of this stage is to ensure that the agent understands
that both actions (right and left) may provide a reward.

- Stage 1: Stimuli are introduced and during the decision period, agents can examine both

actions until they find the one that gives reward without ending the trial. In this stage, agents
receive reward on every trial in order to help them to find the optimal parameters to do

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

30

correct actions. The main objective of this stage is ‘Categorization learning’, which aims to
ensure agents learn to associate each stimulus with the ground truth action (left or right).

- Stage 2: this stage is the same as the previous one, with the exception that in this stage,
the agent must choose the correct choice in the first try. Alternatively, the agent receives
a negative reward and the trial is finished. The main objective of this stage is to consolidate
the knowledge from the previous stage (stage 1), so the principal aim continues being
‘Categorization learning’. In the task implementation, this stage is the simplest one, and
the other stages will be the same as stage 2 but with some modifications in each of the
cases.

- Stage 3: delays are progressively introduced between stimulation and decision in order to

recognize if the agent is retaining the information. We used three different delays (0, 100,
300 ms), which were incremented from 0 to 300 as the agent's performance increases in
a stable way. However, they increase nonuniformly if the agent keeps performing well until
reaching a random distribution of trials of 0, 100 and 300 ms duration. The main objective
of this stage is ‘timing learning’, which indicates that, even though the agent knows the
correct answer, it must wait until showing it and retain the information during a period.

Figure 12: Stage 3. Time-steps are represented on the x axis. The purple area depicts the delay period whereas the
grey area corresponds to the decision period. In the top panel: the environment provides observations (blue: fixation,
orange: left stimulus, green: right stimulus). In the middle panel: the actions that the agent takes (blue), and the
correct actions (dashed green). In the bottom panel: rewards (red) and performance at the end of the trial (black
crosses)

- Stage 4: ambiguity and noise in the stimulus are introduced. The main objective of this
stage is to assure that the agent is coherent, meaning that it can perform the task with
ambiguity in the stimulus.

After designing the stages of the shaping protocol we have explored network training and how
several parameters, such as the discount factor, affect the behaviour.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

31

5.3.2 No shaping

Despite mice training has been performed under a shaping protocol, we have implemented a non-
shaping protocol for networks in order to determine how much shaping affects learning a task.
Besides the results obtained from comparing the training done with and without shaping, several
parameters can be modified in order to explore training under different conditions. For this purpose,
we have trained various instances in several training variants.

- The rollout study consists of analysing network performance for different rollout values.
The rollout is the number of steps we use to update network weights. Then, a high rollout
means that the task is more complex because more information needs to be processed.
Each network has an associated value for the rollout used which can be extracted from the
file name, for example, “no_shaping_long_tr_one_agent_stg_4_nsteps_40” indicates that
we have used no shaping protocol with one agent, who is always in stage 4 and that uses
a rollout of 40.

- Punishment increasement: different values of 0, -0.25, -0.5, -0.75 and -1 have been
probed in order to observe if harder values of punishment make networks have a better or
a worse performance. Then, for every network, punishment, and instance we could find a
folder. For example the folder “pun_-0.75_inst_2” contains data from a punishment of -0.75
and the third instance (there are instances 0, 1 and 2). Inside this folder there is all the data
stored so we can easily find this data stage and order inside the stage by the following
pattern: “MeanPerf_bhvr_data” + stage + order inside the stage.

5.4 Analysis of RNNs

The last step consists of the analysis of all the information acquired under different protocols and
different parameters. In order to analyse RNNs behaviour, we have created a script which can be
found in the ‘CV-Learning’ GitHub repository under the name of ‘analysis_rl.py’ [35].

With the purpose of defining when the categorization takes place in networks, we have used the
same method as in mice: defining a lower (Start of learning period) and an upper (End of learning
period) thresholds, so if the performance goes from being below the low threshold to above the
upper threshold means that networks have learned.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

32

Figure 13: Lower and upper thresholds which determine if the network has learnt. Lower and upper thresholds are
set to 0.55 and 0.6 respectively. Moreover, the difference between them corresponds to the learning time needed,
being able to classify the learning into slower (gradual) or faster (abrupt).

By means of exploring the time from one threshold to the other we can determine that some
networks learn faster than others. Then, we focused on these fast training (aha moments).

5.4.1 Aha moments

In the same way as in mice, we have explored aha moments. Depending on the protocol used, the
parameters of aha moment may differ. In our case, using a shaping protocol, the objective of this
aha moment is to reproduce when the networks have learnt to categorize, which is a piece of
learning acquired at stage 1, so a requirement for networks to experiment an aha moment is to be
in stage 1. Independently of the protocol used, there are two requirements necessary to find an
aha moment in networks:

- A sequence of 10 trials (window_aha) with an average performance above 0.65. This
means that for 10 trials, at least 7 should be correct.

- A difference between the previous and the after performance of 0.1.

For networks, we defined the aha moment as the difference in performance of 0.1 because they
do not fluctuate as much as mice. In networks we have also defined a variable for the window of
the aha moment of 10 trials. Despite the aim of defining an aha moment for networks as similar as
possible to mice, almost all parameters need to be modified.

For networks we have also performed the probabilities of choosing right al left before the aha
moments in order to check if there is any pattern.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

33

6 Results and Discussion

6.1. Analysis of mice behaviour

Aiming to understand how the learning process in mice takes place we have performed several
analyses that show the performance of the mice exposed to different training periods (stages) (Fig.
14). The performance of the mice shows a smooth learning without sharp changes at the moment
in which the stage is changed (Fig. 15).

Figure 14: Accuracy VS trails with four stages. Each subject, and depending on their performance, reaches stages 1,
2 and 3 at different moments in time. Trials are represented in the x axes. Originally training was divided into 3 stages,
but we added one more (stage 4) to explore the effect of the motor on the performance of the mice.

6.1.1 Performance at stage change

This gradual progression of the performance may be due to the shaping protocol used, which is
able to divide the entire task into small steps which reduces as much as possible the impact that
the increase in difficulty has on the mice performance. For instance, in stage 3, delays are
increased gradually to help the animals learn to wait. A key moment to see if learning is being
gradual are stage changes. In figure 15 we can observe the performance before and after the stage
change, where it is shown that the learning is being fairly gradual, since although there is a change
in environmental conditions, the subjects continue achieving a similar performance. The stage
change that has the most impact on the performance of the animals is the one from 2 to 3. However,
this could be due to other external factors that affect the behaviour of the animals (for instance,
some mice underwent surgery once they reached a good performance in stage 3).

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

34

Figure 15: Mean accuracy at stage changes from 1-2 and 2-3. N shows the total number of times the change has been
accomplished for all subjects (note that each subject can experiment one type of change several times). For both
changes it is observable a decrease in accuracy associated with an increase in difficulty.

6.1.2 Learning to categorize the stimuli

In spite of its gradual learning, we hypothesized that mice must present sharp performance
changes that reveal that different aspects of the task have been learnt. For instance, in stage 1,
mice need to learn to categorize the stimuli, i.e., to associate each stimulus to its corresponding
port. We first investigated how long it took for the animals to learn this association. For that we
identified two different periods within stage 1: an initial period during which the animal performs at
chance level and a later period during which it already displays a good performance (Fig. 16).

Figure 16: Dashed lines show the lower (cyan) and upper (magenta) thresholds used to determine if and when the
subject has learnt. Lower and upper thresholds are set to 0.6 and 0.75, respectively. The learning time is defined as
the time elapsed from the moment the animal starts learning (i.e. performance goes above lower threshold) and the
moment at which it finishes learning (i.e. the performance goes above the upper threshold).

By means of exploring the time from one threshold to the other we can determine that some mice
learn faster than others (Fig. 17). Moreover, we can observe that learning does not always follow
the same pattern: it can be more gradual or more abrupt. For this reason, we have examined the
time each subject needs to learn to categorize (Fig. 17). In this case, the time has been measured
with the number of trials needed to learn. As it is shown in Figure 17 some subjects are able to
learn the task in less time (<800 trials) than others (>1200).

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

35

Figure 17: Number of trials needed to learn for the 21 subjects. 1276,93 ± 539,05 (mean ± SD)

6.1.3 Aha moments

A caveat of the above analysis is that learning times have been obtained by smoothing the mice
performance with a large window (500 trials). This procedure allows better categorization of the
periods at the expense of temporal resolution. This prevents us from seeing fast and abrupt
changes. For this reason, we applied a different analysis aimed at discovering faster learning
processes (aha moments) (Fig. 18). To detect the aha moments some requirements must be
fulfilled as stated in section 5.3.2.

Figure 18: An aha moment example displayed by mice. Trials in x axis and mean performance in y axis. Performance
is displayed in blue and orange with a convolution window of 10 and 1000 respectively. The vertical dashed black line
indicates the aha moment.

Aha moments do not occur in all subjects. We have found that 88,8% of mice experience aha
moments. On the other hand, subjects can undergo up to 4 aha moments in a single training
although the average is 2 ± 1,23 (mean ± SD) (Fig. 19). Therefore, 60% of the mice undergo an
aha moment more than once during the training.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

36

Figure 19: Count of aha moments by subject. The most usual is to do one or three aha moments. Only 2 subjects
perform no aha moments.

6.1.4 What causes aha moments?

In order to understand the origin of the aha moments, we have explored whether there is any
unbalance between the number of right and left rewards before and during the aha moments. We
hypothesized that mice might learn to categorize the stimulus after experiencing a very stereotyped
sequence of left/right trials. For this reason, we computed the number of right-side trials before and
during the aha moments. However, we have not found any consistent deviation (Fig. 20, orange
traces) from what it would be expected by chance (Fig. 20, blue traces). Further work should be
done to explore the possibility that more intricate sequences trigger the aha moments.

Figure 20: Histograms showing the probability of right-side trials before and during the aha moment VS what would
be expected by chance. We did not find any consistent deviation from chance.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

37

6.2. Analysis of networks learning (simulated data)

To better understand the behaviour observed in mice during the shaping training, we have trained
RNNs using a simplified version of the shaping protocol (see point 5.3.1).

We found that RNNs were able to learn the categorization required at stage 1. However, networks
did not achieve very high mean performances.

Figure 21: Performance of networks trained during the first 2 stages of shaping. The abrupt decrease in performance
corresponds to the change from stage 0 to 1.

6.2.1 Learning to categorize the stimuli

As we did for mice, we investigated how fast RNNs learned to categorize the stimuli. As it is shown
in Figure 22, networks seem to have several stages of learning. For the learning period in networks,
we have established lower and upper thresholds of 0.55 and 0.6 respectively so all the networks
have learnt.

