

Final Degree Project

Biomedical Engineering Degree

“Machine learning approaches for the

 study of AD with brain MRI data”

Barcelona, 14th June 2021

Author: Laia Borrell Araunabeña

Directors: Roser Sala Llonch,

 Agnès Pérez Millan

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to both my tutors Roser Sala Llonch and Agnès

Pérez Millan for guiding me, helping me and supporting me throughout the development of this

project. Surely this thesis would have not been the same without their advice.

I would also like to thank my friends and family for giving me all the necessary support to carry out

the project.

Sincerely,

Laia Borrell Araunabeña.

iii

ABSTRACT

The use of automated or semi-automated approaches based on imaging data has been suggested

to support the diagnoses of some diseases. In this context, Machine Learning (ML) appears as a

useful emerging tool for this purpose, allowing from feature extraction to automatic classification.

Alzheimer Disease (AD) and Frontotemporal Dementia (FTD) are two common and prevalent forms

of early-onset dementia with different, but partly overlapping, symptoms and brain patterns of

atrophy. Because of the similarities, there is a need to establish an accurate diagnosis and to obtain

good markers for prognosis. This work combines both supervised and unsupervised ML algorithms

to classify AD and FTD.

The data used consisted of gray matter volumes and cortical thicknesses (CTh) extracted from 3T-

T1 MRI of 44 healthy controls (HC, age: 57.8±5.4 years), 53 Early-Onset Alzheimer Disease

patients (EOAD, age: 59.4±4.4 years) and 64 FTD patients (FTD, age: 64.4±8.8 years). A

principal component analysis (PCA) of all volumes and thicknesses was performed and a number

of principal components (PC) that accumulated at least 80% of the data variance were entered into

a Support Vector Machine (SVM). Overall performance was assessed using a 5-fold cross-

validation.

The algorithm proposed achieved an accuracy of 91.7±5.76 % in the HC vs EOAD classification,

83.3±5.2 % for HC vs FTD, 83.0±5.8 % for EOAD vs FTD and 77.7±5.2 % when performing a

multiclass classification between the 3 groups. The first PC was used to create disease-specific

patterns.

By using a low number of features, combining information from CTh and subcortical volumes, the

algorithm proposed is able to classify HC, EOAD and FTD with fairly good accuracy. Thus, this

approach can be used to reduce the amount of data used in ML algorithms while providing

interpretable atrophy patterns.

iv

LIST OF TABLES

Table 1: state of the art resume table. Reviewed studies for AD classification pipelines and the

methods used in each step: groups being classified, nº of observations, feature extraction method,

dimensionality reduction algorithm, classification algorithm, validation method and performance

evaluation and results. GM: gray matter, WM: white matter... 7

Table 2: comparision between different neuroimaging techniques that can be applied for AD

diagnosis. Computed Tomography (CT), strucural MRI, Single-Photon Emission Computed

Tomography (SPECT) and Positron Emission Tomography (PET) are compared. 13

Table 3: Conception engineering. Studied solutions for the programming software, dimensionality

reduction algorithm, classification algorithm, and validation method. ... 15

Table 4: combination of parameters for the SVM estimator. C and γ values combined with each

kernel in the grid search. C: soft margin parameter. γ : specific parameter for the RBF kernel that

controls the weight given to new training points. .. 25

Table 5: accuracies mean values (%) and standard deviations (%) obtained for each classification

study (HC vs EOAD, HC vs FTD, EOAD vs FTD and HC vs EOAD vs FTD). Also, the mean

classification precision (%) of each individual group and the corresponding standard deviations (%)

are shown. ... 26

Table 6: table showing the theoretical cost of the project. The costs are divided in 4 packages:

human resources, data, software and hardware. Each package is formed by different elements,

which costs are presented. .. 38

v

LIST OF FIGURES

Figure 1: main steps of a conventional neuroimaging classification pipeline. 1) Cross-validation, 2)

feature extraction, 3) dimensionality reduction, 4) classification and 5) performance evaluation. .. 6

Figure 2: number of publications found in PubMed by year with the keywords “structural MRI” AND

“Machine Learning” AND “AD” from 2004 to 2020. .. 13

Figure 3: PCA (left) and LDA (right) graphical differentiation. PCA seeks for the directions in the

dataset that capture the maximum data variability, while LDA aims to maximize the separation

between groups. [42] ... 16

Figure 4: diagram showing the implemented pipeline. Starts splitting the dataset according to the

cross-validation method (1), then Principal Component Analysis (PCA) is implemented (2) and the

weights of the quantified brain regions are extracted, followed by Support Vector Machine (SVM)

for the classification step (3). Finally, the performance is assessed (4). Parameter k corresponds

to the number of iterations. .. 20

Figure 5: example taken from the data table for HC vs EOAD. Showing only 5 subjects and 7

features from the total. ... 21

Figure 6: stratified 5-fold cross-validation implemented for the 3 groups. HC, EOAD and FTD

subjects. At each iteration, a different fold containing the 20% of the dataset is reserved for testing.

 ... 22

Figure 7: covariance matrix. m x m matrix representing the covariance of each feature with the

other features. .. 23

Figure 8: cumulative variances for all the principal components in each classification study.

Minimum number of components needed to accumulate the 80% of the data variance is marked

with a dashed line. Where “nc” states for number of principal components. 23

Figure 9: SVM classification. Grpahical representation of the hyperplanes generated by the

algorithm. ... 24

Figure 10. From left to right: graphic exemplification of Support Vector Machine classification with

linear, polynomial and RBF kernels, from left to right [49]. ... 24

Figure 11: confusion matrices showing the classification precision for each group in the four

studies. Top left: HC vs EOAD. Top right: HC vs FTD. Bottom left: EOAD vs FTD. Bottom right: HC

vs EOAD vs FTD. The values correspond to the rounded means across the 5 iterations. 27

Figure 12. Boxplot showing the weights given to every feature by the first principal component

(PC1) in HC and EOAD study, the mean and standard deviations across the 5 cross-validation

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis

the names of the features are shown. .. 27

Figure 13. Boxplot showing the weights given to every feature by the first principal component

(PC1) in HC and FTD study, the mean and standard deviations across the 5 cross-validation

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis

the names of the features are shown. .. 28

Figure 14. Boxplot showing the weights given to every feature by the first principal component

(PC1) in EOAD and FTD study, the mean and standard deviations across the 5 cross-validation

https://ubarcelona-my.sharepoint.com/personal/lborrear8_alumnes_ub_edu/Documents/TFG-Privada/memòria.docx#_Toc74486386
https://ubarcelona-my.sharepoint.com/personal/lborrear8_alumnes_ub_edu/Documents/TFG-Privada/memòria.docx#_Toc74486386

vi

iterations are represented. The features are sorted from higher to lower mean weights. In the x axis

the names of the features are shown. .. 28

Figure 15. Boxplot showing the weights given to every feature by the first principal component

(PC1) in HC, EOAD and FTD study, the mean and standard deviations across the 5 cross-

validation iterations are represented. The features are sorted from higher to lower mean weights.

In the x axis the names of the features are shown. .. 29

Figure 16: Aseg atlases of the subcortical brain volumes painted according to the weights, in

absolute value, given by the first principal component of PCA in each of the 4 studies. 1) HC vs

EOAD, 2) HC vs FTD, 3) EOAD vs FTD and 4) HC vs EOAD vs FTD. .. 30

Figure 17: Desikan-Killiany atlases of the cortical and subcortical thicknesses of the brain painted

according to the weights, in absolute value, given by the first principal component of PCA in each

study. ... 31

Figure 19: GANTT. Execution schedule by weeks of the project. On the left column the different

tasks to be performed along the project execution (February 2021 – June 2021) are listed. The start

and the due dates of each task are shown. ... 35

Figure 20: SWOT analysis of the project. Strengths, Weaknesses, Opportunities and Threads are

listed. ... 36

Figure 21: hours dedicated to each stage of the project:.47% to the development, 28% to the

learning stage and 25% to the close-out stage. ... 39

vii

GLOSSARY

AD – Alzheimer Disease.

ADI – Alzheimer Disease International.

Aseg atlas – shows the subcortical volumes.

AUC – Area under the curve.

BFS – Backwards feature selection.

BOE – Boletín oficial del estado.

BrainSegVol – volume of the whole brain,

except brain stem.

BrainSegVolNotVent – volume of the whole

brain except brain stem and ventricles.

CATI – Clinical Advanced Technologies

Innovation.

CSC measures – Cortical and subcortical

measures.

CSF – cerebrospinal fluid.

CT – Computed tomography.

CTh – Cortical thicknesses.

CV – Cross-validation.

DK atlas – Desikan-Killiany atlas. Shows the

cortical and subcortical thicknesses.

DTI – Diffusion tensor imaging.

EOAD – Early-onset Alzheimer Disease.

FDA – Food and Drinks Administration.

FFS – Forward feature selection.

FTD – Frontotemporal dementia.

GM – Gray matter.

ISMRM – International Society for Magnetic

Resonance in Medicine.

LDA – Linear discriminant analysis.

LOO – Leave One Out.

LR – Linear regression.

MaskVol – Volume of the count non-zero

voxels of the brain mask.

MCI – Mild Cognitive Impairment. Can be

either Alzheimer converters (cMCI) or non-

converters (ncMCI).

ML – Machine learning.

MRI – Magnetic resonance imaging.

NIA – National Institute of Aging.

NIH – National Institutes of Health.

PC – Principal component. PC1 states for

first principal component.

PCA – Principal component analysis.

PET – Positron Emission Tomography.

PET-FDG – Positron emission tomography -

fluorodeoxyglucose.

RBF – Radial basis function.

RF – Random forests.

RFE – Recursive feature elimination.

ROI – Regions of interest.

sMRI – structural magnetic resonance

imaging.

SPECT – Single-photon emission computed

tomography.

SupraTentorialVolNotVent/Vox – includes all

brain volumes except cerebellum, brain stem

and ventricles volumes.

SVM – Support Vector Machine.

TIV – Total intracranial volume.

VBM – Voxel-based morphometry.

WM – White matter.

.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

LIST OF TABLES ... iv

LIST OF FIGURES .. v

GLOSSARY .. vii

1. INTRODUCTION ... 1

1.1. Alzheimer Disease and its diagnosis ... 1

1.2. Artificial Intelligence: machine learning .. 2

1.3. Machine Learning and neurodegenerative diseases diagnosis with sMRI 3

1.4. Objectives .. 4

1.5. Spatial and temporal limitations of the project .. 4

1.6. Scope of the project ... 5

2. STATE OF THE ART ... 6

2.1. Search criteria .. 6

2.2. Feature extraction .. 8

2.3. Feature selection ... 8

2.4. Classification algorithms .. 9

2.5. Validation method .. 10

2.6. Performance evaluation ... 10

2.7. Studies that reported significant regions in AD and FTD.. 10

3. MARKET ANALYSIS ... 12

3.1. Addressed sector ... 12

3.2. MRI versus other neuroimaging techniques for AD diagnosis 12

3.3. Historical evolution of the market ... 13

3.4. Future perspectives ... 14

4. CONCEPTION ENGINEERING ... 15

4.1. Analysis of the solutions .. 15

4.1.1. Programming software ... 15

4.1.2. Dimensionality reduction .. 16

4.1.3. Classification algorithm .. 17

4.1.4. Validation method .. 17

4.2. Proposed solution .. 18

5. DETAILED ENGINEERING ... 20

5.1. Data management ... 20

ix

5.2. Implemented pipeline ... 21

5.2.1. Cross-validation ... 21

5.2.2. Dimensionality reduction .. 22

5.2.3. Classification .. 24

5.3. Results ... 26

5.3.1. Algorithm performance ... 26

5.3.2. Significant brain regions ... 27

5.4. Discussion of the results .. 31

6. EXECUTION SCHEDULE: GANTT DIAGRAM .. 33

7. TECHNICAL FEASABILITY ... 36

8. ECONOMICAL FEASABILITY ... 38

9. NORMATIVE AND LEGAL ASPECTS ... 40

10. CONCLUSIONS AND FUTURE LINES ... 41

11. REFERENCES .. 42

12. ANEXES .. 46

12.1. Python code: classification pipeline. .. 46

12.2. R studio code: brain atlases. .. 59

1

1. INTRODUCTION

1.1. Alzheimer Disease and its diagnosis

The National Institute of Aging (NIA) defines Alzheimer’s Disease (AD) as an irreversible,

progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the

ability to carry out simple daily tasks, until patient’s death [1]. AD affects people over the age of 65,

but early-onset AD (EOAD) is also diagnosed in patients younger than 65. The brain of an

Alzheimer patient accumulates abnormal proteins (Aβ and tau) in the form of amyloid plaques and

neurofibrillary tangles [2], eventually resulting in an irreversible loss of neurons. Currently, AD is

the most common neurodegenerative disease, representing the principal cause of dementia in the

elderly population of developed countries. In 2020, over 50 million people worldwide suffered

dementia, and these numbers are expected to reach the 152 million cases in 2050 due to population

aging [3].

Although AD has no cure, there are medicines available that help in delaying the disease progress.

Thus, its early diagnosis is essential.

In 2011, the National Institutes of Health (NIH) and the Alzheimer’s Association developed an

updated diagnostic guidelines with respect to the previous one, published in 1984. In this

guidelines, three stages of AD were described: a preclinical stage, characterized by the first brain

changes, including amyloid build-up, without significant clinical symptoms evident; a Mild Cognitive

Impairment (MCI) stage, attributed to a loss of cognitive functions regarding memory, but that do

not interfere with the patient’s independence; and Alzheimer’s dementia, to which some of the MCI

patients evolve, marked by a progressive impairment in memory, decision making, orientation and

language, significant enough to affect a person’s daily life [4].

According to the same guidelines, in preclinical stages, the amyloid build-up can be found with

positron emission tomography (PET) imaging and a cerebrospinal fluid (CSF) analysis, however,

the future prognosis is still unknown. In a more advanced stage, in MCI, the research for diagnosis

is focused on standardizing biomarkers for amyloid plaques and other signs of injury to the brain.

Among these biomarkers, elevated levels of tau or decreased levels of beta-amyloid in the CSF

are found, as well as reduced glucose uptake in the brain observed in PET scans. Also, atrophy of

certain brain areas detected by high-resolution structural Magnetic Resonance Imaging (MRI)

is well-correlated with both tau deposition and neuropsychological effects, so it becomes another

biomarker of AD and its progression. Finally, the diagnosis criteria for Alzheimer’s dementia, which

applies to the last stage of the disease, includes biomarkers testing to increase the sureness of the

diagnosis and to distinguish Alzheimer from other types of dementias. [5,6]

As stated above, the intensity and stage of the neurodegeneration can be identified with the help

of atrophy measurement of certain brain areas with structural MRI (sMRI), such as the

hippocampus, the entorhinal cortex or the amygdala. Therefore, sMRI-based feature extraction

happens to play an important role in AD diagnosis and prognosis [7]. The objective of feature

extraction is to retrieve a set of accurate quantified features such as size, shape or volume, from

neuroimaging data that contain relevant information for the disease diagnosis.

Nonetheless, manual measurements of these structures on MRI are time-consuming and do not

capture the full pattern of atrophy [8]. Therefore, many automated and semi-automatic feature

2

extraction techniques exist for high-resolution sMRI data analysis, which consist of several image-

processing and statistical analysis steps. [9].

When applying feature extraction methods, neuroimaging modalities generate an extreme huge

amount of data. Thus, to analyse it and observe inherent patterns in the data, there is a need for

multivariate data analysis and Artificial Intelligence (AI) techniques, such as Machine Learning (ML)

[10].

1.2. Artificial Intelligence: machine learning

In 2019, the High-Level Expert Group on Artificial Intelligence (HLEG) defined AI systems as

“software (and possibly also hardware) systems designed by humans that, given a complex goal,

act in the physical or digital dimensions by perceiving their environment through data acquisition,

interpreting the collected structured or unstructured data, reasoning on the knowledge, or

processing the information, derived from this data and deciding the best action(s) to take to achieve

the given goals.” These systems can use symbolic rules or learn a numeric model [11]. Also, AI

encompasses many techniques, such as Machine Learning (ML); machine reasoning, which refers

to scheduling, search and optimization; and robotics, which includes sensors and actuators [12].

Machine Learning is a subfield of AI which consists of building models or applications that learn

from data, called training data, in order to improve its accuracy when predicting the outcome of new

data without being explicitly programmed to do so. There are different ways in which ML algorithms

learn from the training data:

Supervised learning. In this type of learning, expert humans feed the algorithm with labelled data,

that is, pairs of inputs with known outputs. Then, the algorithm looks for the function which best

maps the input data to the output in a generalizable from. Supervised learning is useful in either

classification or regression problems. In classification problems, the algorithm predicts a discrete

value for the input data, identifying each data point with a specific class. On the other hand,

regression problems work with continuous numeric data.

Unsupervised learning. Sometimes, well-labelled data sets are not easy to obtain. In these cases,

algorithms learn completely by themselves by finding unknown patterns in the data without any

labels. Unsupervised learning aims to find structure in the data by extracting useful features and

analyzing them. The way the model organizes data is different depending on the problem. One of

the ways is clustering, where the model looks for training data with similar features and groups

them together in what is called a cluster. Another common way is association, in which the model

looks for some key attributes in a data point and predicts the other ones by checking them in those

data points with which the point is correlated [13].

Semi-supervised learning. These are hybrid algorithms lying between supervised and

unsupervised models. The training dataset is filled with both labelled and unlabelled data, which is

a common situation in those cases where labelling data requires from expert human skills.

Reinforced learning. This kind of learning is common in robotics, since it allows machines to

determine in an automatic way the best behaviour in a specific context which maximizes the model

performance. Trial and error search, together with a reward feedback, are required by the system

to learn.

