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ABSTRACT 

The use of automated or semi-automated approaches based on imaging data has been suggested 

to support the diagnoses of some diseases. In this context, Machine Learning (ML) appears as a 

useful emerging tool for this purpose, allowing from feature extraction to automatic classification. 

Alzheimer Disease (AD) and Frontotemporal Dementia (FTD) are two common and prevalent forms 

of early-onset dementia with different, but partly overlapping, symptoms and brain patterns of 

atrophy. Because of the similarities, there is a need to establish an accurate diagnosis and to obtain 

good markers for prognosis. This work combines both supervised and unsupervised ML algorithms 

to classify AD and FTD. 

The data used consisted of gray matter volumes and cortical thicknesses (CTh) extracted from 3T-

T1 MRI of 44 healthy controls (HC, age: 57.8±5.4 years), 53 Early-Onset Alzheimer Disease 

patients (EOAD, age: 59.4±4.4 years) and 64 FTD patients (FTD, age: 64.4±8.8 years). A 

principal component analysis (PCA) of all volumes and thicknesses was performed and a number 

of principal components (PC) that accumulated at least 80% of the data variance were entered into 

a Support Vector Machine (SVM). Overall performance was assessed using a 5-fold cross-

validation. 

The algorithm proposed achieved an accuracy of 91.7±5.76 % in the HC vs EOAD classification, 

83.3±5.2 % for HC vs FTD, 83.0±5.8 % for EOAD vs FTD and 77.7±5.2 % when performing a 

multiclass classification between the 3 groups. The first PC was used to create disease-specific 

patterns. 

By using a low number of features, combining information from CTh and subcortical volumes, the 

algorithm proposed is able to classify HC, EOAD and FTD with fairly good accuracy. Thus, this 

approach can be used to reduce the amount of data used in ML algorithms while providing 

interpretable atrophy patterns. 

  



iv 
 

LIST OF TABLES 

Table 1: state of the art resume table. Reviewed studies for AD classification pipelines and the 

methods used in each step: groups being classified, nº of observations, feature extraction method, 

dimensionality reduction algorithm, classification algorithm, validation method and performance 

evaluation and results. GM: gray matter, WM: white matter........................................................... 7 

Table 2: comparision between different neuroimaging techniques that can be applied for AD 

diagnosis. Computed Tomography (CT), strucural MRI, Single-Photon Emission Computed 

Tomography (SPECT) and Positron Emission Tomography (PET) are compared. ...................... 13 

Table 3: Conception engineering. Studied solutions for the programming software, dimensionality 

reduction algorithm, classification algorithm, and validation method. ........................................... 15 

Table 4: combination of parameters for the SVM estimator. C and γ values combined with each 

kernel in the grid search. C: soft margin parameter. γ :  specific parameter for the RBF kernel that 

controls the weight given to new training points. .......................................................................... 25 

Table 5: accuracies mean values (%) and standard deviations (%) obtained for each classification 

study (HC vs EOAD, HC vs FTD, EOAD vs FTD and HC vs EOAD vs FTD). Also, the mean 

classification precision (%) of each individual group and the corresponding standard deviations (%) 

are shown. ................................................................................................................................... 26 

Table 6: table showing the theoretical cost of the project. The costs are divided in 4 packages: 

human resources, data, software and hardware. Each package is formed by different elements, 

which costs are presented. .......................................................................................................... 38 

  



v 
 

LIST OF FIGURES 

Figure 1: main steps of a conventional neuroimaging classification pipeline. 1) Cross-validation, 2) 

feature extraction, 3) dimensionality reduction, 4) classification and 5) performance evaluation. .. 6 

Figure 2: number of publications found in PubMed by year with the keywords “structural MRI” AND 

“Machine Learning” AND “AD” from 2004 to 2020. ...................................................................... 13 

Figure 3: PCA (left) and LDA (right) graphical differentiation. PCA seeks for the directions in the 

dataset that capture the maximum data variability, while LDA aims to maximize the separation 

between groups. [42] ................................................................................................................... 16 

Figure 4: diagram showing the implemented pipeline. Starts splitting the dataset according to the 

cross-validation method (1), then Principal Component Analysis (PCA) is implemented (2) and the 

weights of the quantified brain regions are extracted, followed by Support Vector Machine (SVM) 

for the classification step (3). Finally, the performance is assessed (4). Parameter k corresponds 

to the number of iterations. .......................................................................................................... 20 

Figure 5: example taken from the data table for HC vs EOAD. Showing only 5 subjects and 7 

features from the total. ................................................................................................................. 21 

Figure 6: stratified 5-fold cross-validation implemented for the 3 groups. HC, EOAD and FTD 

subjects. At each iteration, a different fold containing the 20% of the dataset is reserved for testing.

 ..................................................................................................................................................... 22 

Figure 7: covariance matrix. m x m matrix representing the covariance of each feature with the 

other features. .............................................................................................................................. 23 

Figure 8: cumulative variances for all the principal components in each classification study. 

Minimum number of components needed to accumulate the 80% of the data variance is marked 

with a dashed line. Where “nc” states for number of principal components. ................................ 23 

Figure 9: SVM classification. Grpahical representation of the hyperplanes generated by the 

algorithm. ..................................................................................................................................... 24 

Figure 10. From left to right: graphic exemplification of Support Vector Machine classification with 

linear, polynomial and RBF kernels, from left to right [49]. ........................................................... 24 

Figure 11: confusion matrices showing the classification precision for each group in the four 

studies. Top left: HC vs EOAD. Top right: HC vs FTD. Bottom left: EOAD vs FTD. Bottom right: HC 

vs EOAD vs FTD. The values correspond to the rounded means across the 5 iterations. ........... 27 

Figure 12. Boxplot showing the weights given to every feature by the first principal component 

(PC1) in HC and EOAD study, the mean and standard deviations across the 5 cross-validation 

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis 

the names of the features are shown. .......................................................................................... 27 

Figure 13. Boxplot showing the weights given to every feature by the first principal component 

(PC1) in HC and FTD study, the mean and standard deviations across the 5 cross-validation 

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis 

the names of the features are shown. .......................................................................................... 28 

Figure 14. Boxplot showing the weights given to every feature by the first principal component 

(PC1) in EOAD and FTD study, the mean and standard deviations across the 5 cross-validation 

https://ubarcelona-my.sharepoint.com/personal/lborrear8_alumnes_ub_edu/Documents/TFG-Privada/memòria.docx#_Toc74486386
https://ubarcelona-my.sharepoint.com/personal/lborrear8_alumnes_ub_edu/Documents/TFG-Privada/memòria.docx#_Toc74486386


vi 
 

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis 

the names of the features are shown. .......................................................................................... 28 

Figure 15. Boxplot showing the weights given to every feature by the first principal component 

(PC1) in HC, EOAD and FTD study, the mean and standard deviations across the 5  cross-

validation iterations are represented. The features are sorted from higher to lower mean weights. 

In the x axis the names of the features are shown. ...................................................................... 29 

Figure 16: Aseg atlases of the subcortical brain volumes painted according to the weights, in 

absolute value, given by the first principal component of PCA in each of the 4 studies. 1) HC vs 

EOAD, 2) HC vs FTD, 3) EOAD vs FTD and 4) HC vs EOAD vs FTD. ........................................ 30 

Figure 17: Desikan-Killiany atlases of the cortical and subcortical thicknesses of the brain painted 

according to the weights, in absolute value, given by the first principal component of PCA in each 

study. ........................................................................................................................................... 31 

Figure 19: GANTT. Execution schedule by weeks of the project. On the left column the different 

tasks to be performed along the project execution (February 2021 – June 2021) are listed. The start 

and the due dates of each task are shown. ................................................................................. 35 

Figure 20: SWOT analysis of the project. Strengths, Weaknesses, Opportunities and Threads are 

listed. ........................................................................................................................................... 36 

Figure 21: hours dedicated to each stage of the project:.47% to the development, 28% to the 

learning stage and 25% to the close-out stage. ........................................................................... 39 

 



vii 
 

GLOSSARY 
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ADI – Alzheimer Disease International. 

Aseg atlas – shows the subcortical volumes. 
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BOE – Boletín oficial del estado. 

BrainSegVol – volume of the whole brain, 

except brain stem.  

BrainSegVolNotVent – volume of the whole 

brain except brain stem and ventricles. 

CATI – Clinical Advanced Technologies 

Innovation. 

CSC measures – Cortical and subcortical 

measures.   

CSF – cerebrospinal fluid. 

CT – Computed tomography. 
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CV – Cross-validation. 
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cortical and subcortical thicknesses. 

DTI – Diffusion tensor imaging. 

EOAD – Early-onset Alzheimer Disease. 

FDA – Food and Drinks Administration. 

FFS – Forward feature selection. 

FTD – Frontotemporal dementia. 

GM – Gray matter. 

ISMRM – International Society for Magnetic 

Resonance in Medicine. 

LDA – Linear discriminant analysis. 

LOO – Leave One Out. 

LR – Linear regression. 

MaskVol – Volume of the count non-zero 

voxels of the brain mask. 

MCI – Mild Cognitive Impairment. Can be 

either Alzheimer converters (cMCI) or non-

converters (ncMCI).  

ML – Machine learning. 

MRI – Magnetic resonance imaging.  

NIA – National Institute of Aging. 

NIH – National Institutes of Health. 

PC – Principal component. PC1 states for 

first principal component. 

PCA – Principal component analysis. 

PET – Positron Emission Tomography. 

PET-FDG – Positron emission tomography -

fluorodeoxyglucose. 

RBF – Radial basis function. 

RF – Random forests. 

RFE – Recursive feature elimination. 

ROI – Regions of interest. 

sMRI – structural magnetic resonance 

imaging. 

SPECT – Single-photon emission computed 

tomography. 

SupraTentorialVolNotVent/Vox – includes all 

brain volumes except cerebellum, brain stem 

and ventricles volumes. 

SVM – Support Vector Machine. 

TIV – Total intracranial volume. 

VBM – Voxel-based morphometry. 

WM – White matter. 
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1. INTRODUCTION 

1.1. Alzheimer Disease and its diagnosis 

The National Institute of Aging (NIA) defines Alzheimer’s Disease (AD) as an irreversible, 

progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the 

ability to carry out simple daily tasks, until patient’s death [1]. AD affects people over the age of 65, 

but early-onset AD (EOAD) is also diagnosed in patients younger than 65. The brain of an 

Alzheimer patient accumulates abnormal proteins (Aβ and tau) in the form of amyloid plaques and 

neurofibrillary tangles [2], eventually resulting in an irreversible loss of neurons. Currently, AD is 

the most common neurodegenerative disease, representing the principal cause of dementia in the 

elderly population of developed countries. In 2020, over 50 million people worldwide suffered 

dementia, and these numbers are expected to reach the 152 million cases in 2050 due to population 

aging [3]. 

Although AD has no cure, there are medicines available that help in delaying the disease progress. 

Thus, its early diagnosis is essential.  

In 2011, the National Institutes of Health (NIH) and the Alzheimer’s Association developed an 

updated diagnostic guidelines with respect to the previous one, published in 1984. In this 

guidelines, three stages of AD were described: a preclinical stage, characterized by the first brain 

changes, including amyloid build-up, without significant clinical symptoms evident; a Mild Cognitive 

Impairment (MCI) stage, attributed to a loss of cognitive functions regarding memory, but that do 

not interfere with the patient’s independence; and Alzheimer’s dementia, to which some of the MCI 

patients evolve, marked by a progressive impairment in memory, decision making, orientation and 

language, significant enough to affect a person’s daily life [4]. 

According to the same guidelines, in preclinical stages, the amyloid build-up can be found with 

positron emission tomography (PET) imaging and a cerebrospinal fluid (CSF) analysis, however, 

the future prognosis is still unknown. In a more advanced stage, in MCI, the research for diagnosis 

is focused on standardizing biomarkers for amyloid plaques and other signs of injury to the brain. 

Among these biomarkers, elevated levels of tau or decreased levels of beta-amyloid in the CSF 

are found, as well as reduced glucose uptake in the brain observed in PET scans. Also, atrophy of 

certain brain areas detected by high-resolution structural Magnetic Resonance Imaging (MRI) 

is well-correlated with both tau deposition and neuropsychological effects, so it becomes another 

biomarker of AD and its progression. Finally, the diagnosis criteria for Alzheimer’s dementia, which 

applies to the last stage of the disease, includes biomarkers testing to increase the sureness of the 

diagnosis and to distinguish Alzheimer from other types of dementias. [5,6] 

As stated above, the intensity and stage of the neurodegeneration can be identified with the help 

of atrophy measurement of certain brain areas with structural MRI (sMRI), such as the 

hippocampus, the entorhinal cortex or the amygdala. Therefore, sMRI-based feature extraction 

happens to play an important role in AD diagnosis and prognosis [7]. The objective of feature 

extraction is to retrieve a set of accurate quantified features such as size, shape or volume, from 

neuroimaging data that contain relevant information for the disease diagnosis. 

Nonetheless, manual measurements of these structures on MRI are time-consuming and do not 

capture the full pattern of atrophy [8]. Therefore, many automated and semi-automatic feature 
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extraction techniques exist for high-resolution sMRI data analysis, which consist of several image-

processing and statistical analysis steps. [9]. 

When applying feature extraction methods, neuroimaging modalities generate an extreme huge 

amount of data. Thus, to analyse it and observe inherent patterns in the data, there is a need for 

multivariate data analysis and Artificial Intelligence (AI) techniques, such as Machine Learning (ML) 

[10].  

1.2. Artificial Intelligence: machine learning 

In 2019, the High-Level Expert Group on Artificial Intelligence (HLEG) defined AI systems as 

“software (and possibly also hardware) systems designed by humans that, given a complex goal, 

act in the physical or digital dimensions by perceiving their environment through data acquisition, 

interpreting the collected structured or unstructured data, reasoning on the knowledge, or 

processing the information, derived from this data and deciding the best action(s) to take to achieve 

the given goals.” These systems can use symbolic rules or learn a numeric model [11]. Also, AI 

encompasses many techniques, such as Machine Learning (ML); machine reasoning, which refers 

to scheduling, search and optimization; and robotics, which includes sensors and actuators [12]. 

Machine Learning is a subfield of AI which consists of building models or applications that learn 

from data, called training data, in order to improve its accuracy when predicting the outcome of new 

data without being explicitly programmed to do so. There are different ways in which ML algorithms 

learn from the training data: 

Supervised learning. In this type of learning, expert humans feed the algorithm with labelled data, 

that is, pairs of inputs with known outputs. Then, the algorithm looks for the function which best 

maps the input data to the output in a generalizable from. Supervised learning is useful in either 

classification or regression problems. In classification problems, the algorithm predicts a discrete 

value for the input data, identifying each data point with a specific class. On the other hand, 

regression problems work with continuous numeric data. 

Unsupervised learning. Sometimes, well-labelled data sets are not easy to obtain. In these cases, 

algorithms learn completely by themselves by finding unknown patterns in the data without any 

labels. Unsupervised learning aims to find structure in the data by extracting useful features and 

analyzing them. The way the model organizes data is different depending on the problem. One of 

the ways is clustering, where the model looks for training data with similar features and groups 

them together in what is called a cluster. Another common way is association, in which the model 

looks for some key attributes in a data point and predicts the other ones by checking them in those 

data points with which the point is correlated [13].  

Semi-supervised learning. These are hybrid algorithms lying between supervised and 

unsupervised models. The training dataset is filled with both labelled and unlabelled data, which is 

a common situation in those cases where labelling data requires from expert human skills. 

Reinforced learning. This kind of learning is common in robotics, since it allows machines to 

determine in an automatic way the best behaviour in a specific context which maximizes the model 

performance. Trial and error search, together with a reward feedback, are required by the system 

to learn. 
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1.3. Machine Learning and neurodegenerative diseases diagnosis with sMRI 

As mentioned, clinical studies have demonstrated that measures of structural atrophy using sMRI 

data are a promising biomarker for an accurate diagnosis of AD patients. Thus, automatic 

volumetric measures of cortical and subcortical volumes, together with measures of cortical 

thicknesses (CTh), both extracted from sMRI images, happen to be essential biomarkers for early 

detection of the AD [14].  In addition to providing certainty to the diagnosis of the disease, its non-

invasive nature and the consequent lack of pain for the patient, make structural MRI a comfortable 

and effective diagnostic test. 