Figure 22: Dashed lines show the lower (cyan) and upper (magenta) thresholds used to determine if and when the
subject has learnt. Lower and upper thresholds are set to 0.55 and 0.6, respectively. The learning time is defined as
the time elapsed from the moment the animal starts learning (i.e. performance goes above lower threshold) and the
moment at which it finishes learning (i.e. the performance goes above the upper threshold).

In the same way as in mice, we have concluded that some networks learn faster than others
(Fig. 23).

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

38

Figure 23: Number of trials needed to learn for the 20 networks. 1911,9 ± 1361,11 (mean ± SD)

6.2.2 Aha moments

In order to detect the aha moments for the RNNs, we adjusted some parameters in reference to
those in mice. We considered that RNNs need a larger number of trials to learn. Moreover, networks
mean performance grows more slowly but steadily than in mice. For this reason, the window used
to compute the performance before and after the aha moment was made larger than the one used
for mice (1000 instead of 100). Moreover, the difference between the before and after performance
was set to 0.1 instead of 0.2.

Figure 24: An aha moment displayed by an example network. Trials in x axis and mean performance in y axis.
Performance is displayed in blue and orange with a convolution window of 10 and 1000 respectively. The vertical
dashed black line indicates the aha moment.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

39

6.2.3 What causes aha moments?

As we did for mice, in order to understand why aha moments appear, we have explored the
sequence of trials before and during this moment. For this purpose, probabilities of choosing
right and left were assessed in the same way as done in mice. As with mice, we did not find a
clear difference between the distribution of probabilities of right-side trials before and during the
aha moments and the one expected from a completely random process (i.e. a binomial distribution).

Figure 25: Histograms showing the probability of right-side trials before and during the aha moment VS what would
be expected by chance. We did not find any consistent deviation from chance.

6.3 Comparison between mice and networks behaviour

The training implemented for the neural networks cannot be but a simplification of the real one. For
instance, animals are penalized with a timeout of 2 seconds when they make a mistake, while
RNNs are immediately presented with the next trial. Furthermore, the shaping protocol used in mice
contains several details that we decided to exclude from the RNNs protocol for simplicity. For
example, animals can be moved to an easier stage if they show a poor performance, while the
training of RNNs can only increase in complexity.

Furthermore, the behaviour of the mice is affected by various phenomena that are not present in
the RNNs: stress, urgency, satiation, tiredness, sickness... Consequently, the comparison between
the behaviour of mice and networks can only be done at a qualitative level. When networks have
learnt a task, if the environment does not change, they exhibit a constant performance, however,
mice present a fluctuating performance. Despite they show slightly different behaviour, in both mice
and RNNs we can find aha moments where subjects fastly understand the task. However, in order
to find them, different requirements were for mice and networks. When working with mice, the
timescales are shorter, so the window used to compare the performance before and after an aha
moment is of 100 trials, whereas when dealing with networks we have used 1000 trials.
Furthermore, we used a performance difference of 0.2 to detect the aha moments in mice, while
that value was too high for the networks and needed to be set to 0.1. Moreover, as explained above,

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

40

mice behaviour is much more unstable, so when experiencing aha moments they present
sharper performance changes than networks.

6.4 Comparison between shaping and no shaping in networks

Previous results obtained from M. Fradera’s work stated a clear difference between the
performance of networks under shaping and no-shaping. Nevertheless, we have found that this
difference critically depended on two parameters used for the networks’ training: the value for the
rollout used in M. Fradera’s project was much larger than the one we have used in our experiments
(40 instead of 5). A large rollout implies that the task is more complex because more information
needs to be processed. Further, the discount factor (γ), explained in section 4.2.3, plays a key
role. In the original simulations, the γ was set to 0.99, meaning that the agent values rewards that
are received both early and late almost equally. This likely affects the way RNNs learn the stage 1,
in which they always receive a reward, with the only possible improvement of receiving it earlier.
In our simulations, we set the γ to a value of 0.1 so networks will tend to avoid any delay in the
reward.

As a consequence of simplifying the task and decreasing the rollout to a value of 5, we realized
that, in contrast to M. Fradera findings, shaping does not provide any advantage over no-shaping.
Indeed, no shaping demonstrated even better results, where networks achieved higher values for
the performance.

Figure 26: No shaping VS Shaping for rollout 40. No shaping accomplishes better performance, achieving a mean
performance of around 0.65, whereas the shaping method gets stuck in stage 1 with a performance of 0.5 (i.e. chance
level).

Networks using shaping were not able to learn. Nonetheless, making a simpler and more
elementary task changing this “learning window” to 5 let the networks learn and gradually increase
their performance.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

41

6.4.1 Importance of rollout value

To confirm the above results, we have trained the networks under no-shaping protocols with
different rollout values. We have found clear differences for no-shaping networks when trained with
5 and 40 rollouts. In order to understand how networks behave under different rollout values we
decided to train the same networks only varying this value. Therefore, in figure 27 we can see that
the higher the rollout, the less networks learn. This decrease of the learning appears in a gradual
way as the number of steps we use to update network weights increases.

Figure 27: Gradual decrease of the performance as the rollout value increases. Rollout values from 5 to 40. Boxplot
is used, where the box extends from the lower to upper quartile values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data.

6.4.2 Importance of punishment value

We have also explored how the amount of punishment affected the learning of the networks. In
section 5.1 we set punishment 0, meaning that if the agent does not decide the correct answer, the
environment will not provide any negative reward. Here, several punishment values have been
trained in order to observe how the punishment affects performance and also what is the
punishment that best represents the one given to mice.

 Shaping No shaping

Figure 28: Punishment influence for achieving final performance in shaping and no shaping protocols. In the left figure
(shaping), there is no visible pattern, whereas in the right (no shaping) the less punishment the faster the learning

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

42

For shaping, no clear results were found (Fig. 28, left). However, for no shaping, the more
punishment, the faster networks arrive at the final performance (Fig. 28, right). Hence, punishment
aids networks without shaping to learn. We can conclude that when using a not shaping protocol,
the more punishment, the faster the learning.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

43

7 Project Implementation Schedule

In the following section, I will describe in detail the tasks that were completed and its temporal
organization in order to accomplish all the objectives of this project. I also performed a GANTT
diagram shown in Table 2.

As previously said, the project duration goes from January to June 2021. However, some
preliminary work was done before. Five Coursera Deep Learning courses were taken to get basic
knowledge about the field. Moreover, some study of the previous work performed by Marta Fradera
and Tiffany Oña was accomplished.

Some tasks such as writing the memory have been overlapped throughout the time of the fulfilment
of other tasks, whereas others such as the training of the RNN requested the previous task creation
to be finished before starting. Finally, the delivery date of the final degree project was the Monday
14th June of 2021 and the oral exposition the Tuesday 22nd June of 2021. The oral exposition was
prepared the two previous weeks.

Table 2: Project implementation schedule. The accomplished tasks are organized in columns and the time dedicated
to each one is represented by months

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

44

8 Technical Feasibility

In the following section, we performed the SWOT analysis. The internal factors (strengths and
weaknesses) and the external factors (opportunities and threats) that have affected our study are
going to be described.

8.1 Technical considerations

Infrastructure, software, specialist support, and equipment needed for the performance of the
project are going to be discussed in this section.

To start with, it is important to consider that this project does not need any specific infrastructure.
Therefore, due to the current situation of COVID-19 pandemic and the previously mentioned
unnecessary presentiality of the project, we decided to accomplish it by remote working.

With respect to the software, all the needed applications, toolboxes and programs were freely
available for users. In order to obtain free access to articles and papers, I used the SIRE button,
which is a bookmarklet that allows the access of e-resources automatically through SIRE (E-
Resources Access Service) at any point during browsing. The development of this study has been
possible thanks to the NeuroGym toolbox [35], which is an open-source toolkit developed by the
director of this project, Manuel Molano, together with Robert Yang, a postdoctoral researcher from
the Center for Theoretical Neuroscience of Columbia University. Neurogym includes a series of
popular neuroscience tasks designed to make neural network training easier. All training and
analysis codes created during the execution of this project are available on GitHub [34, 35], which
is a platform frequently used to host open-source projects and it is the biggest host of source code
in the world [36].

Concerning specialist support, the evaluation of experts who have contributed in many ways has
aided this research.

Regarding equipment, the used personal laptop is a 16-inch Apple MacBook Pro with the 2.6 GHz
Intel Core i7 processor with two independent processor cores on a single chip (total 2 CPU) and 2
threads/core, 16 GB of RAM, and 512 GB storage. Though this laptop fits the necessary
requirements to accomplish the writing of the project, the development of the scripts and the data
analysis, the recommended specifications for the networks’ training make this laptop not ideal for
this task. Indeed, in the development and training of the task we faced some problems installing
several toolboxes in my laptop. These problems were solved by running the same code at Google
Collaboratory, which allows to run and program in Python in the browser without any kind of
configuration and it gives free access to GPUs and allows easy content sharing. However, Google
Collaboratory was not as efficient as we wanted and we decided to train networks from the lab’s
computer.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

45

8.2 SWOT Analysis

This section consists in a SWOT analysis of the project, which includes internal (strengths,
weaknesses) and external (opportunities, threats) aspects.

8.2.1 Strengths

- Opportunity to work in an interdisciplinary team of experts with similar experience in several
projects

- Visit the biomedical research centre CELLEX to better understand and reproduce mice
behaviour, as well as to be part of how different tasks are carried out in a laboratory

- Being able to train some part of the project via Google Collaborate from my personal laptop
accelerated the work instead of using a computer at the laboratory or at the BSC

- Using Python as computer language, because its large and robust standard library makes
it be preferred over other programming languages

- Possibility to perform work online, being able to work without problems due to COVID-19

8.2.2 Weaknesses

- Prior knowledge of deep learning and computational neuroscience was limited
- Incomplete knowledge of algorithms
- Only one shaping protocol performed in mice by Tiffany
- Small number of trained models to analyse
- Insufficient time to test hypotheses of the origin of aha moments
- Problems with installation of several packages of Python in the personal laptop

8.2.3 Opportunities

- Learn about deep learning techniques, RNNs and RL.
- Improve programming skills
- Improve teamwork
- Contribution to the Neurogym toolbox development
- Contribution to the general knowledge of data behaviour in the task

8.2.4 Threats

- Despite the growing impact of RNN modelling in neuroscience, the field is currently
obstructed by the previous knowledge of deep learning platforms, such as TensorFlow or
PyTorch, to train RNN models. This creates barriers for researchers to apply RNN
modelling to their neuroscientific questions of interest.

- Existing RNNs lack basic biological features, limiting their ability to predict animal
behaviour or neural circuit strategies.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

46

9 Economical Feasibility

In this section the theoretical costs of the project are going to be described. Several costs such as
licenses, software, hardware and staff are displayed. Then, the total cost needed to accomplish the
project has been estimated from these expenses. In order to complete this section, a presentation
of the financial resources has also been shown.