3

1.3. Machine Learning and neurodegenerative diseases diagnosis with sMRI

As mentioned, clinical studies have demonstrated that measures of structural atrophy using sMRI

data are a promising biomarker for an accurate diagnosis of AD patients. Thus, automatic

volumetric measures of cortical and subcortical volumes, together with measures of cortical

thicknesses (CTh), both extracted from sMRI images, happen to be essential biomarkers for early

detection of the AD [14]. In addition to providing certainty to the diagnosis of the disease, its non-

invasive nature and the consequent lack of pain for the patient, make structural MRI a comfortable

and effective diagnostic test.

Nevertheless, the utility of these sMRI-derived data is not limited to differentiate controls from

affected patients, but is also useful in differentiating AD from other clinical pathologies, such as

frontotemporal dementia (FTD), which, together with AD, is one of the leading causes of early-

onset dementia. However, FTD differs from Alzheimer in the sense that FTD patients usually

develop early noncognitive behavioural changes together with frontal atrophy in sMRI scans, while

AD patients have early cognitive changes and relatively reserved behaviour together with

hippocampal, entorhinal cortex and medial-temporal lobe atrophy on sMRI scans [15].

Moreover, brain tissue loss from the whole brain or specific regions, as well as the rate of structural

atrophy measures, highly correlates with cognitive deficits changes [16], so they are also great

biomarkers for the diseases progression.

Recent advances in neuroimage and its analysis have led to new useful automated tools to extract

valuable neuroimaging information. These techniques generate large datasets encompassing

whole brain regions instead of single regions of interest (ROI), which must be manually segmented

and rely on previous knowledge. Then, if all the measurements extracted from the MRI scans aim

to be useful for AD diagnosis, this triggers the need for automatic classification methods that

perform equally or even better than experts in the high-consuming clinical task of recognising

patterns in the data for further diagnosis. Furthermore, the fact that those methods are able to use

whole brain information makes them more capable of distinguishing between healthy, AD patients

and other types of neurodegenerations, since a single region, like the temporal lobe, can be also

damaged in other types of diseases.

For this purpose, many automatic classification algorithms have already been implemented,

providing useful tools when analyzing the data and finding inherent disease-related patterns in it.

The models used include from Support Vector Machines (SVM) to K Nearest neighbours (KNN) or

Decision Trees, all of them supervised learning algorithms. Many other studies as [17] also use

neural networks.

Nonetheless, feature extraction directly from sMRI leads to very high dimensional data. Thus, when

dealing with such large datasets, a reduction of data dimensionality is usually needed, particularly

when the number of labelled subjects is small. Some ways of achieving this goal are discarding

some of the features extracted and keeping others or projecting the data to a reduced dimensional

space with some dimensionality reduction techniques such as Principal Component Analysis

(PCA).

It is worth mentioning that the application of these algorithms is not limited to subject classification

between controls, EOAD or other neurodegenerative diseases such as FTD, but they are also a

4

great tool to study which brain regions are more atrophied in each disease and, therefore, more

significant for the posterior classification. Thus, when a model is applied, it is not only its

interpretability that matters, understanding interpretability as the ability of the algorithm to determine

a cause and its effect, such as an atrophied region and the consequent disease, respectively.

Instead, attention should also be paid to explainability, which can be defined as understanding

which factors from the data are causing the differentiation between subjects from different groups

and what is the reason.

1.4. Objectives

All the previous concepts comprise the needed context to appropriately follow the presented

project, which main goal is to research on an automatic machine learning classification tool for

early-onset Alzheimer Disease diagnosis. The model aims to predict if a patient is either healthy,

suffering from EOAD or suffering from FTD, thus helping doctors in the disease diagnosis and

differentiation from other neurodegenerative diseases. All of this, by taking as inputs the cortical

and subcortical volumes, together with the CTh measurements extracted from the patient’s

structural MRI scan.

Furthermore, some secondary objectives for the project were defined:

➢ Conduct an in-depth research on the state of the art of automated classification

systems applied to MRI extracted data that provide certainty in the diagnosis of Alzheimer

Disease. Thus, reviewing the different algorithms employed and the results obtained,

taking into account the data being used.

➢ To implement a pipeline able to classify between patients and healthy controls

including a dimensionality reduction step and a classification algorithm, which must be

chosen considering the performance obtained but also the computational cost and the

capability of the models to be generalized.

➢ Explore which brain regions appear more atrophied in AD or, in other words, which

regions result more significant for the classification and subsequent diagnosis, and check

if they match with the ones reviewed in the literature.

➢ To add patients suffering from frontotemporal dementia to the original dataset in order to

perform a multiclass classification pipeline. Therefore, a second automated classification

tool capable of distinguishing between three groups (controls, EOAD patients and

FTD patents) aims to be developed.

➢ Finally, to assess if there are actual differences in the brain atrophy pattern between

AD and FTD and, if positive, to explore the significant regions differentiating both

neurodegenerative diseases.

1.5. Spatial and temporal limitations of the project

The main limitations of the project were temporal and due to the global pandemic situation.

Firstly, the thesis was developed in a relatively tight time window, from February to June 2021. This

fact, in addition to cause a more intensive work and less spaced, limiting the realization of any

5

changes or correction to the framework, restricted even more the time available for obtaining

controls and patients samples. Furthermore, the data with which the work was developed comes

from neurologists of the hospital, which had to stop their usual activities during the pandemic to be

dedicated full time to Covid19. This fact, added to the temporal limitation, presented an extra

limitation to the size of the sample used to train the algorithm.

However, it was not only a sample’s size limitation which was encountered, but also problems with

other neuroimaging modalities data availability, such as DTI, which could have added certainty to

the classification and led to better performances.

Finally, mobility and capacity restrictions supposed that all the meetings of the team were online,

adding an extra difficulty in communication and organization.

1.6. Scope of the project

As stated before, the main objective of the project is to perform a pipeline able to classify EOAD

patients from healthy subjects. Furthermore, a third group with FTD dementia patients aims to be

added and classified.

In order to meet this goal, the scope of the project encompasses: delving into the machine learning

world and its applications related to sMRI neuroimaging for the diagnosis of neurodegenerative

diseases; the development of an automated pipeline for further classification between controls,

EOAD and FTD patients, including a dimensionality reduction step, a classification step and a

performance assessment. In addition, to obtain clinical information useful for research, the retrieval

of the disease-related patterns of both EOAD and FTD, therefore analysing which features or brain

regions contribute with the highest variance to the data.

On the other hand, the T1-weighted scans pre-processing, as well as the extraction of the CTh and

the cortical and subcortical volumes from the images is out of the scope of the project. Also, the

addition of other biomarkers of AD and FTD, such as PET-fluorodeoxyglucose (PET-FDG) scans

or CSF analysis, or other MRI modalities like DTI, is also non contemplated. Finally, since this

project has purely research objectives and needs further investigation, the algorithm is not intended

to be commercialized.

6

2. STATE OF THE ART

In the last few years, many multivariate data analysis tools and machine learning algorithms were

used in the field of neurodegenerative diseases, and particularly of Alzheimer Disease, since it is

the most common one. Assuming that AD is correlated with progressive changes in brain structure

and functionality, significant results have outcome from the implementation of automated softwares

capable of finding patterns in the data extracted from sMRI that lead to a high accuracy diagnosis

of the disease.

2.1. Search criteria

Since wide range of different cohorts, features and methods were used in numerous studies, a set

of different papers regarding ML application in AD research centred on sMRI were reviewed, as

well as classification pipelines proposed for distinguishing AD patients from FTD ones. However,

many similar ML approaches for classifying MCI patients likely to convert to AD (cMCI) from those

non-converters (ncMCI) were published, so the different algorithms and methods implemented in

this classification task have also been reviewed.

The search was done in PubMed, looking for articles in English published from 2008 up to March

2021 using the search term “Alzheimer Disease” combined with “Machine Learning”,

“Frontotemporal Dementia”, “structural MRI”, “SVM”, “Decision Trees”, “KNN”, “PCA” and “MRI

data”. To include an article in the state-of-the-art review, it was checked that both T1-weighted

sMRI data and a ML algorithm were used.

Usually, a classification framework includes feature extraction, a feature selection or dimensionality

reduction step, a classification algorithm to develop a robust predictive model and a validation

method to validate the performance (Figure 1). Therefore, the diverse methods employed in each

step in the studies were pointed out. Nevertheless, as mentioned in the previous section, feature

extraction is out of the scope of the project, so little research was made of this subject.

Figure 1: main steps of a conventional neuroimaging classification pipeline. 1) Cross-validation, 2) feature extraction, 3)
dimensionality reduction, 4) classification and 5) performance evaluation.

Followingly, a summary table (Table 1) with most of the articles reviewed is presented, showing

the different steps beforementioned:

7

Article Type of classification Number of

observations

Feature extraction Feature

Selection

Classifier

Algorithm

Validation

method

Performance evaluation (best

results)

[20] Binary: AD-HC, FTD-HC AD-

FTD

37 AD, 12 FTD, 49

age-matched HC

sMRI: GM and WM VBM PCA SVM 10-iterations

LOO CV

Accuracy: AD-HC 99.7%, AD-FDT

84.3%, FTD-HC 100%

[21] Binary: AD-HC, FTD-HC AD-

FTD

84 AD, 51 FTD, 94

HC

sMRI: GM-VM, WM-VBM, CSF None SVM Holdout

method

Accuracy: AD-HC 88% FTD-HC

85%, AD-FTD 82%.

[25] Binary: EOAD-HC, EOFTD-

HC EOAD-EOFTD

24 EOAD, 33 EOFTD,

34 HC

sMRI: WM-VBM, GM-VBM, CSF,

DTI: FA

None SVM 4-fold CV AUC: EOFTD-EOAD 84% (sMRI +

FA), 72% (sMRI).

[18] Binary: AD-HC, HC-cMCI,

cMCI-ncMCI

144 AD, 189 HC, 136

cMCI, 166 cnMCI

Measures of subcortical volumes

from sMRI

Random

Forest

SVM 20-fold CV AUC: AD-HC 97%, HC-cMCI 92%,

75% cMCI- ncMCI.

[24] Binary: AD-HC, HC-cMCI,

cMCI-ncMCI

81 AD, 171 HC, 39

cMCI, 35 ncMCI

sMRI: CSC thicknesses,

hippocampal volume, and VBM

PCA SVM, RF and

KNN

Not

mentioned

AUC: AD-HC 94%, HC-cMCI 95%,

cMCI- ncMCI 87%.

[19] Binary: HC-AD. Multiclass:

HC-AD-MCI

70 HC, 70 AD, 74

MCI

CSC thicknesses, subcortical

volumes

PCA SVM and RELM 10-fold CV Accuracy: HC-AD 80%, HC-AD-

MCI 61.5%

[28] Binary: HC-AD, cMCI- ncMCI 226 HC, 182 AD, 389

(cMCI+ ncMCI).

VBM and CSC thicknesses RFE SVM 10-fold CV Accuracy: AD-HC 90%, cMCI-

ncMCI 72%.

[22] Binary: AD-HC, HC-MCI,

cMCI-ncMCI

117 AD, 122 MCI, 112

HC

Subcortical volumes and

hippocampal volume

None Orthogonal Partial

Least Squares

7-fold CV Accuracy: AD-HC 89%, HC-MCI

84%, CMCI/ ncMCI 68%

[26] Binary: AD-HC, HC-MCI 51 AD, 99 MCI, 52

HC

93 GM-ROI from MRI, 93 ROI from

PET and 3 features from CSF

t-test SVM 10-fold CV Accuracy: AD-HC 93.2% HC-MCI

76.4%

[29] Binary: HC vs FTD Multiclass:

HC vs FTD subtypes

96 FTD, 84 HC sMRI: CSC GM, subcortical

volumes and total WM DTI: FA

PCA KNN, SVM, RF,

LR and LDA

10-fold CV Accuracy: 88% HC-FTD, 76% HC-

FTD subtypes

[31] Multiclass: AD-FTD-HC 34 AD, 30 FTD, 14

HC

sMRI: CSC GM, subcortical

volumes and total WM

PCA SVM LOO CV AUC: 76.5% HC-AD-FTD

Table 1: state of the art resume table. Reviewed studies for AD classification pipelines and the methods used in each step: groups being classified, nº of observations, feature extraction method, dimensionality
reduction algorithm, classification algorithm, validation method and performance evaluation and results. GM: gray matter, WM: white matter.

8

2.2. Feature extraction

In machine learning, features are a subset of variables that are given as input data to the classifiers,

so they aim to quantify accurate information from neuroimaging data able to cover the most relevant

patterns of the neurodegenerative disease. Since it is an important step in the classification

framework and can directly affect its performance, many automated and semi-automated methods

were implemented for analyzing sMRI images.

The features extracted by the different methods range from a single voxel to cortical and subcortical

substructures, or even whole brain data. However, for neuroimage classification purposes, the most

common measurements are cortical or subcortical volumes and CTh [18,19], while voxel-based

morphometry (VBM) [20,21] is mostly used for structural comparisons between subjects.

Also, methods based on single regions are used, in particular segmentations of the hippocampus

[22] and the entorhinal cortex, which appear in the literature as atrophied regions in AD.

Nonetheless, adding more regional and global measures of the brain to the hippocampal volume

has proven better performances [23]. Finally, other studies combine as well different sets of

features that have shown to improve the performance, such as VBM and cortical and subcortical

(CSC) measures [24], also including features from other neuroimaging modalities, such as DTI [25],

or PET-FDG [26].

2.3. Feature selection

As stated in the introduction, feature extraction methods tend to generate huge amounts of data,

leading to the so-called curse of dimensionality, which consists of computational difficulties when

dealing with high dimensional data and a small number of subjects. In such circumstances, the

classification tends to overfit the data, which makes the algorithm non-generalizable. Therefore, to

overcome this problem, a reduction of the data dimensionality is needed, with the aim to reduce

the number of features that are given as inputs to the classifier. In [27], it was demonstrated that

choosing the appropriate feature selection or dimensionality reduction method has a positive effect

in the resulting accuracies of the classification, so many approaches were implemented in different

studies.

The main methods used for feature selection in the literature can be divided between unsupervised,

which do not see the class labels and choose those features that maximize data variance, and

supervised. Among the unsupervised methods, the most common approach implemented in many

studies classifying AD patients from HC or DFT patients, was principal component analysis

[20,22,24], which consists of transforming the data into a subspace of lower dimensionality that

explains most of the data variance.

On the other hand, supervised methods can be classified between filter, wrapper and embedded

methods. The first ones, which are independent from the classifier being used and select relevant

features regarding general traits of the data, are used by means of a t-test in [26] to select the most

discriminative brain regions. Wrapper methods, on the contrary, consider the classifier being used

and aim to find the feature subset that maximizes its performance. Among these methods,

Recursive Feature Elimination (RFE), which eliminates a specified number of features at each

iteration, was used in [28] to classify AD patients from controls and cMCI from ncMCI. Finally,

embedded methods, such as random forests used in [18] for feature selection, combine filter and

9

wrapper methods properties. It is implemented by classification algorithms which already have their

own feature selection methods built-in or, in other words, that perform feature selection in their

training.

2.4. Classification algorithms

A wide range of supervised classification algorithms were implemented in the field of AD diagnosis,

as well as in classification works that aim to distinguish between AD and other diseases such as

FTD. As mentioned, these kinds of classifiers used data labels to learn from a training set for further

prediction of unknown samples.

The most common algorithm used in the neurodegenerative field for binary classifications were

Support Vector Machines [20,21,18,19]. In short, this algorithm consists of finding a hyperplane in

the feature space that best separates the datapoints belonging to different classes. Then, new

datapoints are mapped into the feature space and predicted as one class or another depending on

which side of the hyperplane they fit.

Although SVM is the most used classifier, other algorithms are reported in the literature. In [24], the

K-Nearest-Neighbours (KNN) classifier was compared to SVM for classifying MCI types and AD

from controls and proved to not perform as good as SVM. KNN classifier assumes that datapoints

belonging to a same group are mapped closed to each other in the feature space. Therefore, as in

SVM, the algorithm maps the different datapoints and stores their labels, but in this case, when the

test samples are mapped as well in the feature space, they are labelled as the most common class

in their k-nearest training points.

Other studies such as [29] have implemented an embedded algorithm such as Random Forests

(RF) or Decision Trees for both feature selection and classification tasks. These are supervised

classifiers that follow a flowchart-like structure composed by nodes, branches and leafs. Each node

is labelled with an input feature and the branches coming out from that node are labelled each of

the possible values that the feature can take. Then, these branches lead either to another internal

node labelled with a different feature or to a leaf, a terminal node that will be labelled with a class

or a probability distribution of the classes. When choosing which feature performs the best split at

a given node, the certainty in a particular prediction aims to be maximized.

Logistic Regression (LR) and Linear Discriminant Analysis (LDA) performances, both supervised

algorithms, were also assessed in [29]. In binary classification problems, LR uses a logistic function

to output a linear equation result between 0 and 1, which corresponds to the probability of belonging

to a class or another. On the other hand, LDA projects the data onto a one-dimensional straight

line, such that the data points belonging to a same class are as close as possible.

When performing multiclass classifications between AD, FTD and HC, some research groups have

used deep neural networks [30]. However, machine learning algorithms such as SVM have also

showed good results [31].

Finally, each of the mentioned classifiers depends on a series of parameters, which can be

optimized for a given training set with a cross validation method, such as in [25] or [24].

Nonetheless, attention must be paid to the chosen parameters to avoid overfitting.

10

2.5. Validation method

The main idea of model validation is to use a part of the data set to fit and train the classifier and

another part to test and evaluate it.