Nevertheless, the utility of these sMRI-derived data is not limited to differentiate controls from 

affected patients, but is also useful in differentiating AD from other clinical pathologies, such as 

frontotemporal dementia (FTD), which, together with AD, is one of the leading causes of early-

onset dementia. However, FTD differs from Alzheimer in the sense that FTD patients usually 

develop early noncognitive behavioural changes together with frontal atrophy in sMRI scans, while 

AD patients have early cognitive changes and relatively reserved behaviour together with 

hippocampal, entorhinal cortex and medial-temporal lobe atrophy on sMRI scans [15]. 

Moreover, brain tissue loss from the whole brain or specific regions, as well as the rate of structural 

atrophy measures, highly correlates with cognitive deficits changes [16], so they are also great 

biomarkers for the diseases progression.  

Recent advances in neuroimage and its analysis have led to new useful automated tools to extract 

valuable neuroimaging information. These techniques generate large datasets encompassing 

whole brain regions instead of single regions of interest (ROI), which must be manually segmented 

and rely on previous knowledge. Then, if all the measurements extracted from the MRI scans aim 

to be useful for AD diagnosis, this triggers the need for automatic classification methods that 

perform equally or even better than experts in the high-consuming clinical task of recognising 

patterns in the data for further diagnosis. Furthermore, the fact that those methods are able to use 

whole brain information makes them more capable of distinguishing between healthy, AD patients 

and other types of neurodegenerations, since a single region, like the temporal lobe, can be also 

damaged in other types of diseases.  

For this purpose, many automatic classification algorithms have already been implemented, 

providing useful tools when analyzing the data and finding inherent disease-related patterns in it. 

The models used include from Support Vector Machines (SVM) to K Nearest neighbours (KNN) or 

Decision Trees, all of them supervised learning algorithms. Many other studies as [17] also use 

neural networks. 

Nonetheless, feature extraction directly from sMRI leads to very high dimensional data. Thus, when 

dealing with such large datasets, a reduction of data dimensionality is usually needed, particularly 

when the number of labelled subjects is small. Some ways of achieving this goal are discarding 

some of the features extracted and keeping others or projecting the data to a reduced dimensional 

space with some dimensionality reduction techniques such as Principal Component Analysis 

(PCA). 

It is worth mentioning that the application of these algorithms is not limited to subject classification 

between controls, EOAD or other neurodegenerative diseases such as FTD, but they are also a 
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great tool to study which brain regions are more atrophied in each disease and, therefore, more 

significant for the posterior classification. Thus, when a model is applied, it is not only its 

interpretability that matters, understanding interpretability as the ability of the algorithm to determine 

a cause and its effect, such as an atrophied region and the consequent disease, respectively. 

Instead, attention should also be paid to explainability, which can be defined as understanding 

which factors from the data are causing the differentiation between subjects from different groups 

and what is the reason. 

1.4. Objectives  

All the previous concepts comprise the needed context to appropriately follow the presented 

project, which main goal is to research on an automatic machine learning classification tool for 

early-onset Alzheimer Disease diagnosis. The model aims to predict if a patient is either healthy, 

suffering from EOAD or suffering from FTD, thus helping doctors in the disease diagnosis and 

differentiation from other neurodegenerative diseases. All of this, by taking as inputs the cortical 

and subcortical volumes, together with the CTh measurements extracted from the patient’s 

structural MRI scan. 

Furthermore, some secondary objectives for the project were defined: 

➢ Conduct an in-depth research on the state of the art of automated classification 

systems applied to MRI extracted data that provide certainty in the diagnosis of Alzheimer 

Disease. Thus, reviewing the different algorithms employed and the results obtained, 

taking into account the data being used. 
 

➢ To implement a pipeline able to classify between patients and healthy controls 

including a dimensionality reduction step and a classification algorithm, which must be 

chosen considering the performance obtained but also the computational cost and the 

capability of the models to be generalized. 
 

➢ Explore which brain regions appear more atrophied in AD or, in other words, which 

regions result more significant for the classification and subsequent diagnosis, and check 

if they match with the ones reviewed in the literature. 
 

➢ To add patients suffering from frontotemporal dementia to the original dataset in order to 

perform a multiclass classification pipeline. Therefore, a second automated classification 

tool capable of distinguishing between three groups (controls, EOAD patients and 

FTD patents) aims to be developed. 
 

➢ Finally, to assess if there are actual differences in the brain atrophy pattern between 

AD and FTD and, if positive, to explore the significant regions differentiating both 

neurodegenerative diseases. 

1.5. Spatial and temporal limitations of the project  

The main limitations of the project were temporal and due to the global pandemic situation. 

Firstly, the thesis was developed in a relatively tight time window, from February to June 2021. This 

fact, in addition to cause a more intensive work and less spaced, limiting the realization of any 



5 
 

changes or correction to the framework, restricted even more the time available for obtaining 

controls and patients samples. Furthermore, the data with which the work was developed comes 

from neurologists of the hospital, which had to stop their usual activities during the pandemic to be 

dedicated full time to Covid19. This fact, added to the temporal limitation, presented an extra 

limitation to the size of the sample used to train the algorithm. 

However, it was not only a sample’s size limitation which was encountered, but also problems with 

other neuroimaging modalities data availability, such as DTI, which could have added certainty to 

the classification and led to better performances. 

Finally, mobility and capacity restrictions supposed that all the meetings of the team were online, 

adding an extra difficulty in communication and organization. 

1.6. Scope of the project 

As stated before, the main objective of the project is to perform a pipeline able to classify EOAD 

patients from healthy subjects. Furthermore, a third group with FTD dementia patients aims to be 

added and classified. 

In order to meet this goal, the scope of the project encompasses: delving into the machine learning 

world and its applications related to sMRI neuroimaging for the diagnosis of neurodegenerative 

diseases; the development of an automated pipeline for further classification between controls, 

EOAD and FTD patients, including a dimensionality reduction step, a classification step and a 

performance assessment. In addition, to obtain clinical information useful for research, the retrieval 

of the disease-related patterns of both EOAD and FTD, therefore analysing which features or brain 

regions contribute with the highest variance to the data. 

On the other hand, the T1-weighted scans pre-processing, as well as the extraction of the CTh and 

the cortical and subcortical volumes from the images is out of the scope of the project. Also, the 

addition of other biomarkers of AD and FTD, such as PET-fluorodeoxyglucose (PET-FDG) scans 

or CSF analysis, or other MRI modalities like DTI, is also non contemplated. Finally, since this 

project has purely research objectives and needs further investigation, the algorithm is not intended 

to be commercialized. 
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2. STATE OF THE ART 

In the last few years, many multivariate data analysis tools and machine learning algorithms were 

used in the field of neurodegenerative diseases, and particularly of Alzheimer Disease, since it is 

the most common one. Assuming that AD is correlated with progressive changes in brain structure 

and functionality, significant results have outcome from the implementation of automated softwares 

capable of finding patterns in the data extracted from sMRI that lead to a high accuracy diagnosis 

of the disease. 

2.1. Search criteria 

Since wide range of different cohorts, features and methods were used in numerous studies, a set 

of different papers regarding ML application in AD research centred on sMRI were reviewed, as 

well as classification pipelines proposed for distinguishing AD patients from FTD ones. However, 

many similar ML approaches for classifying MCI patients likely to convert to AD (cMCI) from those 

non-converters (ncMCI) were published, so the different algorithms and methods implemented in 

this classification task have also been reviewed. 

The search was done in PubMed, looking for articles in English published from 2008 up to March 

2021 using the search term “Alzheimer Disease” combined with “Machine Learning”, 

“Frontotemporal Dementia”, “structural MRI”, “SVM”, “Decision Trees”, “KNN”, “PCA” and “MRI 

data”. To include an article in the state-of-the-art review, it was checked that both T1-weighted 

sMRI data and a ML algorithm were used. 

Usually, a classification framework includes feature extraction, a feature selection or dimensionality 

reduction step, a classification algorithm to develop a robust predictive model and a validation 

method to validate the performance (Figure 1). Therefore, the diverse methods employed in each 

step in the studies were pointed out. Nevertheless, as mentioned in the previous section, feature 

extraction is out of the scope of the project, so little research was made of this subject.  

 

Figure 1: main steps of a conventional neuroimaging classification pipeline. 1) Cross-validation, 2) feature extraction, 3) 
dimensionality reduction, 4) classification and 5) performance evaluation. 

Followingly, a summary table (Table 1) with most of the articles reviewed is presented, showing 

the different steps beforementioned:
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Article Type of classification Number of 

observations 

Feature extraction Feature 

Selection 

Classifier 

Algorithm 

Validation 

method 

Performance evaluation (best 

results) 

[20] Binary: AD-HC, FTD-HC AD-

FTD 

37 AD, 12 FTD, 49 

age-matched HC 

sMRI: GM and WM VBM PCA SVM 10-iterations 

LOO CV 

Accuracy:  AD-HC 99.7%, AD-FDT 

84.3%, FTD-HC 100% 

[21] Binary: AD-HC, FTD-HC AD-

FTD 

84 AD, 51 FTD, 94 

HC 

sMRI: GM-VM, WM-VBM, CSF  None SVM Holdout 

method 

Accuracy: AD-HC 88% FTD-HC 

85%, AD-FTD 82%. 

[25] Binary: EOAD-HC, EOFTD-

HC EOAD-EOFTD 

24 EOAD, 33 EOFTD, 

34 HC 

sMRI: WM-VBM, GM-VBM, CSF, 

DTI: FA 

None SVM 4-fold CV AUC: EOFTD-EOAD 84% (sMRI + 

FA), 72% (sMRI). 

[18] Binary: AD-HC, HC-cMCI, 

cMCI-ncMCI 

144 AD, 189 HC, 136 

cMCI, 166 cnMCI 

Measures of subcortical volumes 

from sMRI 

Random 

Forest 

SVM 20-fold CV AUC: AD-HC 97%, HC-cMCI 92%, 

75% cMCI- ncMCI. 

[24] Binary: AD-HC, HC-cMCI, 

cMCI-ncMCI 

81 AD, 171 HC, 39 

cMCI, 35 ncMCI 

sMRI: CSC thicknesses, 

hippocampal volume, and VBM 

PCA SVM, RF and 

KNN 

Not 

mentioned 

AUC: AD-HC 94%, HC-cMCI 95%, 

cMCI- ncMCI 87%. 

[19] Binary: HC-AD. Multiclass: 

HC-AD-MCI 

70 HC, 70 AD, 74 

MCI 

CSC thicknesses, subcortical 

volumes 

PCA SVM and RELM 10-fold CV Accuracy: HC-AD 80%, HC-AD-

MCI 61.5% 

[28] Binary: HC-AD, cMCI- ncMCI 226 HC, 182 AD, 389 

(cMCI+ ncMCI). 

VBM and CSC thicknesses RFE SVM 10-fold CV Accuracy: AD-HC 90%, cMCI- 

ncMCI 72%. 

[22] Binary: AD-HC, HC-MCI, 

cMCI-ncMCI 

117 AD, 122 MCI, 112 

HC 

Subcortical volumes and 

hippocampal volume 

None Orthogonal Partial 

Least Squares  

7-fold CV Accuracy: AD-HC 89%, HC-MCI 

84%, CMCI/ ncMCI 68% 

[26] Binary: AD-HC, HC-MCI 51 AD, 99 MCI, 52 

HC 

93 GM-ROI from MRI, 93 ROI from 

PET and 3 features from CSF 

t-test SVM 10-fold CV Accuracy: AD-HC 93.2% HC-MCI 

76.4% 

[29] Binary: HC vs FTD Multiclass: 

HC vs FTD subtypes 

96 FTD, 84 HC sMRI: CSC GM, subcortical 

volumes and total WM DTI: FA 

PCA KNN, SVM, RF, 

LR and LDA 

10-fold CV Accuracy: 88% HC-FTD, 76% HC-

FTD subtypes 

[31] Multiclass: AD-FTD-HC 34 AD, 30 FTD, 14 

HC 

sMRI: CSC GM, subcortical 

volumes and total WM 

PCA SVM LOO CV AUC: 76.5% HC-AD-FTD 

Table 1: state of the art resume table. Reviewed studies for AD classification pipelines and the methods used in each step: groups being classified, nº of observations, feature extraction method, dimensionality 
reduction algorithm, classification algorithm, validation method and performance evaluation and results. GM: gray matter, WM: white matter.
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2.2. Feature extraction 

In machine learning, features are a subset of variables that are given as input data to the classifiers, 

so they aim to quantify accurate information from neuroimaging data able to cover the most relevant 

patterns of the neurodegenerative disease. Since it is an important step in the classification 

framework and can directly affect its performance, many automated and semi-automated methods 

were implemented for analyzing sMRI images. 

The features extracted by the different methods range from a single voxel to cortical and subcortical 

substructures, or even whole brain data. However, for neuroimage classification purposes, the most 

common measurements are cortical or subcortical volumes and CTh [18,19], while voxel-based 

morphometry (VBM) [20,21] is mostly used for structural comparisons between subjects.  

Also, methods based on single regions are used, in particular segmentations of the hippocampus 

[22] and the entorhinal cortex, which appear in the literature as atrophied regions in AD. 

Nonetheless, adding more regional and global measures of the brain to the hippocampal volume 

has proven better performances [23]. Finally, other studies combine as well different sets of 

features that have shown to improve the performance, such as VBM and cortical and subcortical 

(CSC) measures [24], also including features from other neuroimaging modalities, such as DTI [25], 

or PET-FDG [26]. 

2.3. Feature selection 

As stated in the introduction, feature extraction methods tend to generate huge amounts of data, 

leading to the so-called curse of dimensionality, which consists of computational difficulties when 

dealing with high dimensional data and a small number of subjects. In such circumstances, the 

classification tends to overfit the data, which makes the algorithm non-generalizable. Therefore, to 

overcome this problem, a reduction of the data dimensionality is needed, with the aim to reduce 

the number of features that are given as inputs to the classifier. In [27], it was demonstrated that 

choosing the appropriate feature selection or dimensionality reduction method has a positive effect 

in the resulting accuracies of the classification, so many approaches were implemented in different 

studies. 

The main methods used for feature selection in the literature can be divided between unsupervised, 

which do not see the class labels and choose those features that maximize data variance, and 

supervised. Among the unsupervised methods, the most common approach implemented in many 

studies classifying AD patients from HC or DFT patients, was principal component analysis 

[20,22,24], which consists of transforming the data into a subspace of lower dimensionality that 

explains most of the data variance. 

On the other hand, supervised methods can be classified between filter, wrapper and embedded 

methods. The first ones, which are independent from the classifier being used and select relevant 

features regarding general traits of the data, are used by means of a t-test in [26] to select the most 

discriminative brain regions. Wrapper methods, on the contrary, consider the classifier being used 

and aim to find the feature subset that maximizes its performance. Among these methods, 

Recursive Feature Elimination (RFE), which eliminates a specified number of features at each 

iteration, was used in [28] to classify AD patients from controls and cMCI from ncMCI. Finally, 

embedded methods, such as random forests used in [18] for feature selection, combine filter and 
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wrapper methods properties. It is implemented by classification algorithms which already have their 

own feature selection methods built-in or, in other words, that perform feature selection in their 

training. 

2.4. Classification algorithms 

A wide range of supervised classification algorithms were implemented in the field of AD diagnosis, 

as well as in classification works that aim to distinguish between AD and other diseases such as 

FTD. As mentioned, these kinds of classifiers used data labels to learn from a training set for further 

prediction of unknown samples. 

The most common algorithm used in the neurodegenerative field for binary classifications were 

Support Vector Machines [20,21,18,19]. In short, this algorithm consists of finding a hyperplane in 

the feature space that best separates the datapoints belonging to different classes. Then, new 

datapoints are mapped into the feature space and predicted as one class or another depending on 

which side of the hyperplane they fit.  

Although SVM is the most used classifier, other algorithms are reported in the literature. In [24], the 

K-Nearest-Neighbours (KNN) classifier was compared to SVM for classifying MCI types and AD 

from controls and proved to not perform as good as SVM. KNN classifier assumes that datapoints 

belonging to a same group are mapped closed to each other in the feature space. Therefore, as in 

SVM, the algorithm maps the different datapoints and stores their labels, but in this case, when the 

test samples are mapped as well in the feature space, they are labelled as the most common class 

in their k-nearest training points. 

Other studies such as [29] have implemented an embedded algorithm such as Random Forests 

(RF) or Decision Trees for both feature selection and classification tasks. These are supervised 

classifiers that follow a flowchart-like structure composed by nodes, branches and leafs. Each node 

is labelled with an input feature and the branches coming out from that node are labelled each of 

the possible values that the feature can take. Then, these branches lead either to another internal 

node labelled with a different feature or to a leaf, a terminal node that will be labelled with a class 

or a probability distribution of the classes. When choosing which feature performs the best split at 

a given node, the certainty in a particular prediction aims to be maximized. 