9.1 Expenses

There are no costs associated with fungible material or facilities for the construction of any system
since this project primarily involves the execution of an algorithm. Potential costs, on the other
hand, are derived from the necessary hardware for project execution, software licenses, licenses
for bibliographic study, attended conferences, tutorials performed and proportional wages for
technical workers.

The project's largest cost is related to professional personnel salaries, which are intended to cover
engineering student and project supervisor fees. Junior biomedical engineers can expect to earn
around 15€/hour, while experienced engineers can expect to earn around 20€/hour. The derived
expense from engineering student rises to 5400€ due to the project's total length of 360 hours. The
supervisor would be required to devote approximately 100 hours to the project, resulting in a total
salary of 2000€. Nevertheless, since the student performs a non-remunerated work as part of the
final degree project, this estimate is used to determine the project's expense.
Furthermore, the engineer must be adequately qualified prior to completing the project, which
requires completion of several Coursera courses. These courses include an introductory machine
learning course as well as a four-course deep learning curriculum. The cost of these courses is 43€
per course, for a total of 215 euros. On the other hand, Coursera courses have been performed
using the auditing mode, which is a free option that provides access to all lectures and assignments
but does not provide any grading or credential. Moreover, in order to achieve a deeper
understanding of RNN before training them, it is pretty useful to attend some tutorials and lectures.
For this reason, I decided to attend the Cosyne 2021 tutorial, which main topic was Recurrent
Neural Networks for Neuroscience, because we thought it could be interesting and beneficial for
the project. Therefore, the cost of this tutorial, which included one week plenty of lectures,
programming exercises and speeches, was 20$.

Secondly, the hardware used during the development of this project was a computer, which needs
some minimum requirements to fulfil deep learning tasks, such as an appropriate computer
processor. Then, the estimated cost is 1.500€.

Thirdly, the software used was Python 4.1.5 in the Spyder environment, with the consequent usage
of several Python toolboxes, such as TensorFlow, OpenAI Gym, and Stable Baselines. They are
all freeware, which means they do not come with any additional costs. Moreover, AUTOCAD for
the development of all the pictures and Excel for the Gant diagram.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

47

On the other hand, in order to achieve a deep knowledge of the field, some bibliographic research
was needed. Thus, I did some research on articles which required a paid subscription to access.
However, this payment was avoided by employing the global subscription of the University of
Barcelona.

Other costs include Internet connection, electrical power use and lighting. Even so, calculating the
total amount of costs incurred is difficult.

To summarize, in Table 3 it is shown the cost of each element mentioned above, the total final cost
was 8.916,79€. The expenses based on the type of cost are shown in Table 3, where it can be
highlighted that the vast majority of the budget of this project was spent on human resources
(83,18%). Then, hardware (16,82%) and others (0%) which include electrical power, Internet
connection or lightning are negligible compared to the costs of human resources and hardware.
Moreover, as all the software was free, it does not appear in Figure 29 either.

Table 3: Expenses based on the type of cost

Figure 29: Cost per type of cost: human resources (83,18%), hardware (16,82%) and others (0%). Software is free.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

48

9.2 Budget

The financing for this project comes from each of the participating institutions: The University of
Barcelona, where the student is enrolled, and the IDIBAPS, where the project was carried out. As
a result, the IDIBAPS Theoretical Neurobiology of Cortical Circuits research community has
expensed the project's financial problems. The University of Barcelona has covered student job
insurance due to an established academic partnership arrangement between the two institutions
and the signed placement program.

Finally, we can conclude that due to the availability of free hardware and the fact that all the work
done by the biomedical engineer was non remunerated, this project would be considered
economically available.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

49

10 Regulations and Legal Aspects

This project has been fully developed in Spain, hence the legal requirements that have been
considered are based on the Spanish legislation.

First thing to consider is that the project is based on the previous study accomplished by Tiffany Oña,
the PhD of the Cortical Circuit Dynamics group at IDIBAPS, where this final degree project also
takes place. Considering the fact that the findings were obtained from mice rather than humans,
presenting them to the current research does not require any knowledge consent.

Nevertheless, the mice studies were carried out in accordance with national and international
ethical guidelines. The Animal Experimentation Ethics Committee (Comité d'Experimentació
Animal – CEEA) of the University of Barcelona (UB) is in charge of the evaluation of
experimentation and practices with experimental animals. It was created in 1998 to comply with
Decree 214/1997 of 30 July of the Department of Agriculture, Livestock and Fisheries of the
Generalitat de Catalunya, which regulates the use of animals for experimentation and other
scientific purposes [38. Currently, it works under national rules regarding animal experiments for
research contemplated in the RD 53/2013 [39] with modifications specified in the RD 1386/2018
[40].

Regarding software, as mentioned before, all programmes and applications employed were free,
which means that they had open-source licenses, allowing all users to use, modify and share them.
The most used program in the project has been Python. The Python Software Foundation License
(PSFL) is a BSD-style, permissive free software license which is compatible with the GNU General
Public License (GPL) [41]. The GNU is a set of commonly used free software licenses that give
users the right to run, study, distribute, and change the software. Moreover, we also used
Tensorflow [42], which is licensed under Apache License 2.0 [43], a free software license
compatible with version 3 of the GNU General Public License. It is a permissive license whose
main conditions require the preservation of copyright and license notices.
Furthermore, Github repositories were used everyday to share information due to the online
conditions. Github is an Internet hosting company that specializes in software development and Git
version control. It provides access control and several collaboration features such as bug tracking,
feature requests, task management, continuous integration and wikis for every project.
Furthermore, used GitHub repositories include Stable Baselines [44] and NGym [45], both under
the MIT license [46].

In addition, the project's implemented DR task is part of the NeuroGym toolkit, which was created
under an MIT license that allows commercial use, modification, distribution, and private use with
the only condition of copyright and license notice preservation.

As a result, other researchers will have total access to the current work, inviting them to collaborate
and allowing others to expand on it. For this reason, this work aims to contribute to scientific
development by sharing all developed code as part of the open science platform.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

50

11 Conclusions and future work
After analysing mice behaviour, we have seen that according to the shaping protocol used, the path
followed by mice shows a smooth transition between different levels of complexity. However, the
speed at which mice learn to categorize the stimulus varies greatly among subjects. In spite
of this gradual learning, these small steps or little units of learning that are irreducible, called aha
moments, must exist. Analysing them, we have found that most mice (88,8%) undergo these
experiences, and the majority of them (60%) undergo several aha moments in a single training.
Despite trying to understand the origin of the aha moments, the balance between right and left side
trials, previous and during the aha moments, do not seem to be correlated to them.

Regarding RNNs trained with the same shaping protocol used with mice, RNNs behavior seem to
be qualitatively similar to that of mice but evolves at a much longer timescale. Moreover,
mice behavior is much more unstable, so when experiencing aha moments they present sharper
performance changes than networks.

On the other hand, in order to examine the influence of shaping in networks, we have performed
the same task without following a shaping protocol. As a result, we have found that shaping only
seems to be useful for some parameter configurations. Therefore, when shaping is not used,
the learning of the task is much slower when the networks need to process information about events
happening very far in the past (rollout >> 1). Besides, increasing the punishment when the RNNs
make a mistake seems to help the learning of the full task.

The methodology developed in the work, especially the aha moment identification, could be applied
to other animal paradigms and be adapted to study how humans acquire specific knowledge. The
shaping protocol that I have developed to train RNNs is an important step to create more natural
protocols to help neural networks to smoothly learn complex tasks. In the future it will be interesting
to study whether learning in humans follows dynamics similar to the ones I described for mice.
One important difference between humans and mice is that the latter can acquire information
verbally, which introduces a whole new level of complexity.

All in all, we can say that most of the initial study hypotheses have been validated. Even though,
future work focused on the origin of the aha moments must be performed. Further research should
concentrate on examining more elaborated patterns before and during the aha, exploring more
parameters of the aha moment, and understanding why networks’ performance is not perfect.
Moreover, the focus of future research should also concentrate on adapting algorithm parameters,
particularly in terms of regularization and exploration, in order to produce an artificial model that is
more similar to biological brain circuits.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

51

References

[1] Meyerholz, D.K., Beck, A.P. & Singh, B. Innovative use of animal models to advance scientific
research. Cell Tissue Res 380, 205–206 (2020). https://doi.org/10.1007/s00441-020-03210-z

[2] Rubin, N., Nakayama, K., & Shapley, R. (1997). Abrupt learning and retinal size specificity in
illusory-contour perception. Current Biology, 7(7), 461–467.
https://doi.org/https://doi.org/10.1016/S0960-9822(06)00217-X

[3] Stuyck, H., Aben, B., Cleeremans, A., & Van den Bussche, E. (2021). The Aha! moment: Is
insight a different form of problem solving? Consciousness and Cognition, 90, 103055.
https://doi.org/https://doi.org/10.1016/j.concog.2020.103055

[4] Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training
effective? Psychological Bulletin, 138(4), 628–654. https://doi.org/10.1037/a0027473

[5] B. Alan, "Working memory: looking back and looking forward," Nature Reviews Neuroscience,
vol. 4, no. 10, p. 829, 2003, doi: 10.1038/nrn1201.

[6] Molano-Mazon, M., Duque, D., Yang, G. R., & de la Rocha, J. (2021). Pre-training RNNs on
ecologically relevant tasks explains sub-optimal behavioral reset. BioRxiv, 2021.05.15.444287.
https://doi.org/10.1101/2021.05.15.444287

[7] Cosyne 2021 tutorial. Topic: Recurrent Neural Networks for Neuroscience
http://www.cosyne.org/c/index.php?title=Tutorial_2021

[8] Peterson GB. A day of great illumination: B. F. Skinner's discovery of shaping. J Exp Anal Behav.
2004;82:317–328.

[9] Lind, J., Ghirlanda, S., & Enquist, M. (2009). Insight learning or shaping? Proceedings of the
National Academy of Sciences of the United States of America, 106(28), E76–E77.
https://doi.org/10.1073/pnas.0906120106

[10] Guo, Z. V, Hires, S. A., Li, N., O’Connor, D. H., Komiyama, T., Ophir, E., Huber, D., Bonardi,
C., Morandell, K., Gutnisky, D., Peron, S., Xu, N., Cox, J., & Svoboda, K. (2014). Procedures for
Behavioral Experiments in Head-Fixed Mice. PLOS ONE, 9(2), e88678.
https://doi.org/10.1371/journal.pone.0088678

[11] Chein, J. M., Weisberg, R. W., Streeter, N. L., & Kwok, S. (2010). Working memory and insight
in the nine-dot problem. Memory & Cognition, 38, 883–892. doi:10.3758/MC.38.7.883

[12] Chronicle, E. P., MacGregor, J. N., & Ormerod, T. C. (2004). What makes an insight problem?
The roles of heuristics, goal concep- tion, and solution recoding in knowledge-lean problems.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

52

Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 14–27.
doi:10.1037/0278-7393.30.1.14

[13]Weisberg, R. W., & Alba, J. W. (1981). An examination of the alleged role of "fixation" in the
solution of several "insight" problems. Journal of Experimental Psychology: General, 110(2), 169–
192. https://doi.org/10.1037/0096-3445.110.2.169

[14] Weisberg, R. (1986). A series of books in psychology.Creativity: Genius and other myths. W
H Freeman/Times Books/ Henry Holt & Co.