Among the different methods, the holdout method, the k-fold cross-validation (CV) and the Leave

One Out (LOO) CV are examples. The holdout method consists of randomly splitting the dataset

into a train and a test sets, the first one used for the learning step and the second one to evaluate

the performance. In [21], the holdout method was used to evaluate the classification accuracy

between AD and FTD patients. On the other hand, k-fold CV is one of the most common

approaches, and consists of dividing the subject’s sample into k-folds and using each of the folds

as a test set in different iterations while the other folds remain as training set. It was used in [18,28]

to classify AD from HC and MCI converters from non-converters. Finally, LOO cross validation was

used in [20] to evaluate the performance of the classification between AD and FTD patients. It

consists of taking k-fold CV to the extreme, since k happens to be equal to the number of samples

in the data set, leaving a single subject aside for testing at each iteration.

In [19], Kumar R. et al. compare the three cross-validation methods that have just been explained

in both a binary and a multiclass classification frameworks. The results show that in the binary

classification the performance was better with LOO CV and in the multiclass classification the

outcomes were better with 10-fold CV.

2.6. Performance evaluation

It is not a simple task to compare the performances of the methods obtained in the different studies

by just looking at the results presented. The reason to this, in addition to the fact that each study

uses its own feature extraction and selection method and classifier, is that the performances of the

pipelines are assessed with different metrics.

The most common way of evaluating performance along the different studies was accuracy, which

is defined as the number of correct predictions divided by the total number of predictions. Also,

other metrics such as Cohen’s kappa value were used to evaluate the model performance [24],

which, unlike accuracy, takes into account the imbalance in class distribution. It is defined as the

overall accuracy of the model minus the probability of agreement between the model predictions

and the real class values if randomly predicted, all of this divided by 1 minus the same agreement.

Other studies like [25] evaluate the performance of the classifier with the Area Under the Curve

(AUC), which measures the two-dimensional area under the ROC curve, which is a curve defined

by the true positive and the true negative values.

2.7. Studies that reported significant regions in AD and FTD

Finally, some of the papers reviewed have reported a list of brain regions found to be significant

and discriminative when classifying AD patients from controls, FTD patients from controls and AD

patients from FTD.

In [20], many areas from the temporal and frontal lobes (e.g., orbitofrontal cortex), as well as the

parietal lobes and medial structures appeared to be discriminative for AD-FTD classification. Also,

in [25], the results confirm the temporal lobe contribution to the AD-FTD distinction, but also specify

11

the middle frontal gyrus and periventricular regions as discriminative. In [31], the discriminative

power of hippocampus and ventricles was assessed and showed greater ventricular differences

between the two groups: AD and FTD.

On the other hand, brain regions that were reported as significant for AD-HC classification are

temporal lobe and periventricular regions, as well as the hippocampus and the amygdalas [31]. In

FTD-HC classification, the temporal lobe is the one with grater discriminative power, but also

amygdala+ and the bilateral frontal lobes contribute.

12

3. MARKET ANALYSIS

3.1. Addressed sector

As stated in the introduction, the classification pipeline implemented was mainly addressed to

Alzheimer patients. According to Alzheimer Disease International (ADI), almost 10 million people

worldwide develop dementia every year, from which around 5 million cases are AD. The incidence

rates observed in early 2000s for younger adults (below the age of 60) were of 2.4 cases per

100,000 people per year, whereas this rate increased to 127 cases per 100,000 people per year

for the population over 60. After 65, the incidence of the disease exponentially increases with age.

Thus, the main target sector are subjects over 65 suspected of suffering dementia caused by AD.

The prevalence of AD is on the rise, mainly attributed to the increasing diagnostic rates and

awareness of the disease [32]. The conventional methods for diagnosing AD, as can be cognitive

ability tests such as Mini Mental State Examination (MMSE), or biopsies, fail the 50% of the time,

mainly due to a lack of consensus on AD biomarkers. Thus, the need for effective and well-

orchestrated diagnostic tools for the disease gives place for brain imaging.

3.2. MRI versus other neuroimaging techniques for AD diagnosis

Brain imaging is a recent diagnostic improvement method thanks to the progressive advancements

in technologies and proved correlations in structural, functional and molecular findings to the

disease onset and progression. Since there are no definitive guidelines for a diagnosis of AD, the

most popular approach is to exclude other possible diagnosis, narrowing the possibilities to a

probable AD case. Actually, brain imaging facilitates this exclusionary process by providing

structural imaging of the brain and its regions, also enabling the differentiation of AD from other

similar pathologies as FTD or vascular dementia. With the findings of biomarkers linked with the

disease in clinical trials, brain imaging techniques are increasingly being used for safety monitoring.

In Table 2 [32], some of the most used brain imaging technologies in the AD diagnosis context and

their main advantages and disadvantages are summarized. Although PET brain imaging allows for

an accurate early diagnosis of AD, its price and invasive nature limits the technique, since

radioactive substances must be injected in the patient’s body. Also, PET becomes less useful when

monitoring the disease progression and later stages of AD. In these aspects, MRI emerges as a

great advantage since it is really sensitive to structural brain changes of the disease, allowing for a

progressive disease monitoring. Moreover, MRI is completely non-invasive.

Technique Application Advantages Disadvantages Average

Price (€)

CT Structural Quick, easy and widely available. Low resolution and limited

use. Not sensitive to

structural changes.

348.70

MRI Structural Widely available, high-resolution

and safe. Sensitive to structural

changes.

Low, lacks molecular

specificity.

2137.22

SPECT Functional Detects brain changes through

disease progression, low-cost

alternative to PET.

Less specific and sensitive

tool than PET. Low spatial

resolution of the brain.

900.40

13

PET Molecular Good for early detection of AD.

Applied for monitoring Aβ loads in

the brain via tracer molecules.

Limited availability.

Radioactive chemicals

injected into body.

5484.25

Table 2: comparision between different neuroimaging techniques that can be applied for AD diagnosis. Computed Tomography
(CT), strucural MRI, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are
compared. [32]

3.3. Historical evolution of the market

Once brain imaging started to become a key biomarker in AD diagnosis and other

neurodegenerative diseases, in the mid-90’s, statistical mapping and voxel-based analysis of the

brain began to gain prominence in the neuroimaging field. The use of these methods was first

limited to explore anatomical or functional differences between groups or to investigate correlations

between imaging and cognitive symptoms. However, group comparisons usually do not allow to

develop individually based imaging scores, which is essential to establish diagnosis indices for a

single subject [33].

Because of this, in the early 2000’s, the application of machine learning methods to neuroimaging

studies aroused a lot of interest. This enabled the development of imaging signatures of brain

structure that could be detected in single subjects. The earlier studies published on this topic were

focused on SVM algorithms, which are an actual key aspect in neuroimaging diagnosis because of

its ease of use and robustness. Another family of methods that gained popularity around 2001-

2002 were random forests since they became very generalizable algorithms. Deep learning was

the latest incorporation in the field and allowed to learn complex features in a hierarchical way.

In the last few years, the applications of machine and deep learning in neuroimaging studies were

numerous, not just for AD but also for schizophrenia, Parkinson, and other diseases. However, this

is a field that, until now, has been mainly limited to research studies and centres.

In Figure 2, the publications in PubMed from 2004 until 2020 found by searching MRI and Machine
Learning are presented. As can be seen, the number of publications has increased exponentially
in the last few years.

Figure 2: number of publications found in PubMed by year with the keywords “structural MRI” AND “Machine Learning” AND “AD”
from 2004 to 2020.

14

3.4. Future perspectives

In light of the above, with an increasingly aging population, Alzheimer’s cases are expected to

increase up to 75 million in 2030. And, although until now the field of AI applied to the diagnosis of

AD has been quite limited to the research framework, it is expected that in the years to come new

branches of large companies including this type of diagnosis will appear. In addition, new start-ups

will be founded, such as the already existing qmenta [34] or qubiotec [35]. These enterprises offer

powerful clouds for clinical trials, research and clinical care, where the clients can upload their

neuroimages and they have them back together with a probability assigned to a determined

diagnosis.

Moreover, new innovation centres focused on health technology, born from hospitals together with

other technological entities, are also expected to increase in number. An actual example of this is

the Clinical Advanced Technologies Innovation (CATI), a new centre promoted by Hospital Clínic

and the technological centre Leitat. In this public-private collaboration, many enterprises have

shown their interest in being part of it, some of them including AI solutions towards a personalized

medicine.

Finally, it is worth mentioning that in the specific AD context these emerging AI algorithms not only

provide diagnostic support but also become a key tool to assess the efficacy of treatments for the

disease. An example is aducanumab, a monoclonal antibody which was recently commercialized

with the name of Aduhelm and that acts on beta-amyloid plaques.

15

4. CONCEPTION ENGINEERING

Once the contextualization and the background of the project were reviewed, in this section, the

different software options and algorithms for dimensionality reduction, classification and validation

that can be implemented to address the previously defined objectives, will be discussed.

4.1. Analysis of the solutions

Below, a summary table with the different options raised regarding the programming software, the

dimensionality reduction and classification algorithms, and the cross-validation method.

Table 3: Conception engineering. Studied solutions for the programming software, dimensionality reduction algorithm, classification
algorithm, and validation method.

4.1.1. Programming software

The proposed model could be implemented with different programming languages: Python [36], R

studio [37] or MATLAB [38] among others.

Python is a free simple programming language which stands out for its easy to learn syntax.

However, despite its fast interpretability, it is a high-level object-oriented and interpreted language.

It supports many modules and packages, among which there is Scikit-learn or Sklearn, a widely

used library for ML applications. Sklearn [39] is built on NumPy, SciPy and matplotlib, and supports

classification, regression, clustering, dimensionality reduction, model selection and pre-processing

tools.

MATLAB is a private system of numeric computing that uses its own programming language called

“M language”. It is also a user-friendly environment, mainly used for matrices manipulation, data

and functions representation and algorithms implementation. It has its own range of packages,

including a Statistics and Machine Learning Toolbox [40] which applications are remarkably similar

to those in Sklearn: descriptive statistics, clustering, multidimensional data analysis and feature

extraction, supervised classification, etc.

Finally, R studio is a free integrated development environment that uses R programming language

for statistical computation and graphical representations. R, together with Python, is one of the

more powerful tools for ML programming. It supports many ML packages such as CARET for

 Studied solutions

Programming software

• Python

• R studio

• MATLAB

Dimensionality reduction

algorithms

• Unsupervised: PCA

• Supervised

- Wrapper methods: RFE / FFS / BFS

- Filter methods

Classification algorithms

• K-Nearest Neighbours

• Support Vector Machine

• Decision Trees

Validation method

• Leave One Out CV

• K-fold CV

• Holdout method

16

classification and regression problems, random forest or e1071 for SVM and Naive Bayes

classifiers, etc.

4.1.2. Dimensionality reduction

Principal Component Analysis is an unsupervised learning algorithm that transforms the original

dataset into a subspace of lower dimensionality while capturing its maximum variability. This is

done by finding a few new variables, directions uncorrelated with each other, that successively

maximize variance and that are linear combinations of the features in the original set. These

directions are the so-called Principal Components (PC) [41]. The result is a first PC being the

direction along which the samples show the greatest variance, the second PC the direction,

uncorrelated to the first PC, that shows the second greatest variance, and so on. The main uses of

PCA are descriptive since it does not require any distributional assumptions regarding the dataset.

On the other hand, the most relevant supervised methods include Linear Discriminant Analysis and

feature selection algorithms such as wrapper and filter methods.

LDA is a dimensionality reduction technique which, similarly to PCA, aims to project the dataset

into a lower dimensionality subspace. However, LDA is supervised, so it creates the new subspace

while maintaining the class-discriminatory information, finding linear combinations of the original

features that maximize the separation between multiple classes.

Figure 3: PCA (left) and LDA (right) graphical differentiation. PCA seeks for the directions in the dataset that capture the maximum
data variability, while LDA aims to maximize the separation between groups. [42]

Wrapper methods include a classifier into the feature selection algorithm and search for a feature
subset that maximizes its performance. Wrapper methods are usually classified into Sequential
Selection and Recursive Feature Elimination (RFE).

Sequential selection begins with an empty subset and first looks for the feature that maximizes the

objective function, which in this case is the algorithm performance. Then, searches for another

feature in the whole dataset that, added to the first one, also maximizes the performance. And

keeps adding features in that way until the specified number of selected features is reached. The

feature selection technique just described is the Forward Feature Selection (FFS) algorithm. If,

on the contrary, the algorithm starts with a full subset and keeps eliminating the feature that causes

the least performance loss at each iteration, it is called Backwards Feature Selection (BFS).

On the other hand, in order to find the best performing subset, recursive feature elimination

eliminates n features from the total number (m), leaving the desired number of features (m-n),

specified at the beginning. This is performed by fitting the given ML model multiple times and, at

each iteration, ranking features by importance and discarding the weakest ones.

17

On the contrary, filter methods are independent of the classification algorithm and performance.

They look for significant features by means of an information entropy test or other statistical

dependencies. Starting with a feature subset (randomly selected or empty), they first evaluate the

subset with the corresponding test and check if the result for the previous best subset was better

than the actual one. If true, it is set as the current best feature subset. This process is continued

until a certain criterion is met, which can be either the fact that the addition or removal of a new

feature does not achieve better results or that a predefined performance threshold is achieved [43].

4.1.3. Classification algorithm

Support Vector Machine is a supervised machine learning algorithm that can be used both for

classification and regression analysis, although it is more commonly employed for classification.

This algorithm aims to find an optimal hyperplane of M -1 dimensions in an M-dimensional space

(M: number of features) that best separates the different classes of data points from a training data

set. The data points with the minimum distance to the hyperplane are called support vectors and,

this minimum distance, also called margin, is maximized to find the optimal hyperplane. Then, new

examples or cases are mapped to the M-dimensional space and predicted to belong to a class or

another based on which side of the hyperplane they are mapped.

K nearest neighbours is also a supervised machine learning classifier algorithm that works under

the assumption that similar datapoints are close to each other in the M-dimensional feature space.

In the training phase, KNN maps the different feature vectors and stores the class labels of the

training examples. Afterwards, each of the unlabelled data points are classified by assigning them

the most common label among the k training points nearest to them. The distance d from the tested

point to its k nearest train points can be assessed using different metrics, being the Euclidean or

the Hamming distances two of the more common [44].

A Decision Tree is a supervised embedded algorithm that can be used both for regression and

classification problems. It has a flowchart-like structure composed by nodes, branches and leafs.

Each node is labelled with an input feature, and the branches coming out from a node are labelled

with each of the possible values that the feature can take. These branches lead either to another

internal node or to a leaf, a terminal node that will be labelled with a class or a probability distribution

of the classes. When predicting a class label for a new data observation, the algorithm starts from

what is called the root of the tree, the beginning node containing the entire dataset, and the different

paths from the root to the leafs represent classification rules. The growth of these paths involves

deciding which feature to choose for each node that best splits the set of data, and what conditions

to use for splitting an internal node in two or more branches [45].

4.1.4. Validation method

As stated in section 2, the holdout method simply consists of splitting the dataset into single train

and test sets, the first one for teaching the algorithm and the second one to check the algorithm

performance on unseen data. A common split of hold-out method is to put the 80% of the data into

the training set and the remaining 20% into the test set.

On the other hand, cross-validation methods, such as k-fold CV, rely on a resampling procedure.

Usually, the implementation of these models follows 4 steps. First, the dataset is shuffled randomly,

secondly it is split into k-groups, thirdly, iteratively each group is used once as a test set while the

18

other groups are forming the training set with which the model being tested will be fitted. Finally,

the performance of the model is summarized with the mean of the k iterations. Thus, k-fold CV

makes sure that each fold is only used once for validation.

Finally, Leave One Out CV is a type of k-fold CV where k happens to be equal to the number of

samples in the data set, leaving a single subject aside at each iteration. It gives each sample a

chance of being test by the algorithm.

Both k-fold and LOO present a clear advantage with respect to the simple holdout method, since

in small datasets the holdout is highly dependent on the splits produced. This problem is overcome

with cross-validation. However, the main disadvantage of LOO is its computational cost, since the

process requires a fitting and validation of the model as many times as the number of samples [46].

4.2. Proposed solution

In accordance with the above-mentioned, the programming environment finally chosen was Python.

The main reason was that a ML introduction course was done using Sklearn, so the library was

already familiar. Also, Python offers an open-source software, which allows to open the code in

other computers without the need of downloading any payment software. However, R studio was

also implemented to perform a statistical analysis between the demographic data of the different

subject groups and to plot the diseases patterns onto an atlas.

The data dimensionality was finally reduced with PCA. The choice was partly made because of

computational reasons since feature selection algorithms are iterative and therefore much more

time consuming. Moreover, PCA was applied because it becomes a very powerful tool to obtain

both conceptual and graphical clinical information about which brain regions are differing more

between groups. And, also, since it is an unsupervised method, it results a generalizable algorithm

with a low risk of overfitting despite the number of samples is limited, which lead to choose it over

LDA.

In order to choose the number of PCs, the cumulative explained variance was taken as condition.

An optimal number of PCs is a number which cumulative variance sums at least the 80% of the

total variance of the dataset. However, if the threshold is set much higher, there is a risk of

overfitting.

At the end, the ML classification algorithm used were support vector machines. The main reason

that led to this choice was that SVM have been reported in the literature to be the ML algorithm that

leads to better performances [24,29]. Moreover, Decision Trees were discarded because of their

nature as embedded algorithms. This means that decision trees include (embed) the feature

selection step into the own algorithm, making it difficult to retrieve the features selected in each

node and extract the most significant brain regions. Finally, since the dataset used was relatively

small and SVM is reported to obtain better results than KNN, the last one was also discarded.

Finally, the validation method implemented was k-fold CV to avoid split dependency. K-fold was

chosen over LOO because of computational reasons, since LOO performs a number of iterations

equal to the number of observations N, meaning that the model must be fitted N times. Moreover,

LOO has a higher risk of overfitting, since the final performance is meaned between N models

19

trained with practically the same data, with the only difference of one observation. In contrast, the

overlapping of training data in k-fold is lower.