Logistic Regression (LR) and Linear Discriminant Analysis (LDA) performances, both supervised 

algorithms, were also assessed in [29]. In binary classification problems, LR uses a logistic function 

to output a linear equation result between 0 and 1, which corresponds to the probability of belonging 

to a class or another. On the other hand, LDA projects the data onto a one-dimensional straight 

line, such that the data points belonging to a same class are as close as possible. 

When performing multiclass classifications between AD, FTD and HC, some research groups have 

used deep neural networks [30]. However, machine learning algorithms such as SVM have also 

showed good results [31]. 

Finally, each of the mentioned classifiers depends on a series of parameters, which can be 

optimized for a given training set with a cross validation method, such as in [25] or [24]. 

Nonetheless, attention must be paid to the chosen parameters to avoid overfitting. 

 



10 
 

2.5. Validation method 

The main idea of model validation is to use a part of the data set to fit and train the classifier and 

another part to test and evaluate it. 

Among the different methods, the holdout method, the k-fold cross-validation (CV) and the Leave 

One Out (LOO) CV are examples. The holdout method consists of randomly splitting the dataset 

into a train and a test sets, the first one used for the learning step and the second one to evaluate 

the performance. In [21], the holdout method was used to evaluate the classification accuracy 

between AD and FTD patients. On the other hand, k-fold CV is one of the most common 

approaches, and consists of dividing the subject’s sample into k-folds and using each of the folds 

as a test set in different iterations while the other folds remain as training set. It was used in [18,28] 

to classify AD from HC and MCI converters from non-converters. Finally, LOO cross validation was 

used in [20] to evaluate the performance of the classification between AD and FTD patients. It 

consists of taking k-fold CV to the extreme, since k happens to be equal to the number of samples 

in the data set, leaving a single subject aside for testing at each iteration. 

In [19], Kumar R. et al. compare the three cross-validation methods that have just been explained 

in both a binary and a multiclass classification frameworks. The results show that in the binary 

classification the performance was better with LOO CV and in the multiclass classification the 

outcomes were better with 10-fold CV. 

2.6. Performance evaluation 

It is not a simple task to compare the performances of the methods obtained in the different studies 

by just looking at the results presented. The reason to this, in addition to the fact that each study 

uses its own feature extraction and selection method and classifier, is that the performances of the 

pipelines are assessed with different metrics. 

The most common way of evaluating performance along the different studies was accuracy, which 

is defined as the number of correct predictions divided by the total number of predictions. Also, 

other metrics such as Cohen’s kappa value were used to evaluate the model performance [24], 

which, unlike accuracy, takes into account the imbalance in class distribution. It is defined as the 

overall accuracy of the model minus the probability of agreement between the model predictions 

and the real class values if randomly predicted, all of this divided by 1 minus the same agreement. 

Other studies like [25] evaluate the performance of the classifier with the Area Under the Curve 

(AUC), which measures the two-dimensional area under the ROC curve, which is a curve defined 

by the true positive and the true negative values. 

2.7. Studies that reported significant regions in AD and FTD 

Finally, some of the papers reviewed have reported a list of brain regions found to be significant 

and discriminative when classifying AD patients from controls, FTD patients from controls and AD 

patients from FTD.  

In [20], many areas from the temporal and frontal lobes (e.g., orbitofrontal cortex), as well as the 

parietal lobes and medial structures appeared to be discriminative for AD-FTD classification. Also, 

in [25], the results confirm the temporal lobe contribution to the AD-FTD distinction, but also specify 
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the middle frontal gyrus and periventricular regions as discriminative. In [31], the discriminative 

power of hippocampus and ventricles was assessed and showed greater ventricular differences 

between the two groups: AD and FTD. 

On the other hand, brain regions that were reported as significant for AD-HC classification are 

temporal lobe and periventricular regions, as well as the hippocampus and the amygdalas [31]. In 

FTD-HC classification, the temporal lobe is the one with grater discriminative power, but also 

amygdala+ and the bilateral frontal lobes contribute.  
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3. MARKET ANALYSIS   

3.1. Addressed sector  

As stated in the introduction, the classification pipeline implemented was mainly addressed to 

Alzheimer patients. According to Alzheimer Disease International (ADI), almost 10 million people 

worldwide develop dementia every year, from which around 5 million cases are AD. The incidence 

rates observed in early 2000s for younger adults (below the age of 60) were of 2.4 cases per 

100,000 people per year, whereas this rate increased to 127 cases per 100,000 people per year 

for the population over 60. After 65, the incidence of the disease exponentially increases with age. 

Thus, the main target sector are subjects over 65 suspected of suffering dementia caused by AD. 

The prevalence of AD is on the rise, mainly attributed to the increasing diagnostic rates and 

awareness of the disease [32]. The conventional methods for diagnosing AD, as can be cognitive 

ability tests such as Mini Mental State Examination (MMSE), or biopsies, fail the 50% of the time, 

mainly due to a lack of consensus on AD biomarkers. Thus, the need for effective and well-

orchestrated diagnostic tools for the disease gives place for brain imaging. 

3.2. MRI versus other neuroimaging techniques for AD diagnosis 

Brain imaging is a recent diagnostic improvement method thanks to the progressive advancements 

in technologies and proved correlations in structural, functional and molecular findings to the 

disease onset and progression. Since there are no definitive guidelines for a diagnosis of AD, the 

most popular approach is to exclude other possible diagnosis, narrowing the possibilities to a 

probable AD case. Actually, brain imaging facilitates this exclusionary process by providing 

structural imaging of the brain and its regions, also enabling the differentiation of AD from other 

similar pathologies as FTD or vascular dementia. With the findings of biomarkers linked with the 

disease in clinical trials, brain imaging techniques are increasingly being used for safety monitoring. 

In Table 2 [32], some of the most used brain imaging technologies in the AD diagnosis context and 

their main advantages and disadvantages are summarized. Although PET brain imaging allows for 

an accurate early diagnosis of AD, its price and invasive nature limits the technique, since 

radioactive substances must be injected in the patient’s body. Also, PET becomes less useful when 

monitoring the disease progression and later stages of AD. In these aspects, MRI emerges as a 

great advantage since it is really sensitive to structural brain changes of the disease, allowing for a 

progressive disease monitoring. Moreover, MRI is completely non-invasive. 

Technique Application Advantages Disadvantages Average 

Price (€) 

CT Structural Quick, easy and widely available. Low resolution and limited 

use. Not sensitive to 

structural changes. 

348.70 

MRI Structural Widely available, high-resolution 

and safe. Sensitive to structural 

changes. 

Low, lacks molecular 

specificity. 

2137.22 

SPECT Functional Detects brain changes through 

disease progression, low-cost 

alternative to PET. 

Less specific and sensitive 

tool than PET. Low spatial 

resolution of the brain. 

900.40 
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PET Molecular Good for early detection of AD. 

Applied for monitoring Aβ loads in 

the brain via tracer molecules. 

Limited availability. 

Radioactive chemicals 

injected into body.  

5484.25 

Table 2: comparision between different neuroimaging techniques that can be applied for AD diagnosis. Computed Tomography 
(CT), strucural MRI, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are 
compared. [32] 

3.3. Historical evolution of the market 

Once brain imaging started to become a key biomarker in AD diagnosis and other 

neurodegenerative diseases, in the mid-90’s, statistical mapping and voxel-based analysis of the 

brain began to gain prominence in the neuroimaging field. The use of these methods was first 

limited to explore anatomical or functional differences between groups or to investigate correlations 

between imaging and cognitive symptoms. However, group comparisons usually do not allow to 

develop individually based imaging scores, which is essential to establish diagnosis indices for a 

single subject [33]. 

Because of this, in the early 2000’s, the application of machine learning methods to neuroimaging 

studies aroused a lot of interest. This enabled the development of imaging signatures of brain 

structure that could be detected in single subjects. The earlier studies published on this topic were 

focused on SVM algorithms, which are an actual key aspect in neuroimaging diagnosis because of 

its ease of use and robustness. Another family of methods that gained popularity around 2001-

2002 were random forests since they became very generalizable algorithms. Deep learning was 

the latest incorporation in the field and allowed to learn complex features in a hierarchical way. 

In the last few years, the applications of machine and deep learning in neuroimaging studies were 

numerous, not just for AD but also for schizophrenia, Parkinson, and other diseases. However, this 

is a field that, until now, has been mainly limited to research studies and centres. 

In Figure 2, the publications in PubMed from 2004 until 2020 found by searching MRI and Machine 
Learning are presented. As can be seen, the number of publications has increased exponentially 
in the last few years. 

 

Figure 2: number of publications found in PubMed by year with the keywords “structural MRI” AND “Machine Learning” AND “AD” 
from 2004 to 2020. 
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3.4. Future perspectives 

In light of the above, with an increasingly aging population, Alzheimer’s cases are expected to 

increase up to 75 million in 2030. And, although until now the field of AI applied to the diagnosis of 

AD has been quite limited to the research framework, it is expected that in the years to come new 

branches of large companies including this type of diagnosis will appear. In addition, new start-ups 

will be founded, such as the already existing qmenta [34] or qubiotec [35]. These enterprises offer 

powerful clouds for clinical trials, research and clinical care, where the clients can upload their 

neuroimages and they have them back together with a probability assigned to a determined 

diagnosis. 

Moreover, new innovation centres focused on health technology, born from hospitals together with 

other technological entities, are also expected to increase in number. An actual example of this is 

the Clinical Advanced Technologies Innovation (CATI), a new centre promoted by Hospital Clínic 

and the technological centre Leitat. In this public-private collaboration, many enterprises have 

shown their interest in being part of it, some of them including AI solutions towards a personalized 

medicine. 

Finally, it is worth mentioning that in the specific AD context these emerging AI algorithms not only 

provide diagnostic support but also become a key tool to assess the efficacy of treatments for the 

disease. An example is aducanumab, a monoclonal antibody which was recently commercialized 

with the name of Aduhelm and that acts on beta-amyloid plaques. 
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4. CONCEPTION ENGINEERING 

Once the contextualization and the background of the project were reviewed, in this section, the 

different software options and algorithms for dimensionality reduction, classification and validation 

that can be implemented to address the previously defined objectives, will be discussed. 

4.1. Analysis of the solutions 

Below, a summary table with the different options raised regarding the programming software, the 

dimensionality reduction and classification algorithms, and the cross-validation method. 
 

Table 3: Conception engineering. Studied solutions for the programming software, dimensionality reduction algorithm, classification 
algorithm, and validation method. 

4.1.1. Programming software 

The proposed model could be implemented with different programming languages: Python [36], R 

studio [37] or MATLAB [38] among others. 

Python is a free simple programming language which stands out for its easy to learn syntax. 

However, despite its fast interpretability, it is a high-level object-oriented and interpreted language. 

It supports many modules and packages, among which there is Scikit-learn or Sklearn, a widely 

used library for ML applications. Sklearn [39] is built on NumPy, SciPy and matplotlib, and supports 

classification, regression, clustering, dimensionality reduction, model selection and pre-processing 

tools. 

MATLAB is a private system of numeric computing that uses its own programming language called 

“M language”. It is also a user-friendly environment, mainly used for matrices manipulation, data 

and functions representation and algorithms implementation. It has its own range of packages, 

including a Statistics and Machine Learning Toolbox [40] which applications are remarkably similar 

to those in Sklearn: descriptive statistics, clustering, multidimensional data analysis and feature 

extraction, supervised classification, etc. 

Finally, R studio is a free integrated development environment that uses R programming language 

for statistical computation and graphical representations. R, together with Python, is one of the 

more powerful tools for ML programming. It supports many ML packages such as CARET for 

 Studied solutions 

 

Programming software 

• Python 

• R studio 

• MATLAB 
 

Dimensionality reduction 

algorithms 

• Unsupervised: PCA 

• Supervised 

- Wrapper methods: RFE / FFS / BFS 

- Filter methods 
 

Classification algorithms 

• K-Nearest Neighbours 

• Support Vector Machine 

• Decision Trees 
 

Validation method 

• Leave One Out CV 

• K-fold CV 

• Holdout method 
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classification and regression problems, random forest or e1071 for SVM and Naive Bayes 

classifiers, etc.  

4.1.2.  Dimensionality reduction 

Principal Component Analysis is an unsupervised learning algorithm that transforms the original 

dataset into a subspace of lower dimensionality while capturing its maximum variability. This is 

done by finding a few new variables, directions uncorrelated with each other, that successively 

maximize variance and that are linear combinations of the features in the original set. These 

directions are the so-called Principal Components (PC) [41]. The result is a first PC being the 

direction along which the samples show the greatest variance, the second PC the direction, 

uncorrelated to the first PC, that shows the second greatest variance, and so on. The main uses of 

PCA are descriptive since it does not require any distributional assumptions regarding the dataset.   

On the other hand, the most relevant supervised methods include Linear Discriminant Analysis and 

feature selection algorithms such as wrapper and filter methods. 

LDA is a dimensionality reduction technique which, similarly to PCA, aims to project the dataset 

into a lower dimensionality subspace. However, LDA is supervised, so it creates the new subspace 

while maintaining the class-discriminatory information, finding linear combinations of the original 

features that maximize the separation between multiple classes. 

 
Figure 3: PCA (left) and LDA (right) graphical differentiation. PCA seeks for the directions in the dataset that capture the maximum 
data variability, while LDA aims to maximize the separation between groups. [42] 

Wrapper methods include a classifier into the feature selection algorithm and search for a feature 
subset that maximizes its performance. Wrapper methods are usually classified into Sequential 
Selection and Recursive Feature Elimination (RFE).  

Sequential selection begins with an empty subset and first looks for the feature that maximizes the 

objective function, which in this case is the algorithm performance. Then, searches for another 

feature in the whole dataset that, added to the first one, also maximizes the performance. And 

keeps adding features in that way until the specified number of selected features is reached. The 

feature selection technique just described is the Forward Feature Selection (FFS) algorithm. If, 

on the contrary, the algorithm starts with a full subset and keeps eliminating the feature that causes 

the least performance loss at each iteration, it is called Backwards Feature Selection (BFS).  

On the other hand, in order to find the best performing subset, recursive feature elimination 

eliminates n features from the total number (m), leaving the desired number of features (m-n), 

specified at the beginning. This is performed by fitting the given ML model multiple times and, at 

each iteration, ranking features by importance and discarding the weakest ones. 
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On the contrary, filter methods are independent of the classification algorithm and performance. 

They look for significant features by means of an information entropy test or other statistical 

dependencies. Starting with a feature subset (randomly selected or empty), they first evaluate the 

subset with the corresponding test and check if the result for the previous best subset was better 

than the actual one. If true, it is set as the current best feature subset. This process is continued 

until a certain criterion is met, which can be either the fact that the addition or removal of a new 

feature does not achieve better results or that a predefined performance threshold is achieved [43].  

4.1.3. Classification algorithm 

Support Vector Machine is a supervised machine learning algorithm that can be used both for 

classification and regression analysis, although it is more commonly employed for classification. 

This algorithm aims to find an optimal hyperplane of M -1 dimensions in an M-dimensional space 

(M: number of features) that best separates the different classes of data points from a training data 

set. The data points with the minimum distance to the hyperplane are called support vectors and, 

this minimum distance, also called margin, is maximized to find the optimal hyperplane. Then, new 

examples or cases are mapped to the M-dimensional space and predicted to belong to a class or 

another based on which side of the hyperplane they are mapped.  

K nearest neighbours is also a supervised machine learning classifier algorithm that works under 

the assumption that similar datapoints are close to each other in the M-dimensional feature space. 

In the training phase, KNN maps the different feature vectors and stores the class labels of the 

training examples. Afterwards, each of the unlabelled data points are classified by assigning them 

the most common label among the k training points nearest to them. The distance d from the tested 

point to its k nearest train points can be assessed using different metrics, being the Euclidean or 

the Hamming distances two of the more common [44].  

A Decision Tree is a supervised embedded algorithm that can be used both for regression and 

classification problems. It has a flowchart-like structure composed by nodes, branches and leafs. 

Each node is labelled with an input feature, and the branches coming out from a node are labelled 

with each of the possible values that the feature can take. These branches lead either to another 

internal node or to a leaf, a terminal node that will be labelled with a class or a probability distribution 

of the classes. When predicting a class label for a new data observation, the algorithm starts from 

what is called the root of the tree, the beginning node containing the entire dataset, and the different 

paths from the root to the leafs represent classification rules. The growth of these paths involves 

deciding which feature to choose for each node that best splits the set of data, and what conditions 

to use for splitting an internal node in two or more branches [45]. 