[15] Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Journal
of the American Podiatry Association (Vol. 60). https://doi.org/10.1145/1553374.1553380

[16] Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus:
computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of
the Royal Society B: Biological Sciences, 362(1485), 1601–1613.
https://doi.org/10.1098/rstb.2007.2055

[17] O’Reilly, R. C., & Frank, M. J. (2006). Making Working Memory Work: A Computational Model
of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation, 18(2), 283–328.
https://doi.org/10.1162/089976606775093909

[18] Krueger, K. A., & Dayan, P. (2009). Flexible shaping: How learning in small steps helps.
Cognition, 110(3), 380–394. https://doi.org/https://doi.org/10.1016/j.cognition.2008.11.014

[19] Graves, A., Bellemare, M. G., Menick, J., Munos, R., & Kavukcuoglu, K. (2017). Automated
Curriculum Learning for Neural Networks. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th
International Conference on Machine Learning (Vol. 70, pp. 1311–1320). PMLR.
http://proceedings.mlr.press/v70/graves17a.html

[20] Song, H. F., Yang, G. R., & Wang, X.-J. (2016). Training Excitatory-Inhibitory Recurrent Neural
Networks for Cognitive Tasks: A Simple and Flexible Framework. PLOS Computational Biology,
12(2), e1004792. https://doi.org/10.1371/journal.pcbi.1004792

[21] Belkaid, M., Bousseyrol, E., Durand-de Cuttoli, R., Dongelmans, M., Duranté, E. K., Ahmed
Yahia, T., Didienne, S., Hanesse, B., Come, M., Mourot, A., Naudé, J., Sigaud, O., & Faure, P.
(2020). Mice adaptively generate choice variability in a deterministic task. Communications Biology,
3(1), 34. https://doi.org/10.1038/s42003-020-0759-x

[22] Ehrlich DB, Stone JT, Brandfonbrener D, Atanasov A, Murray JD. PsychRNN: An Accessible
and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive
Tasks. eNeuro. 2021;8(1):ENEURO.0427-20.2020. Published 2021 Jan 15.
doi:10.1523/ENEURO.0427-20.2020

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

53

[23] Sumant Ugalmugle, Rupali Swain: Animal Model Market size worth over $25 Bn by 2026.
Published November 6, 2020

[24] Dymecki SM, Kim JC (2007) Molecular neuroanatomy's “Three Gs”: a primer. Neuron 54: 17–
34.

[25] Francis, N. A., & Kanold, P. O. (2017). Automated Operant Conditioning in the Mouse Home
Cage. Frontiers in Neural Circuits, 11, 10. https://doi.org/10.3389/fncir.2017.00010

[26] Animal Model Market Forecast, Trend Analysis & Competition Tracking - Global Market
insights 2017 to 2026. Published Aug-2018

[27] Miriam A. Zemanova, More Training in Animal Ethics Needed for European
Biologists, BioScience, Volume 67, Issue 3, March 2017, Pages 301–
305, https://doi.org/10.1093/biosci/biw177

[28] Mice Model Market by Mice Type (Inbred, Knockout), Technology (CRISPR, TALEN, ZFN),
Application (Oncology, Diabetes, Immunology), Service (Breeding, Cryopreservation, Genetic
testing), Care Products (Cages, Bedding, Feed), Region - Global Forecast to 2025

[29] Bovenkerk, B., & Kaldewaij, F. (2015). The Use of Animal Models in Behavioural Neuroscience
Research. In G. Lee, J. Illes, & F. Ohl (Eds.), Ethical Issues in Behavioral Neuroscience (pp. 17–
46). Springer Berlin Heidelberg. https://doi.org/10.1007/7854_2014_329

[30] Gu, Quan, Lu, Na, and Liu, Lin. ‘A Novel Recurrent Neural Network Algorithm with Long Short-
term Memory Model for Futures Trading’. 1 Jan. 2019 : 4477 – 4484.

[31] De Mulder, W., Bethard, S., & Moens, M.-F. (2015). A survey on the application of recurrent
neural networks to statistical language modeling. Computer Speech & Language, 30(1), 61–98.
https://doi.org/https://doi.org/10.1016/j.csl.2014.09.005

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[33] Tallec, C., & Ollivier, Y. (2017). Unbiasing Truncated Backpropagation Through Time.
http://arxiv.org/abs/1705.08209

[34] Manuel Molano Leyre Azcárate. Cvlearning repository. https://github.com/manuelmolano/CV-
Learning, 2021.

[35] Manuel Molano Leyre Azcárate. ngym_shaping repository.
https://github.com/manuelmolano/ngym_shaping, 2021.

[36] Manuel Molano and Guangyu Robert Yang. Neurogym. https://github.com/gyyang/

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

54

neurogym, 2020.

[37] Animal Model Market Forecast, Trend Analysis & Competition Tracking - Global Market
insights 2017 to 2026. Published Aug-2018

[38] Universitat de Barcelona. Comitè ètic d’experimentació animal. http://ub.edu/ceea/.

[39] Ministerio de la Presidencia. Real decreto 53/2013, de 1 de febrero, por el que se establecen
las normas básicas aplicables para la protección de los animales utilizados en experimentación y
otros fines científicos, incluyendo la docencia. Boletín Oficial del Estado, 34:11370–11421, 2013.

[40] Ministerio de la Presidencia. Real decreto 1386/2018, de 19 de noviembre, por el que se
modifica el real decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas
aplicables para la protección de los animales utilizados en experimentación y otros fines científicos,
incluyendo la docencia. Boletín Oficial del Estado, 280:112804–112806, 2018.

[41] GNU Operating System. Gnu general public license. https://gnu.org/licenses/
gpl-3.0.en.html.

[42] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[43] Apache. Apache license, version 2.0. https://www.apache.org/licenses/LICENSE-2.0.

[44] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[45] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[46] GitHub. Mit license. https://choosealicense.com/licenses/mit/#.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

55

Appendix:

Mice analysis:

Though the Python code developed is more extensive, the most representative parts are included
below. However, the generated script can be found in the CV-Learning GitHub repository under the
name of ‘mice_behav_analysis.py’.

Manuel Molano Leyre Azcárate. Cvlearning repository. https://github.com/manuelmolano/CV-
Learning, 2021.

FUNCTIONS TO OBTAIN VARIABLES

def accuracy_trials_subj_stage4(df, subj, stg=None, conv_w=50):
 """
 Find accuracy values, number of sessions in each stage and color for each
 stage.

 Parameters

 df : dataframe
 dataframe containing data.
 subj : str
 subject (each mouse).

 Returns

 For each mouse, it returns a list of the accuracies, a list of the
 sessions in each stage and a list with the colors of each stage.

 """
 # find accuracy values for each subject (hithistory takes the values 0/1)
 hit_raw = df.loc[df['subject_name'] == subj, 'wronglickhistory'].values
 # convolve it in order to get smooth values
 hit = np.convolve(hit_raw, np.ones((conv_w,))/conv_w, mode='valid')
 # find all the stages of the subject
 if stg is None:
 stg = df.loc[df['subject_name'] == subj, 'new_stage'].values

 # create the extremes (a 0 at the beggining and a 1 at the ending)
 stg_exp = np.insert(stg, 0, stg[0]-1) # extended stages
 stg_exp = np.append(stg_exp, stg_exp[-1]+1)
 stg_diff = np.diff(stg_exp) # change of stage
 stg_chng = np.where(stg_diff != 0)[0] # index where stages change
 # We go over indexes where stage changes and plot chunks from ind_t-1
 # to ind_t
 hit_list = [] # list for accuracy
 xs_list = [] # list for the x axis
 stage_list = [] # list for the stages
 # iterate every stage to fill the lists
 for i_stg in range(1, len(stg_chng)):
 stage_list.append(stg_exp[stg_chng[i_stg-1]+1]-1)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

56

 # HINT: xs will be larger than accs at i_stg == len(stg_cng). We need
 # this bc we will use xs in create_... fns to assign stages to trials.
 xs = range(stg_chng[i_stg-1], min(stg_chng[i_stg]+1, len(hit)+1))
 hits = hit[stg_chng[i_stg-1]:min(stg_chng[i_stg]+1, len(hit)+1)]
 hit_list.append(hits)
 xs_list.append(xs)
 return hit_list, xs_list, stage_list

def accuracy_at_stg_change_trials(df, subj_unq, prev_w=10, nxt_w=10,
conv_w=10):
 """
 The function returns the mean and standard deviation of the changes
 from a stage to another.

 Parameters

 df : dataframe
 dataframe containing data.
 subj_unq : numpy.ndarray
 array of strings with the name of all the subjects
 prev_w: int
 previous window size (default value:10)
 nxt_w: int
 previous window size (default value:10)

 Returns

 Mean and standard deviation of each subject

 """
 mat_perfs = {}
 for i_s, sbj in enumerate(subj_unq):
 acc = df.loc[df['subject_name'] == sbj, 'hithistory'].values
 if conv_w > 0:
 accur_conv = np.convolve(acc, np.ones((conv_w,))/conv_w,
 mode='same')
 else:
 accur_conv = acc
 stg = df.loc[df['subject_name'] == sbj, 'new_stage'].values
 # create the extremes (a 0 at the beggining and a 1 at the ending)
 stg_diff = np.diff(stg) # change of stage
 stg_chng = np.where(stg_diff != 0)[0] # index where stages change
 # We go over indexes where stage changes and plot chunks from ind_t-1
 # to ind_t
 for i_stg in range(len(stg_chng)):
 # color = stg_exp[stg_chng[i_stg-1]+1]-1
 stg_prev = stg[stg_chng[i_stg]] # get stage before the change
 stg_nxt = stg[stg_chng[i_stg]+1] # get stage after the change
 assert stg_prev != stg_nxt, 'stages are supposed to be different'
 key = str(stg_prev)+'-'+str(stg_nxt) # e.g. 1-2
 if key not in mat_perfs.keys():
 mat_perfs[key] = []
 # build chunk
 i_previo = max(0, stg_chng[i_stg]-prev_w)
 i_next = stg_chng[i_stg]+nxt_w
 chunk = -min(0, stg_chng[i_stg]-prev_w)*[np.nan] +\
 accur_conv[i_previo:i_next].tolist() +\
 max(0, i_next-len(acc))*[np.nan]
 # add chunk to the dictionary