20

5. DETAILED ENGINEERING

As mentioned, the main goal of the project was to develop an automated machine learning pipeline

able to determine if a new patient who had undergone a structural MRI was suffering from AD or

FTD, or if he/she was healthy. Also, the aim was to retrieve relevant clinical information about which

brain regions were differing between the two ill and healthy brains. Therefore, both a binary

classification study and a multiclass one were performed. The first mentioned aimed to classify

between pairs of groups (AD patients and HC, FTD patients and HC, and AD patients and FTD

patients) and study the brain atrophy patterns between the pairs. On the other hand, the multiclass

study purposed to classify a new patient in one of the three groups.

To do so, the incoming structural MRI data, segmented with FreeSurfer into cortical thicknesses

and cortical and subcortical gray matter volumes, was first divided into train and test sets with a k-

fold cross-validation. Then, the dimensionality was reduced with PCA. In this step, the weights

given from the first PC to each feature were stored and used to determine the most relevant brain

regions between groups, which were plotted in a brain map. Followingly, the data transformed into

the PCA subspace entered the classification step, were the SVM algorithm, which parameters were

cross-validated, was fitted with the train set and then predicted the test set data labels. Finally, the

performance of the model was assessed with the mean accuracy of the classification and a

confusion matrix. In Figure 4, the general implemented pipeline is represented.

Figure 4: diagram showing the implemented pipeline. Starts splitting the dataset according to the cross-validation method (1), then
Principal Component Analysis (PCA) is implemented (2) and the weights of the quantified brain regions are extracted, followed by
Support Vector Machine (SVM) for the classification step (3). Finally, the performance is assessed (4). Parameter k corresponds to
the number of iterations.

5.1. Data management

The data used in this study comes from the Alzheimer and Memory unit in Hospital Clinic of

Barcelona. It consists of a subset of 53 EOAD patients and 44 HC and 64 FTD patients, resulting

in 161 subjects. Each subject was doubly acquired with a 3T Siemens MRI scanner with a T1-

weighted magnetization-prepared 180 degrees radio-frequency pulses and rapid gradient-echo

(MP RAGE) sequence. For each subject, cortical thicknesses and subcortical GM volumes were

segmented by the Alzheimer and Memory unit (Agnès Pérez) using FreeSurfer, which is an open

software for analyzing human brain structural and functional MRI images, used for the study of

21

cortical and subcortical brain anatomy. From this segmentation, a total of 36 cortical thicknesses

from different structures were obtained for both right and left hemispheres, and also 65 subcortical

volumes, including both right and left hemisphere measurements. However, the features that

contained many null values or had a large number of void values were eliminated from the raw

dataset. In order to work with manageable data, the format was transformed to .csv and read with

Pandas library in Python.

Since the scope of this study did not include comparing differences between left or right hemisphere

regions, we calculated the mean between left and right measures. Also, when comparing volumes

between different subjects, it is good practice to normalize them for the total intracranial volume

(TIV) to avoid significant differences that are due to the brain size and not because of the disease.

Thus, each volume measure was normalized to the TIV and the intracranial volume was dropped

from the dataset. Finally, a z-score normalization (Equation 1) was applied to the data in order to

have comparable ranges of values for all features. HCs were labelled with a 0, the EOADs with a

1 and the FTDs with a 2.

 𝑧 =
𝑥− 𝑚𝑒𝑎𝑛

𝑠𝑑
 (eq. 1)

Moreover, demographic data was acquired for each group, containing both age and sex. To check

if age differences existed between the three groups, an ANOVA test was carried out with R studio.

On the other hand, sex differences were checked with a Fisher test. Regarding age, the ANOVA

test showed a p-value of 1.4·10-6 (<0.05), meaning that significant differences in age between the

three groups existed. In sex, although differences were not that big, a p-value of 0.03 was obtained.

Thus, a post-hoc study was carried out using t-test to identify the pair-wise differences driving each

result. The p-values obtained for age were 0.26, 4.4·10-6 and 1.3·10-5 between EOAD and HC, HC

and FTD, and EOAD and FTD data, respectively. Regarding sex, the p-values were 0.3, 0.03 and

0.3 for EOAD-HC, FTD-HC and EOAD-FTD respectively.

Thus, the age and sex variables were included in the multiclass pipeline. In binary studies, age was

added in all of them except for HC-EOAD, and sex was only added to HC-FTD. At the end, the

feature space dimension was reduced to 59 for the multiclass and the HC-FTD studies, 58 for

EAOD-FTD and 57 for HC-EOAD. The header of the EOAD-FTD feature set is shown in Figure 5.

Figure 5: example taken from the data table for HC vs EOAD. Showing only 5 subjects and 7 features from the total.

5.2. Implemented pipeline

5.2.1. Cross-validation

With the data already imported and normalized using z-score, the data was first divided into

features (X) and labels (y) Then, it was split into train (X_train, y_train), and test (X_test, y_test)

sets with a stratified 5-fold cross-validation. The fact that the k-fold was stratified allowed that the

splits, instead of being completely random, had a ratio between the target classes in each fold

22

equal as the one in the full dataset, so the folds are compensated. Also, 5 folds were chosen so

that in each split approximately the 20% of the data was left for testing, while the resting 80% was

used for training. In Figure 6, a graphical representation of the stratified 5-fold cross-validation

implemented in the 3-group classification is shown.

Figure 6: stratified 5-fold cross-validation implemented for the 3 groups. HC, EOAD and FTD subjects. At each iteration, a different
fold containing the 20% of the dataset is reserved for testing.

5.2.2. Dimensionality reduction

Once the data was split into a train and a test sets, and already in the cross-validation loop, the

feature space dimensionality was reduced using Principal Component Analysis, which was also

used to retrieve those features apporting more variance from the whole sample of each study.

As mentioned before, PCA is an unsupervised algorithm that reduces the dimensionality m of a

dataset of N observations to a subspace of dimensionality p<m. It looks for uncorrelated PCs, which

are linear combinations of the original features comprising the maximum variability of the data. The

classic method for finding the PCs is the maximum variance approach [47]. The process starts with

a N x m matrix, K, with mean-centred columns (kj). The algorithm seeks for the linear combination

of columns of the matrix with maximum variance, and these linear combinations are given by

equation 2, where a is an m-dimensional vector of weights a1, a2,...,am.

∑ 𝑎𝑗𝑘𝑗 = 𝐾𝑎𝑚
𝑗=1 (Eq. 2)

Then, the variance of such linear combination is given by equation 3, where C is the covariance

matrix of K. This will consist of a square matrix of mxm dimensions denoting the covariance of each

feature with the others (Figure 7). From here, finding the linear combination with maximum variance

or first principal component (PC1), translates into looking for a vector a that maximizes this equation

(Eq.3).

At the end, assuming that a must be unit-norm vectors, what results is the following equality

(equation 4), where 𝜆 and a end up being the eigenvalues and eigenvectors of C, respectively,

which come from the diagonalization of the covariance matrix.

𝑣𝑎𝑟(𝐾𝑎) = 𝑎𝑇𝐶𝑎 (Eq. 3) 𝐶𝑎 = 𝜆𝑎 (Eq. 4)

23

Figure 7: covariance matrix. m x m matrix representing the covariance of each feature with the other features.

The higher the eigenvalue, the higher variability in that direction, so the algorithm aims to find the

largest eigenvalue and its corresponding eigenvector. A matrix composed by the eigenvectors can

be constructed, where each vector or column corresponds to a PC. Then, by arranging them in

descending order of variability, that is, by their eigenvalues, one acquires a matrix with the first PC

as the first column, the second PC as the following column etc.

In Python, the decomposition module of the Sklearn library supports a PCA function in which the

user can indicate the number of features or PCs to be extracted. In order to calculate the optimal

number of PCs, in a previous step to the cross-validation, a PCA model was fitted with all the X

data and set to get all the possible principal components, which equal the original feature space

minus one: 55 for the EOAD vs HC study 56 for EOAD vs FTD and 57 the rest. From here, the

explained variance accumulated by each component was calculated and the number of

components that accumulate the 80% of the variance was assessed. In Figure 8, the cumulative

variances versus the number of principal components for each group classification is shown.

Figure 8: cumulative variances for all the principal components in each classification study. Minimum number of components
needed to accumulate the 80% of the data variance is marked with a dashed line. Where “nc” states for number of principal
components.

The minimum number of PCs needed to accumulate the 80% of the dataset variance for each study

was stored in a variable and entered to the cross-validation loop. There, the X_train was used to fit

PCA, which was set to assess the number of PCs found in the previous step, and both X_train and

X_test data were transformed into the new subspace. Followingly, the lists of weights given to the

different features or regions by each component were stored in a dictionary with keys equal to the

number of PC and values equal to a list of shape (nº iterations, nº features). At the end of the cross-

validation, the mean and standard deviations of the weights given to each feature were calculated.

24

Since the first principal component itself accumulated approximately the 40% of the data variance,

the weights given by this component to each feature were then stored in a .csv file. The file was

read in R studio and used to represent the weights of each region graphically in a brain map.

5.2.3. Classification

Once with the train and test data transformed into the PCA subspace, the Support Vector Machine

algorithm was fitted with the train set and used to classify the test data into the different classes.

As explained, SVM aims to find a hyperplane of m-1 dimensions that best separates the different

data classes from the training set. When the dataset is linearly separable, two parallel hyperplanes

are defined such as the distance between them is

maximized (Figure 9). Then, the optimal

hyperplane with the maximum margin, is the one

lying halfway the other two. The equations defining

the two parallel hyperplanes are (Eq. 5) and (Eq. 6),

where b is a biased term, WT is the summatory of

the normal vectors to the hyperplane, and X is the

the summatory of the data point vectors. Both b and

W parameters must be found so they maximize the

margin distance. Then, every point on or above

boundary Π1 is of a determined class and every

point on or below boundary Π2 is of another class

[48]. Therefore, for the classification of every new

datapoint, the decision function in Eq. 7 is used:

𝛱1 = 𝑤𝑇𝑋 − 𝑏 = 1 (𝐸𝑞. 5)

𝛱2 = 𝑤𝑇𝑋 − 𝑏 = −1 (𝐸𝑞. 6)

𝐷(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (𝐸𝑞. 7)

Sometimes, when data is not linearly separable, a projection of the data to a higher dimension,

where it can be linearly separated, is needed to avoid outliers. This is what is called the kernel trick.

In this non-linear classification, every dot product of two vectors in the algorithm is replaced by a

kernel function, that allows to fit the hyperplane in a transformed feature space. Different kernel

functions can be used (Figure 10), among others, there exist:

Figure 10. From left to right: graphic exemplification of Support Vector Machine classification with linear, polynomial and RBF
kernels, from left to right [49].

Linear kernel: 𝐾(𝑥⃗𝑖 , 𝑥𝑗⃗⃗⃗ ⃗) = (𝑥⃗𝑇
𝑖 , 𝑥𝑗⃗⃗⃗ ⃗). It is equivalent to use a SVM without the kernel trick.

Figure 9: SVM classification. Grpahical representation of the
hyperplanes generated by the algorithm.

25

Polynomial kernel. It is a more generalized linear kernel, since it can classify curved or non-linear

input spaces. 𝐾(𝑥⃗𝑖 , 𝑥𝑗⃗⃗⃗ ⃗) = (𝑥⃗𝑇
𝑖, 𝑥𝑗⃗⃗⃗ ⃗ + 𝐶)

𝑑
, where C is a constant term and d is the kernel’s degree.

RBF (Radial Basis Function). The Gaussian Radial Basis function is the most common

one: 𝐾(𝑥⃗𝑖 , 𝑐𝑒𝑛𝑡𝑒𝑟) = exp (−𝛾||𝑥𝑖⃗⃗⃗ ⃗ − 𝑐𝑒𝑛𝑡𝑒𝑟||
2

). The γ parameter controls the weight of new training

points. The higher its value, the more dependent of the closer points the decision boundary will be.

Therefore, if γ is set too high, there might be risk of overfitting.

The effectiveness of SVM depends both on the kernel selection and its parameters. As mentioned

before, when RBF kernel is used, the γ parameter must be chosen. On the other hand, the soft

margin C parameter dictates the trade-off between maximizing the margin of the decision function

and minimizing mistakes in the classification of training points [50]. For a smaller C, classification

mistakes of the training data are given less importance and the algorithm focuses on maximizing

the margin, while for higher C values, a smaller margin is accepted if the decision function classifies

better all training points. Hence, when choosing a higher C value, overfitting must be watched out.

In order to find the optimal kernel and parameters for the SVM classification, the GridSearchCV

function from the Sklearn model_selection module was implemented. This function takes as main

inputs an estimator and a parameter grid. It performs an exhaustive combinatory search over the

parameter’s ranges given, fitting the X_train for each parameter combination and then scoring the

estimator performance with the train labels y_train. Also, the performance can be cross validated

any number of iterations by passing an integer number to the cv parameter of the GridSearchCV

function. In this case, the cv parameter was set to 10.

The different parameter combinations passed as a grid to the GridSearchCV function consisted on

three different kernels (linear, polynomial and RBF) combined with a C range of values from 0.1 to

1000 in logarithmic scale. Also, for the RBF kernel, a γ value was added to the combination, ranging

from 0.001 to 1 in logarithmic scale. The combinations are shown in Table 3.

KERNEL C γ

LINEAR Range: 0.1, 1, 10, 100, 1000 ------

POLYNOMIAL Range: 0.1, 1, 10, 100, 1000 ------

RBF Range: 0.1, 1, 10, 100, 1000 Range: 0.001, 0.01, 0.1, 1

Table 4: combination of parameters for the SVM estimator. C and γ values combined with each kernel in the grid search. C: soft
margin parameter. γ : specific parameter for the RBF kernel that controls the weight given to new training points.

Once the GridSearchCV function finds the optimal combination, it builds a classifier with that

parameters. The resulting SVM estimator was then trained with the X_train and y_train data and

used to predict the X_test labels, which were stored in a variable called y_pred.

Finally, the predicted labels were compared with the true labels (y_test) in order to build a confusion

matrix and to assess the overall accuracy of the prediction and the specific accuracy of each class.

The overall accuracies were calculated using the accuracy_score function and the specific ones

with the classification_report function, both provided by the metrics module of Sklearn. Then, once

outside the cross-validation loop, the mean values of the accuracies and standard deviations were

calculated for the 5 iterations.

26

5.3. Results

The results obtained could be separated in two different categories: a first one regarding the

achieved algorithm performance and a second one concerning all the clinical information that

resulted from the exhaustive analysis realised to the implemented algorithm.

5.3.1. Algorithm performance

As mentioned, the number of PC to be used in each classification study was assessed with the

cumulative explained variance. The results were shown in Figure 8. The number of PC used were

11, 9, 10 and 10 for the HC vs EOAD, HC vs FTD, EOAD vs FTD and the multiclass studies,

respectively. The classification capability of the pipeline implemented was obtained by assessing

its performance using the 20% of the data for testing in a 5-fold cross-validation. For each study

(HC vs EOAD, HC vs FTD, EOAD vs FTD and HC vs EOAD vs FTD), the specific precisions for

each group of subjects, as well as the overall classification accuracies, were calculated and the

mean values were obtained across the 5 iterations. In Table 5, the total accuracy of each

classification study, as well as each group precision, accompanied by the standard deviations, are

shown. Also, Figure 11 presents the confusion matrices showing the mean of the true-predicted

and false-predicted values for each study.

 STUDY

 HC (Group 1) vs

EOAD (Group 2)

HC (Group 1) vs

FTD (Group 2)

EOAD (Group 1)

vs FTD (Group 2)

HC (group 1) vs EOAD

(group 2) vs FTD (group 3)

Mean accuracy 91.7% ± 5.8% 83.3% ± 5.2% 83.0% ± 5.8% 77.7% ± 5.2%

Precision group 1 92.8% ± 6.6% 76.0% ± 4.7% 81.79% ±10.5% 70.7% ± 8.3%

Precision group 2 91.0% ± 5.9% 89.9% ± 6.6% 86.3% ± 5.8% 80.8% ± 4.2%

Precision group 3 ------------------------ ------------------------ ------------------------ 83.3% ± 10.4%

Table 5: accuracies mean values (%) and standard deviations (%) obtained for each classification study (HC vs EOAD, HC vs FTD,
EOAD vs FTD and HC vs EOAD vs FTD). Also, the mean classification precision (%) of each individual group and the corresponding
standard deviations (%) are shown.

27

Figure 11: confusion matrices showing the classification precision for each group in the four studies. Top left: HC vs EOAD. Top
right: HC vs FTD. Bottom left: EOAD vs FTD. Bottom right: HC vs EOAD vs FTD. The values correspond to the rounded means
across the 5 iterations.

5.3.2. Significant brain regions

As already mentioned, the first principal component was used to retrieve the linear combination of

features accumulating the highest variance from the original dataset. In such linear combination,

features with the higher weights correspond to the ones contributing more to the variance

accumulated by that PC. In Figures 12 to 15, the weights given by PC1 to each brain region are

represented in four boxplots, each one corresponding to a different classification study.

Figure 12. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC and EOAD study, the
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower
mean weights. In the x axis the names of the features are shown.

28

Figure 13. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC and FTD study, the
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower
mean weights. In the x axis the names of the features are shown.

Figure 14. Boxplot showing the weights given to every feature by the first principal component (PC1) in EOAD and FTD study, the
mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to lower
mean weights. In the x axis the names of the features are shown.

29

Figure 15. Boxplot showing the weights given to every feature by the first principal component (PC1) in HC, EOAD and FTD study,
the mean and standard deviations across the 5 cross-validation iterations are represented. The features are sorted from higher to
lower mean weights. In the x axis the names of the features are shown.