4.1.4. Validation method 

As stated in section 2, the holdout method simply consists of splitting the dataset into single train 

and test sets, the first one for teaching the algorithm and the second one to check the algorithm 

performance on unseen data. A common split of hold-out method is to put the 80% of the data into 

the training set and the remaining 20% into the test set.  

On the other hand, cross-validation methods, such as k-fold CV, rely on a resampling procedure. 

Usually, the implementation of these models follows 4 steps. First, the dataset is shuffled randomly, 

secondly it is split into k-groups, thirdly, iteratively each group is used once as a test set while the 
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other groups are forming the training set with which the model being tested will be fitted. Finally, 

the performance of the model is summarized with the mean of the k iterations. Thus, k-fold CV 

makes sure that each fold is only used once for validation. 

Finally, Leave One Out CV is a type of k-fold CV where k happens to be equal to the number of 

samples in the data set, leaving a single subject aside at each iteration. It gives each sample a 

chance of being test by the algorithm. 

Both k-fold and LOO present a clear advantage with respect to the simple holdout method, since 

in small datasets the holdout is highly dependent on the splits produced. This problem is overcome 

with cross-validation. However, the main disadvantage of LOO is its computational cost, since the 

process requires a fitting and validation of the model as many times as the number of samples [46]. 

4.2. Proposed solution 

In accordance with the above-mentioned, the programming environment finally chosen was Python. 

The main reason was that a ML introduction course was done using Sklearn, so the library was 

already familiar. Also, Python offers an open-source software, which allows to open the code in 

other computers without the need of downloading any payment software. However, R studio was 

also implemented to perform a statistical analysis between the demographic data of the different 

subject groups and to plot the diseases patterns onto an atlas. 

The data dimensionality was finally reduced with PCA. The choice was partly made because of 

computational reasons since feature selection algorithms are iterative and therefore much more 

time consuming. Moreover, PCA was applied because it becomes a very powerful tool to obtain 

both conceptual and graphical clinical information about which brain regions are differing more 

between groups. And, also, since it is an unsupervised method, it results a generalizable algorithm 

with a low risk of overfitting despite the number of samples is limited, which lead to choose it over 

LDA. 

In order to choose the number of PCs, the cumulative explained variance was taken as condition. 

An optimal number of PCs is a number which cumulative variance sums at least the 80% of the 

total variance of the dataset. However, if the threshold is set much higher, there is a risk of 

overfitting.  

At the end, the ML classification algorithm used were support vector machines. The main reason 

that led to this choice was that SVM have been reported in the literature to be the ML algorithm that 

leads to better performances [24,29]. Moreover, Decision Trees were discarded because of their 

nature as embedded algorithms. This means that decision trees include (embed) the feature 

selection step into the own algorithm, making it difficult to retrieve the features selected in each 

node and extract the most significant brain regions. Finally, since the dataset used was relatively 

small and SVM is reported to obtain better results than KNN, the last one was also discarded. 

Finally, the validation method implemented was k-fold CV to avoid split dependency. K-fold was 

chosen over LOO because of computational reasons, since LOO performs a number of iterations 

equal to the number of observations N, meaning that the model must be fitted N times. Moreover, 

LOO has a higher risk of overfitting, since the final performance is meaned between N models 
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trained with practically the same data, with the only difference of one observation. In contrast, the 

overlapping of training data in k-fold is lower. 
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5. DETAILED ENGINEERING 

As mentioned, the main goal of the project was to develop an automated machine learning pipeline 

able to determine if a new patient who had undergone a structural MRI was suffering from AD or 

FTD, or if he/she was healthy. Also, the aim was to retrieve relevant clinical information about which 

brain regions were differing between the two ill and healthy brains. Therefore, both a binary 

classification study and a multiclass one were performed. The first mentioned aimed to classify 

between pairs of groups (AD patients and HC, FTD patients and HC, and AD patients and FTD 

patients) and study the brain atrophy patterns between the pairs. On the other hand, the multiclass 

study purposed to classify a new patient in one of the three groups. 

To do so, the incoming structural MRI data, segmented with FreeSurfer into cortical thicknesses 

and cortical and subcortical gray matter volumes, was first divided into train and test sets with a k-

fold cross-validation. Then, the dimensionality was reduced with PCA. In this step, the weights 

given from the first PC to each feature were stored and used to determine the most relevant brain 

regions between groups, which were plotted in a brain map. Followingly, the data transformed into 

the PCA subspace entered the classification step, were the SVM algorithm, which parameters were 

cross-validated, was fitted with the train set and then predicted the test set data labels. Finally, the 

performance of the model was assessed with the mean accuracy of the classification and a 

confusion matrix. In Figure 4, the general implemented pipeline is represented. 

 

Figure 4: diagram showing the implemented pipeline. Starts splitting the dataset according to the cross-validation method (1), then 
Principal Component Analysis (PCA) is implemented (2) and the weights of the quantified brain regions are extracted, followed by 
Support Vector Machine (SVM) for the classification step (3). Finally, the performance is assessed (4). Parameter k corresponds to 
the number of iterations. 

5.1. Data management 

The data used in this study comes from the Alzheimer and Memory unit in Hospital Clinic of 

Barcelona. It consists of a subset of 53 EOAD patients and 44 HC and 64 FTD patients, resulting 

in 161 subjects. Each subject was doubly acquired with a 3T Siemens MRI scanner with a T1-

weighted magnetization-prepared 180 degrees radio-frequency pulses and rapid gradient-echo 

(MP RAGE) sequence. For each subject, cortical thicknesses and subcortical GM volumes were 

segmented by the Alzheimer and Memory unit (Agnès Pérez) using FreeSurfer, which is an open 

software for analyzing human brain structural and functional MRI images, used for the study of 
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cortical and subcortical brain anatomy. From this segmentation, a total of 36 cortical thicknesses 

from different structures were obtained for both right and left hemispheres, and also 65 subcortical 

volumes, including both right and left hemisphere measurements. However, the features that 

contained many null values or had a large number of void values were eliminated from the raw 

dataset. In order to work with manageable data, the format was transformed to .csv and read with 

Pandas library in Python.  

Since the scope of this study did not include comparing differences between left or right hemisphere 

regions, we calculated the mean between left and right measures. Also, when comparing volumes 

between different subjects, it is good practice to normalize them for the total intracranial volume 

(TIV) to avoid significant differences that are due to the brain size and not because of the disease. 

Thus, each volume measure was normalized to the TIV and the intracranial volume was dropped 

from the dataset. Finally, a z-score normalization (Equation 1) was applied to the data in order to 

have comparable ranges of values for all features. HCs were labelled with a 0, the EOADs with a 

1 and the FTDs with a 2.     

     𝑧 =
𝑥− 𝑚𝑒𝑎𝑛

𝑠𝑑
  (eq. 1) 

Moreover, demographic data was acquired for each group, containing both age and sex. To check 

if age differences existed between the three groups, an ANOVA test was carried out with R studio. 

On the other hand, sex differences were checked with a Fisher test. Regarding age, the ANOVA 

test showed a p-value of 1.4·10-6 (<0.05), meaning that significant differences in age between the 

three groups existed. In sex, although differences were not that big, a p-value of 0.03 was obtained. 

Thus, a post-hoc study was carried out using t-test to identify the pair-wise differences driving each 

result. The p-values obtained for age were 0.26, 4.4·10-6 and 1.3·10-5 between EOAD and HC, HC 

and FTD, and EOAD and FTD data, respectively. Regarding sex, the p-values were 0.3, 0.03 and 

0.3 for EOAD-HC, FTD-HC and EOAD-FTD respectively. 

Thus, the age and sex variables were included in the multiclass pipeline. In binary studies, age was 

added in all of them except for HC-EOAD, and sex was only added to HC-FTD. At the end, the 

feature space dimension was reduced to 59 for the multiclass and the HC-FTD studies, 58 for 

EAOD-FTD and 57 for HC-EOAD. The header of the EOAD-FTD feature set is shown in Figure 5. 

 

Figure 5: example taken from the data table for HC vs EOAD. Showing only 5 subjects and 7 features from the total. 

5.2. Implemented pipeline 

5.2.1. Cross-validation 

With the data already imported and normalized using z-score, the data was first divided into 

features (X) and labels (y) Then, it was split into train (X_train, y_train), and test (X_test, y_test) 

sets with a stratified 5-fold cross-validation. The fact that the k-fold was stratified allowed that the 

splits, instead of being completely random, had a ratio between the target classes in each fold 
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equal as the one in the full dataset, so the folds are compensated. Also, 5 folds were chosen so 

that in each split approximately the 20% of the data was left for testing, while the resting 80% was 

used for training. In Figure 6, a graphical representation of the stratified 5-fold cross-validation 

implemented in the 3-group classification is shown. 

 

Figure 6: stratified 5-fold cross-validation implemented for the 3 groups. HC, EOAD and FTD subjects. At each iteration, a different 
fold containing the 20% of the dataset is reserved for testing. 

5.2.2.  Dimensionality reduction 

Once the data was split into a train and a test sets, and already in the cross-validation loop, the 

feature space dimensionality was reduced using Principal Component Analysis, which was also 

used to retrieve those features apporting more variance from the whole sample of each study.  

As mentioned before, PCA is an unsupervised algorithm that reduces the dimensionality m of a 

dataset of N observations to a subspace of dimensionality p<m. It looks for uncorrelated PCs, which 

are linear combinations of the original features comprising the maximum variability of the data. The 

classic method for finding the PCs is the maximum variance approach [47]. The process starts with 

a N x m matrix, K, with mean-centred columns (kj). The algorithm seeks for the linear combination 

of columns of the matrix with maximum variance, and these linear combinations are given by 

equation 2, where a is an m-dimensional vector of weights a1, a2,...,am. 

∑ 𝑎𝑗𝑘𝑗 = 𝐾𝑎𝑚
𝑗=1    (Eq. 2) 

Then, the variance of such linear combination is given by equation 3, where C is the covariance 

matrix of K. This will consist of a square matrix of mxm dimensions denoting the covariance of each 

feature with the others (Figure 7). From here, finding the linear combination with maximum variance 

or first principal component (PC1), translates into looking for a vector a that maximizes this equation 

(Eq.3).  

At the end, assuming that a must be unit-norm vectors, what results is the following equality 

(equation 4), where 𝜆 and a end up being the eigenvalues and eigenvectors of C, respectively, 

which come from the diagonalization of the covariance matrix. 

𝑣𝑎𝑟(𝐾𝑎) = 𝑎𝑇𝐶𝑎 (Eq. 3)                𝐶𝑎 = 𝜆𝑎  (Eq. 4) 
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Figure 7: covariance matrix. m x m matrix representing the covariance of each feature with the other features. 

The higher the eigenvalue, the higher variability in that direction, so the algorithm aims to find the 

largest eigenvalue and its corresponding eigenvector. A matrix composed by the eigenvectors can 

be constructed, where each vector or column corresponds to a PC. Then, by arranging them in 

descending order of variability, that is, by their eigenvalues, one acquires a matrix with the first PC 

as the first column, the second PC as the following column etc.  

In Python, the decomposition module of the Sklearn library supports a PCA function in which the 

user can indicate the number of features or PCs to be extracted. In order to calculate the optimal 

number of PCs, in a previous step to the cross-validation, a PCA model was fitted with all the X 

data and set to get all the possible principal components, which equal the original feature space 

minus one: 55 for the EOAD vs HC study 56 for EOAD vs FTD and 57 the rest. From here, the 

explained variance accumulated by each component was calculated and the number of 

components that accumulate the 80% of the variance was assessed. In Figure 8, the cumulative 

variances versus the number of principal components for each group classification is shown.  

 

Figure 8: cumulative variances for all the principal components in each classification study. Minimum number of components 
needed to accumulate the 80% of the data variance is marked with a dashed line. Where “nc” states for number of principal 
components. 

The minimum number of PCs needed to accumulate the 80% of the dataset variance for each study 

was stored in a variable and entered to the cross-validation loop. There, the X_train was used to fit 

PCA, which was set to assess the number of PCs found in the previous step, and both X_train and 

X_test data were transformed into the new subspace. Followingly, the lists of weights given to the 

different features or regions by each component were stored in a dictionary with keys equal to the 

number of PC and values equal to a list of shape (nº iterations, nº features). At the end of the cross-

validation, the mean and standard deviations of the weights given to each feature were calculated. 
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Since the first principal component itself accumulated approximately the 40% of the data variance, 

the weights given by this component to each feature were then stored in a .csv file. The file was 

read in R studio and used to represent the weights of each region graphically in a brain map. 

5.2.3.  Classification 

Once with the train and test data transformed into the PCA subspace, the Support Vector Machine 

algorithm was fitted with the train set and used to classify the test data into the different classes. 

As explained, SVM aims to find a hyperplane of m-1 dimensions that best separates the different 

data classes from the training set. When the dataset is linearly separable, two parallel hyperplanes 

are defined such as the distance between them is 

maximized (Figure 9). Then, the optimal 

hyperplane with the maximum margin, is the one 

lying halfway the other two. The equations defining 

the two parallel hyperplanes are (Eq. 5) and (Eq. 6), 

where b is a biased term, WT is the summatory of 

the normal vectors to the hyperplane, and X is the 

the summatory of the data point vectors. Both b and 

W parameters must be found so they maximize the 

margin distance. Then, every point on or above 

boundary Π1 is of a determined class and every 

point on or below boundary Π2 is of another class 

[48]. Therefore, for the classification of every new 

datapoint, the decision function in Eq. 7 is used: 

𝛱1 = 𝑤𝑇𝑋 − 𝑏 = 1       (𝐸𝑞. 5) 

𝛱2 = 𝑤𝑇𝑋 − 𝑏 = −1   (𝐸𝑞. 6) 

𝐷(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (𝐸𝑞. 7) 

Sometimes, when data is not linearly separable, a projection of the data to a higher dimension, 

where it can be linearly separated, is needed to avoid outliers. This is what is called the kernel trick. 

In this non-linear classification, every dot product of two vectors in the algorithm is replaced by a 

kernel function, that allows to fit the hyperplane in a transformed feature space. Different kernel 

functions can be used (Figure 10), among others, there exist:  

 

Figure 10. From left to right: graphic exemplification of Support Vector Machine classification with linear, polynomial and RBF 
kernels, from left to right [49]. 

Linear kernel: 𝐾(𝑥⃗𝑖 , 𝑥𝑗⃗⃗⃗ ⃗) = (𝑥⃗𝑇
𝑖 , 𝑥𝑗⃗⃗⃗ ⃗). It is equivalent to use a SVM without the kernel trick. 

Figure 9: SVM classification. Grpahical representation of the 
hyperplanes generated by the algorithm. 
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Polynomial kernel. It is a more generalized linear kernel, since it can classify curved or non-linear 

input spaces. 𝐾(𝑥⃗𝑖 , 𝑥𝑗⃗⃗⃗ ⃗) = (𝑥⃗𝑇
𝑖, 𝑥𝑗⃗⃗⃗ ⃗ + 𝐶)

𝑑
, where C is a constant term and d is the kernel’s degree. 

RBF (Radial Basis Function). The Gaussian Radial Basis function is the most common 

one: 𝐾(𝑥⃗𝑖 , 𝑐𝑒𝑛𝑡𝑒𝑟) = exp (−𝛾||𝑥𝑖⃗⃗⃗ ⃗ − 𝑐𝑒𝑛𝑡𝑒𝑟||
2

). The γ parameter controls the weight of new training 

points. The higher its value, the more dependent of the closer points the decision boundary will be. 

Therefore, if γ is set too high, there might be risk of overfitting. 

The effectiveness of SVM depends both on the kernel selection and its parameters. As mentioned 

before, when RBF kernel is used, the γ parameter must be chosen. On the other hand, the soft 

margin C parameter dictates the trade-off between maximizing the margin of the decision function 

and minimizing mistakes in the classification of training points [50]. For a smaller C, classification 

mistakes of the training data are given less importance and the algorithm focuses on maximizing 

the margin, while for higher C values, a smaller margin is accepted if the decision function classifies 

better all training points. Hence, when choosing a higher C value, overfitting must be watched out. 

In order to find the optimal kernel and parameters for the SVM classification, the GridSearchCV 

function from the Sklearn model_selection module was implemented. This function takes as main 

inputs an estimator and a parameter grid. It performs an exhaustive combinatory search over the 

parameter’s ranges given, fitting the X_train for each parameter combination and then scoring the 

estimator performance with the train labels y_train. Also, the performance can be cross validated 

any number of iterations by passing an integer number to the cv parameter of the GridSearchCV 

function. In this case, the cv parameter was set to 10. 