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

57

 mat_perfs[key].append(chunk)
 # dictionary of the mean of the performance
 mat_mean_perfs = {}
 # dictionary of the standard deviation of the performace
 mat_std_perfs = {}
 # list of the number of samples of each change of stage
 number_samples = []
 for key in mat_perfs.keys():
 number_samples.append(len(mat_perfs[key])) # save number of samples
 assert np.std([len(p) for p in mat_perfs[key]]) == 0
 mat_mean_perfs[key] = np.nanmean(np.array(mat_perfs[key]), axis=0)
 sqrt_n_smpls = np.sqrt(np.array(mat_perfs[key]).shape[0])
 mat_std_perfs[key] =\
 np.nanstd(np.array(mat_perfs[key]), axis=0)/sqrt_n_smpls
 return mat_mean_perfs, mat_std_perfs, number_samples

def create_motor_column(df, df_prms, subject):
 """
 Creation of an extra column for the motor variable in df_trials from the
 motor data found in df_params

 Parameters

 df : dataframe
 data of trials
 df : dataframe
 data of sessions
 subject: str
 subject chosen

 Returns

 Dataframe with an extra column

 """
 # obtain values of the motor values in df_trials
 motor = df_prms.loc[df_prms['subject_name'] == subject, 'motor'].values
 # obtain values of the indexes and motor stages of the df_params
 _, indx_mstg, mot_stg = accuracy_sessions_subj(df=df_prms, subj=subject,
 stg=motor)
 df_ss = df.loc[df.subject_name == subject, ['session']]
 sess_unq = np.unique(df_ss)
 trial_sess = np.zeros_like(df_ss).flatten()
 for ss in sess_unq:
 aux = [i_x for i_x, x in enumerate(indx_mstg) if ss in x][0]
 indx = np.where(df_ss == ss)[0] # find where the sessions of both
 # datasets are the same
 trial_sess[indx] = mot_stg[aux]+1 # sessions are index+1
 df_trials_subject = df.loc[df.subject_name == subject]
 df_trials_subject['motor_stage'] = trial_sess
 return df_trials_subject

def find_events(df_tr, subj, event):
 """
 The function returns the day in which the subject had an event

 Parameters

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

58

 df_tr : dataframe
 dataframe containing data.
 subj : string
 subject
 event: string
 mice event

 Returns

 Index in which this event happens

 """
 # take only 8 first digits of date, discarding exact time
 # alternatively, find index of events in dates
 index = np.where(df_tr.subject_name == subj)[0]
 dates = [x[:8] for x in df_tr['date'][index].values]
 index = np.where(np.array(dates) == md.events_dict[subj][event])[0]
 if len(index) > 0:
 index = index[0]
 else:
 index = -1
 return index

def learned_categories(sbj, df, index_event=None, color_ev='', verbose=True,
 figsize=(8, 4), ax=None, plt_sess=True, stage=1):
 """
 The function plots accuracy over trials for every subject, showing
 the stages the mice are in different colors.
 Parameters

 sbj : string
 Subject (each mouse)
 df : dataframe
 data
 color : list
 list of colors corresponding to the stage.
 Returns

 The plot of accuracy over trial for every subject.
 """
 def get_trial_info(df, subj):
 """
 Get relevant data trial by trial.

 Parameters

 df : dataframe
 dataframe containing data.
 subj : str
 subject (each mouse).

 Returns

 For each mouse, it returns a list of the accuracies, the ground-truth
sides
 the sessions in each stage and the colors of each stage.

 """

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

59

 # find accuracy values for each subject (hithistory takes the values
0/1)
 hit = df.loc[df['subject_name'] == subj, 'wronglickhistory'].values
 # find all the stages of the subject
 stg = df.loc[df['subject_name'] == subj, 'new_stage'].values
 # find all the stages of the subject
 gt = df.loc[df['subject_name'] == subj, 'reward_side'].values
 # create the extremes (a 0 at the beggining and a 1 at the ending)
 stg_exp = np.insert(stg, 0, stg[0]-1) # extended stages
 stg_exp = np.append(stg_exp, stg_exp[-1]+1)
 stg_diff = np.diff(stg_exp) # change of stage
 stg_chng = np.where(stg_diff != 0)[0] # index where stages change
 # We go over indexes where stage changes and plot chunks from ind_t-1
 # to ind_t
 hit_list = [] # list for accuracy
 xs_list = [] # list for the x axis
 stage_list = [] # list for the stages
 gt_list = [] # list for the stages
 # iterate every stage to fill the lists
 for i_stg in range(1, len(stg_chng)):
 stage_list.append(stg_exp[stg_chng[i_stg-1]+1]-1)
 # HINT: xs will be larger than accs at i_stg == len(stg_cng). We
need
 # this bc we will use xs in create_... fns to assign stages to
trials.
 xs = range(stg_chng[i_stg-1], min(stg_chng[i_stg]+1, len(hit)+1))
 hits = hit[stg_chng[i_stg-1]:min(stg_chng[i_stg]+1, len(hit)+1)]
 gts = gt[stg_chng[i_stg-1]:min(stg_chng[i_stg]+1, len(hit)+1)]
 hit_list.append(hits)
 xs_list.append(xs)
 gt_list.append(gts)
 return hit_list, xs_list, stage_list, gt_list

 hit_sbj, xs_sbj, color_sbj, gt_sbj = get_trial_info(df, subj=sbj)
 hit_sbj = hit_sbj[color_sbj == stage-1]
 # LEARNING TIME
 learn_data = {'learned': [], 'ev_not_l': [], 'ev_l': []}
 learn_data = arl.learned(perf=hit_sbj, learn_data=learn_data,
 verbose=verbose)
 if verbose:
 name = sbj
 for k in learn_data:
 name += k+': '+str(learn_data[k])
 plt.title(name)
 f = plt.gcf()
 sv_fig(f=f, name=sbj+'_learned')

 # AHA-MOMENTS
 gt_sbj = gt_sbj[color_sbj == stage-1]
 stg_mat = np.ones_like(hit_sbj)
 aha_data = {'aha_mmts': [], 'prev_prfs': [], 'post_prfs': [],
 'gt_patterns': [], 'perf_patterns': [], 'prob_right': [],
 'prob_right_aha': []}
 aha_data = arl.get_ahas(stage=stg_mat, perf=hit_sbj, gt=gt_sbj,
 aha_data=aha_data, verbose=verbose)
 if verbose:
 plt.title(sbj+' number of ahas: '+str(len(aha_data['aha_mmts'])))
 f = plt.gcf()
 sv_fig(f=f, name=sbj+'_aha_mmnts')

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

60

 return learn_data, aha_data

FUNCTIONS TO PLOT

def plot_accuracy_trials_coloured_stage4(sbj, df, index_event=None,
color_ev='',
 figsize=(8, 4), ax=None,
plt_sess=True):
 """
 The function plots accuracy over trials for every subject, showing
 the stages the mice are in different colors.
 Parameters

 sbj : string
 Subject (each mouse)
 df : dataframe
 data
 color : list
 list of colors corresponding to the stage.
 Returns

 The plot of accuracy over trial for every subject.
 """
 save_fig = False
 if ax is None:
 f, ax = plt.subplots(figsize=figsize)
 save_fig = True
 hit_sbj, xs_sbj, color_sbj = accuracy_trials_subj_stage4(df, subj=sbj)
 for i_chnk, chnk in enumerate(hit_sbj):
 # iterate for every chunk, to paint the stages with different colors
 # HINT: see accuracy_sessions_... fn for an explanation fo why xs can
 # be larger than acc
 ax.plot(xs_sbj[i_chnk][:len(hit_sbj[i_chnk])], hit_sbj[i_chnk],
 color=COLORS[color_sbj[i_chnk]])
 ax.set_title("Accuracy by trials of subject taking into" +
 " account misses (" + sbj+")")
 ax.set_xlabel('Trials')
 ax.set_ylabel('Accuracy')
 ax.legend(['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4'],
 loc="center right", # Position of legend
 borderaxespad=0.1, # Small spacing around legend box
 title='Color legend')
 if save_fig:
 sv_fig(f=f, name='acc_acr_tr_subj_'+sbj)

def plot_final_acc_session_subj_stage4(subj_unq, df_trials, figsize=(8, 4),
 conv_w=200):
 """
 The function plots accuracy over session for all the subjects.

 Parameters

 subj_unq : numpy.ndarray
 array of strings with the name of all the subjects

 Returns

 Plot of accuracy by session for every subject.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

61

 """
 fig, ax = plt.subplots(nrows=3, ncols=6, figsize=figsize,
 gridspec_kw={'wspace': 0.5, 'hspace': 0.5})
 # leave some space between two figures, wspace is the horizontal gap and
 # hspace is the vertical gap
 ax = ax.flatten()
 # plot a subplot for each subject
 for i_s, sbj in enumerate(subj_unq):
 hit_sbj, xs_sbj, color_sbj = accuracy_trials_subj_stage4(df=df_trials,
 subj=sbj,

conv_w=conv_w)
 plot_accuracy_trials_subj_stage4(hit=hit_sbj, xs=xs_sbj,
col=color_sbj,
 ax=ax[i_s], subj=sbj)
 fig.suptitle("Accuracy VS trials", fontsize="x-large")
 lines = [obj for obj in ax[0].properties()['children'] # all objs in
ax[0]
 if isinstance(obj, matplotlib.lines.Line2D) # that are lines
 and obj.get_linestyle() != '--'] # that are not dashed
 fig.legend(lines, ['Stage 1', 'Stage 2', 'Stage 3',
 'Stage 4'],
 loc="center right", # Position of legend
 borderaxespad=0.1, # Small spacing around legend box
 title='Color legend')
 sv_fig(fig, 'Accuracy VS trials with 3.1 stage')

def plot_means_std(means, std, list_samples, prev_w=10, nxt_w=10,
 figsize=(6, 4)):
 """
 Plot mean and standard deviation from the accuracies of each state of each
 mouse.