In Figures 12 to 15, it can be noticed that most of the features were given negative weights and

just a few of them, such as the ventricles size and volume or the choroid plexus were positively

weighted. However, the sign of the weight given to a feature is just indicating the sign of its

correlation with the principal component. That is, if an increase in a variable results in an increase

of a PC and vice versa, it means that they are positively correlated and therefore the variable is

positively weighted. And, on the contrary, a negative weight given to a variable means that it is

negatively correlated with the PC. The larger a variable’s weight, the more that variable is

contributing to that PC.

The weights given to each variable were then plotted into a brain plot with the ggseg library from R

studio. Since the sign of the weights is not relevant to the variable’s contribution to the PC

accumulated variance, the weights were represented in absolute value. The resulting cerebral plots

show the relevance of each brain region when differentiating between the classified groups. Two

different plots were made for each classification study, one of them showing the subcortical

volumes (Aseg atlas) and another one showing the cortical and subcortical thicknesses (Desikan-

Killiany or DK atlas). The Aseg atlases are shown in figure 16 and the DK atlases in Figure 17.

30

Figure 16: Aseg atlases of the subcortical brain volumes painted according to the weights, in absolute value, given by the first
principal component of PCA in each of the 4 studies. 1) HC vs EOAD, 2) HC vs FTD, 3) EOAD vs FTD and 4) HC vs EOAD vs FTD.

31

Figure 17: Desikan-Killiany atlases of the cortical and subcortical thicknesses of the brain painted according to the weights, in
absolute value, given by the first principal component of PCA in each study.

5.4. Discussion of the results

For each binary classification study, the probability of randomly predicting correctly a test subject

was of 50%, whereas in the multiclass study that probability was of 33.3%. Thus, these last two

values were taken as the accuracy baselines for the binary and multiclass studies, respectively.

By looking at the mean accuracies in Table 5, it can be seen that the binary classification with better

performance was the HC vs EOAD one, improving the baseline estimation in a 41.74%. The high

accuracies here might be because the atrophy patterns between EOAD and HC patients are clearly

distinguishable. Also, when comparing the HC and EOAD individual precisions in Figure 11, it was

observed that both groups were equally identified, indicating that the percentage of subjects

correctly identified as EOAD patients was similar to the one of HC. The same happened for the

misclassification of both groups.

In the classification between HC and FTD, the overall accuracy achieved was lower, meaning that

the number of misclassified subjects was higher than in the previous study. This is probably due to

the fact that the cerebral atrophy of FTD patients does not follow a pattern as specific as the one

of EOAD, leading to greater difficulty in differentiating them from another group of patients. By

32

taking a closer look at the results, we observe that the number of subjects correctly classified as

FTD was quite higher than the number of correctly classified HC. Thus, the probability of

misclassifying a HC subject is higher than misclassifying a subject the other way around. However,

both precisions exceeded 75%, which led to a reliable classification.

On the other hand, the binary study between EOAD and FTD patients showed similar results to the

one between HC and FTD, with an overall accuracy of 83%. In this case, the lower accuracy might

be as well due to the more diffuse atrophy pattern of the FTD subjects. Again, the probability of

misclassifying a EOAD patient into FTD is higher than in the opposite direction. However, the

difference in the precisions between the EOAD and FTD groups is lower than in the HC vs FTD

study due to higher variance in the data .

Regarding the proposed multiclass study between all three groups, it improved the performance

with respect to the 33.33% baseline in a 44.39%, outperforming with respect to binary studies. Also,

when looking at the individual precisions of each group, the FTD was once again the group with

the lower number of misclassifications. The reason keeps being its less defined atrophy pattern,

that leads to the algorithm to confuse atrophy patterns from other groups with the one of FTD.

As can be seen in Figures from 12 to 15, the mean cortical thickness in the brain and the total gray

volume were the two more weighted features of the dataset in all studies, meaning that were the

ones contributing more to the PC1 variance. This proved that in both EOAD and FTD diseases

there is an important gray matter loss with respect to healthy subjects. The fact that in the EOAD

and FTD binary study these two features also accumulated variance might be because in FTD the

amount of gray matter degeneration is not as much as in EOAD patients.

By taking a look at the features contributing with more variance in the HC and EOAD patients

(Figure 12), besides from the mean cortical thickness and the total gray volume, the specific regions

showing more variance were the supramarginal, middle temporal and inferior parietal thicknesses.

Also, a highly weighted feature was the supra tentorial volume, which is a feature that includes all

the pial structures as well as the hippocampus and amygdala, among others. The EOAD pattern

found highly correlates with the one found in [51] by Möller et al.

When looking at Figure 13, it was observed that, compared to EOAD, FTD subjects also have a

degeneration in nucleus accumbens, orbitofrontal areas and frontal insula in addition to a general

cortical and subcortical loss of GM. This was also observed in Figure 14, where EOAD and FTD

study results are shown. In this group differentiation, frontal insula plays an important role, which

was also reported in the literature reviewed [52][53].

Moreover, Figure 15 shows the features contributing with more variance between the three groups.

Once more, both the mean cortical thickness and the subcortical GM loss became the features

accumulating more variance, followed by the middle temporal thickness and the total brain volume,

which indicated a clear volume reduction in both neurodegenerative diseases with respect to

controls.

Finally, the general patterns of both diseases can be observed in Figures 16 and 17. From these

plots, it was confirmed the more specific degenerative pattern of EOAD patients with respect to

FTD. EOAD showed a more focused GM loss in temporal and posterior areas, while FTD subjects

showed a more diffuse pattern, with weights more evenly distributed in the different regions.

33

6. EXECUTION SCHEDULE: GANTT DIAGRAM

In order to develop the project in the expected time frame, from February 2021 to June 21th 2021,

the different tasks to be carried out for the objectives accomplishment were listed and a specific

time was assigned to each of them. In Figure 19, the Gantt diagram with the estimated times for

each of the tasks is presented.

The tasks to be performed in order to develop the project in the expected time frame were divided

in six blocks:

6.1. Planning. This block corresponds to the first two weeks of the project, since the first

meeting with the tutor takes place in January 26 until the scope of the project is fully

defined.

6.1.1. Fix the objectives: the most important milestones to be fulfilled at the end of the

project are defined. Checkpoint: list with the definitive objectives.

6.1.2. Task’s definition: definition of the different tasks to be carried out in order to achieve

the previously listed objectives. The realization of the Gantt chart is included in this

sub-block. Checkpoint: list with the ordered tasks and definitive Gantt chart.

6.2. Literature review. An in-depth research is conducted in different studies that have carried

out ML approaches for the diagnosis of AD or FTD using MRI data or others such DTI

data. This task is expected to last from February to mid-April.

6.2.1. Literature review. The studies are searched and collected if they meet the inclusion

criteria. This subtask lasts the same as the whole task 2 because of possible new

publications. Checkpoint: table with the studies reviewed and their main

characteristics.

6.2.2. Evaluate feature selection methods. The feature selection methods and

dimensionality reduction techniques used in the gathered papers are reviewed and

the most appropriate technique for the project data is chosen. Checkpoint: feature

selection/dimensionality reduction method chosen.

6.2.3. Evaluate Machine Learning algorithm. Once with the feature selection methods

evaluated, in mid-March, the same subtask must be performed for the ML

classification algorithm. Checkpoint: ML classification algorithm chosen.

6.2.4. Evaluate cross-validation method. The same review is done for the cross-validation

method that aims to evaluate the algorithm performance. The subtask is expected to

be finished by April 14. Checkpoint: cross-validation method chosen.

6.3. Machine Learning model. The objective of this task, to be performed from mid-February

for three months, is to code the ML pipeline.

6.3.1. Model building. The first subtask is to build the model pipeline, with the feature

selection, the ML algorithm and the cross-validation steps. Checkpoint: pipeline

coded and implemented.

34

6.3.2. Model training and testing. Then, the model must be trained and tested with the

available data and the chosen cross-validation method. Checkpoint: algorithm

trained and tested with the cross-validation method chosen.

6.3.3. Algorithm adjustment. Once the model was trained and tested, depending on the

outcomes obtained the appropriate corrections and adjustments must be done. This

subtask will close the ML model task approximately in mid-May. Checkpoint:

readjusted pipeline.

6.4. Results. With the algorithm already adjusted, it is time to present and analyse the results

obtained. This aims to be done during the last three weeks of the project development,

not considering the project delivery week.

6.4.1. Present the results. The results must be analyzed and presented in the most

appropriate way, with the help of tables and graphs that clarify them. Checkpoint:

results understood and formally presented.

6.4.2. Discussion of the results. With the results clearly presented, in mid-May, they must

be discussed by performing an in-depth analysis. Checkpoint: section of the result’s

discussion finished.

6.4.3. Conclusion. Finally, while the results discussion is being done, conclusions must be

extracted and expressed in the report. Checkpoint: conclusion section finished.

6.5. Closeout. This stage closes the project development in the last week, from June 7 until

June 21.

6.5.1. Submission of the project. The project memory must be submitted on June 14.

6.5.2. Presentation of the project. The project must be presented and defended on June

22.

35

Figure 18: GANTT. Execution schedule by weeks of the project. On the left column the different tasks to be performed along the project execution (February 2021 – June 2021) are listed. The start and the due dates
of each task are shown.

36

7. TECHNICAL FEASABILITY

In this section, the SWOT analysis was developed. Both internal (strengths and weaknesses) and

the external (opportunities and threads) factors affecting the current project were analysed.

Figure 19: SWOT analysis of the project. Strengths, Weaknesses, Opportunities and Threads are listed.

7.1 Strengths

Firstly, the data used in this study was already pre-processed and labelled. Therefore, since all the

features were already extracted from the MRI scans, the focus of the project could be placed on

the ML classification and dimensionality reduction algorithms.

Secondly, the classification pipeline implemented in Python was fully automated. It could perform

a dimensionality reduction step of the data, plotting the brain regions providing more variance to

the dataset, fitting the classification algorithm to the selected data, and to automatically cross-

validate the model and present its performance. At the end, the resulting pipeline provided

reproducible results, which allows for applying the model to other datasets different than ours or

being used in other centres. Moreover, it could be used with other neuroimaging modalities alone

or combined with structural MRI.

Finally, an unsupervised learning algorithm, PCA, was used to extract the most relevant brain

regions and plot them in a brain atlas. This is a real advantage, since it provides a more clinical

view of the problem, also allowing for tracking the disease evolution pattern in the future when new

data of the patients is obtained.

7.2 Weaknesses

The first weakness this project encountered was the lack of data. It counted with a relatively small

number of subjects, 161 (44 HC, 53 EOAD patients and 64 FTD patients), while to improve the

results of the study more subjects should be included. Also, the data used belonged to a single

neuroimaging modality, structural MRI, which also limited the algorithm performance. Therefore,

better results would be expected if DTI or PET data had been available.

Another weakness is the number of classification algorithms implemented, which was limited by

the time available to carry out the project. Only SVM was assessed for the classification, while other

37

algorithms that proved promising results in the literature, such as Artificial Neural Networks or

Regularised Extreme Machine Learning were not implemented.

7.3 Opportunities

The first opportunity is that ML was recently proposed as an alternative diagnostic tool for

neurodegenerative diseases by means of neuroimaging data. It allows for better precision in

diagnostics but also leads to explainable systems able to recognize patterns associated with

healthy or pathological brain structures. All of this makes these techniques suitable for clinical

applications and research.

Also, although a wide range of studies and commercial softwares which aim to classify with the

best accuracy as possible were developed, the algorithms were mostly treated as black boxes and

little research was done in retrieving the most relevant features for the classification. In this aspect,

the proposed study has an open opportunity.

Finally, during the project development the 1st ISMRM Iberian Chapter Annual Meeting took place,
and the current work, together with the doctoral student Agnès Pérez work, could be presented to
the congress.

7.4 Threads’ analysis

Of course, in case the research project ended up giving rise to a start-up, an important thread would

be enterprises such as qmenta that commercialize very powerful AI algorithms for the diagnosis of

neurological diseases using neuroimage. Therefore, the market competition would be one of the

obstacles for the project.

However, the fact that nowadays machine learning techniques are shifting towards convolutional

neural networks, that embed into a single algorithm both feature selection and classification

methods, gives rise to another thread: the obsolescence of the presented algorithm.

38

8. ECONOMICAL FEASABILITY

Although it is a publicly funded research thesis, in this section, the theoretical cost of the project

based on the GANTT diagram is going to be described. To do so, the costs of human resources,

the data used, software and hardware were divided in different packages with an associated cost.

A summary table of the costs is presented in Table 6.

Package Element of the package Element’s cost Package cost

Human resources

 Learning: 105 h 20 €/h

 Development: 180 h 20 €/h

 Close-out: 95 h 20 €/h

 7.600 €

Data

 FreeSurfer segmentations 0 €

 Demographic data 0 €

 0 €

Software

 Python 0 €

 R studio 0 €

 0 €

Hardware

 Computer 800 €

 Consumed electricity 21,98 €

 821,98 €

Total cost 8.421,98 €

Table 6: table showing the theoretical cost of the project. The costs are divided in 4 packages: human resources, data, software
and hardware. Each package is formed by different elements, which costs are presented.

Firstly, regarding human resources, the salary of the student should be taken into account. The

project development is designed to cover approximately 380 hours of work, which can be divided

into a learning stage (105h), encompassing both planning and literature review; a development

stage (180h), including the ML algorithm building and results tasks; and a close-out stage (95h)

including the memory writing and the oral presentation of the project. Nonetheless, the salary of

the student in the different stages is the same: 20€/h. Thus, the cost of this package amounts to

7.600€. In figure 21, the hours implemented by the student in the different stages are represented.

39

Figure 20: hours dedicated to each stage of the project by the student:.47% to the development, 28% to the learning stage and
25% to the close-out stage.

Secondly, the images from which the data used in this project comes from were provided free of

charge by the neurology service of Hospital Clinic. Moreover, the biomedicine department of the

same hospital segmented the images with the FreeSurfer software. The resulting segmentations,

as well as the corresponding demographic data, were also dispensed to the project free of charge.

Thus, the overall cost of the data package is 0€.

Thirdly, the software programs used in the development part were Python and R studio, both of

them with completely free access, so the software package has no cost at all: 0€.

Finally, an element to consider in the hardware package is the computer used, which is an HP

pavilion of 2016 valued in approximately 800€. Also, the electricity consumption by the computer

is considered. In all the hours of work the computer was used, and it consumes a mean of 400 W/h,

so the electricity consumed for the project amounts to 152 kW. Taking into account that the price

of electricity is around 0,14458 €/kW, the cost of electricity during the project was: 152 kW · 0,14458

€/kW = 21,98 €. Thus, the total cost of the hardware package is 821,98€.

As can be seen in Table 6, the overall cost of the project is 8.421,98€.

40

9. NORMATIVE AND LEGAL ASPECTS

This project is framed into the university, so it adheres to the University of Barcelona statute’s

[Estatut de la Universitat de Barcelona - Universitat de Barcelona], specifically to “TÍTOL V”,

chapters I, II and III. It states, among other remarkable points, that the research in University of

Barcelona does not tolerate any project that does not aim to advance knowledge, improve life

conditions, reduce social and economic inequalities and raise up innovation and business

competitivity.

Moreover, as stated in section 5, the project presented uses data retrieved from T1-weighted MRI

scans of real patients. All the scans were acquired in the diagnostic imaging centre of Hospital

Clinic, thus adhering to the bioethics committee of the hospital. Also, all the patients involved in the

study must have provided their consent in written, and their demographic and clinical information

is protected by the Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y

garantía de los derechos digitales of the BOE. This normative includes a section, called

“Disposición adicional decimoséptima. Tratamientos de datos de salud”, that states that the use of

pseudonymised personal data for public health research is considered lawful as long as a technical

separation exists between the research group and the group in charge of the pseudonymisation,

so the real identifications remain unknown by the researchers.

The current project fits into the Computer-Aided Detection/Diagnosis Software category, since it

aims to process information retrieved from MRI images to generate a diagnosis support. Therefore,

the proposed pipeline must be implemented in accordance to ISO 27799:2016 Health informatics

– Information security management in health using ISO/IEC 27002. This International Standards,

similarly to Ley Orgánica 3/2018, gives guidelines to appropriately preserve the confidentiality of

personal health information that can be used in any project, whatever the form that information

takes: numbers, words or, as in the present case, medical images.

Finally, it cannot be omitted that the proposed algorithm aims to apply Artificial Intelligence to an

actual medical diagnosis. However, although one would expect to find many regulations about it,

there are currently no harmonized standards or laws that specifically regulate the use of Machine

Learning or other forms of AI in the medical practice [54]. Nonetheless, Food and Drinks

Administration (FDA) recently published a paper [55] where it describes a new potential approach

to a regulation for AI and ML-driven software as medical devices. From this paper it can be derived

that FDA would be enabled to evaluate and monitor a new software product from its premarket

development to its postmarked performance to ensure patient’s safety.

https://www.ub.edu/web/ub/ca/universitat/organitzacio/normatives/estatut/estatut.html

41

10. CONCLUSIONS AND FUTURE LINES

In conclusion, the presented project highlighted the importance of Artificial Intelligence algorithms

for diagnostic imaging support. Specifically, the proposed algorithm showed the notable utility of

machine learning automatic classification in the neuroimaging field, allowing to support the

diagnosis of AD and other neurodegenerative diseases such as FTD. The main goals were

achieved regarding both the algorithm performance and the retrieval of the atrophy patterns in both

diseases. In addition, the algorithm proposed was accepted in the ISRMRM Iberian annual

congress, which takes place on June 16 and 17.

In light of the results obtained, we could affirm that EOAD’s patients present a more characteristic

and less spread degenerative brain pattern than FTD patients, showing higher degeneration in

temporal and posterior regions. This led to better classification performances when being classified

versus control subjects. However, the algorithm improved the baseline performances (i.e., the ones

obtained with a random classification of subjects) in more than a 30% in all the four studies,

reaching a 44% of improvement in the multiclass classification between HC, EOAD and FTD

controls, which is of great medical interest.

