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Abstract  

The finite lifespan of batteries in implants and wearables generates the necessity to look for energy 

harvesting methods to avoid having to replace the power supply of different medical devices. This project 

focuses on the study of triboelectric nanogenerators (TENGs) as a power source for devices applied to 

bioengineering.  

These generators are based on the appearance of a potential difference from the accumulation of charges 

on two parallel surfaces due to electrostatic electricity. Understanding the physics of the voltage source 

enables us to generate an electric model of the TENG. When simulating, an oscillating DC electric output 

is obtained, with a maximum open circuit voltage of 1.8kV, which varies depending on the material 

parameters. Power management circuits are needed in order to obtain a stable DC voltage from the 

irregular AC tension. It has been studied the performance of an AC/DC rectifier bridge, which has shown 

to provide a stable DC output signal but low efficiency (~66.2%). 

Furthermore, an ultra-simple TENG (U-TENG) has been manufactured [1] (Mallineni et al., 2017) and it 

has been demonstrated the triboelectric effect, as voltage appears when applying a periodic force to 

change separation between plates. However, the maximum open circuit voltage obtained is much lower 

compared with the ones described in the article, 5.3 V compared to 480 V. Dependence on surface has 

also been demonstrated. 

Finally, when comparing the electric output of TENGs with the supply requirements of some important 

implantable medical devices, TENGs have demonstrated to be a suitable solution for self-feeding 

systems. 
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2 INTRODUCTION 

2.1 OBJECTIVES OF THE PROJECT 

The main objective of this Final Degree Project is to study triboelectric generators, the U-TENG 

specifically [1] (Mallineni et al., 2017) and its applications in the field of bioengineering. This technology 

is still in development, although there are studies that demonstrate the good performance and efficacy of 

triboelectric generators in the medical field. That is why this project may result of special interest in the 

area, as it may contribute knowledge in a field that still requires research. 

The triboelectric generators are based on systems that allow taking advantage of the potential difference 

caused by the accumulation of charges due to friction between different materials [2] (Shi, Li, & Fan, 

2018). This friction can be obtained from basic biological activities and, thanks to the recovery electronics, 

an alternating current can be obtained.  

The main objective of the development of triboelectric generators is to create devices for harvesting 

energy from human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, 

among others [2] (Shi et al., 2018). Furthermore, the electrical signal can be measured and therefore can 

be a biosensor for measuring biological stimuli, apart from supplying energy to the device. Within the field 

of medicine, the main goal is the development of self-powered sensors [2] (Shi et al., 2018). 

The study aims to broaden knowledge about the structure of triboelectric generators and ways of building 

it. Moreover, it has as a goal to discuss the different materials that can be used, as well as its working 

ranges: voltage, power, etc. In order to go deeper, a triboelectric generator will be manufactured, 

according to S.S.K. Mallineni et al [1] and will be characterized following the article. 

Another general objective is to discuss about possible applications of triboelectric generators in the field 

of biomedical engineering, specifically for POC wearables and implantable devices, considering the 

values obtained in the simulation and experimentally.  

All these objectives considered, it will be necessary to follow a working process that involves knowing the 

state of technology, or state of the art, and, from this information, work on a model, defined in S.S.K. 

Mallineni et al [1]. This model will be simulated, in order to study its behaviour and working ranges. Then, 

taking basis on the model, a U-TENG will be manufactured, and it will be characterized and tested to see 

if the results resemble that of the model. Finally, the electronics for energy harvesting will be designed in 

order to go further with the studies. 

Specifically, the particular objectives of this study are: 

1. To simulate an electric model of the triboelectric generator, based on previous studies. 

2. To study and simulate the performance of different accommodation circuits. 

3. To fabricate a triboelectric generator, following the instructions of a previous study.  

4. To test the created triboelectric generator and see if the results coincide with the ones of the 

model chosen. 

5. To investigate the effects of materials and dimension of the components chosen on its 

performance. 

6. To make the electrical characterization of the manufactured TENG and study its working ranges, 

voltage levels and energy recovery levels. 

7. To demonstrate its performance as a self-feeding system for bioengineering applications. 
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2.2 SCOPE OF THE PROJECT 

As indicated in the objectives, the project is intended to broaden the knowledge about this type of 

technology, so that the final deliverables include information and conclusions that can be used for 

subsequent related studies. 

Considering that it is a project that follows an experimental development, its deliverables must be products 

or devices, the production of which is based on existing knowledge obtained from previous research. It is 

worth mentioning that, as it is a project of academic motivation, the practical experience that is defined in 

this project may be used in the future by both the same department and others. 

The project has been developed in the Department of Electronic and Biomedical Engineering, in the 

Faculty of Physics of the University of Barcelona. In addition, it is a project that must be dimensioned for 

a total time of 300 hours, which is why, despite being a topic that allows a lot of research lines, the project 

should be reduced and adjusted to spatial and temporal limitations. 