 Parameters

 means : dict
 dictionary containing all the stage changes (e.g. '1-2', '2-3'...) and
 the accuracies associated to each change.
 std : dict
 dictionary containing all the stage changes (e.g. '1-2', '2-3'...) and
 the standard deviations associated to each change.
 prev_w: int
 previous window size (default value:10)
 nxt_w: int
 previous window size (default value:10)

 Returns

 Plot of the mean and standard deviation of each stage for all the subjects

 """
 if len(means) == 5:
 fig, ax = plt.subplots(nrows=2, ncols=3, figsize=figsize,
 gridspec_kw={'wspace': 0.5, 'hspace': 0.5})
 elif len(means) == 8:
 fig, ax = plt.subplots(nrows=2, ncols=4, figsize=figsize,
 gridspec_kw={'wspace': 0.5, 'hspace': 0.5})

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

62

 ax = ax.flatten()
 fig.suptitle('Mean Accuracy of changes', fontsize='x-large')
 xs = np.arange(-prev_w, nxt_w)
 for i_k, (key, val) in enumerate(means.items()):
 ax[i_k].errorbar(xs, val, std[key], label=key)
 ax[i_k].set_ylim(0.5, 1)
 ax[i_k].set_title(key + ' (N='+str(list_samples[i_k])+')')
 ax[i_k].axvline(0, color='black', linestyle='--')
 # Hide the right and top spines
 ax[i_k].spines['right'].set_visible(False)
 ax[i_k].spines['top'].set_visible(False)
 # Only show ticks on the left and bottom spines
 ax[i_k].yaxis.set_ticks_position('left')
 ax[i_k].xaxis.set_ticks_position('bottom')
 if len(means) == 5:
 if i_k in [0, 3]:
 ax[i_k].set_ylabel('Mean accuracy')
 if i_k in [3, 4]:
 ax[i_k].set_xlabel('Sessions after stage change')
 elif len(means) == 8:
 if i_k in [0, 4]:
 ax[i_k].set_ylabel('Mean accuracy')
 if i_k in [4, 5, 6, 7]:
 ax[i_k].set_xlabel('Trials after stage change')
 if len(means) == 5:
 sv_fig(fig, 'Mean Accuracy of changes for 3 stages')
 elif len(means) == 8:
 sv_fig(fig, 'Mean Accuracy of changes for 4 stages')

def plot_trials_subj(df, subject, df_sbj_perf, ax=None, conv_w=200,
 figsize=None):
 """
 Plots for each subject all hithistory variables (true/false),
 which describe the success of the trial.

 Parameters

 df : dataframe
 data
 subject: str
 subject chosen
 df_sbj_perf: dataframe
 performance of each subject
 ax: None
 axes
 conv_w: int
 window used to smooth (convolving) the accuracy (default 200)

 Returns

 Plots a figure of the performance of the subject along trials

 """
 if ax is None:
 f, ax = plt.subplots(figsize=figsize)
 # plot the convolution of the performance of each subject
 ax.plot(np.convolve(df_sbj_perf, np.ones((conv_w,))/conv_w, mode='valid'))
 ax.set_title("Accuracy by trials of subject" + subject)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

63

 ax.set_xlabel('Trials')
 ax.set_ylabel('Accuracy (Hit: True or False)')
 session = df.loc[df['subject_name'] == subject, 'session'].values
 # create the extremes (a 0 at the beggining and a 1 at the ending)
 ses_diff = np.diff(session) # find change of stage
 ses_chng = np.where(ses_diff != 0)[0] # find where is the previous change
 # plot a vertical line for every change os session
 for i in ses_chng:
 ax.axvline(i, color='black')

Networks analysis:

Though the Python code developed is more extensive, the most representative parts are included
below. However, the generated scripts can be found in the CV-Learning GitHub repository under
the names of ‘analysis_rl.py’ and ‘example_neurogym_rl.py’.

Manuel Molano Leyre Azcárate. Cvlearning repository. https://github.com/manuelmolano/CV-
Learning, 2021.

def data_extraction(folder, metrics, w_conv_perf=500, conv=[1, 0]):
 """ Extract data saved during training.
 metrics: dict containing the keys of the data to load extracted.
 conv: list of the indexes of the metrics to convolve."""
 # load all data from the same folder
 data = put_together_files(folder)
 data_flag = True
 if data:
 # extract each of the metrics
 for ind_k, k in enumerate(metrics.keys()):
 if k in data.keys():
 metric = data[k]
 if conv[ind_k]:
 mean = np.convolve(metric,
 np.ones((w_conv_perf,))/w_conv_perf,
 mode='valid')
 else:
 mean = metric
 else:
 mean = []
 metrics[k].append(mean)
 else:
 print('No data in: ', folder)
 data_flag = False
 return metrics, data_flag

def learned(perf, learn_data, verbose=True, **params):
 """Do a smoothing (np.convolve) with a very long window.
 Make a histogram with the values of the resulting factor to see if
 You get 2 "mountains": chance and learned performance.
 Establish a threshold from that histogram.
 Find all values below / above thresholds
 Measure the minimum distance between the periods.

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

64

 """
 def get_event(trace, frst_lst):
 dwn_idx = np.where(np.diff(trace) < 0)[0]
 up_idx = np.where(np.diff(trace) > 0)[0]
 ev = None
 if frst_lst == 'first' and len(dwn_idx) > 0:
 ev = dwn_idx[0] if (dwn_idx[0] < up_idx).all() else None
 elif frst_lst == 'last' and len(up_idx) > 0:
 ev = up_idx[-1] if (up_idx[-1] > dwn_idx).all() else None
 return ev
 learn_dic_def = {'w_perf': 500, 'perf_bef_aft': [.6, .75]}
 learn_dic_def.update(params)
 w_perf = learn_dic_def['w_perf']
 perf_bef_aft = learn_dic_def['perf_bef_aft']
 perf_conv = np.convolve(perf, np.ones((w_perf,))/w_perf, mode='valid')

 not_learned = 1*(perf_conv < perf_bef_aft[0])
 ev_not_l = get_event(trace=not_learned, frst_lst='first')
 learned = 1*(perf_conv > perf_bef_aft[1])
 ev_l = get_event(trace=learned, frst_lst='last')
 if verbose:
 f, ax = plt.subplots(1, 1, figsize=(5,4))
 ax.plot(perf_conv, label='Performance')
 ax.plot([ev_not_l, ev_not_l], [0, 1], 'c', label='Start of learning
period')
 ax.plot([ev_l, ev_l], [0, 1], 'm', label='End of learning period')
 ax.spines['right'].set_visible(False)
 ax.spines['top'].set_visible(False)
 ax.axhline(y=perf_bef_aft[0], color='c', linestyle='--')
 ax.axhline(y=perf_bef_aft[1], color='m', linestyle='--')
 ax.set_ylim(0.4,1)
 ax.set_xlabel('Trials')
 ax.set_ylabel('Mean performance')
 ax.legend(loc='upper left')
 learned = False if (ev_l is None or ev_not_l is None or ev_l <= ev_not_l)\
 else True
 learn_data['learned'].append(learned)
 learn_data['ev_not_l'].append(ev_not_l)
 learn_data['ev_l'].append(ev_l)
 return learn_data

def learning(folder, learn_data={}, verbose=True, conv=[1], **aha_dic):
 """ Extract data saved during training. metrics: dict containing
 the keys of the data to loaextractd.
 conv: list of the indexes of the metrics to convolve."""
 data = put_together_files(folder) # load all data from the same folder
 data_flag = True
 if data:
 # extract each of the metrics
 if 'real_performance' in data.keys():
 perf = data['real_performance']
 stage = data['stage']
 perf = perf[stage == 1]
 learn_data = learned(perf=perf, learn_data=learn_data,
 **aha_dic)
 else:
 if verbose:
 print('No data in: ', folder)
 data_flag = False

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

65

 return learn_data, data_flag

def get_ahas(stage, perf, gt, aha_data, verbose=True, **aha_dic):
 """Find aha moments when all the requirements are fulfilled and
 plot them"""
 ahas_dic_def = {'w_ahas': 10, 'w_perf': 100,
 'bef_aft_diff': 0.2, 'aha_th': 0.75, 'w_explore': 10}
 ahas_dic_def.update(aha_dic)
 prob_right = 0
 w_ahas = ahas_dic_def['w_ahas']
 w_perf = ahas_dic_def['w_perf']
 perf_th = ahas_dic_def['aha_th']
 bef_aft_diff = ahas_dic_def['bef_aft_diff']
 w_explore = ahas_dic_def['w_explore']
 no_shaping = len(np.unique(stage)) == 1 and 4 in stage
 if 1 in stage or no_shaping:
 indx = stage == 4 if no_shaping else stage == 1
 perf_stg_1 = perf[indx]
 gt = gt[indx]
 ahas = np.convolve(perf_stg_1, np.ones((w_ahas,))/w_ahas,
 mode='valid')
 perf = np.convolve(perf_stg_1, np.ones((w_perf,))/w_perf,
 mode='valid')
 if verbose:
 plt.figure(figsize=(4,3))
 # plt.title(folder)
 # plt.plot(perf_stg_1, '-+')
 plt.plot(ahas, '-+', label='Performance window = 10')
 plt.plot(perf, label='Performance window = 100')
 plt.legend()
 plt.xlabel('Trials')
 plt.ylabel('Mean performance')
 # plt.plot(np.convolve(perf_stg_1, np.ones((500,))/500,
 # mode='valid'))
 aha_indx = np.where(ahas > perf_th)[0]
 min_num_trs = 100
 aha_indx = aha_indx[aha_indx < len(perf_stg_1)-min_num_trs]
 aha_indx = aha_indx[aha_indx > min_num_trs]
 if len(aha_indx) > 0:
 prev_ai = -10e6
 for a_i in aha_indx:
 prev_perf = np.mean(perf_stg_1[a_i-w_perf:a_i])
 post_perf = np.mean(perf_stg_1[a_i+w_ahas:
 a_i+w_ahas+w_perf])
 aha_data['prev_prfs'].append(prev_perf)
 aha_data['post_prfs'].append(post_perf)
 # if verbose:
 # plt.plot([a_i, a_i], [0, 1], '--m', lw=0.5)
 if prev_perf <= post_perf - bef_aft_diff and a_i >
prev_ai+w_perf:
 prev_ai = a_i
 aha_data['aha_mmts'].append(a_i)

 if verbose:
 plt.plot([a_i, a_i], [0, 1], '--k', lw=2)
 print('AHA MOMENT')
 print(gt[a_i-w_perf:a_i+w_ahas+w_perf])
 print('**')