It is relevant to mention that the pipeline proposed presented a clear advantage with respect to

many of the classification algorithms reviewed. While in most studies the algorithms used were

treated as black boxes, by performing an exhaustive analysis of PCA, the presented work was able

to retrieve the brain regions that accumulated the highest variance of the dataset containing the

subject groups to be classified. Since PCA is an unsupervised method, this milestone allows to

study the neurodegenerative pattern of an unlabelled dataset where the different groups where a

subject might belong are known, in this case HC, AD or FTD. Moreover, if data from the same

subjects are collected throughout the disease, the brain signatures plotted become of strong

interest for studying the neurodegenerative evolution of both AD and FTD diseases.

Despite the accuracy of the presented pipeline reached optimal performance levels, it could be still

improved. One way of doing so could be to feed the algorithm with a much larger dataset, leading

to a better training and consequently to better results. Another interesting future implementation

would be to both train and test the algorithm with other MRI modalities, such as DTI, so that other

characteristic features, like white matter loss, were considered. Also, the current features could be

fused with non-imaging data, as fluid biomarkers either from blood or CSF. Lastly, the proposed

algorithm might be useful for the diagnosis of other neurodegenerative diseases such as Parkinson.

Thus, future work could be made on the code in order to classify with higher accuracies between

EOAD and FTD patients, and also to distinguish other diseases patients.

To conclude, this project is another proof of concept of how medicine is moving towards a massive

digitalization, improving speed and quality of healthcare. In this regard, biomedical engineering

becomes a key character which still has a lot to offer.

42

11. REFERENCES

[1] National Institute on Aging. (2019, May 22nd). Alzheimer’s Disease Fact Sheet.

https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet

[2] Nussbaum, R.L., & Ellis, C. E. (2003). Alzheimer’s Disease and Parkinson’s Disease. New

England Journal of Medicine, 348(14), 1356-1364.

https://www.nejm.org/doi/full/10.1056/NEJM2003ra020003 .

[3] World Health Organization. (2020, September 21st). Dementia. https://www.who.int/news-

room/fact-

sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people%20have

%20dementia%2C%20with%20nearly%2060,is%20between%205%2D8%25.

[4] National Institute on Aging. (2019, June 5th). Alzheimer’s Disease Diagnostic Guidelines.

https://www.nia.nih.gov/health/alzheimers-disease-diagnostic-guidelines

[5] National Institute on Aging. (2011, April 19th). Alzheimer’s diagnostic guidelines updated for first

time in decades. https://www.nia.nih.gov/news/alzheimers-diagnostic-guidelines-updated-first-

time-decades

[6] McKhann, G. M., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease:

Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on

diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263–269.

https://doi.org/10.1016/j.jalz.2011.03.005 .

[7] Lama, R. K., Gwak, J., Park, J. S., & Lee, S. W. (2017). Diagnosis of Alzheimer's Disease Based

on Structural MRI Images Using a Regularized Extreme Learning Machine and PCA Features.

Journal of Healthcare Engineering, 2017, 1–11. https://doi.org/10.1155/2017/5485080
[8] Kloppel, S., et al. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain,

131(3), 681–689. https://doi.org/10.1093/brain/awm319

[9] Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781.

https://doi.org/10.1016/j.neuroimage.2012.01.021

[10] Falahati, F., Westman, E., & Simmons, A. (2014). Multivariate Data Analysis and Machine

Learning in Alzheimer’s Disease with a Focus on Structural Magnetic Resonance Imaging. Journal

of Alzheimer’s Disease, 41(3), 685–708. https://doi.org/10.3233/jad-131928

[11] HLEG, A. I. (2019). Ethics guidelines for trustworthy AI. B-1049 Brussels. https://digital-

strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

[12] AI Watch Historical Evolution of Artificial Intelligence. (2020). JRC TECHNICAL REPORTS.

Published. https://doi.org/10.2760/801580

[13] Saravanan, R., & Sujatha, P. (2018). A State of Art Techniques on Machine Learning

Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. 2018 Second

International Conference on Intelligent Computing and Control Systems (ICICCS). Published.

https://doi.org/10.1109/iccons.2018.8663155

https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nejm.org/doi/full/10.1056/NEJM2003ra020003
https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people%20have%20dementia%2C%20with%20nearly%2060,is%20between%205%2D8%25
https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people%20have%20dementia%2C%20with%20nearly%2060,is%20between%205%2D8%25
https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people%20have%20dementia%2C%20with%20nearly%2060,is%20between%205%2D8%25
https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people%20have%20dementia%2C%20with%20nearly%2060,is%20between%205%2D8%25
https://www.nia.nih.gov/health/alzheimers-disease-diagnostic-guidelines
https://www.nia.nih.gov/news/alzheimers-diagnostic-guidelines-updated-first-time-decades
https://www.nia.nih.gov/news/alzheimers-diagnostic-guidelines-updated-first-time-decades
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1155/2017/5485080
https://doi.org/10.1093/brain/awm319
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.3233/jad-131928
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.2760/801580
https://doi.org/10.1109/iccons.2018.8663155

43

[14] Gupta, Y., Lee, K. H., Choi, K. Y., Lee, J. J., Kim, B. C., & Kwon, G. R. (2019b). Alzheimer’s

Disease Diagnosis Based on Cortical and Subcortical Features. Journal of Healthcare Engineering,

2019, 1–13. https://doi.org/10.1155/2019/2492719

[15] Duara, R., Barker, W., & Luis, C. A. (1999). Frontotemporal Dementia and Alzheimer’s

Disease:Differential Diagnosis. Dementia and Geriatric Cognitive Disorders, 10(1), 37–42.

https://doi.org/10.1159/000051210

[16] Fletcher, E., et al. (2018). Brain volume change and cognitive trajectories in aging.

Neuropsychology, 32(4), 436–449. https://doi.org/10.1037/neu0000447

[17] Farooq, A., Anwar, S., Awais, M., & Rehman, S. (2017). A deep CNN based multi-class

classification of Alzheimer’s disease using MRI. 2017 IEEE International Conference on Imaging

Systems and Techniques (IST). Published. https://doi.org/10.1109/ist.2017.8261460

[18] Chincarini, A., et al (2011). Local MRI analysis approach in the diagnosis of early and

prodromal Alzheimer’s disease. NeuroImage, 58(2), 469–480.

https://doi.org/10.1016/j.neuroimage.2011.05.083

[19] Lama, R. K., et al. (2017). Diagnosis of Alzheimer’s Disease Based on Structural MRI Images
Using a Regularized Extreme Learning Machine and PCA Features. Journal of Healthcare
Engineering, 2017, 1–11. https://doi.org/10.1155/2017/5485080

[20] Davatzikos, C., Resnick, S., Wu, X., Parmpi, P., & Clark, C. (2008). Individual patient diagnosis

of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41(4), 1220–1227.

https://doi.org/10.1016/j.neuroimage.2008.03.050

[21] Möller, C., et al. (2016). Alzheimer Disease and Behavioral Variant Frontotemporal Dementia:
Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis. Radiology,
279(3), 838–848. https://doi.org/10.1148/radiol.2015150220

[22] Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., Soininen,

H., & Lötjönen, J. (2011). Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer’s

Disease. PLoS ONE, 6(10), e25446. https://doi.org/10.1371/journal.pone.0025446

[23] Westman, E., et al. (2011). Multivariate analysis of MRI data for Alzheimer’s disease, mild

cognitive impairment and healthy controls. NeuroImage, 54(2), 1178–1187.

https://doi.org/10.1016/j.neuroimage.2010.08.044

[24] Gupta, Y., et al. (2019). Early diagnosis of Alzheimer’s disease using combined features from

voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain

images. PLOS ONE, 14(10). https://doi.org/10.1371/journal.pone.0222446

[25] Bron, E. E., et al. (2016). Multiparametric computer-aided differential diagnosis of Alzheimer’s

disease and frontotemporal dementia using structural and advanced MRI. European Radiology,

27(8), 3372–3382. https://doi.org/10.1007/s00330-016-4691-x

[26] Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of

Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.

https://doi.org/10.1016/j.neuroimage.2011.01.008

https://doi.org/10.1155/2019/2492719
https://doi.org/10.1159/000051210
https://doi.org/10.1037/neu0000447
https://doi.org/10.1109/ist.2017.8261460
https://doi.org/10.1016/j.neuroimage.2011.05.083
https://doi.org/10.1155/2017/5485080
https://doi.org/10.1016/j.neuroimage.2008.03.050
https://doi.org/10.1148/radiol.2015150220
https://doi.org/10.1371/journal.pone.0025446
https://doi.org/10.1016/j.neuroimage.2010.08.044
https://doi.org/10.1371/journal.pone.0222446
https://doi.org/10.1007/s00330-016-4691-x
https://doi.org/10.1016/j.neuroimage.2011.01.008

44

[27] Chu, C., Hsu, A. L., Chou, K. H., Bandettini, P., & Lin, C. (2012). Does feature selection improve

classification accuracy? Impact of sample size and feature selection on classification using

anatomical magnetic resonance images. NeuroImage, 60(1), 59–70.

https://doi.org/10.1016/j.neuroimage.2011.11.066

[28] Nho, K., Shen, L., Kim, S., Risacher, S. L., West, J. D., Foroud, T., Jack, C. R., Weiner, M. W.,

& Saykin, A. J. (2010). Automatic Prediction of Conversion from Mild Cognitive Impairment to

Probable Alzheimer's Disease using Structural Magnetic Resonance Imaging. AMIA ... Annual

Symposium proceedings. AMIA Symposium, 2010, 542–546.

[29] Torso, M., Bozzali, M., Cercignani, M., Jenkinson, M., & Chance, S. A. (2020). Using diffusion

tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Scientific Reports,

10(1). https://doi.org/10.1038/s41598-020-68118-8

[30] Ma, D., Lu, D., Popuri, K., Wang, L., & Beg, M. F. (2020). Differential Diagnosis of

Frontotemporal Dementia, Alzheimer’s Disease, and Normal Aging Using a Multi-Scale Multi-Type

Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images.

Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00853

[31] Raamana, P. R., Rosen, H., Miller, B., Weiner, M. W., Wang, L., & Beg, M. F. (2014). Three-
Class Differential Diagnosis among Alzheimer Disease, Frontotemporal Dementia, and Controls.
Frontiers in Neurology, 5. https://doi.org/10.3389/fneur.2014.00071

[32] Zutshi Y. (2020). Alzheimer's Disease Therapeutics and Diagnostics: Global Markets. BCC

Research. https://www.bccresearch.com/market-research/pharmaceuticals/alzheimers-disease-

therapeutics-diagnostics-markets-report.html

[33] Davatzikos, C. (2019). Machine learning in neuroimaging: Progress and challenges.

NeuroImage, 197, 652–656. https://doi.org/10.1016/j.neuroimage.2018.10.003

[34] QMENTA. (2021). QMENTA Platform. https://www.qmenta.com/qmenta-platform/

[35] Qubiotech. (2021). Qubiotech | Bienvenido a la neuroimagen aumentada.

https://www.qubiotech.com/

[36] Python Software Foundation. Python Language Reference, version 3. Available at

https://www.python.org/

[37] RStudio Team (2021). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.

Version 1.4.1106. Available at http://www.rstudio.com/ .

[38] MATLAB. (2021). version R2021a. Natick, Massachusetts: The MathWorks Inc. Available at:

https://es.mathworks.com/products/matlab.html

[39] Scikit-Learn library. Python. Available at: https://scikit-learn.org/stable/

[40] Statistics and Machine Learning Toolbox. Matlab. Available at:

https://es.mathworks.com/products/statistics.html

[41] Kubat, M. (2017). An Introduction to Machine Learning (2nd 2017 ed.). Springer.

[42] Linear Discriminant Analysis. (2014, August 3rd). Dr. Sebastian Raschka.

https://sebastianraschka.com/Articles/2014_python_lda.html

https://doi.org/10.1016/j.neuroimage.2011.11.066
https://doi.org/10.1038/s41598-020-68118-8
https://doi.org/10.3389/fnins.2020.00853
https://doi.org/10.3389/fneur.2014.00071
https://www.bccresearch.com/market-research/pharmaceuticals/alzheimers-disease-therapeutics-diagnostics-markets-report.html
https://www.bccresearch.com/market-research/pharmaceuticals/alzheimers-disease-therapeutics-diagnostics-markets-report.html
https://doi.org/10.1016/j.neuroimage.2018.10.003
https://www.qmenta.com/qmenta-platform/
https://www.qubiotech.com/
https://www.python.org/
http://www.rstudio.com/
https://es.mathworks.com/products/matlab.html
https://scikit-learn.org/stable/
https://es.mathworks.com/products/statistics.html
https://sebastianraschka.com/Articles/2014_python_lda.html

45

[43] Peng, Y., Wu, Z., & Jiang, J. (2010). A novel feature selection approach for biomedical data

classification. Journal of Biomedical Informatics, 43(1), 15–23.

https://doi.org/10.1016/j.jbi.2009.07.008

[44] Abu Alfeilat, H. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Eyal

Salman, H. S. y Prasath, V. S. (2019). Effects of Distance Measure Choice on K-Nearest Neighbor

Classifier Performance: A Review. Big Data, 7 (4), 221–248. https://doi.org/10.1089/big.2018.0175

[45] Hehn, T. M., Kooij, J. F. P., & Hamprecht, F. A. (2019). End-to-End Learning of Decision Trees

and Forests. International Journal of Computer Vision, 128 (4), 997–1011.

https://doi.org/10.1007/s11263-019-01237-6

[46] Yadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out Validation

on Colossal Datasets for Quality Classification. 2016 IEEE 6th International Conference on

Advanced Computing (IACC). Published. https://doi.org/10.1109/iacc.2016.25

[47] Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent

developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202

[48] Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. Machine Learning, 101–121.

https://doi.org/10.1016/b978-0-12-815739-8.00006-7

[49] Plot different SVM classifiers in the iris dataset — scikit-learn 0.18.2 documentation. (2020).

Sklearn. https://scikit-learn.org/0.18/auto_examples/svm/plot_iris.html

[50] RBF SVM parameters — scikit-learn 0.24.2 documentation. (2020). Scikit-Learn. https://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

[51] Möller, C., et al. (2015). Joint assessment of white matter integrity, cortical and subcortical

atrophy to distinguish AD from behavioral variant FTD: A two-center study. NeuroImage: Clinical,

9, 418–429. https://doi.org/10.1016/j.nicl.2015.08.022

[52] Rabinovici, G., et al. (2008). Distinct MRI Atrophy Patterns in Autopsy-Proven Alzheimer’s

Disease and Frontotemporal Lobar Degeneration. American Journal of Alzheimer’s Disease &

Other Dementiasr, 22(6), 474–488. https://doi.org/10.1177/1533317507308779

[53] Falgàs, N., et al. (2020). Contribution of CSF biomarkers to early‐onset Alzheimer’s disease

and frontotemporal dementia neuroimaging signatures. Human Brain Mapping, 41(8), 2004–2013.

https://doi.org/10.1002/hbm.24925

[54] Minssen, T., Gerke, S., Aboy, M., Price, N., & Cohen, G. (2020). Regulatory responses to

medical machine learning. Journal of Law and the Biosciences, 7(1).

https://doi.org/10.1093/jlb/lsaa002

[55] U.S. Food & Drug Administration. (2019) Proposed Regulatory Framework for Modifications to

Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD).

https://doi.org/10.1016/j.jbi.2009.07.008
https://doi.org/10.1089/big.2018.0175
https://doi.org/10.1007/s11263-019-01237-6
https://doi.org/10.1109/iacc.2016.25
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1016/b978-0-12-815739-8.00006-7
https://scikit-learn.org/0.18/auto_examples/svm/plot_iris.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://doi.org/10.1016/j.nicl.2015.08.022
https://doi.org/10.1177/1533317507308779
https://doi.org/10.1002/hbm.24925
https://doi.org/10.1093/jlb/lsaa002

46

12. ANEXES

12.1. Python code: classification pipeline.

1. #---------------------------- IMPORTS ----------------------
2. #---
3. import pandas as pd
4. import numpy as np
5. import matplotlib.pyplot as plt
6. from sklearn import metrics
7. from sklearn import svm
8. from sklearn.model_selection import GridSearchCV
9. from sklearn.decomposition import PCA
10. import seaborn as sns

11. from scipy.stats import zscore

12. import itertools

13. from sklearn.model_selection import StratifiedKFold

14. import warnings

15. warnings.filterwarnings("ignore")

16. import os

17. #set working directory with the data tables available

18. os.chdir(r"C:\Users\Laia.LAPTOP-1BS820LB\Desktop\4t\TFG\CODI")

19.

20. #---------------------------- FUNCIONS ---------------------

21. #---

22. def dic_pc(component,feature_weights,features):

23. '''

24. Parameters

25. ----------

26. component : int

27. number of components that want to be added

28. feature_weights : dictionary, with num of components as

keys, another dictionary as value with features as keys and weights

as values

29. features : list

30. feature's names list

31. Returns

32. -------

33. mwf_pc : dictionary

34. name of features as keys and weight given to each

feature as values.(sorted from higer to lower weights)

35. '''

36. pc=feature_weights[component][0]

37. pc_abs=abs(np.array(pc))

38. sorted_pc=pc_abs

39. sorted_pc=sorted_pc.tolist()

40. sorted_pc.sort(reverse=True)

41. mwf_pc={} #more weighted features: dictionary with features

as keys and weights as values

42. for i in range(0,len(sorted_pc)):

43. index=list(pc_abs).index(sorted_pc[i])

44. mwf_pc[features[index]]=pc[index]

45. return mwf_pc

46.

47. #PLOT BAR OF X FEATURES MORE WEIGHTED

48.

49. def plot_bar(l,n,component_dic):

50. '''

51.