Table 1: Project limitations. 

 TABLE 1: PROJECT LIMITATIONS 

 INCLUDED EXCLUDED 

 

ESSENTIAL 

Simulation of an electrical model of the 
triboelectric generator. 

Manufacturing the triboelectric 
generator following a model. 

Use off-the-shelf materials. 

Obtain data of output values from a 
simulation of the body activity. 

Make the electrical characterization of 
the system. 

Simulate a Power Management system. 

Design a new electrical model for the 
generator. 

Implement and design a new type of 
triboelectric generator. 

Use materials created with 
micro/nanopatterning specially made 
to suit our particular purpose. 

Use as an input stimulus real human 
activity. 

 

 

 

DESIRABLE 

Design the electronics into which 
integrate the triboelectric generator for 
a given bioengineering application. 

To confirm its usefulness specifically for 
the application chosen. 

To compare the performance, 
sensitivity and characteristics of 
triboelectric generator devices with 
other strategies commercially available. 

Integrate the triboelectric generator 
into a medical implant or wearable. 

Fabrication of different types of 
triboelectric generators to contrast 
their performance. 
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Bearing in mind the specific objectives mentioned, we can define the deliverables of the project. The first 

of these is a simulation and a behavioural study report of the electric model of the triboelectric source, 

based on de model described in previous studies and already characterized. This study must report power 

and current-tension values, among other parameters. 

Moreover, a manufactured U-TENG of the triboelectric generator is one deliverable to consider, which 

must meet the conditions defined in the S.S.K. Mallineni et al [1], a commercial and simple to reproduce 

model. The U-TENG must be accompanied by a document that describes its technical information and its 

components. The criterion that will make this deliverable product acceptable is the matching of the 

triboelectric generator created with the materials and structure defined by the model, as well as obtaining 

an electrical signal from the friction of its components due to an external periodic force. 

In addition, another deliverable will be a report that includes the data collected when testing the 

performance of our triboelectric generator and its electric characterization. The requirements of this report 

include data on working ranges in voltage and power, as well as information on the output values based 

on the inputs. In this case, we will consider that it is an acceptable report if it demonstrates the correct 

performance of the triboelectric generator, based on demonstrating the obtaining of an output signal from 

a certain stimulus, and the dependence of the output signal on the frequency of the pushing force and 

dimensions of the triboelectric generator. 

Finally, there are some desirable tasks that, if done, would provide to our project more knowledge to 

understand the applications of triboelectric generators as energy harvesters. Among them, we find the 

design of the adaptation electronics in a certain application, together with a document that includes data 

collected after the simulation of human activity and a comparison of its performance with respect to other 

energy harvesting strategies. 

One of the main risks is that, even though there are numerous articles on triboelectric generators and 

their design, it is worth mentioning that this is an emerging technology and, consequently, the previous 

research studies on the subject will not be as many as if it were a fully implanted technology.  
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3 BACKGROUND 

3.1 STATE OF ART 

3.1.1 Triboelectric generators 

In the current technological framework, most medical devices, such as sensors, need an external power 

source, so that they cannot work independently and sustainably, a factor that has become one of the main 

restrictions for the development of technology in the medical field. This becomes a problem when talking 

about implantable biomedical devices, as when their batteries die, they need for surgical interventions to 

replace them.  

To address this problem, it is being studied the combination of these devices with the technology known 

as energy harvesting. In this way, the generation of self-powered systems is allowed, so that the use of 

power components such as batteries is avoided, and there is no need for periodical replacement. 

The concept of energy harvesting refers to the generation of electrical signals by the same device when 

detecting stimuli or analytes, such as body movement, touch, pressure, acoustic sound or others [2] (Shi 

et al., 2018). These systems that obtain electricity from different energy sources are based on principles 

such as spontaneous redox reactions, the thermoelectric effect, the piezoelectric effect or the triboelectric 

effect. In our study we will focus on the last one, triboelectric nanogenerators, which are based on 

mechanical energy. 

Triboelectric nanogenerators (TENGs) are based on the triboelectrification principle, which states that an 

electric charge is generated on the surface of two materials when being fractioned one against the other 

[3] (Wang, Yang, & Wang, 2017). When the two materials separate from each other, it will behave like a 

parallel plate capacitor, and a current transfer will take place, by using an external circuit. The electric 

energy generated will be collected and stored, in order to be used to power the device itself. This energy 

will depend on the electronegativity of the electrodes, and on the contact area between the electrodes 

(𝑈 =  𝑄𝑉/2), so that the materials chosen for the electrodes and matrix will play a crucial role for the 

sensibility of the TENG. 

This technology does not only allow working without external energy sources, but it can also be used for 

the detection and monitoring of biological processes that involve the release of random mechanical 

energy. A biological signal is transformed into an electric signal, so if we know the relationship between 

the biological signal and the output voltage generated by the triboelectric, we can measure voltage and 

obtain the biological magnitude, what means that triboelectric nanogenerators can work simultaneously 

as sensors and generators. 