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

66

 aha_data['gt_patterns'].append(gt[a_i-w_perf:
 a_i+w_ahas+w_perf])
 aha_data['perf_patterns'].append(perf_stg_1[a_i-w_perf:

a_i+w_ahas+w_perf])
 # find probabilities of right before the aha window
 right_number = np.sum(gt[a_i-w_explore:a_i] == 1)
 prob_right = right_number/w_explore
 aha_data['prob_right'].append(prob_right)
 # find probabilities of right during the aha window
 right_number = np.sum(gt[a_i:a_i+w_ahas] == 1)
 prob_right = right_number/w_ahas
 aha_data['prob_right_aha'].append(prob_right)

 return aha_data

def aha_moment(folder, aha_data={}, verbose=True, conv=[1], **aha_dic):
 """ Extract data saved during training. metrics: dict containing
 the keys of the data to loaextractd.
 conv: list of the indexes of the metrics to convolve."""
 data = put_together_files(folder) # load all data from the same folder
 data_flag = True
 if data:
 # extract each of the metrics
 if 'real_performance' in data.keys():
 perf = data['real_performance']
 stage = data['stage']
 gt = data['gt']
 aha_data = get_ahas(stage=stage, perf=perf, gt=gt,
aha_data=aha_data,
 **aha_dic)
 else:
 if verbose:
 print('No data in: ', folder)
 data_flag = False
 return aha_data, data_flag

def get_tag(tag, file):
 """Process name"""
 f_name = ntpath.basename(file)
 assert f_name.find(tag) != -1, 'Tag '+tag+' not found in '+f_name
 val = f_name[f_name.find(tag)+len(tag)+1:]
 val = val[:val.find('_')] if '_' in val else val
 return val

def perf_hist(metric, ax, index, trials_day=300):
 """Plot a normalized histogram of the number of days/sessions spent with
 the same metric vale (e.g. performance).
 trials_day: number of trials to include on a session/day."""
 metric = np.array(metric)
 index = np.array(index)
 unq_vals = np.unique(index)
 bins = np.linspace(0, 1, 20)
 for ind_val, val in enumerate(unq_vals):
 indx = index == val
 traces_temp = metric[indx]
 traces_temp = list(itertools.chain.from_iterable(traces_temp))

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

67

 hist_, plt_bins = np.histogram(traces_temp, bins=bins)
 hist_ = hist_/np.sum(hist_)
 plt_bins = plt_bins[:-1] + (plt_bins[1]-plt_bins[0])/2
 ax.plot(plt_bins, hist_, label=val, color=CLRS[ind_val])
 ax.legend()
 ax.set_xlabel('Performance')
 ax.set_ylabel('Days')

def plot_rew_across_training(metric, index, ax, n_traces=20,
 selected_protocols=['-1.0', '-0.75', '-0.5',
 '-0.25', '0.0']):
 """Plot traces across training, i.e. metric value per trial.
 """
 metric = np.array(metric)
 index = np.array(index)
 unq_vals = np.unique(index)
 for ind_val, val in enumerate(unq_vals):
 if val in selected_protocols:
 indx = index == val
 traces_temp = metric[indx][:n_traces]
 for trace in traces_temp:
 ax.plot(trace, color=CLRS[ind_val], alpha=0.5, lw=0.5)

def plt_means(metric, index, ax, limit_mean=True, limit_ax=True,
 selected_protocols=['-1.0', '-0.75', '-0.5', '-0.25', '0.0']):
 """Plot mean traces across training.
 """
 if limit_mean:
 min_dur = np.min([len(x) for x in metric])
 metric = [x[:min_dur] for x in metric]
 else:
 max_dur = np.max([len(x) for x in metric])
 metric = [np.concatenate((np.array(x),
 np.nan*np.ones((int(max_dur-len(x)),))))
 for x in metric]

 metric = np.array(metric)
 index = np.array(index)
 unq_vals = np.unique(index)
 for ind_val, val in enumerate(unq_vals):
 if val in selected_protocols:
 indx = index == val
 traces_temp = metric[indx, :]
 if not (np.isnan(traces_temp)).all():
 ax.plot(np.nanmean(traces_temp, axis=0), color=CLRS[ind_val],
 lw=1, label=val+' ('+str(np.sum(indx))+')')
 if limit_ax:
 assert limit_mean, 'limiting ax only works when mean is also limited'
 ax.set_xlim([0, min_dur])

def plt_perf_indicators(values, index_val, ax, f_props, ax_props, reached=None,
 discard=[], plot_individual_values=True,
 errorbars=True):
 """Plot final results, in this case, performance indicators
 """
 values = np.array(values)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

68

 index_val = np.array(index_val)
 unq_vals = np.unique(index_val)
 if plot_individual_values:
 std_noise = get_noise(unq_vals)
 for ind_val, val in enumerate(unq_vals):
 # only for those thresholds different than full task
 if val not in discard:
 # only those traces with same value that have reached last phase
 if reached is not None:
 indx = np.logical_and(index_val == val, reached)
 else:
 indx = index_val == val
 values_temp = values[indx]
 n_vals = len(values_temp)
 if n_vals != 0:
 # plot number of trials
 f_props['markersize'] = 10
 if errorbars:
 ax.errorbar([ALL_INDX[val]], np.nanmean(values_temp),
 (np.nanstd(values_temp)/np.sqrt(n_vals)),
 **f_props)
 else:
 ax.plot(ALL_INDX[val], np.nanmean(values_temp), **f_props)
 if plot_individual_values:
 xs = np.random.normal(0, std_noise, ((np.sum(indx),))) +\
 ALL_INDX[val]
 ax.plot(xs, values_temp, alpha=0.5, linestyle='None',
 **f_props)
 ax.set_xlabel(ax_props['tag'])
 ax.set_ylabel(ax_props['ylabel'])
 ax.set_xticks(ax_props['ticks'])
 ax.set_xticklabels(ax_props['labels'])

def trials_per_stage(metric, ax, index):
 """Plot the mean number of trials spent on each of the stages."""
 bins = np.linspace(STAGES[0]-0.5, STAGES[-1]+.5, len(STAGES)+1)
 metric = np.array(metric)
 index = np.array(index)
 unq_vals = np.unique(index)
 # find all the trials spent on each stage
 for ind_val, val in enumerate(unq_vals):
 indx = index == val
 traces_temp = metric[indx]
 counts_mat = []
 n_traces = len(traces_temp)
 for ind_tr in range(n_traces):
 # plot the individual values
 counts = np.histogram(traces_temp[ind_tr], bins=bins)[0]
 indx = counts != 0
 noise = np.random.normal(0, 0.01, np.sum(indx))
 ax.plot(np.array(STAGES)[indx]+noise, counts[indx], '+',
 color=CLRS[ind_val], alpha=0.5)
 counts_mat.append(counts)
 counts_mat = np.array(counts_mat)
 mean_counts = np.mean(counts_mat, axis=0)
 # (e.g. in protocol 0234, don't plot stage 1)
 # ax.errorbar(np.array(STAGES), mean_counts, std_counts, marker='+',
 # color=CLRS[ind_val], label=val)

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

69

 # std_counts = np.std(counts_mat, axis=0)/np.sqrt(n_traces)
 indx = mean_counts != 0
 # plot the mean values
 ax.plot(np.array(STAGES)[indx], mean_counts[indx], marker='+',
 linestyle='--', color=CLRS[ind_val], label=val)

 handles, labels = ax.get_legend_handles_labels()
 by_label = dict(zip(labels, handles))
 plt.yscale('log')
 ax.legend(by_label.values(), by_label.keys())
 ax.set_xlabel('Stage')
 ax.set_ylabel('Trials')

def plot_results(folder, setup='', setup_nm='', w_conv_perf=500, perf_th=0.6,
 keys=['real_performance', 'stage'], limit_ax=True, final_ph=4,
 ax_final=None, tag='th_stage', limit_tr=False, rerun=False,
 f_final_prop={'color': (0, 0, 0), 'label': '', 'marker': '.'},
 plt_ind_vals=True, plt_ind_traces=True, n_roll=5, name='',
 x=0, ahas_dic={}, learn_dic={}):
 """This function uses the data generated during training to analyze it
 and generate figures showing the results in function of the different
 values used for the third level variable (i.e. differen threshold values
 or different shaping protocols).
 folder: folder where we store/load the data.
 algorithm: used algorithm for training.
 setup: value indicating the second level variable value, i.e. the used
 number of window or the used n_ch (number of channels) for training.
 setup_nm: indicates which second level exploration has been done
 (window/n_ch).
 w_conv_perf: dimension of the convolution window.
 keys: list of the names of the metrics to explore.
 limit_ax: limit axis when plottingg.
 final_ph: stage number that corresponds to the last stage of training.
 perf_th: threshold performance to separate the traces that have or have not
 learnt the task.
 ax_final: axes for plotting the final results.
 tag: name of the performed exploration ('th_stage' for different threshold
 values, and 'stages' for different shaping protocols').
 limit_tr: limit trace when plotting.
 rerun: regenerating the data obtained from the metrics during training.
 f_final_prop: plotting kwargs.
 plt_ind_vals: include the individual values (results for each trace) in the
 final plot.
 plt_ind_traces: plot traces across training.
 """
 # assert ('performance' in keys) and ('stage' in keys),\
 # 'performance and stage need to be included in the metrics (keys)'
 # PROCESS RAW DATA
 if not os.path.exists(folder+'/data'+'_'+setup_nm+'_'+setup +
 '.npz') or rerun:
 print('Pre-processing raw data')
 files = glob.glob(folder+'*'+setup_nm+'_'+setup+'*')
 assert len(files) > 0, 'No files of the form: ' + folder + '*' +\
 setup_nm + '_'+setup+'_*'
 # files = sorted(files)
 val_index = [] # stores values for each instance
 metrics = {k: [] for k in keys}
 aha_data = {'aha_mmts': [], 'prev_prfs': [], 'post_prfs': [],
 'gt_patterns': [], 'perf_patterns': [], 'prob_right': [],

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

70

 'prob_right_aha': []}
 learn_data = {'learned': [], 'ev_not_l': [], 'ev_l': []}
 keys = np.array(keys)
 for ind_f, file in enumerate(files):
 print(file)
 val = get_tag(tag, file)
 # get metrics
 metrics, flag = data_extraction(folder=file, metrics=metrics,
 w_conv_perf=w_conv_perf,
 conv=[1, 0])
 aha_data, flag = aha_moment(folder=file, aha_data=aha_data,
 **ahas_dic)
 learn_data, flag = learning(folder=file, learn_data=learn_data,
 **learn_dic)

 # store values
 if flag:
 val_index.append(val)
 val_index = np.array(val_index)
 # AHA-MOMENT
 aha_mmts = aha_data['aha_mmts']
 prev_prfs = aha_data['prev_prfs']
 post_prfs = aha_data['post_prfs']
 gt_patterns = aha_data['gt_patterns']
 perf_patterns = aha_data['perf_patterns']
 prob_right = aha_data['prob_right']
 prob_right_aha = aha_data['prob_right_aha']
 if len(aha_mmts) > 0:
 fig, ax1 = plt.subplots()
 colors = ['b', 'g']
 labels = ['prev_prfs', 'post_prfs']
 ax1.hist([prev_prfs, post_prfs], bins=10, color=colors,
label=labels)
 ax1.legend()
 plt.tight_layout()
 plt.show()

 names = ['values_across_training_'] # 'mean_values_across_training_']
 ylabels = ['Performance', 'Phase', 'Number of steps',
 'Session performance']
 ax_final_perfs = ax_final[1]
 metrics['real_performance']
 final_wind = 100
 final_perfs = [np.mean(p[-final_wind:])
 for p in metrics['real_performance']]
 box_plot(data=final_perfs, ax=ax_final_perfs, x=x)
 num_sh = 100000
 bins = np.linspace(0, 1, 10)
 # probabilities of right
 w = 10
 r_m = np.random.rand(num_sh, w)
 r_m = np.sum(r_m > 0.5, axis=1)/w
 prob_R_chance, plt_bins = get_hist(r_m, bins=bins)
 f, ax = plt.subplots(1, 1)
 ax.plot(plt_bins, prob_R_chance)
 prob_R, plt_bins = get_hist(prob_right, bins=bins)
 ax.plot(plt_bins, prob_R)
 ax.legend(labels=('Ground truth', 'Right side trials'))
 ax.set_title('Probabilities of ground truth=right before aha-moment')