52. Parameters

53. ----------

47

54. l : int

55. starting index number, indicates which feature you want

to start

56. plotting

57. n : int

58. stop index number, indicates which feature you want to

stop plotting

59. component_dic : dictionary

60. dictionary with the features as keys and weights as

vaules (sorted from higher to lower weights.)

61.

62. Returns

63. -------

64. None.

65.

66. '''

67.

blues=['steelblue','dodgerblue','deepskyblue','skyblue','lightskybl

ue',

68. 'darkturquoise','paleturquoise']

69. values=list(component_dic.values())[l:n]

70. tags=list(component_dic.keys())[l:n]

71. plt.bar(range(l,n),values,color=blues) #plotejo de la 1 a

la n

72. plt.xticks(np.arange(l,n),

tags,rotation='vertical',fontsize=14)

73. plt.yticks(fontsize=14)

74.

75.

76. #PLOT CONFUSION MATRIX

77. def plot_confusion_matrix(cm, classes,

78. normalize=False,

79. title='Confusion matrix',

80. cmap=plt.cm.Blues):

81. """

82. This function prints and plots the confusion matrix.

83. Normalization can be applied by setting `normalize=True`.

84. """

85. if normalize:

86. cm=cm.astype("float")

87. cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

88. print("Normalized confusion matrix")

89. else:

90. print('Confusion matrix, without normalization')

91. cm=np.round(cm,decimals=0)

92. cm=cm.astype(np.int64)

93. print(cm)

94.

95. plt.imshow(cm, interpolation='nearest', cmap=cmap)

96. plt.title(title,fontsize=16)

97. plt.colorbar(shrink=1)

98. tick_marks = np.arange(len(classes))

99. plt.xticks(tick_marks, classes, rotation=45,fontsize=14)

100. plt.yticks(tick_marks, classes,fontsize=14,rotation=45)

101.

102. fmt = '.2f' if normalize else 'd'

103. thresh = cm.max() / 2.

104. for i, j in itertools.product(range(cm.shape[0]),

range(cm.shape[1])):

105. plt.text(j, i, format(cm[i, j], fmt),

106. horizontalalignment="center",

48

107. color="white" if cm[i, j] > thresh else

"black",fontsize=14)

108.

109. plt.tight_layout()

110. plt.ylabel('True label',fontsize=14,labelpad=5)

111. plt.xlabel('Predicted label',fontsize=14,labelpad=5)

112.

113. #--------------------------- ATLAS -------------------------

114. #---

115.

116. #atlasses regions for the brain plot in R

117.

118. features_dk=["rh_middletemporal_thickness","rh_supramarginal_th

ickness", "rh_superiortemporal_thickness","rh_insula_thickness",

"rh_inferiortemporal_thickness","rh_inferiorparietal_thickness",

"rh_fusiform_thickness","rh_bankssts_thickness",

"rh_precuneus_thickness","rh_lateralorbitofrontal_thickness",

"rh_medialorbitofrontal_thickness","rh_superiorfrontal_thickness",

"rh_temporalpole_thickness","rh_precentral_thickness",

"rh_entorhinal_thickness","rh_posteriorcingulate_thickness",

"rh_parahippocampal_thickness","rh_parsopercularis_thickness",

"rh_isthmuscingulate_thickness","rh_caudalmiddlefrontal_thickness",

"rh_postcentral_thickness","rh_superiorparietal_thickness",

"rh_rostralmiddlefrontal_thickness","rh_parsorbitalis_thickness",

"rh_parstriangularis_thickness","rh_lateraloccipital_thickness",

"rh_paracentral_thickness","rh_rostralanteriorcingulate_thickness",

"rh_transversetemporal_thickness","rh_lingual_thickness",

"rh_cuneus_thickness","rh_frontalpole_thickness",

"rh_pericalcarine_thickness","rh_caudalanteriorcingulate_thickness"

]

119.

120. atlas_dk=["middle temporal","supramarginal","superior

temporal","insula","inferior temporal","inferior

parietal","fusiform","bankssts","precuneus","lateral

orbitofrontal","medial orbitofrontal","superior frontal","temporal

pole", "precentral","entorhinal","posterior cingulate",

"parahippocampal","pars opercularis", "isthmus cingulate","caudal

middle frontal", "postcentral", "superior parietal","rostral middle

frontal","pars orbitalis","pars triangularis","lateral

occipital","paracentral","rostral anterior cingulate", "transverse

temporal", "lingual","cuneus", "frontal pole",

"pericalcarine","caudal anterior cingulate"]

121.

122. features_aseg=["Norm-Hippocampus","Norm-Putamen","Norm-Lateral-

Ventricle","Norm-Amygdala", "Norm-Thalamus-Proper","Norm-Caudate",

 "Norm-Cerebellum-Cortex","Norm-Pallidum"]

123.

124. atlas_aseg=["hippocampus","putamen","lateral

ventricle","amygdala","thalamus proper","caudate","cerebellum

cortex","pallidum"]

125.

126. #---------------- PARAMETERS (CHECK BEFORE RUN !!)---------

127. #---

128.

129. #PARAMETERS TO SELECT

130. N_splits=5 # number of folds, 5-fold CV

131. estudi='AD' #'AD'--> AD vs CTR, 'DFT'--> DFT vs CTR, "ADDFT"-->

AD vs DFT

132. m="yes" #If documents want to be saved, 'yes', else 'no'

133. plot=False #if pca plots want to be showed, then True

134.

49

135.

136. #--------------------------- DATA --------------------------

137. #---

138.

139. # We import cth (corticalsd) and volumes (subcorticals) data

140. if estudi=='AD':

141. np.random.seed(10) #we place a seed to obtain reproducible

results

142. Ngroup1=44 # number of subjects from the first group

143. Ngroup2=53 # number of subjects from the second group

144. N=Ngroup1+Ngroup2 # total number of subjects

145. df_rh=pd.read_csv("rh.tablecth.csv",sep='\t')

146. df_rh=df_rh.drop(columns=['rh.aparc.thickness'])

147. df_lh=pd.read_csv("lh.tablecth.csv",sep='\t')

148. df_lh=df_lh.drop(columns=['lh.aparc.thickness'])

149. df_subc=pd.read_csv("asegtable.csv",sep='\t')

150.

151. if estudi=='DFT':

152. np.random.seed(123) #we place a seed to obtain reproducible

results

153. Ngroup1=44 # number of subjects from the first group

154. Ngroup2=64 # number of subjects from the second group

155. N=Ngroup1+Ngroup2 # total number of subjects

156. # AD + CTR

157. df_rh1 = pd.read_csv("rh.tablecth.csv",sep='\t')

158. df_rh1=df_rh1.drop(columns=['rh.aparc.thickness'])

159. df_lh1=pd.read_csv("lh.tablecth.csv",sep='\t')

160. df_lh1=df_lh1.drop(columns=['lh.aparc.thickness'])

161. df_subc1=pd.read_csv("asegtable.csv",sep='\t')

162.

163. #Eliminate AD

164. df_rh1=df_rh1[:Ngroup1]

165. df_lh1=df_lh1[:Ngroup1]

166. df_subc1=df_subc1[:Ngroup1]

167.

168. #DFT

169. df_rh2 = pd.read_csv("rh.tablecthDFT.csv",sep=';')

170. df_rh2=df_rh2.drop(columns=['rh.aparc.thickness'])

171. df_lh2=pd.read_csv("lh.tablecthDFT.csv",sep=';')

172. df_lh2=df_lh2.drop(columns=['lh.aparc.thickness'])

173. df_subc2=pd.read_csv("asegtableDFT.csv",sep=';')

174.

175. # we concatenate the data

176. df_rh= pd.concat([df_rh1, df_rh2])

177. df_lh= pd.concat([df_lh1, df_lh2])

178. df_subc= pd.concat([df_subc1, df_subc2])

179. df_rh=df_rh.reset_index()

180. df_lh=df_lh.reset_index()

181. df_subc=df_subc.reset_index()

182. df_rh=df_rh.drop(['index'], axis=1)

183. df_lh=df_lh.drop(['index'], axis=1)

184. df_subc=df_subc.drop(['index'], axis=1)

185.

186. if estudi=='ADDFT':

187. np.random.seed(10) #we place a seed to obtain reproducible

results

188. Ngroup1=53 # number of subjects from the first group

189. Ngroup2=64 # number of subjects from the second group

190. N=117 # total number of subjects

191. # AD + CTR

192. df_rh1 = pd.read_csv("rh.tablecth.csv",sep='\t')

50

193. df_rh1=df_rh1.drop(columns=['rh.aparc.thickness'])

194. df_lh1=pd.read_csv("lh.tablecth.csv",sep='\t')

195. df_lh1=df_lh1.drop(columns=['lh.aparc.thickness'])

196. df_subc1=pd.read_csv("asegtable.csv",sep='\t')

197.

198. df_rh1=df_rh1[44:44+Ngroup2]

199. df_lh1=df_lh1[44:44+Ngroup2]

200. df_subc1=df_subc1[44:44+Ngroup2]

201.

202. df_rh1=df_rh1.reset_index()

203. df_lh1=df_lh1.reset_index()

204. df_subc1=df_subc1.reset_index()

205.

206. df_rh1=df_rh1.drop(['index'], axis=1)

207. df_lh1=df_lh1.drop(['index'], axis=1)

208. df_subc1=df_subc1.drop(['index'], axis=1)

209.

210. #DFT

211. df_rh2 = pd.read_csv("rh.tablecthDFT.csv",sep=';')

212. df_rh2=df_rh2.sort_values(["rh.aparc.thickness"], ascending

= True)

213. df_rh2=df_rh2.drop(columns=['rh.aparc.thickness'])

214. df_lh2=pd.read_csv("lh.tablecthDFT.csv",sep=';')

215. df_lh2=df_lh2.sort_values(["lh.aparc.thickness"], ascending

= True)

216. df_lh2=df_lh2.drop(columns=['lh.aparc.thickness'])

217. df_subc2=pd.read_csv("asegtableDFT.csv",sep=';')

218. df_subc2=df_subc2.sort_values(["Measure:volume"], ascending

= True)

219.

220. # we concatenate data

221. df_rh= pd.concat([df_rh1, df_rh2])

222. df_lh= pd.concat([df_lh1, df_lh2])

223. df_subc= pd.concat([df_subc1, df_subc2])

224. df_rh=df_rh.reset_index()

225. df_lh=df_lh.reset_index()

226. df_subc=df_subc.reset_index()

227. df_rh=df_rh.drop(['index'], axis=1)

228. df_lh=df_lh.drop(['index'], axis=1)

229. df_subc=df_subc.drop(['index'], axis=1)

230.

231. erase = ["Measure:volume", "EstimatedTotalIntraCranialVol",

'Right-VentralDC', 'Right-vessel','WM-hypointensities','non-WM-

hypointensities','Left-VentralDC','Left-vessel', 'Left-Cerebellum-

White-Matter', 'lhCerebralWhiteMatterVol','Brain-Stem','3rd-

Ventricle', 'Left-non-WM-hypointensities','Right-non-WM-

hypointensities', '4th-Ventricle','5th-Ventricle', 'CSF',

'CC_Anterior','CC_Central', 'CC_Mid_Anterior', 'CC_Mid_Posterior',

'CC_Posterior','lhCortexVol','rhCortexVol', 'Optic-Chiasm','Right-

Cerebellum-White-Matter', 'rhCerebralWhiteMatterVol',

"CerebralWhiteMatterVol",'Left-WM-hypointensities','Right-WM-

hypointensities',"CortexVol",'lhSurfaceHoles','rhSurfaceHoles',"Sur

faceHoles"]

232.

233. df_subc=df_subc.drop(columns=erase)

234.

235. #----- MEAN BETWEEN LEFT AND RIGHT CORTICAL MEASURES -------

236.

237. features_r=(df_rh.columns).to_list()

238. norm_r_l=pd.DataFrame(index=np.arange(N))

51

239. for i in range(0,35):

240. col_r=(df_rh.iloc[:,i]).to_numpy()

241. col_l=(df_lh.iloc[:,i]).to_numpy()

242. mean=(col_r+col_l)/2

243. norm=mean

244. name=features_r[i]

245. norm_r_l.insert(i,name,norm)

246. norm_r_l.insert(35,'eTIV',df_rh.iloc[:,36])

247.

248. #------------- normalization + mean between left and right

subcortical measures --------------------------

249.

250. #normalization to intracranial volume

251. features_subc=(df_subc.columns).to_list()

252. for f in features_subc:

253. df_subc[f]=df_subc[f]/df_rh['eTIV']

254.

255. #mean between left and right measures

256. hippo=df_subc[['Right-Hippocampus','Left-Hippocampus']]

257. norm_hippo=hippo.mean(axis=1)

258. df_subc['Norm-Hippocampus']=norm_hippo

259.

260. lat_ventr=df_subc[['Left-Lateral-Ventricle','Right-Lateral-

Ventricle']]

261. norm_lat_ventr=lat_ventr.mean(axis=1)

262. df_subc['Norm-Lateral-Ventricle']=norm_lat_ventr

263.

264. inf_lat_ventr=df_subc[['Left-Inf-Lat-Vent','Right-Inf-Lat-

Vent']]

265. norm_inf_lat_ventr=inf_lat_ventr.mean(axis=1)

266. df_subc['Norm-Inf-Lat-Ventr']=norm_inf_lat_ventr

267.

268. cer_cort=df_subc[['Left-Cerebellum-Cortex','Right-Cerebellum-

Cortex']]

269. norm_cer_cort=cer_cort.mean(axis=1)

270. df_subc['Norm-Cerebellum-Cortex']=norm_cer_cort

271.

272. thal_pro=df_subc[['Left-Thalamus-Proper','Right-Thalamus-

Proper']]

273. norm_thal_pro=thal_pro.mean(axis=1)

274. df_subc['Norm-Thalamus-Proper']=norm_thal_pro

275.

276. caudate=df_subc[['Left-Caudate','Right-Caudate']]

277. norm_cau=caudate.mean(axis=1)

278. df_subc['Norm-Caudate']=norm_cau

279.

280. putamen=df_subc[['Left-Putamen','Right-Putamen']]

281. norm_put=putamen.mean(axis=1)

282. df_subc['Norm-Putamen']=norm_put

283.

284. pallidum=df_subc[['Left-Pallidum','Right-Pallidum']]

285. norm_pall=pallidum.mean(axis=1)

286. df_subc['Norm-Pallidum']=norm_pall

287.

288. amyg=df_subc[['Left-Amygdala','Right-Amygdala']]

289. norm_amyg=amyg.mean(axis=1)

290. df_subc['Norm-Amygdala']=norm_amyg

291.

292. accumbens=df_subc[['Left-Accumbens-area','Right-Accumbens-

area']]

293. norm_acc=accumbens.mean(axis=1)

52

294. df_subc['Norm-Accumbens-area']=norm_acc

295.

296. c_p=df_subc[['Left-choroid-plexus','Right-choroid-plexus']]

297. norm_cp=c_p.mean(axis=1)

298. df_subc['Norm-choroid-plexus']=norm_cp

299.

300. df_subc=df_subc.drop(columns=['Right-Hippocampus','Left-

Hippocampus','Left-Lateral-Ventricle','Right-Lateral-Ventricle',

'Left-Inf-Lat-Vent','Right-Inf-Lat-Vent', 'Left-Cerebellum-

Cortex','Right-Cerebellum-Cortex','Left-Thalamus-Proper','Right-

Thalamus-Proper','Left-Caudate','Right-Caudate','Left-Putamen',

'Right-Putamen','Left-Pallidum','Right-Pallidum', 'Left-

Amygdala','Right-Amygdala','Left-Accumbens-area','Right-Accumbens-

area','Left-choroid-plexus', 'Right-choroid-plexus'])

301.

302. df=pd.concat([df_subc, norm_r_l], axis=1)

303. df=df.drop(['eTIV'], axis=1) #eliminem eTIV de les features

304.

305. # we add demographic data if the study is not EOAD vs HC

306.

307. if estudi=="DFT":

308. df_demo1=pd.read_csv("demo-neuropsico.csv",sep=';')

309. df_demo1.drop(df_demo1.columns.difference(["FS

NEUROPSICO","Age","Gender"]),

310. 1, inplace=True)

311. df_demo1=df_demo1[:Ngroup1]

312. df_demo1=df_demo1.sort_values(["FS NEUROPSICO"], ascending

= True)

313. df_demo1=df_demo1.drop(columns=["FS NEUROPSICO"])

314.

315. df_demo2=pd.read_csv("TransversalDFT.csv",sep=';')

316.

df_demo2.drop(df_demo2.columns.difference(["code","edadMRI","sexo"]

),

317. 1, inplace=True)

318. df_demo2["Age"]=df_demo2["edadMRI"]

319. df_demo2["Gender"]=df_demo2["sexo"]

320. df_demo2=df_demo2.drop(columns=["edadMRI","sexo"])

321. df_demo2=df_demo2.sort_values(["code"], ascending = True)

322. df_demo2=df_demo2.drop(columns=["code"])

323.

324. df_demo=pd.concat([df_demo1,df_demo2],axis=0)

325. df_demo=df_demo.reset_index()

326. df_demo=df_demo.drop(['index'], axis=1) #eliminem index nou

327. df["Age"]=df_demo["Age"]

328. df["Gender"]=df_demo["Gender"]

329.

330. if estudi=="ADDFT":

331. df_demo1=pd.read_csv("demo-neuropsico.csv",sep=';')

332. df_demo1.drop(df_demo1.columns.difference(["FS

NEUROPSICO","Age"]),

333. 1, inplace=True)

334. df_demo1=df_demo1[44:44+Ngroup2]

335. df_demo1=df_demo1.sort_values(["FS NEUROPSICO"], ascending

= True)

336. df_demo1=df_demo1.drop(columns=["FS NEUROPSICO"])

337.