The different parameter combinations passed as a grid to the GridSearchCV function consisted on 

three different kernels (linear, polynomial and RBF) combined with a C range of values from 0.1 to 

1000 in logarithmic scale. Also, for the RBF kernel, a γ value was added to the combination, ranging 

from 0.001 to 1 in logarithmic scale. The combinations are shown in Table 3. 

KERNEL C  γ 

LINEAR Range: 0.1, 1, 10, 100, 1000 ------  

POLYNOMIAL Range: 0.1, 1, 10, 100, 1000 ------ 

RBF Range: 0.1, 1, 10, 100, 1000 Range: 0.001, 0.01, 0.1, 1 

Table 4: combination of parameters for the SVM estimator. C and γ values combined with each kernel in the grid search. C: soft 
margin parameter. γ :  specific parameter for the RBF kernel that controls the weight given to new training points.  

Once the GridSearchCV function finds the optimal combination, it builds a classifier with that 

parameters. The resulting SVM estimator was then trained with the X_train and y_train data and 

used to predict the X_test labels, which were stored in a variable called y_pred.  

Finally, the predicted labels were compared with the true labels (y_test) in order to build a confusion 

matrix and to assess the overall accuracy of the prediction and the specific accuracy of each class. 

The overall accuracies were calculated using the accuracy_score function and the specific ones 

with the classification_report function, both provided by the metrics module of Sklearn. Then, once 

outside the cross-validation loop, the mean values of the accuracies and standard deviations were 

calculated for the 5 iterations. 
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5.3. Results 

The results obtained could be separated in two different categories: a first one regarding the 

achieved algorithm performance and a second one concerning all the clinical information that 

resulted from the exhaustive analysis realised to the implemented algorithm. 

5.3.1.  Algorithm performance 

As mentioned, the number of PC to be used in each classification study was assessed with the 

cumulative explained variance. The results were shown in Figure 8. The number of PC used were 

11, 9, 10 and 10 for the HC vs EOAD, HC vs FTD, EOAD vs FTD and the multiclass studies, 

respectively. The classification capability of the pipeline implemented was obtained by assessing 

its performance using the 20% of the data for testing in a 5-fold cross-validation. For each study 

(HC vs EOAD, HC vs FTD, EOAD vs FTD and HC vs EOAD vs FTD), the specific precisions for 

each group of subjects, as well as the overall classification accuracies, were calculated and the 

mean values were obtained across the 5 iterations. In Table 5, the total accuracy of each 

classification study, as well as each group precision, accompanied by the standard deviations, are 

shown. Also, Figure 11 presents the confusion matrices showing the mean of the true-predicted 

and false-predicted values for each study. 

 STUDY 

 HC (Group 1) vs 

EOAD (Group 2) 

HC (Group 1) vs 

FTD (Group 2) 

EOAD (Group 1) 

vs FTD (Group 2) 

HC (group 1) vs EOAD 

(group 2) vs FTD (group 3) 

Mean accuracy 91.7% ± 5.8% 83.3% ± 5.2% 83.0% ± 5.8% 77.7%  ±  5.2% 

Precision group 1 92.8% ± 6.6% 76.0% ± 4.7% 81.79% ±10.5% 70.7%  ±  8.3% 

Precision group 2 91.0% ± 5.9% 89.9% ± 6.6% 86.3% ± 5.8% 80.8%  ±  4.2% 

Precision group 3 ------------------------ ------------------------ ------------------------ 83.3%  ±  10.4% 

Table 5: accuracies mean values (%) and standard deviations (%) obtained for each classification study (HC vs EOAD, HC vs FTD, 
EOAD vs FTD and HC vs EOAD vs FTD). Also, the mean classification precision (%) of each individual group and the corresponding 
standard deviations (%) are shown.  
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Figure 11: confusion matrices showing the classification precision for each group in the four studies. Top left: HC vs EOAD. Top 
right: HC vs FTD. Bottom left: EOAD vs FTD. Bottom right: HC vs EOAD vs FTD. The values correspond to the rounded means 
across the 5 iterations. 

5.3.2.  Significant brain regions 

As already mentioned, the first principal component was used to retrieve the linear combination of 

features accumulating the highest variance from the original dataset. In such linear combination, 

features with the higher weights correspond to the ones contributing more to the variance 

accumulated by that PC. In Figures 12 to 15, the weights given by PC1 to each brain region are 

represented in four boxplots, each one corresponding to a different classification study.  

 

Figure 12. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC and EOAD study, the 
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower 
mean weights. In the x axis the names of the features are shown.  
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Figure 13. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC and FTD study, the 
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower 
mean weights. In the x axis the names of the features are shown.  

 

Figure 14. Boxplot showing the weights given to every feature by the first principal component (PC1) in EOAD and FTD study, the 
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower 
mean weights. In the x axis the names of the features are shown.  
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Figure 15. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC, EOAD and FTD study, 
the mean and standard deviations across the 5  cross-validation iterations are represented. The features are sorted from higher to 
lower mean weights. In the x axis the names of the features are shown.  

In Figures 12 to 15, it can be noticed that most of the features were given negative weights and 

just a few of them, such as the ventricles size and volume or the choroid plexus were positively 

weighted. However, the sign of the weight given to a feature is just indicating the sign of its 

correlation with the principal component. That is, if an increase in a variable results in an increase 

of a PC and vice versa, it means that they are positively correlated and therefore the variable is 

positively weighted. And, on the contrary, a negative weight given to a variable means that it is 

negatively correlated with the PC. The larger a variable’s weight, the more that variable is 

contributing to that PC. 

The weights given to each variable were then plotted into a brain plot with the ggseg library from R 

studio. Since the sign of the weights is not relevant to the variable’s contribution to the PC 

accumulated variance, the weights were represented in absolute value. The resulting cerebral plots 

show the relevance of each brain region when differentiating between the classified groups. Two 

different plots were made for each classification study, one of them showing the subcortical 

volumes (Aseg atlas) and another one showing the cortical and subcortical thicknesses (Desikan-

Killiany or DK atlas). The Aseg atlases are shown in figure 16 and the DK atlases in Figure 17. 
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Figure 16: Aseg atlases of the subcortical brain volumes painted according to the weights, in absolute value, given by the first 
principal component of PCA in each of the 4 studies. 1) HC vs EOAD, 2) HC vs FTD, 3) EOAD vs FTD and 4) HC vs EOAD vs FTD. 
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Figure 17: Desikan-Killiany atlases of the cortical and subcortical thicknesses of the brain painted according to the weights, in 
absolute value, given by the first principal component of PCA in each study. 

5.4. Discussion of the results 

For each binary classification study, the probability of randomly predicting correctly a test subject 

was of 50%, whereas in the multiclass study that probability was of 33.3%. Thus, these last two 

values were taken as the accuracy baselines for the binary and multiclass studies, respectively. 

By looking at the mean accuracies in Table 5, it can be seen that the binary classification with better 

performance was the HC vs EOAD one, improving the baseline estimation in a 41.74%. The high 

accuracies here might be because the atrophy patterns between EOAD and HC patients are clearly 

distinguishable. Also, when comparing the HC and EOAD individual precisions in Figure 11, it was 

observed that both groups were equally identified, indicating that the percentage of subjects 

correctly identified as EOAD patients was similar to the one of HC. The same happened for the 

misclassification of both groups.  

In the classification between HC and FTD, the overall accuracy achieved was lower, meaning that 

the number of misclassified subjects was higher than in the previous study. This is probably due to 

the fact that the cerebral atrophy of FTD patients does not follow a pattern as specific as the one 

of EOAD, leading to greater difficulty in differentiating them from another group of patients. By 
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taking a closer look at the results, we observe that the number of subjects correctly classified as 

FTD was quite higher than the number of correctly classified HC. Thus, the probability of 

misclassifying a HC subject is higher than misclassifying a subject the other way around. However, 

both precisions exceeded 75%, which led to a reliable classification. 

On the other hand, the binary study between EOAD and FTD patients showed similar results to the 

one between HC and FTD, with an overall accuracy of 83%. In this case, the lower accuracy might 

be as well due to the more diffuse atrophy pattern of the FTD subjects. Again, the probability of 

misclassifying a EOAD patient into FTD is higher than in the opposite direction. However, the 

difference in the precisions between the EOAD and FTD groups is lower than in the HC vs FTD 

study due to higher variance in the data   . 

Regarding the proposed multiclass study between all three groups, it improved the performance 

with respect to the 33.33% baseline in a 44.39%, outperforming with respect to binary studies. Also, 

when looking at the individual precisions of each group, the FTD was once again the group with 

the lower number of misclassifications. The reason keeps being its less defined atrophy pattern, 

that leads to the algorithm to confuse atrophy patterns from other groups with the one of FTD. 

As can be seen in Figures from 12 to 15, the mean cortical thickness in the brain and the total gray 

volume were the two more weighted features of the dataset in all studies, meaning that were the 

ones contributing more to the PC1 variance. This proved that in both EOAD and FTD diseases 

there is an important gray matter loss with respect to healthy subjects. The fact that in the EOAD 

and FTD binary study these two features also accumulated variance might be because in FTD the 

amount of gray matter degeneration is not as much as in EOAD patients. 

By taking a look at the features contributing with more variance in the HC and EOAD patients 

(Figure 12), besides from the mean cortical thickness and the total gray volume, the specific regions 

showing more variance were the supramarginal, middle temporal and inferior parietal thicknesses. 

Also, a highly weighted feature was the supra tentorial volume, which is a feature that includes all 

the pial structures as well as the hippocampus and amygdala, among others. The EOAD pattern 

found highly correlates with the one found in [51] by Möller et al. 

When looking at Figure 13, it was observed that, compared to EOAD, FTD subjects also have a 

degeneration in nucleus accumbens, orbitofrontal areas and frontal insula in addition to a general 

cortical and subcortical loss of GM. This was also observed in Figure 14, where EOAD and FTD 

study results are shown. In this group differentiation, frontal insula plays an important role, which 

was also reported in the literature reviewed [52][53]. 

Moreover, Figure 15 shows the features contributing with more variance between the three groups. 

Once more, both the mean cortical thickness and the subcortical GM loss became the features 

accumulating more variance, followed by the middle temporal thickness and the total brain volume, 

which indicated a clear volume reduction in both neurodegenerative diseases with respect to 

controls.  

Finally, the general patterns of both diseases can be observed in Figures 16 and 17. From these 

plots, it was confirmed the more specific degenerative pattern of EOAD patients with respect to 

FTD. EOAD showed a more focused GM loss in temporal and posterior areas, while FTD subjects 

showed a more diffuse pattern, with weights more evenly distributed in the different regions. 
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6. EXECUTION SCHEDULE: GANTT DIAGRAM 

In order to develop the project in the expected time frame, from February 2021 to June 21th 2021, 

the different tasks to be carried out for the objectives accomplishment were listed and a specific 

time was assigned to each of them. In Figure 19, the Gantt diagram with the estimated times for 

each of the tasks is presented. 

The tasks to be performed in order to develop the project in the expected time frame were divided 

in six blocks: 

6.1. Planning. This block corresponds to the first two weeks of the project, since the first 

meeting with the tutor takes place in January 26 until the scope of the project is fully 

defined. 

6.1.1. Fix the objectives: the most important milestones to be fulfilled at the end of the 

project are defined. Checkpoint: list with the definitive objectives. 

6.1.2. Task’s definition: definition of the different tasks to be carried out in order to achieve 

the previously listed objectives. The realization of the Gantt chart is included in this 

sub-block. Checkpoint: list with the ordered tasks and definitive Gantt chart. 

6.2. Literature review. An in-depth research is conducted in different studies that have carried 

out ML approaches for the diagnosis of AD or FTD using MRI data or others such DTI 

data. This task is expected to last from February to mid-April. 

6.2.1. Literature review. The studies are searched and collected if they meet the inclusion 

criteria. This subtask lasts the same as the whole task 2 because of possible new 

publications. Checkpoint: table with the studies reviewed and their main 

characteristics. 

6.2.2. Evaluate feature selection methods. The feature selection methods and 

dimensionality reduction techniques used in the gathered papers are reviewed and 

the most appropriate technique for the project data is chosen. Checkpoint: feature 

selection/dimensionality reduction method chosen. 

6.2.3. Evaluate Machine Learning algorithm. Once with the feature selection methods 

evaluated, in mid-March, the same subtask must be performed for the ML 

classification algorithm. Checkpoint: ML classification algorithm chosen. 

6.2.4. Evaluate cross-validation method. The same review is done for the cross-validation 

method that aims to evaluate the algorithm performance. The subtask is expected to 

be finished by April 14. Checkpoint: cross-validation method chosen. 

6.3. Machine Learning model. The objective of this task, to be performed from mid-February 

for three months, is to code the ML pipeline. 

6.3.1. Model building. The first subtask is to build the model pipeline, with the feature 

selection, the ML algorithm and the cross-validation steps. Checkpoint: pipeline 

coded and implemented. 
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6.3.2. Model training and testing. Then, the model must be trained and tested with the 

available data and the chosen cross-validation method. Checkpoint: algorithm 

trained and tested with the cross-validation method chosen. 

6.3.3. Algorithm adjustment. Once the model was trained and tested, depending on the 

outcomes obtained the appropriate corrections and adjustments must be done. This 

subtask will close the ML model task approximately in mid-May. Checkpoint: 

readjusted pipeline. 

6.4. Results. With the algorithm already adjusted, it is time to present and analyse the results 

obtained. This aims to be done during the last three weeks of the project development, 

not considering the project delivery week. 

6.4.1.  Present the results. The results must be analyzed and presented in the most 

appropriate way, with the help of tables and graphs that clarify them. Checkpoint: 

results understood and formally presented. 

6.4.2. Discussion of the results. With the results clearly presented, in mid-May, they must 

be discussed by performing an in-depth analysis. Checkpoint: section of the result’s 

discussion finished. 

6.4.3. Conclusion. Finally, while the results discussion is being done, conclusions must be 

extracted and expressed in the report. Checkpoint: conclusion section finished. 

6.5. Closeout. This stage closes the project development in the last week, from June 7 until 

June 21. 

6.5.1. Submission of the project. The project memory must be submitted on June 14. 

6.5.2. Presentation of the project. The project must be presented and defended on June 

22. 
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Figure 18: GANTT. Execution schedule by weeks of the project. On the left column the different tasks to be performed along the project execution (February 2021 – June 2021) are listed. The start and the due dates 
of each task are shown. 
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7. TECHNICAL FEASABILITY 

In this section, the SWOT analysis was developed. Both internal (strengths and weaknesses) and 

the external (opportunities and threads) factors affecting the current project were analysed. 

 

Figure 19: SWOT analysis of the project. Strengths, Weaknesses, Opportunities and Threads are listed. 

7.1 Strengths 

Firstly, the data used in this study was already pre-processed and labelled. Therefore, since all the 

features were already extracted from the MRI scans, the focus of the project could be placed on 

the ML classification and dimensionality reduction algorithms. 

Secondly, the classification pipeline implemented in Python was fully automated. It could perform 

a dimensionality reduction step of the data, plotting the brain regions providing more variance to 

the dataset, fitting the classification algorithm to the selected data, and to automatically cross-

validate the model and present its performance. At the end, the resulting pipeline provided 

reproducible results, which allows for applying the model to other datasets different than ours or 

being used in other centres. Moreover, it could be used with other neuroimaging modalities alone 

or combined with structural MRI. 

Finally, an unsupervised learning algorithm, PCA, was used to extract the most relevant brain 

regions and plot them in a brain atlas. This is a real advantage, since it provides a more clinical 

view of the problem, also allowing for tracking the disease evolution pattern in the future when new 

data of the patients is obtained. 

7.2 Weaknesses 

The first weakness this project encountered was the lack of data. It counted with a relatively small 

number of subjects, 161 (44 HC, 53 EOAD patients and 64 FTD patients), while to improve the 

results of the study more subjects should be included. Also, the data used belonged to a single 

neuroimaging modality, structural MRI, which also limited the algorithm performance. Therefore, 

better results would be expected if DTI or PET data had been available. 

Another weakness is the number of classification algorithms implemented, which was limited by 

the time available to carry out the project. Only SVM was assessed for the classification, while other 
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algorithms that proved promising results in the literature, such as Artificial Neural Networks or 

Regularised Extreme Machine Learning were not implemented. 