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

71

 # probabilities of right aha
 w = 10
 r_m = np.random.rand(num_sh, w)
 r_m = np.sum(r_m > 0.5, axis=1)/w
 prob_R_chance, plt_bins = get_hist(r_m, bins=bins)
 f, ax = plt.subplots(1, 1)
 ax.plot(plt_bins, prob_R_chance)
 prob_R, plt_bins = get_hist(prob_right_aha, bins=bins)
 ax.plot(plt_bins, prob_R)
 ax.legend(labels=('Ground truth', 'Right side trials'))
 ax.set_title('Probabilities of ground truth=right during aha-moment')

 # number of aha moments for each subj
 subj_length = [len(aha_mmts)]
 f, ax = plt.subplots(1, 1, figsize=(4.5, 5))
 ax.hist(subj_length, bins=np.arange(6)-0.5)
 ax.set_xlabel('Number of aha moments')
 ax.set_ylabel('Number of subjects')
 ax.spines['right'].set_visible(False)
 ax.spines['top'].set_visible(False)
 print('Mean/std number of aha-moments')
 print(np.mean(subj_length))
 print(np.std(subj_length))
 ax.set_title('Number of aha moments for each subject')
 f, ax = plt.subplots(1, 2)
 learned_mat = 1*np.array(learn_data['learned'])
 ax[0].hist(learned_mat)
 ax[0].set_title('Subjects that learn (1 learn, 0 not)')
 ax[0].spines['right'].set_visible(False)
 ax[0].spines['top'].set_visible(False)
 zip_ = zip(learn_data['ev_l'], learn_data['ev_not_l'])
 learning_time = [x-y for x, y in zip_ if x is not None and y is not
None]
 ax[1].hist(learning_time, 8)
 ax[1].spines['right'].set_visible(False)
 ax[1].spines['top'].set_visible(False)
 ax[1].set_xlabel('Time to learn')
 ax[1].set_ylabel('Counts')
 np.mean(learning_time)
 np.std(learning_time)
 min(learning_time)

 for ind in range(len(names)):
 f, ax = plt.subplots(sharex=True, nrows=len(keys), ncols=1,
 figsize=(12, 12))
 # plot means
 for ind_met, met in enumerate(keys):
 metric = metrics[met]
 if plt_ind_traces:
 plot_rew_across_training(metric=metric, index=val_index,
 ax=ax[ind_met], n_traces=3)
 plt_means(metric=metric, index=val_index,
 ax=ax[ind_met], limit_ax=limit_ax)
 ax[ind_met].set_ylabel(ylabels[ind_met])
 ax[0].set_title('Roll_out = ' + str(n_roll))
 ax[0].axhline(y=0.55, linestyle='--', color='k')
 ax[0].set_xlabel('Trials')
 ax[len(keys)-1].set_xlabel('Trials')
 ax[len(keys)-1].legend()

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

72

 f.savefig(folder+'/'+names[ind]+'_'+setup_nm+'_'+setup +
 '_'+str(limit_tr)+'.png', dpi=200)
 # plt.close(f)

 # plot days under perf
 if 'curr_perf' in keys:
 f, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 12))
 metric = metrics['curr_perf']
 perf_hist(metric, ax=ax, index=val_index, trials_day=300)
 ax.set_title('Performance histogram ('+')')
 f.savefig(folder+'/perf_hist_'+'_'+setup_nm+'_'+setup +
 '.svg', dpi=200)
 # plt.close(f)

 # plot trials per stage
 if 'stage' in keys:
 f, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))
 metric = metrics['stage']
 trials_per_stage(metric, ax=ax, index=val_index)
 ax.set_title('Average number of trials per stage ('+')')
 f.savefig(folder+'/trials_stage_'+'_'+setup_nm+'_' +
 setup+'.svg', dpi=200)
 plt.close(f)

 # PROCESS TRACES AND SAVE DATA
 tr_to_perf = [] # stores trials to reach final performance
 reached_ph = [] # stores whether the final phase is reached
 reached_perf = [] # stores whether the pre-defined perf is reached
 exp_durations = [] # stores the total number of explored trials
 stability_mat = [] # stores the performance stability
 final_perf = [] # stores the average final performance
 tr_to_ph = [] # stores trials to reach final phase
 stps_to_perf = [] # stores steps to final performance
 stps_to_ph = [] # stores steps to final performance
 if limit_tr:
 min_dur = np.min([len(x) for x in metrics['stage']])
 else:
 min_dur = np.max([len(x) for x in metrics['stage']])

 for ind_f in range(len(metrics['stage'])):
 # store durations
 exp_durations.append(len(metrics['stage'][ind_f]))
 for k in metrics.keys():
 metrics[k][ind_f] = metrics[k][ind_f][:min_dur]
 if len(metrics[k][ind_f]) == 0:
 metrics[k][ind_f] = np.nan*np.ones((min_dur,))
 # phase analysis
 stage = metrics['stage'][ind_f]
 # number of trials until final phase
 tr_to_ph, reached = tr_to_final_ph(stage, tr_to_ph, w_conv_perf,
 final_ph)
 reached_ph.append(reached)
 # performance analysis
 perf = np.array(metrics['real_performance'][ind_f])
 # get final performance
 final_perf.append(perf[-1])
 # get trials to reach specified performance
 tt_ph = tr_to_ph[-1]
 tr_to_perf, reached = tr_to_reach_perf(perf=perf.copy(),

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

73

 tr_to_ph=tt_ph,
 reach_perf=perf_th,
 tr_to_perf=tr_to_perf,
 final_ph=final_ph)
 reached_perf.append(reached)
 # performance stability
 tt_prf = tr_to_perf[-1]
 stability_mat.append(compute_stability(perf=perf.copy(),
 tr_ab_th=tt_prf))
 data = {'tr_to_perf': tr_to_perf, 'reached_ph': reached_ph,
 'reached_perf': reached_perf, 'exp_durations': exp_durations,
 'stability_mat': stability_mat, 'final_perf': final_perf,
 'tr_to_ph': tr_to_ph, 'stps_to_perf': stps_to_perf,
 'stps_to_ph': stps_to_ph, 'val_index': val_index}
 np.savez(folder+'/data'+'_'+setup_nm+'_'+setup+'.npz',
 **data)
 # LOAD AND (POST)PROCESS DATA
 print('Loading data from: ', folder+'/data'+'_'+setup_nm +
 '_'+setup+'.npz')
 tmp = np.load(folder+'/data'+'_'+setup_nm+'_'+setup+'.npz',
 allow_pickle=True)
 # the loaded file does not allow to modifying it
 data = {}
 for k in tmp.keys():
 data[k] = list(tmp[k])
 val_index = data['val_index']
 print('Plotting results')
 # define xticks
 ax_props = {'tag': tag}
 if tag == 'stages':
 ax_props['labels'] = list(PRTCLS_IND_MAP.keys())
 ax_props['ticks'] = list(PRTCLS_IND_MAP.values())
 elif tag == 'th_stage':
 ax_props['labels'] = list(THS_IND_MAP.keys())
 ax_props['ticks'] = list(THS_IND_MAP.values())
 elif tag == 'pun':
 ax_props['labels'] = list(PUN_IND_MAP.keys())
 ax_props['ticks'] = list(PUN_IND_MAP.values())

 # plot results
 ax1 = ax_final[0]
 ax3 = ax_final[2]
 # final figures
 # prop of instances reaching phase 4
 ax_props['ylabel'] = 'Proportion of instances reaching phase ' + \
 str(final_ph)
 plt_perf_indicators(values=data['reached_ph'], index_val=val_index,
 ax=ax1[0], f_props=f_final_prop,
 ax_props=ax_props, discard=['full', '4'],
 errorbars=False, plot_individual_values=False)
 # trials to reach phase 4
 ax_props['ylabel'] = 'Number of trials to reach phase '+str(final_ph)
 plt_perf_indicators(values=data['tr_to_ph'],
 f_props=f_final_prop, ax_props=ax_props,
 index_val=val_index, ax=ax1[1],
 reached=data['reached_ph'], discard=['full', '4'],
 plot_individual_values=plt_ind_vals)
 handles, labels = ax1[0].get_legend_handles_labels()
 by_label = dict(zip(labels, handles))

Investigating the neural computations underlying Leyre Azcárate Bescós
the learning of a delay response task Final Degree Project, June 2021

74

 ax1[0].legend(by_label.values(), by_label.keys())
 ax1[1].set_yscale('log')

 # plot final performance
 ax_props['ylabel'] = 'Average performance'
 plt_perf_indicators(values=data['final_perf'],
 reached=data['reached_ph'],
 f_props=f_final_prop, index_val=val_index,
 ax=ax3[0, 0], ax_props=ax_props,
 plot_individual_values=plt_ind_vals)
 # prop of trials that reach final perf
 ax_props['ylabel'] = 'Proportion of instances reaching final perf'
 plt_perf_indicators(values=data['reached_perf'], index_val=val_index,
 ax=ax3[0, 1], f_props=f_final_prop,
 reached=data['reached_ph'], ax_props=ax_props,
 errorbars=False, plot_individual_values=False)
 # trials to reach final perf
 ax_props['ylabel'] = 'Number of trials to reach final performance'
 plt_perf_indicators(values=data['tr_to_perf'],
 reached=data['reached_perf'],
 index_val=val_index, ax=ax3[1, 0],
 f_props=f_final_prop, ax_props=ax_props,
 plot_individual_values=plt_ind_vals)
 ax3[1, 0].set_yscale('log')
 # plot stability
 ax_props['ylabel'] = 'Stability'
 plt_perf_indicators(values=data['stability_mat'], index_val=val_index,
 ax=ax3[1, 1], f_props=f_final_prop,
 ax_props=ax_props, reached=data['reached_perf'],
 plot_individual_values=plt_ind_vals)
 handles, labels = ax3[0, 0].get_legend_handles_labels()
 by_label = dict(zip(labels, handles))
 ax3[0, 0].legend(by_label.values(), by_label.keys())