338. df_demo2=pd.read_csv("TransversalDFT.csv",sep=';')

339.

df_demo2.drop(df_demo2.columns.difference(["code","edadMRI"]), 1,

340. inplace=True)

53

341. df_demo2["Age"]=df_demo2["edadMRI"]

342. df_demo2=df_demo2.drop(columns=["edadMRI"])

343. df_demo2=df_demo2.sort_values(["code"], ascending = True)

344. df_demo2=df_demo2.drop(columns=["code"])

345.

346. df_demo=pd.concat([df_demo1,df_demo2],axis=0)

347. df_demo=df_demo.reset_index()

348. df_demo=df_demo.drop(['index'], axis=1)

349. df["Age"]=df_demo["Age"]

350.

351. # we add the LABELS

352.

353. label=[0]*Ngroup1+[1]*Ngroup2

354. df['Label']=label

355. print(df.shape) # size of data

356.

357. #------------------- ZSCORE NORMALIZATION ------------------

358.

359. df_norm=pd.DataFrame()

360. df_features=(df.columns).to_list()

361. for col in df_features:

362. if col!='Label':

363. df_norm[col]=zscore(df[col])

364. else:

365. df_norm['Label']=df['Label']

366.

367. df_norm.head()

368.

369. #----------------------- ML PARAMETERS ---------------------

370. #---

371.

372. features=(df_norm.columns).to_list()

373. del features[-1]

374. X = np.asarray(df_norm[features]) #DATA

375. y= np.asarray(df_norm['Label']) #LABELS

376.

377. #SVM

378. models={"SVM":svm.SVC()}

379.

380. #PARAMETER SELECTION

381. # we define the range of the C and gamma parameters (remember

that gamma

382. # is only used with rbf.

383. svm_params = [{'C': [0.1,1, 10, 100,1000],

384. 'gamma': [1, 0.1, 0.01, 0.001],

385. 'kernel': ['rbf']},

386. {'C': [0.1,1, 10, 100, 1000], 'kernel':

['linear']},

387. {'C': [0.1,1, 10, 100, 1000], 'kernel': ['poly']}]

388.

389. params={"SVM": svm_params}

390.

391. #-----------------------CUMULATIVE VARIANCE ----------------

392. #---

393. if estudi=="AD":

394. tit='HC and AD'

395. png='expl_variance_AD.png'

396. elif estudi=="DFT":

397. tit='HC and DFT'

398. png='expl_variance_DFT.png'

399. else:

54

400. tit='AD and DFT'

401. png='expl_variance_ADDFT.png'

402.

403. num_comp=len(features)-1

404. pca = PCA(n_components=num_comp).fit(X) #we fit it with the

train data,

405. #but apply into the

whole data set

406. expl_var=np.cumsum(pca.explained_variance_ratio_)

407.

408. idxs=np.where(expl_var>=0.80)[0] #minimum nº of components

needed, where the

409. #cumulative expl.variance is

80% or greater

410. nc=idxs[0]+1

411. print("The minimum number of components needed is: ", nc)

412.

413. plt.figure(figsize=(10,6))

414. plt.plot(np.arange(1,num_comp+1,1),expl_var,color='skyblue',lin

ewidth=2,

415. marker='X',markerfacecolor='steelblue', markersize=7)

416. plt.title('Cumulative explained variance '+tit,fontsize=15)

417. plt.xlabel('number of components',fontsize=15)

418. plt.xticks(fontsize=14)

419. plt.ylabel('cumulative explained variance',fontsize=15)

420. plt.yticks(fontsize=14)

421. plt.axvline(x=nc, color='k', linestyle='--',linewidth=1)

422. plt.annotate("optimal nc:

{}".format(nc),xy=(13,0.7),fontsize=14)

423. plt.savefig(png)

424.

425. #---------------------------- ML ---------------------------

426. #---

427.

428. #EVALUATION (PERFORMANCE)

429. accuracies_PCA={} #"name_model": {01:acc1, 02:acc2...}

430. # where keys are the number of the

iteration

431.

432. #CONFUSION MATRIX

433. confusion_matrix={"TN":[],"FP":[],"FN":[],"TP":[]} #TP(true

positive): well

434. # predicted as patient; #FP: predicted as patient, truely

control;

435. #TN: well predicted as control; #FN: predicted as control,

truely patient

436.

437. #PRECISION

438. reportgroup1=[]

439. reportgroup2=[]

440.

441. #PCA

442. weights={} #{'num_component': {'name_feature': weight,...},..}

443.

444. #SVM

445. best_params=[]

446.

447. skf = StratifiedKFold(n_splits=N_splits)

448. for train_idx,test_idx in skf.split(X,y):

449. X_train, X_test = X[train_idx],X[test_idx]

450. y_train, y_test = y[train_idx],y[test_idx]

55

451. for name,model in models.items():

452. pca = PCA(n_components=nc)

453. X_tr = pca.fit_transform(X_train) #we fit it with the

train data, but apply it into the whole data set

454. i=1

455. for component in pca.components_: #pca.components_:

weights given to each feature in the order they

456. #appear in the

dataset

457. if i in weights.keys():

458. weights[i].append(list(component))

459. else:

460. weights[i]=[]

461. weights[i].append(component)

462. i+=1

463.

464. X_tst= pca.transform(X_test)

465.

466. for name,model in models.items():

467. #grid search of the best parameter combination

468. grid = GridSearchCV(model, params[name], refit =

True,

469. verbose = 0,cv=10)

470. grid.fit(X_tr,y_train)

471. best_params.append(grid.best_params_)

472. clf=grid.best_estimator_ #classificator with the

chosen parameters

473.

474. #classification

475. clf.fit(X_tr,y_train)

476. y_pred=clf.predict(X_tst) #prediction

477.

478.

479. TN,FP,FN,TP=(0,0,0,0)

480. for idx in range(0,len(y_test)):

481. if y_test[idx]==y_pred[idx]:

482. if y_test[idx]==0:

483. TN+=1

484. else:

485. TP+=1

486. else: #si són diferents

487. if y_test[idx]==0:

488. FP+=1

489. else:

490. FN+=1

491.

492. confusion_matrix["TN"].append(TN)

493. confusion_matrix["TP"].append(TP)

494. confusion_matrix["FP"].append(FP)

495. confusion_matrix["FN"].append(FN)

496.

497. #Precsion

498. report=metrics.classification_report(y_test,

y_pred,

499.

output_dict=True)

500.

501. reportg1=report['0']

502. reportg1=reportg1['precision']

503. reportgroup1.append(reportg1)

504.

56

505. reportg2=report['1']

506. reportg2=reportg2['precision']

507. reportgroup2.append(reportg2)

508.

509.

510. #Accuracy

511. accuracy=metrics.accuracy_score(y_test, y_pred)

512. if name in accuracies_PCA.keys():

513. accuracies_PCA[name].append(accuracy)

514. else:

515. accuracies_PCA[name]=[accuracy]

516.

517. #mean confusion matrix

518. confusion_matrix["TN"]=np.mean(confusion_matrix["TN"])

519. confusion_matrix["TP"]=np.mean(confusion_matrix["TP"])

520. confusion_matrix["FP"]=np.mean(confusion_matrix["FP"])

521. confusion_matrix["FN"]=np.mean(confusion_matrix["FN"])

522.

523. #weights

524. mean_std_weights={}

525. for k in weights.keys():

526. multiple_lists = weights[k]

527. arrays = [np.array(x) for x in multiple_lists]

528. mean_std_weights[k]=[[np.mean(k) for k in zip(*arrays)],

529. [np.std(k) for k in zip(*arrays)]]

530.

531. ############## MEAN ACCURACY

532. from statistics import mean, stdev

533. ACmean=accuracies_PCA['SVM']

534. print("MEAN ACCURACY:" , mean(ACmean))

535. print("SD :" , stdev(ACmean))

536.

537. ############## MEAN Precision

538. print("Group 1 precison:" , mean(reportgroup1))

539. print("Group 1 precison std:" , stdev(reportgroup1))

540. print("Group 2 precison:" , mean(reportgroup2))

541. print("Group 2 precison std:" , stdev(reportgroup2))

542.

543. #################### CONFUSION MATRIX ######################

544. CM=[]

545. for k,value in confusion_matrix.items():

546. CM.append(value)

547. CM=(np.array(CM)).reshape(2,2)

548. print(CM)

549. # Plot non-normalized confusion matrix

550. plt.figure(figsize=(6.5,6.5))

551. if estudi=="AD":

552. classes=['HC','EOAD']

553. elif estudi=="DFT":

554. classes=['HC','FTD']

555. else:

556. classes=['EOAD','FTD']

557. plt.figure(figsize=(6,6))

558. plot_confusion_matrix(CM, classes=classes, normalize= False,

title='')

559. plt.savefig("conf_matrix "+estudi)

560.

561.

562. ################### DATA PCA weights

563.

564. if m=="yes":

57

565. mwf_pc1=dic_pc(1,mean_std_weights,features) #weighted

features pc1

566. #mwf_pc2=dic_pc(2,mean_std_weights) #idem pc2

567. #mwf_pc3=dic_pc(3,mean_std_weights) #idem pc3

568. #mwf_pc4=dic_pc(4,mean_std_weights) #idem pc4

569.

570.

571. #We save the weights from the first component

572. my_dict = mwf_pc1

573.

574. aseg_dic={}

575. dk_dic={}

576. c1=0 #counter

577. c2=0

578. for key,val in my_dict.items():

579. if key in features_aseg:

580. idx=features_aseg.index(key)

581. aseg_dic[c1]=[atlas_aseg[idx],val]

582. c1+=1

583. elif key in features_dk:

584. idx=features_dk.index(key)

585. dk_dic[c2]=[atlas_dk[idx],val]

586. c2+=1

587. else:

588. None

589.

590. if estudi=='AD':

591. PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index',

592.

columns=["region","weights"])

593. PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index',

594.

columns=["region","weights"])

595. PC_aseg_csv.to_csv("PC1_HCvsEOAD_aseg.csv")

596. PC_dk_csv.to_csv("PC1_HCvsEOAD_dk.csv")

597. title="HC - EOAD"

598. if estudi=='DFT':

599. PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index',

600.

columns=["region","weights"])

601. PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index',

602.

columns=["region","weights"])

603. PC_aseg_csv.to_csv("PC1_HCvsDFT_aseg.csv")

604. PC_dk_csv.to_csv("PC1_HCvsDFT_dk.csv")

605. title="HC - FTD"

606. if estudi=='ADDFT':

607. PC_aseg_csv=pd.DataFrame.from_dict(aseg_dic,orient='index',

608.

columns=["region","weights"])

609. PC_dk_csv=pd.DataFrame.from_dict(dk_dic,orient='index',

610.

columns=["region","weights"])

611. PC_aseg_csv.to_csv("PC1_ADvsDFT_aseg.csv")

612. PC_dk_csv.to_csv("PC1_ADvsDFT_dk.csv")

613. title="EOAD - FTD"

614.

615. old_names=["rh_middletemporal_thickness","rh_supramarginal_thic

kness", "rh_superiortemporal_thickness", "rh_insula_thickness",

"rh_inferiortemporal_thickness","rh_inferiorparietal_thickness",

58

"rh_fusiform_thickness","rh_bankssts_thickness",

"rh_precuneus_thickness","rh_lateralorbitofrontal_thickness",

"rh_medialorbitofrontal_thickness","rh_superiorfrontal_thickness",

"rh_temporalpole_thickness","rh_precentral_thickness",

"rh_entorhinal_thickness","rh_posteriorcingulate_thickness",

"rh_parahippocampal_thickness","rh_parsopercularis_thickness",

"rh_isthmuscingulate_thickness","rh_caudalmiddlefrontal_thickness",

"rh_postcentral_thickness","rh_superiorparietal_thickness",

"rh_rostralmiddlefrontal_thickness","rh_parsorbitalis_thickness",

"rh_parstriangularis_thickness","rh_lateraloccipital_thickness",

"rh_paracentral_thickness","rh_rostralanteriorcingulate_thickness",

"rh_transversetemporal_thickness","rh_lingual_thickness","rh_cuneus

_thickness","rh_frontalpole_thickness","rh_pericalcarine_thickness"

,"rh_caudalanteriorcingulate_thickness","Norm-Hippocampus","Norm-

Putamen","Norm-Lateral-Ventricle","Norm-Amygdala", "Norm-Thalamus-

Proper","Norm-Caudate","Norm-Cerebellum-Cortex","Norm-Pallidum"]

616.

617. new_names=["middle temporal","supramarginal","superior

temporal","insula","inferior temporal","inferior

parietal","fusiform","bankssts","precuneus","lateral

orbitofrontal","medial orbitofrontal", "superior

frontal","temporal pole","precentral","entorhinal","posterior

cingulate","parahippocampal","pars opercularis","isthmus

cingulate","caudal middle frontal","postcentral","superior

parietal","rostral middle frontal","pars orbitalis","pars

triangularis","lateral occipital","paracentral","rostral anterior

cingulate","transverse temporal","lingual","cuneus","frontal

pole","pericalcarine","caudal anterior cingulate",

"hippocampus","putamen","lateral ventricle","amygdala","thalamus

proper","caudate","cerebellum cortex","pallidum"]

618.

619. change_names={}

620. for old,new in zip(old_names,new_names):

621. change_names[old]=new

622. change_names["rh_MeanThickness_thickness"]="Mean thickness"

623. change_names["Norm-Accumbens-area"]="Accumbens area"

624. change_names["Norm-Inf-Lat-Ventr"]="Inferior Lateral Ventricle"

625. change_names["Norm-choroid-plexus"]="Choroid Plexus"

626.

627. pc1_df=pd.DataFrame (weights[1], columns = features)

628. pc1_df=pc1_df.reindex(abs(pc1_df.mean()).sort_values(ascending=

False).index, axis=1)

629. pc1_df=pc1_df.rename(columns = change_names, inplace = False)

630. plt.figure(figsize=(20,10))

631. plt.title(title,fontsize=22)

632. ax = sns.boxplot(data=pc1_df)

633. plt.ylabel("PC1 weights",fontsize=20)

634. plt.xticks(rotation=90,fontsize=18)

635. plt.yticks(fontsize=18)

636. plt.show()

637.

638. #Plots weights PCA

639. plt.figure(figsize=(20,10))

640. plot_bar(0,len(mwf_pc1.keys()),mwf_pc1)

641. plt.title(title,fontsize=17)

642. plt.savefig("Barplot weights "+ title)

643. plt.show()

59

12.2. R studio code: brain atlases.

1. library(ggplot2)
2. library(ggseg)
3.
4. #Path
5. setwd("C:\Users\Laia.LAPTOP-1BS820LB\Desktop\4t\TFG\Treball amb

agnes\brain tables+plot")

6.
7. asegplot<-function(data,title){
8. data$X <- NULL
9. data<-subset(data,data$weights<0)
10. data$weights<-abs(data$weights)

11. return(ggseg(.data=data, atlas="aseg",

mapping=aes(fill=weights))+

12.

scale_fill_gradientn(colours=c("greenyellow","dodgerblue4","ligh

t blue","violet"),limits=c(0.0,0.2))+

13. labs(title=title,cex=3))

14. }

15.

16. aparcplot<-function(data,title){

17. data$X <- NULL

18. data$weights<-abs(data$weights)

19. return(ggseg(.data=data, colour="white",

mapping=aes(fill=weights))+

20.

scale_fill_gradientn(colours=c("greenyellow","dodgerblue4","ligh

t blue","violet"),limits=c(0.0,0.2))+

21. labs(title=title,cex=3))

22. }

23.

24. ## DATA i PLOTS

25.

26. #HC vs EOAD

27.

28. data_dk=read.csv("PC1_HCvsEOAD_dk.csv",header = TRUE)

29. data_aseg=read.csv("PC1_HCvsEOAD_aseg.csv",header = TRUE)

30.

31. png("dk_CTRvsAD.png", width = 558, height = 389)

32. aparcplot(data_dk,title="DK weights HC-EOAD")

33. dev.off()

34.

35. png("aseg_CTRvsAD.png", width = 558, height = 389)

36. asegplot(data_aseg,title='Aseg weights HC-EOAD')

37. dev.off()

38.

39. # CTR vs EOAD vs DFT

40.

41. data_dk=read.csv("PC1_all_dk.csv",header = TRUE)

42. data_aseg=read.csv("PC1_all_aseg.csv",header = TRUE)

43.

44. png("dk_all.png", width = 558, height = 389)

45. aparcplot(data_dk,title="DK weights HC-EOAD-FTD")

46. dev.off()

47.

48. png("aseg_all.png", width = 558, height = 389)

49. asegplot(data_aseg,title="Aseg weights HC-EOAD-FTD")

60

50. dev.off()

51.

52. # CTR vs DFT

53. data_dk=read.csv("PC1_HCvsDFT_dk.csv",header = TRUE)

54. data_aseg=read.csv("PC1_HCvsDFT_aseg.csv",header = TRUE)

55.

56. png("dk_CTRvsDFT.png", width = 558, height = 389)

57. aparcplot(data_dk,title="DK weights HC-FTD")

58. dev.off()

59.

60. png("aseg_CTRvsDFT.png", width = 558, height = 389)

61. asegplot(data_aseg,title="Aseg weights HC-FTD")

62. dev.off()

63.

64. # AD vs DFT

65. data_dk=read.csv("PC1_ADvsDFT_dk.csv",header = TRUE)

66. data_aseg=read.csv("PC1_ADvsDFT_aseg.csv",header = TRUE)

67.

68. png("dk_ADvsDFT.png", width = 558, height = 389)

69. aparcplot(data_dk,title="DK weights EOAD-FTD")

70. dev.off()

71.

72. png("aseg_ADvsDFT.png", width = 558, height = 389)

73. asegplot(data_aseg,title="Aseg weights EOAD-FTD")

74. dev.off()