7.3 Opportunities 

The first opportunity is that ML was recently proposed as an alternative diagnostic tool for 

neurodegenerative diseases by means of neuroimaging data. It allows for better precision in 

diagnostics but also leads to explainable systems able to recognize patterns associated with 

healthy or pathological brain structures. All of this makes these techniques suitable for clinical 

applications and research.   

Also, although a wide range of studies and commercial softwares which aim to classify with the 

best accuracy as possible were developed, the algorithms were mostly treated as black boxes and 

little research was done in retrieving the most relevant features for the classification. In this aspect, 

the proposed study has an open opportunity. 

Finally, during the project development the 1st ISMRM Iberian Chapter Annual Meeting took place, 
and the current work, together with the doctoral student Agnès Pérez work, could be presented to 
the congress.  
 

7.4 Threads’ analysis 

Of course, in case the research project ended up giving rise to a start-up, an important thread would 

be enterprises such as qmenta that commercialize very powerful AI algorithms for the diagnosis of 

neurological diseases using neuroimage. Therefore, the market competition would be one of the 

obstacles for the project. 

However, the fact that nowadays machine learning techniques are shifting towards convolutional 

neural networks, that embed into a single algorithm both feature selection and classification 

methods, gives rise to another thread: the obsolescence of the presented algorithm. 
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8. ECONOMICAL FEASABILITY 

Although it is a publicly funded research thesis, in this section, the theoretical cost of the project 

based on the GANTT diagram is going to be described. To do so, the costs of human resources, 

the data used, software and hardware were divided in different packages with an associated cost. 

A summary table of the costs is presented in Table 6. 

Package Element of the package Element’s cost Package cost 

Human resources    

 Learning: 105 h 20 €/h  

 Development: 180 h 20 €/h  

 Close-out: 95 h 20 €/h  

   7.600 € 

Data    

 FreeSurfer segmentations 0 €  

 Demographic data 0 €  

   0 € 

Software    

 Python 0 €  

 R studio 0 €  

   0 € 

Hardware    

 Computer 800 €  

 Consumed electricity 21,98 €  

   821,98 € 

 

Total cost   8.421,98 € 

Table 6: table showing the theoretical cost of the project. The costs are divided in 4 packages: human resources, data, software 
and hardware. Each package is formed by different elements, which costs are presented. 

Firstly, regarding human resources, the salary of the student should be taken into account. The 

project development is designed to cover approximately 380 hours of work, which can be divided 

into a learning stage (105h), encompassing both planning and literature review; a development 

stage (180h), including the ML algorithm building and results tasks; and a close-out stage (95h) 

including the memory writing and the oral presentation of the project. Nonetheless, the salary of 

the student in the different stages is the same: 20€/h. Thus, the cost of this package amounts to 

7.600€. In figure 21, the hours implemented by the student in the different stages are represented. 
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Figure 20: hours dedicated to each stage of the project by the student:.47% to the development, 28% to the learning stage and 
25% to the close-out stage. 

Secondly, the images from which the data used in this project comes from were provided free of 

charge by the neurology service of Hospital Clinic. Moreover, the biomedicine department of the 

same hospital segmented the images with the FreeSurfer software. The resulting segmentations, 

as well as the corresponding demographic data, were also dispensed to the project free of charge. 

Thus, the overall cost of the data package is 0€. 

Thirdly, the software programs used in the development part were Python and R studio, both of 

them with completely free access, so the software package has no cost at all: 0€. 

Finally, an element to consider in the hardware package is the computer used, which is an HP 

pavilion of 2016 valued in approximately 800€. Also, the electricity consumption by the computer 

is considered. In all the hours of work the computer was used, and it consumes a mean of 400 W/h, 

so the electricity consumed for the project amounts to 152 kW. Taking into account that the price 

of electricity is around 0,14458 €/kW, the cost of electricity during the project was: 152 kW · 0,14458 

€/kW = 21,98 €. Thus, the total cost of the hardware package is 821,98€. 

As can be seen in Table 6, the overall cost of the project is 8.421,98€.  
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9. NORMATIVE AND LEGAL ASPECTS  

This project is framed into the university, so it adheres to the University of Barcelona statute’s 

[Estatut de la Universitat de Barcelona - Universitat de Barcelona], specifically to “TÍTOL V”, 

chapters I, II and III. It states, among other remarkable points, that the research in University of 

Barcelona does not tolerate any project that does not aim to advance knowledge, improve life 

conditions, reduce social and economic inequalities and raise up innovation and business 

competitivity. 

Moreover, as stated in section 5, the project presented uses data retrieved from T1-weighted MRI 

scans of real patients. All the scans were acquired in the diagnostic imaging centre of Hospital 

Clinic, thus adhering to the bioethics committee of the hospital. Also, all the patients involved in the 

study must have provided their consent in written, and their demographic and clinical information 

is protected by the Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y 

garantía de los derechos digitales of the BOE. This normative includes a section, called 

“Disposición adicional decimoséptima. Tratamientos de datos de salud”, that states that the use of 

pseudonymised personal data for public health research is considered lawful as long as a technical 

separation exists between the research group and the group in charge of the pseudonymisation, 

so the real identifications remain unknown by the researchers. 

The current project fits into the Computer-Aided Detection/Diagnosis Software category, since it 

aims to process information retrieved from MRI images to generate a diagnosis support. Therefore, 

the proposed pipeline must be implemented in accordance to ISO 27799:2016 Health informatics 

– Information security management in health using ISO/IEC 27002. This International Standards, 

similarly to Ley Orgánica 3/2018, gives guidelines to appropriately preserve the confidentiality of 

personal health information that can be used in any project, whatever the form that information 

takes: numbers, words or, as in the present case, medical images. 

Finally, it cannot be omitted that the proposed algorithm aims to apply Artificial Intelligence to an 

actual medical diagnosis. However, although one would expect to find many regulations about it, 

there are currently no harmonized standards or laws that specifically regulate the use of Machine 

Learning or other forms of AI in the medical practice [54]. Nonetheless, Food and Drinks 

Administration (FDA) recently published a paper [55] where it describes a new potential approach 

to a regulation for AI and ML-driven software as medical devices. From this paper it can be derived 

that FDA would be enabled to evaluate and monitor a new software product from its premarket 

development to its postmarked performance to ensure patient’s safety. 

  

https://www.ub.edu/web/ub/ca/universitat/organitzacio/normatives/estatut/estatut.html
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10.  CONCLUSIONS AND FUTURE LINES 

In conclusion, the presented project highlighted the importance of Artificial Intelligence algorithms 

for diagnostic imaging support. Specifically, the proposed algorithm showed the notable utility of 

machine learning automatic classification in the neuroimaging field, allowing to support the 

diagnosis of AD and other neurodegenerative diseases such as FTD. The main goals were 

achieved regarding both the algorithm performance and the retrieval of the atrophy patterns in both 

diseases. In addition, the algorithm proposed was accepted in the ISRMRM Iberian annual 

congress, which takes place on June 16 and 17.  

In light of the results obtained, we could affirm that EOAD’s patients present a more characteristic 

and less spread degenerative brain pattern than FTD patients, showing higher degeneration in 

temporal and posterior regions. This led to better classification performances when being classified 

versus control subjects. However, the algorithm improved the baseline performances (i.e., the ones 

obtained with a random classification of subjects) in more than a 30% in all the four studies, 

reaching a 44% of improvement in the multiclass classification between HC, EOAD and FTD 

controls, which is of great medical interest. 

It is relevant to mention that the pipeline proposed presented a clear advantage with respect to 

many of the classification algorithms reviewed. While in most studies the algorithms used were 

treated as black boxes, by performing an exhaustive analysis of PCA, the presented work was able 

to retrieve the brain regions that accumulated the highest variance of the dataset containing the 

subject groups to be classified. Since PCA is an unsupervised method, this milestone allows to 

study the neurodegenerative pattern of an unlabelled dataset where the different groups where a 

subject might belong are known, in this case HC, AD or FTD. Moreover, if data from the same 

subjects are collected throughout the disease, the brain signatures plotted become of strong 

interest for studying the neurodegenerative evolution of both AD and FTD diseases.  

Despite the accuracy of the presented pipeline reached optimal performance levels, it could be still 

improved. One way of doing so could be to feed the algorithm with a much larger dataset, leading 

to a better training and consequently to better results. Another interesting future implementation 

would be to both train and test the algorithm with other MRI modalities, such as DTI, so that other 

characteristic features, like white matter loss, were considered. Also, the current features could be 

fused with non-imaging data, as fluid biomarkers either from blood or CSF. Lastly, the proposed 

algorithm might be useful for the diagnosis of other neurodegenerative diseases such as Parkinson. 

Thus, future work could be made on the code in order to classify with higher accuracies between 

EOAD and FTD patients, and also to distinguish other diseases patients. 

To conclude, this project is another proof of concept of how medicine is moving towards a massive 

digitalization, improving speed and quality of healthcare. In this regard, biomedical engineering 

becomes a key character which still has a lot to offer. 
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12. ANEXES   

12.1. Python code: classification pipeline. 
 

1. #---------------------------- IMPORTS ---------------------- 
2. #----------------------------------------------------------- 
3. import pandas as pd  
4. import numpy as np 
5. import matplotlib.pyplot as plt 
6. from sklearn import metrics 
7. from sklearn import svm 
8. from sklearn.model_selection import GridSearchCV  
9. from sklearn.decomposition import PCA 
10. import seaborn as sns 

11. from scipy.stats import zscore 

12. import itertools 

13. from sklearn.model_selection import StratifiedKFold 

14. import warnings 

15. warnings.filterwarnings("ignore") 

16. import os 

17. #set working directory with the data tables available 

18. os.chdir(r"C:\Users\Laia.LAPTOP-1BS820LB\Desktop\4t\TFG\CODI") 

19.  

20. #---------------------------- FUNCIONS --------------------- 

21. #----------------------------------------------------------- 

22. def dic_pc(component,feature_weights,features): 

23.     ''' 

24.     Parameters 

25.     ---------- 

26.     component : int 

27.         number of components that want to be added 

28.     feature_weights : dictionary, with num of components as 

keys, another dictionary as value with features as keys and weights 

as values 

29.     features : list 

30.         feature's names list 

31.     Returns 

32.     ------- 

33.     mwf_pc : dictionary 

34.         name of features as keys and weight given to each 

feature as values.(sorted from higer to lower weights) 

35.     ''' 

36.     pc=feature_weights[component][0]   

37.     pc_abs=abs(np.array(pc))  

38.     sorted_pc=pc_abs  

39.     sorted_pc=sorted_pc.tolist() 

40.     sorted_pc.sort(reverse=True) 

41.     mwf_pc={} #more weighted features: dictionary with features 

as keys and weights as values 

42.     for i in range(0,len(sorted_pc)): 

43.         index=list(pc_abs).index(sorted_pc[i]) 

44.         mwf_pc[features[index]]=pc[index] 

45.     return mwf_pc 

46.  

47. #PLOT BAR OF X FEATURES MORE WEIGHTED 

48.  

49. def plot_bar(l,n,component_dic):  

50.     ''' 

51.  

52.     Parameters 

53.     ---------- 
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54.     l : int 

55.         starting index number, indicates which feature you want 

to start  

56.         plotting 

57.     n : int 

58.         stop index number, indicates which feature you want to 

stop plotting 

59.     component_dic : dictionary 

60.         dictionary with the features as keys and weights as 

vaules (sorted from higher to lower weights.) 

61.  

62.     Returns 

63.     ------- 

64.     None. 

65.  

66.     ''' 

67.     

blues=['steelblue','dodgerblue','deepskyblue','skyblue','lightskybl

ue', 

68.            'darkturquoise','paleturquoise'] 

69.     values=list(component_dic.values())[l:n] 

70.     tags=list(component_dic.keys())[l:n] 

71.     plt.bar(range(l,n),values,color=blues) #plotejo de la 1 a 

la n 

72.     plt.xticks(np.arange(l,n), 

tags,rotation='vertical',fontsize=14) 

73.     plt.yticks(fontsize=14) 

74.  

75.  

76. #PLOT CONFUSION MATRIX 

77. def plot_confusion_matrix(cm, classes, 

78.                           normalize=False, 

79.                           title='Confusion matrix', 

80.                           cmap=plt.cm.Blues): 

81.     """ 

82.     This function prints and plots the confusion matrix. 

83.     Normalization can be applied by setting `normalize=True`. 

84.     """ 

85.     if normalize: 

86.         cm=cm.astype("float") 

87.         cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 

88.         print("Normalized confusion matrix") 

89.     else: 

90.         print('Confusion matrix, without normalization') 

91.         cm=np.round(cm,decimals=0) 

92.         cm=cm.astype(np.int64) 

93.     print(cm) 

94.  

95.     plt.imshow(cm, interpolation='nearest', cmap=cmap) 

96.     plt.title(title,fontsize=16) 

97.     plt.colorbar(shrink=1) 

98.     tick_marks = np.arange(len(classes)) 

99.     plt.xticks(tick_marks, classes, rotation=45,fontsize=14)  

100.     plt.yticks(tick_marks, classes,fontsize=14,rotation=45) 

101.  

102.     fmt = '.2f' if normalize else 'd' 

103.     thresh = cm.max() / 2. 

104.     for i, j in itertools.product(range(cm.shape[0]), 

range(cm.shape[1])): 

105.         plt.text(j, i, format(cm[i, j], fmt), 

106.                  horizontalalignment="center", 
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107.                  color="white" if cm[i, j] > thresh else 

"black",fontsize=14) 

108.  

109.     plt.tight_layout() 

110.     plt.ylabel('True label',fontsize=14,labelpad=5) 

111.     plt.xlabel('Predicted label',fontsize=14,labelpad=5) 

112.  

113. #--------------------------- ATLAS ------------------------- 

114. #-----------------------------------------------------------  

115.  

116. #atlasses regions for the brain plot in R 

117.  

118. features_dk=["rh_middletemporal_thickness","rh_supramarginal_th

ickness", "rh_superiortemporal_thickness","rh_insula_thickness", 

"rh_inferiortemporal_thickness","rh_inferiorparietal_thickness", 

"rh_fusiform_thickness","rh_bankssts_thickness", 

"rh_precuneus_thickness","rh_lateralorbitofrontal_thickness",        

"rh_medialorbitofrontal_thickness","rh_superiorfrontal_thickness", 

"rh_temporalpole_thickness","rh_precentral_thickness",        

"rh_entorhinal_thickness","rh_posteriorcingulate_thickness",        

"rh_parahippocampal_thickness","rh_parsopercularis_thickness",        

"rh_isthmuscingulate_thickness","rh_caudalmiddlefrontal_thickness",        

"rh_postcentral_thickness","rh_superiorparietal_thickness",        

"rh_rostralmiddlefrontal_thickness","rh_parsorbitalis_thickness",        

"rh_parstriangularis_thickness","rh_lateraloccipital_thickness",        

"rh_paracentral_thickness","rh_rostralanteriorcingulate_thickness",        

"rh_transversetemporal_thickness","rh_lingual_thickness", 

"rh_cuneus_thickness","rh_frontalpole_thickness",        

"rh_pericalcarine_thickness","rh_caudalanteriorcingulate_thickness"

] 

119.  

120. atlas_dk=["middle temporal","supramarginal","superior 

temporal","insula","inferior temporal","inferior 

parietal","fusiform","bankssts","precuneus","lateral 

orbitofrontal","medial orbitofrontal","superior frontal","temporal 

pole", "precentral","entorhinal","posterior cingulate", 

"parahippocampal","pars opercularis", "isthmus cingulate","caudal 

middle frontal", "postcentral", "superior parietal","rostral middle 

frontal","pars orbitalis","pars triangularis","lateral 

occipital","paracentral","rostral anterior cingulate", "transverse 

temporal", "lingual","cuneus", "frontal pole", 

"pericalcarine","caudal anterior cingulate"] 

121.  

122. features_aseg=["Norm-Hippocampus","Norm-Putamen","Norm-Lateral-

Ventricle","Norm-Amygdala", "Norm-Thalamus-Proper","Norm-Caudate", 

   "Norm-Cerebellum-Cortex","Norm-Pallidum"] 

123.  

124. atlas_aseg=["hippocampus","putamen","lateral 

ventricle","amygdala","thalamus proper","caudate","cerebellum 

cortex","pallidum"] 

125.  

126. #---------------- PARAMETERS (CHECK BEFORE RUN !!)--------- 

127. #----------------------------------------------------------- 

128.  

129. #PARAMETERS TO SELECT 

130. N_splits=5 # number of folds, 5-fold CV 

131. estudi='AD' #'AD'--> AD vs CTR, 'DFT'--> DFT vs CTR, "ADDFT"--> 

AD vs DFT 

132. m="yes" #If documents want to be saved, 'yes', else 'no' 

133. plot=False #if pca plots want to be showed, then True 

134.  
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135.  

136. #--------------------------- DATA -------------------------- 

137. #----------------------------------------------------------- 

138.  

139. # We import cth (corticalsd) and volumes (subcorticals) data 

140. if estudi=='AD': 

141.     np.random.seed(10) #we place a seed to obtain reproducible 

results 

142.     Ngroup1=44 # number of subjects from the first group 

143.     Ngroup2=53  # number of subjects from the second group 

144.     N=Ngroup1+Ngroup2 # total number of subjects 

145.     df_rh=pd.read_csv("rh.tablecth.csv",sep='\t') 

146.     df_rh=df_rh.drop(columns=['rh.aparc.thickness'])  

147.     df_lh=pd.read_csv("lh.tablecth.csv",sep='\t') 

148.     df_lh=df_lh.drop(columns=['lh.aparc.thickness']) 

149.     df_subc=pd.read_csv("asegtable.csv",sep='\t') 

150.      

151. if estudi=='DFT': 

152.     np.random.seed(123) #we place a seed to obtain reproducible 

results 

153.     Ngroup1=44 # number of subjects from the first group 

154.     Ngroup2=64 # number of subjects from the second group 

155.     N=Ngroup1+Ngroup2 # total number of subjects 

156.     # AD + CTR 

157.     df_rh1 = pd.read_csv("rh.tablecth.csv",sep='\t') 

158.     df_rh1=df_rh1.drop(columns=['rh.aparc.thickness'])  

159.     df_lh1=pd.read_csv("lh.tablecth.csv",sep='\t') 

160.     df_lh1=df_lh1.drop(columns=['lh.aparc.thickness']) 

161.     df_subc1=pd.read_csv("asegtable.csv",sep='\t')  

162.         

163.     #Eliminate AD 

164.     df_rh1=df_rh1[:Ngroup1] 

165.     df_lh1=df_lh1[:Ngroup1] 

166.     df_subc1=df_subc1[:Ngroup1] 

167.      

168.     #DFT  

169.     df_rh2 = pd.read_csv("rh.tablecthDFT.csv",sep=';') 

170.     df_rh2=df_rh2.drop(columns=['rh.aparc.thickness'])  

171.     df_lh2=pd.read_csv("lh.tablecthDFT.csv",sep=';') 

172.     df_lh2=df_lh2.drop(columns=['lh.aparc.thickness']) 

173.     df_subc2=pd.read_csv("asegtableDFT.csv",sep=';')  

174.  

175.     # we concatenate the data 

176.     df_rh= pd.concat([df_rh1, df_rh2]) 

177.     df_lh= pd.concat([df_lh1, df_lh2]) 

178.     df_subc= pd.concat([df_subc1, df_subc2])     

179.     df_rh=df_rh.reset_index() 

180.     df_lh=df_lh.reset_index() 

181.     df_subc=df_subc.reset_index() 

182.     df_rh=df_rh.drop(['index'], axis=1)  

183.     df_lh=df_lh.drop(['index'], axis=1)  

184.     df_subc=df_subc.drop(['index'], axis=1)  

185.      

186. if estudi=='ADDFT': 

187.     np.random.seed(10) #we place a seed to obtain reproducible 

results 

188.     Ngroup1=53 # number of subjects from the first group 

189.     Ngroup2=64 # number of subjects from the second group 

190.     N=117 # total number of subjects 

191.     # AD + CTR 

192.     df_rh1 = pd.read_csv("rh.tablecth.csv",sep='\t') 
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193.     df_rh1=df_rh1.drop(columns=['rh.aparc.thickness'])  

194.     df_lh1=pd.read_csv("lh.tablecth.csv",sep='\t') 

195.     df_lh1=df_lh1.drop(columns=['lh.aparc.thickness']) 

196.     df_subc1=pd.read_csv("asegtable.csv",sep='\t') 

197.  

198.     df_rh1=df_rh1[44:44+Ngroup2] 

199.     df_lh1=df_lh1[44:44+Ngroup2] 

200.     df_subc1=df_subc1[44:44+Ngroup2] 

201.      

202.     df_rh1=df_rh1.reset_index() 

203.     df_lh1=df_lh1.reset_index() 

204.     df_subc1=df_subc1.reset_index() 

205.  

206.     df_rh1=df_rh1.drop(['index'], axis=1)  

207.     df_lh1=df_lh1.drop(['index'], axis=1) 

208.     df_subc1=df_subc1.drop(['index'], axis=1)  

209.      

210.     #DFT  

211.     df_rh2 = pd.read_csv("rh.tablecthDFT.csv",sep=';') 

212.     df_rh2=df_rh2.sort_values(["rh.aparc.thickness"], ascending 

= True) 

213.     df_rh2=df_rh2.drop(columns=['rh.aparc.thickness']) 

214.     df_lh2=pd.read_csv("lh.tablecthDFT.csv",sep=';') 

215.     df_lh2=df_lh2.sort_values(["lh.aparc.thickness"], ascending 

= True)  

216.     df_lh2=df_lh2.drop(columns=['lh.aparc.thickness']) 

217.     df_subc2=pd.read_csv("asegtableDFT.csv",sep=';')  

218.     df_subc2=df_subc2.sort_values(["Measure:volume"], ascending 

= True)  

219.      

220.     # we concatenate data 

221.     df_rh= pd.concat([df_rh1, df_rh2]) 

222.     df_lh= pd.concat([df_lh1, df_lh2]) 

223.     df_subc= pd.concat([df_subc1, df_subc2])     

224.     df_rh=df_rh.reset_index() 

225.     df_lh=df_lh.reset_index() 

226.     df_subc=df_subc.reset_index() 

227.     df_rh=df_rh.drop(['index'], axis=1)  

228.     df_lh=df_lh.drop(['index'], axis=1)  

229.     df_subc=df_subc.drop(['index'], axis=1) 

230.  

231. erase = ["Measure:volume", "EstimatedTotalIntraCranialVol", 

'Right-VentralDC', 'Right-vessel','WM-hypointensities','non-WM-

hypointensities','Left-VentralDC','Left-vessel', 'Left-Cerebellum-

White-Matter', 'lhCerebralWhiteMatterVol','Brain-Stem','3rd-

Ventricle', 'Left-non-WM-hypointensities','Right-non-WM-

hypointensities', '4th-Ventricle','5th-Ventricle', 'CSF', 

'CC_Anterior','CC_Central', 'CC_Mid_Anterior', 'CC_Mid_Posterior', 

'CC_Posterior','lhCortexVol','rhCortexVol', 'Optic-Chiasm','Right-

Cerebellum-White-Matter', 'rhCerebralWhiteMatterVol', 

"CerebralWhiteMatterVol",'Left-WM-hypointensities','Right-WM-

hypointensities',"CortexVol",'lhSurfaceHoles','rhSurfaceHoles',"Sur

faceHoles"] 

 

232.  

233. df_subc=df_subc.drop(columns=erase) 

234.  

235. #----- MEAN BETWEEN LEFT AND RIGHT CORTICAL MEASURES ------- 

236.      

237. features_r=(df_rh.columns).to_list()  

238. norm_r_l=pd.DataFrame(index=np.arange(N))  
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239. for i in range(0,35): 

240.     col_r=(df_rh.iloc[:,i]).to_numpy() 

241.     col_l=(df_lh.iloc[:,i]).to_numpy() 

242.     mean=(col_r+col_l)/2 

243.     norm=mean  

244.     name=features_r[i] 

245.     norm_r_l.insert(i,name,norm) 

246. norm_r_l.insert(35,'eTIV',df_rh.iloc[:,36])  

247.  

248. #------------- normalization + mean between left and right     

subcortical measures -------------------------- 

249.  

250. #normalization to intracranial volume 

251. features_subc=(df_subc.columns).to_list() 

252. for f in features_subc: 

253.     df_subc[f]=df_subc[f]/df_rh['eTIV'] 

254.  

255. #mean between left and right measures 

256. hippo=df_subc[['Right-Hippocampus','Left-Hippocampus']] 

257. norm_hippo=hippo.mean(axis=1) 

258. df_subc['Norm-Hippocampus']=norm_hippo 

259.  

260. lat_ventr=df_subc[['Left-Lateral-Ventricle','Right-Lateral-

Ventricle']] 

261. norm_lat_ventr=lat_ventr.mean(axis=1) 

262. df_subc['Norm-Lateral-Ventricle']=norm_lat_ventr 

263.  

264. inf_lat_ventr=df_subc[['Left-Inf-Lat-Vent','Right-Inf-Lat-

Vent']] 

265. norm_inf_lat_ventr=inf_lat_ventr.mean(axis=1) 

266. df_subc['Norm-Inf-Lat-Ventr']=norm_inf_lat_ventr 

267.  

268. cer_cort=df_subc[['Left-Cerebellum-Cortex','Right-Cerebellum-

Cortex']] 

269. norm_cer_cort=cer_cort.mean(axis=1) 

270. df_subc['Norm-Cerebellum-Cortex']=norm_cer_cort 

271.  

272. thal_pro=df_subc[['Left-Thalamus-Proper','Right-Thalamus-

Proper']] 

273. norm_thal_pro=thal_pro.mean(axis=1) 

274. df_subc['Norm-Thalamus-Proper']=norm_thal_pro 

275.  

276. caudate=df_subc[['Left-Caudate','Right-Caudate']] 

277. norm_cau=caudate.mean(axis=1) 

278. df_subc['Norm-Caudate']=norm_cau 

279.  

280. putamen=df_subc[['Left-Putamen','Right-Putamen']] 

281. norm_put=putamen.mean(axis=1) 

282. df_subc['Norm-Putamen']=norm_put 

283.  

284. pallidum=df_subc[['Left-Pallidum','Right-Pallidum']] 

285. norm_pall=pallidum.mean(axis=1) 

286. df_subc['Norm-Pallidum']=norm_pall 

287.  

288. amyg=df_subc[['Left-Amygdala','Right-Amygdala']] 

289. norm_amyg=amyg.mean(axis=1) 

290. df_subc['Norm-Amygdala']=norm_amyg 

291.  

292. accumbens=df_subc[['Left-Accumbens-area','Right-Accumbens-

area']] 

293. norm_acc=accumbens.mean(axis=1) 
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294. df_subc['Norm-Accumbens-area']=norm_acc 

295.  

296. c_p=df_subc[['Left-choroid-plexus','Right-choroid-plexus']] 

297. norm_cp=c_p.mean(axis=1) 

298. df_subc['Norm-choroid-plexus']=norm_cp 

299.  

300. df_subc=df_subc.drop(columns=['Right-Hippocampus','Left-

Hippocampus','Left-Lateral-Ventricle','Right-Lateral-Ventricle', 

'Left-Inf-Lat-Vent','Right-Inf-Lat-Vent', 'Left-Cerebellum-

Cortex','Right-Cerebellum-Cortex','Left-Thalamus-Proper','Right-

Thalamus-Proper','Left-Caudate','Right-Caudate','Left-Putamen', 

'Right-Putamen','Left-Pallidum','Right-Pallidum', 'Left-

Amygdala','Right-Amygdala','Left-Accumbens-area','Right-Accumbens-

area','Left-choroid-plexus', 'Right-choroid-plexus']) 

301.  

302. df=pd.concat([df_subc, norm_r_l], axis=1) 

303. df=df.drop(['eTIV'], axis=1) #eliminem eTIV de les features 

304.  

305. # we add demographic data if the study is not EOAD vs HC 

306.  

307. if estudi=="DFT": 

308.     df_demo1=pd.read_csv("demo-neuropsico.csv",sep=';') 

309.     df_demo1.drop(df_demo1.columns.difference(["FS 

NEUROPSICO","Age","Gender"]),  

310.                   1, inplace=True) 

311.     df_demo1=df_demo1[:Ngroup1] 

312.     df_demo1=df_demo1.sort_values(["FS NEUROPSICO"], ascending 

= True)  

313.     df_demo1=df_demo1.drop(columns=["FS NEUROPSICO"]) 

314.      

315.     df_demo2=pd.read_csv("TransversalDFT.csv",sep=';') 

316.     

df_demo2.drop(df_demo2.columns.difference(["code","edadMRI","sexo"]

),  

317.                   1, inplace=True) 

318.     df_demo2["Age"]=df_demo2["edadMRI"] 

319.     df_demo2["Gender"]=df_demo2["sexo"] 

320.     df_demo2=df_demo2.drop(columns=["edadMRI","sexo"]) 

321.     df_demo2=df_demo2.sort_values(["code"], ascending = True) 

322.     df_demo2=df_demo2.drop(columns=["code"]) 

323.      

324.     df_demo=pd.concat([df_demo1,df_demo2],axis=0) 

325.     df_demo=df_demo.reset_index() 

326.     df_demo=df_demo.drop(['index'], axis=1) #eliminem index nou 

327.     df["Age"]=df_demo["Age"] 

328.     df["Gender"]=df_demo["Gender"] 

329.  

330. if estudi=="ADDFT": 

331.     df_demo1=pd.read_csv("demo-neuropsico.csv",sep=';') 

332.     df_demo1.drop(df_demo1.columns.difference(["FS 

NEUROPSICO","Age"]),  

333.                   1, inplace=True) 

334.     df_demo1=df_demo1[44:44+Ngroup2] 

335.     df_demo1=df_demo1.sort_values(["FS NEUROPSICO"], ascending 

= True) 

336.     df_demo1=df_demo1.drop(columns=["FS NEUROPSICO"]) 

337.      

338.     df_demo2=pd.read_csv("TransversalDFT.csv",sep=';') 

339.     

df_demo2.drop(df_demo2.columns.difference(["code","edadMRI"]), 1, 

340.                   inplace=True) 
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341.     df_demo2["Age"]=df_demo2["edadMRI"] 

342.     df_demo2=df_demo2.drop(columns=["edadMRI"]) 

343.     df_demo2=df_demo2.sort_values(["code"], ascending = True) 

344.     df_demo2=df_demo2.drop(columns=["code"]) 

345.      

346.     df_demo=pd.concat([df_demo1,df_demo2],axis=0) 

347.     df_demo=df_demo.reset_index() 

348.     df_demo=df_demo.drop(['index'], axis=1)  

349.     df["Age"]=df_demo["Age"] 

350.  

351. # we add the LABELS 

352.  

353. label=[0]*Ngroup1+[1]*Ngroup2 

354. df['Label']=label 

355. print(df.shape) # size of data 

356.  

357. #------------------- ZSCORE NORMALIZATION ------------------ 

358.  

359. df_norm=pd.DataFrame() 

360. df_features=(df.columns).to_list() 

361. for col in df_features: 

362.     if col!='Label':  

363.         df_norm[col]=zscore(df[col]) 

364.     else: 

365.         df_norm['Label']=df['Label'] 

366.          

367. df_norm.head() 

368.  

369. #----------------------- ML PARAMETERS --------------------- 

370. #----------------------------------------------------------- 

371.  

372. features=(df_norm.columns).to_list() 

373. del features[-1]  

374. X = np.asarray(df_norm[features]) #DATA 

375. y= np.asarray(df_norm['Label'])  #LABELS 

376.  

377. #SVM 

378. models={"SVM":svm.SVC()} 

379.  

380. #PARAMETER SELECTION 

381. # we define the range of the C and gamma parameters (remember 

that gamma  

382. # is only used with rbf. 

383. svm_params = [{'C': [0.1,1, 10, 100,1000],  

384.               'gamma': [1, 0.1, 0.01, 0.001],  

385.               'kernel': ['rbf']}, 

386.              {'C': [0.1,1, 10, 100, 1000], 'kernel': 

['linear']}, 

387.              {'C': [0.1,1, 10, 100, 1000], 'kernel': ['poly']}]  

388.  

389. params={"SVM": svm_params} 

390.  

391. #-----------------------CUMULATIVE VARIANCE ---------------- 

392. #----------------------------------------------------------- 

393. if estudi=="AD": 

394.     tit='HC and AD' 

395.     png='expl_variance_AD.png' 

396. elif estudi=="DFT": 

397.     tit='HC and DFT' 

398.     png='expl_variance_DFT.png' 

399. else: 



54 
 

400.     tit='AD and DFT' 

401.     png='expl_variance_ADDFT.png' 

402.   

403. num_comp=len(features)-1 

404. pca = PCA(n_components=num_comp).fit(X) #we fit it with the 

train data,  

405.                                         #but apply into the 

whole data set 

406. expl_var=np.cumsum(pca.explained_variance_ratio_) 

407.  

408. idxs=np.where(expl_var>=0.80)[0] #minimum nº of components 

needed, where the  

409.                                 #cumulative expl.variance is 

80% or greater 

410. nc=idxs[0]+1  

411. print("The minimum number of components needed is: ", nc) 

412.  

413. plt.figure(figsize=(10,6)) 

414. plt.plot(np.arange(1,num_comp+1,1),expl_var,color='skyblue',lin

ewidth=2, 

415.          marker='X',markerfacecolor='steelblue', markersize=7) 

416. plt.title('Cumulative explained variance '+tit,fontsize=15) 

417. plt.xlabel('number of components',fontsize=15) 

418. plt.xticks(fontsize=14) 

419. plt.ylabel('cumulative explained variance',fontsize=15) 

420. plt.yticks(fontsize=14) 

421. plt.axvline(x=nc, color='k', linestyle='--',linewidth=1) 

422. plt.annotate("optimal nc: 

{}".format(nc),xy=(13,0.7),fontsize=14) 

423. plt.savefig(png) 

424.  

425. #---------------------------- ML --------------------------- 

426. #----------------------------------------------------------- 

427.  

428. #EVALUATION (PERFORMANCE) 

429. accuracies_PCA={} #"name_model": {01:acc1, 02:acc2...}  

430.                     # where keys are the number of the 

iteration  

431.       

432. #CONFUSION MATRIX 

433. confusion_matrix={"TN":[],"FP":[],"FN":[],"TP":[]} #TP(true 

positive): well 

434. # predicted as patient; #FP: predicted as patient, truely 

control;  

435. #TN: well predicted as control; #FN: predicted as control, 

truely patient 

436.  

437. #PRECISION  

438. reportgroup1=[] 

439. reportgroup2=[] 

440.  

441. #PCA 

442. weights={} #{'num_component': {'name_feature': weight,...},..} 

443.  

444. #SVM 

445. best_params=[] 

446.  

447. skf = StratifiedKFold(n_splits=N_splits) 

448. for train_idx,test_idx in skf.split(X,y): 

449.     X_train, X_test = X[train_idx],X[test_idx] 

450.     y_train, y_test = y[train_idx],y[test_idx] 
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451.     for name,model in models.items():   

452.         pca = PCA(n_components=nc) 

453.         X_tr = pca.fit_transform(X_train) #we fit it with the 

train data, but apply it into the whole data set 

454.         i=1 

455.         for component in pca.components_: #pca.components_: 

weights given to each feature in the order they 

456.                                           #appear in the 

dataset 

457.             if i in weights.keys(): 

458.                 weights[i].append(list(component)) 

459.             else: 

460.                 weights[i]=[] 

461.                 weights[i].append(component) 

462.             i+=1 

463.  

464.         X_tst= pca.transform(X_test) 

465.  

466.         for name,model in models.items():             

467.             #grid search of the best parameter combination 

468.             grid = GridSearchCV(model, params[name], refit = 

True,  

469.                                 verbose = 0,cv=10) 

470.             grid.fit(X_tr,y_train)   

471.             best_params.append(grid.best_params_) 

472.             clf=grid.best_estimator_ #classificator with the 

chosen parameters 

473.  

474.             #classification 

475.             clf.fit(X_tr,y_train) 

476.             y_pred=clf.predict(X_tst) #prediction 

477.  

478.  

479.             TN,FP,FN,TP=(0,0,0,0) 

480.             for idx in range(0,len(y_test)): 

481.                 if y_test[idx]==y_pred[idx]: 

482.                     if y_test[idx]==0: 

483.                         TN+=1 

484.                     else: 

485.                         TP+=1 

486.                 else: #si són diferents 

487.                     if y_test[idx]==0: 

488.                         FP+=1 

489.                     else: 

490.                         FN+=1 

491.  

492.             confusion_matrix["TN"].append(TN) 

493.             confusion_matrix["TP"].append(TP) 

494.             confusion_matrix["FP"].append(FP) 

495.             confusion_matrix["FN"].append(FN) 

496.  

497.             #Precsion 

498.             report=metrics.classification_report(y_test, 

y_pred, 

499.                                                  

output_dict=True) 

500.  

501.             reportg1=report['0'] 

502.             reportg1=reportg1['precision'] 

503.             reportgroup1.append(reportg1) 

504.  
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505.             reportg2=report['1'] 

506.             reportg2=reportg2['precision'] 

507.             reportgroup2.append(reportg2) 

508.  

509.  

510.             #Accuracy 

511.             accuracy=metrics.accuracy_score(y_test, y_pred) 

512.             if name in accuracies_PCA.keys():  

513.                 accuracies_PCA[name].append(accuracy) 

514.             else: 

515.                 accuracies_PCA[name]=[accuracy] 

516.  

517. #mean confusion matrix 

518. confusion_matrix["TN"]=np.mean(confusion_matrix["TN"]) 

519. confusion_matrix["TP"]=np.mean(confusion_matrix["TP"]) 

520. confusion_matrix["FP"]=np.mean(confusion_matrix["FP"]) 

521. confusion_matrix["FN"]=np.mean(confusion_matrix["FN"]) 

522.  

523. #weights 

524. mean_std_weights={} 

525. for k in weights.keys(): 

526.     multiple_lists = weights[k] 

527.     arrays = [np.array(x) for x in multiple_lists] 

528.     mean_std_weights[k]=[[np.mean(k) for k in zip(*arrays)], 

529.                          [np.std(k) for k in zip(*arrays)]] 

530.      

531. ############## MEAN ACCURACY 

532. from statistics import mean, stdev 

533. ACmean=accuracies_PCA['SVM'] 

534. print( "MEAN ACCURACY:" , mean(ACmean)) 

535. print( "SD :" , stdev(ACmean)) 

536.  

537. ############## MEAN Precision 

538. print( "Group 1 precison:" , mean(reportgroup1)) 

539. print( "Group 1 precison std:" , stdev(reportgroup1)) 

540. print( "Group 2 precison:" , mean(reportgroup2)) 

541. print( "Group 2 precison std:" , stdev(reportgroup2)) 

542.  

543. #################### CONFUSION MATRIX ###################### 

544. CM=[] 

545. for k,value in confusion_matrix.items(): 

546.     CM.append(value) 

547. CM=(np.array(CM)).reshape(2,2) 

548. print(CM) 

549. # Plot non-normalized confusion matrix 

550. plt.figure(figsize=(6.5,6.5)) 

551. if estudi=="AD": 

552.     classes=['HC','EOAD'] 

553. elif estudi=="DFT": 

554.     classes=['HC','FTD'] 

555. else: 

556.     classes=['EOAD','FTD'] 

557. plt.figure(figsize=(6,6)) 

558. plot_confusion_matrix(CM, classes=classes, normalize= False,  

title='') 

559. plt.savefig("conf_matrix "+estudi) 

560.  

561.  

562. ################### DATA PCA weights 

563.  

564. if m=="yes": 
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565.       mwf_pc1=dic_pc(1,mean_std_weights,features) #weighted 

features pc1 

566.       #mwf_pc2=dic_pc(2,mean_std_weights) #idem pc2 

567.       #mwf_pc3=dic_pc(3,mean_std_weights) #idem pc3 

568.       #mwf_pc4=dic_pc(4,mean_std_weights) #idem pc4 

569.  

570.  

571. #We save the weights from the first component 

572. my_dict = mwf_pc1 

573.  

574. aseg_dic={} 

575. dk_dic={} 

576. c1=0 #counter 

577. c2=0 

578. for key,val in my_dict.items(): 

579.     if key in features_aseg: 

580.         idx=features_aseg.index(key) 

581.         aseg_dic[c1]=[atlas_aseg[idx],val] 

582.         c1+=1 

583.     elif key in features_dk: 

584.         idx=features_dk.index(key) 

585.         dk_dic[c2]=[atlas_dk[idx],val] 

586.         c2+=1 

587.     else: 

588.         None 

589.  

590. if estudi=='AD': 

591.     PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index', 

592.                                        

columns=["region","weights"]) 

593.     PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index', 

594.                                      

columns=["region","weights"]) 

595.     PC_aseg_csv.to_csv("PC1_HCvsEOAD_aseg.csv")   

596.     PC_dk_csv.to_csv("PC1_HCvsEOAD_dk.csv")  

597.     title="HC - EOAD" 

598. if estudi=='DFT': 

599.     PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index', 

600.                                        

columns=["region","weights"]) 

601.     PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index', 

602.                                      

columns=["region","weights"]) 

603.     PC_aseg_csv.to_csv("PC1_HCvsDFT_aseg.csv")   

604.     PC_dk_csv.to_csv("PC1_HCvsDFT_dk.csv")  

605.     title="HC - FTD" 

606. if estudi=='ADDFT': 

607.     PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index', 

608.                                        

columns=["region","weights"]) 

609.     PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index', 

610.                                      

columns=["region","weights"]) 

611.     PC_aseg_csv.to_csv("PC1_ADvsDFT_aseg.csv")   

612.     PC_dk_csv.to_csv("PC1_ADvsDFT_dk.csv")  

613.     title="EOAD - FTD" 

614.  

615. old_names=["rh_middletemporal_thickness","rh_supramarginal_thic

kness", "rh_superiortemporal_thickness", "rh_insula_thickness",           

"rh_inferiortemporal_thickness","rh_inferiorparietal_thickness", 
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"rh_fusiform_thickness","rh_bankssts_thickness",          

"rh_precuneus_thickness","rh_lateralorbitofrontal_thickness",        

"rh_medialorbitofrontal_thickness","rh_superiorfrontal_thickness",          

"rh_temporalpole_thickness","rh_precentral_thickness",          

"rh_entorhinal_thickness","rh_posteriorcingulate_thickness",          

"rh_parahippocampal_thickness","rh_parsopercularis_thickness",          

"rh_isthmuscingulate_thickness","rh_caudalmiddlefrontal_thickness",          

"rh_postcentral_thickness","rh_superiorparietal_thickness",          

"rh_rostralmiddlefrontal_thickness","rh_parsorbitalis_thickness",          

"rh_parstriangularis_thickness","rh_lateraloccipital_thickness",          

"rh_paracentral_thickness","rh_rostralanteriorcingulate_thickness",          

"rh_transversetemporal_thickness","rh_lingual_thickness","rh_cuneus

_thickness","rh_frontalpole_thickness","rh_pericalcarine_thickness"

,"rh_caudalanteriorcingulate_thickness","Norm-Hippocampus","Norm-

Putamen","Norm-Lateral-Ventricle","Norm-Amygdala", "Norm-Thalamus-

Proper","Norm-Caudate","Norm-Cerebellum-Cortex","Norm-Pallidum"] 

616.  

617. new_names=["middle temporal","supramarginal","superior 

temporal","insula","inferior temporal","inferior 

parietal","fusiform","bankssts","precuneus","lateral 

orbitofrontal","medial orbitofrontal",  "superior 

frontal","temporal pole","precentral","entorhinal","posterior 

cingulate","parahippocampal","pars opercularis","isthmus 

cingulate","caudal middle frontal","postcentral","superior 

parietal","rostral middle frontal","pars orbitalis","pars 

triangularis","lateral occipital","paracentral","rostral anterior 

cingulate","transverse temporal","lingual","cuneus","frontal 

pole","pericalcarine","caudal anterior cingulate", 

"hippocampus","putamen","lateral ventricle","amygdala","thalamus 

proper","caudate","cerebellum cortex","pallidum"] 

618.  

619. change_names={} 

620. for old,new in zip(old_names,new_names): 

621.     change_names[old]=new 

622. change_names["rh_MeanThickness_thickness"]="Mean thickness" 

623. change_names["Norm-Accumbens-area"]="Accumbens area" 

624. change_names["Norm-Inf-Lat-Ventr"]="Inferior Lateral Ventricle" 

625. change_names["Norm-choroid-plexus"]="Choroid Plexus" 

626.  

627. pc1_df=pd.DataFrame (weights[1], columns = features) 

628. pc1_df=pc1_df.reindex(abs(pc1_df.mean()).sort_values(ascending=

False).index, axis=1) 

629. pc1_df=pc1_df.rename(columns = change_names, inplace = False) 

630. plt.figure(figsize=(20,10)) 

631. plt.title(title,fontsize=22) 

632. ax = sns.boxplot(data=pc1_df) 

633. plt.ylabel("PC1 weights",fontsize=20) 

634. plt.xticks(rotation=90,fontsize=18) 

635. plt.yticks(fontsize=18) 

636. plt.show()    

637.      

638. #Plots weights PCA    

639. plt.figure(figsize=(20,10)) 

640. plot_bar(0,len(mwf_pc1.keys()),mwf_pc1) 

641. plt.title(title,fontsize=17) 

642. plt.savefig("Barplot weights "+ title) 

643. plt.show() 
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12.2. R studio code: brain atlases. 
 

1. library(ggplot2) 
2. library(ggseg) 
3.  
4. #Path 
5. setwd("C:\Users\Laia.LAPTOP-1BS820LB\Desktop\4t\TFG\Treball amb 

agnes\brain tables+plot") 

6.  
7. asegplot<-function(data,title){ 
8.   data$X <- NULL 
9.   data<-subset(data,data$weights<0) 
10.   data$weights<-abs(data$weights) 

11.   return(ggseg(.data=data, atlas="aseg", 

mapping=aes(fill=weights))+ 

12.         

scale_fill_gradientn(colours=c("greenyellow","dodgerblue4","ligh

t blue","violet"),limits=c(0.0,0.2))+ 

13.         labs(title=title,cex=3)) 

14. } 

15.  

16. aparcplot<-function(data,title){ 

17.   data$X <- NULL 

18.   data$weights<-abs(data$weights) 

19.   return(ggseg(.data=data, colour="white", 

mapping=aes(fill=weights))+ 

20.          

scale_fill_gradientn(colours=c("greenyellow","dodgerblue4","ligh

t blue","violet"),limits=c(0.0,0.2))+ 

21.          labs(title=title,cex=3)) 

22. } 

23.  

24. ## DATA i PLOTS 

25.  

26. #HC vs EOAD 

27.  

28. data_dk=read.csv("PC1_HCvsEOAD_dk.csv",header = TRUE) 

29. data_aseg=read.csv("PC1_HCvsEOAD_aseg.csv",header = TRUE) 

30.  

31. png("dk_CTRvsAD.png", width = 558, height = 389) 

32. aparcplot(data_dk,title="DK weights HC-EOAD") 

33. dev.off() 

34.  

35. png("aseg_CTRvsAD.png", width = 558, height = 389) 

36. asegplot(data_aseg,title='Aseg weights HC-EOAD')  

37. dev.off() 

38.  

39. # CTR vs EOAD vs DFT 

40.  

41. data_dk=read.csv("PC1_all_dk.csv",header = TRUE) 

42. data_aseg=read.csv("PC1_all_aseg.csv",header = TRUE) 

43.  

44. png("dk_all.png", width = 558, height = 389) 

45. aparcplot(data_dk,title="DK weights HC-EOAD-FTD") 

46. dev.off() 

47.  

48. png("aseg_all.png", width = 558, height = 389) 

49. asegplot(data_aseg,title="Aseg weights HC-EOAD-FTD")  
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50. dev.off() 

51.  

52. # CTR vs DFT 

53. data_dk=read.csv("PC1_HCvsDFT_dk.csv",header = TRUE) 

54. data_aseg=read.csv("PC1_HCvsDFT_aseg.csv",header = TRUE) 

55.  

56. png("dk_CTRvsDFT.png", width = 558, height = 389) 

57. aparcplot(data_dk,title="DK weights HC-FTD") 

58. dev.off() 

59.  

60. png("aseg_CTRvsDFT.png", width = 558, height = 389) 

61. asegplot(data_aseg,title="Aseg weights HC-FTD")  

62. dev.off() 

63.  

64. # AD vs DFT 

65. data_dk=read.csv("PC1_ADvsDFT_dk.csv",header = TRUE) 

66. data_aseg=read.csv("PC1_ADvsDFT_aseg.csv",header = TRUE) 

67.  

68. png("dk_ADvsDFT.png", width = 558, height = 389) 

69. aparcplot(data_dk,title="DK weights EOAD-FTD") 

70. dev.off() 

71.  

72. png("aseg_ADvsDFT.png", width = 558, height = 389) 

73. asegplot(data_aseg,title="Aseg weights EOAD-FTD")  

74. dev.off() 

 