As we have already mentioned, it is an existing technology the integration of which results of special 

interest in the field of bioengineering. Due to its great potential in the field of medical care, robotics, 

prosthetics and sports, lines of research have been developed in recent years, with the main aim of 

manufacturing smaller devices with biocompatible materials and high accuracy. These research studies 

take place specially in universities, engineering colleges and research institutes. It is not a fully 

implemented technology, even though there are already numerous studies that demonstrate its 

performance, and therefore it is being investigated with the aim of integrating it into the field of 

bioengineering. Among the studies carried out, different applications have been discussed, with their 

corresponding materials and working ranges. 
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3.1.2 Bioengineering applications 

Triboelectric generators are a promising option as energy harvesters, since their ability to generate 

electrical energy from motion could solve the challenge of the limited lifetime of any energy storage units. 

The fact that TENGs are effective mechanical to electric converters not only provides the opportunity to 

use them to create self-powered devices, but also for sensing applications. The energy harvested can be 

stored in an energy storage unit, for feeding the system, but from this energy information can also be 

obtained with sensors. 

Several fields of application of TENGs have been investigated, including self-powered implantable and 

wearable systems. Most of them use triboelectric systems as sensors for monitoring different motion 

parameters, measuring stimuli such as vibrations, body motion, pressure, flow or inclination angles. 

Wearable devices are systems can be placed on the human body itself or on clothing and, therefore, are 

intended to be portable. However, its battery life is one of the main limitations that affects the comfort of 

its use. Activities such as walking, running or other human motion produce mechanical energy, that can 

be converted into electrical energy and serve as a power source for these wearable devices. 

In the case of implantable devices, the replacement of power supply systems is even more complex, since 

it requires a surgical intervention. For this reason, it is of special interest to take advantage of the potential 

creation in a triboelectric generator caused by the movement of the body, such as variations in pressure, 

vibrations or others. 

Recently, an effort on harvesting heartbeat energy is being made for the power supply of pacemakers 

and in vivo performance in animals is being demonstrated [4] (Z. Wu, Cheng, & Wang, 2020). In Figure 

1a, the first in vivo biomechanical harvesting work is observed. Moreover, this TENGs can be developed 

for continuous monitoring of pathological and physiological signs in the heart rate or breathing (Figure 

1b). Other works have been carried out to study in-vivo viability of TENGs, such as searching for 

biodegradable and resorbable materials (Figure 1c). The output values for this TENG were a maximum 

open-circuit voltage of 40V and a short circuit current of 1mA. Other examples of implantable TENGs are 

shown in Figures 1d, 1e and 1f. 

 

Figure 1: Examples of TENGs applications for implantable biomedical devices. Image from ‘Self-

Powered Sensors and Systems Based on Nanogenerators’ [4] (Z. Wu et al., 2020). 
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Applications in the biomedical field are not limited only to implantable or wearable devices but also to 

other types of smart applications [4] (Z. Wu et al., 2020). An example is the application of the triboelectric 

fluidic sensor used for an infusion monitor (Figure 2a). In addition, thanks to their flexibility, they can also 

be included in textiles and clothing. This fact allows them to be included in mattresses, to detect the 

movement of a patient in the bed, and allow sleep monitoring (Figure 2b and 2c). Other smart applications 

are heart-rate monitoring (figure 2d) and transdermal drug delivery with feedback control (figure 2e and 

2f). 

 

Figure 2: Examples of smart applications of TENGs. Image from ‘Self-Powered Sensors and Systems 

Based on Nanogenerators’ [4] (Z. Wu et al., 2020). 

Self-powered skin sensors are another potential application [5] (Rao et al., 2019). In Rao et al. classify 

between those that obtain the mechanical energy of body movement, touch or pressure and acoustic 

sound. The former, which take advantage of body motion, can monitor the movement and activity of the 

individual, as well as the movement of joints if placed on them, or even monitor breathing if placed on the 

chest. Its application was also defined in the detection of pressures produced in the body, such as voice, 

blood pressure, heartbeat or respiratory movement, as well as for acoustic sound, which results of special 

interest in the development of hearing aids. 

Chuan et al. [6] reported another example are the rotational speed sensors for turbodrills. These ones 

make use of the TENG to measure the rotational speed of the turbodrill in real time and self-powering. It 

has been demonstrated that the energy that is generated supplies the power requirements of the sensor 

and could power other instruments. 

TENGs application in gas flowmeters was also discussed by Trung et al. [7]. Its structure is based on a 

circular pipe in which a thin non-conductive membrane is located between two copper electrodes. When 

gas flows inside the pipe, the membrane oscillates between the two electrodes and periodic electrical 

potential is generated, the frequency of which is proportional to the flow rate. Among the advantages of 

making use of triboelectric generators for flowmeters, against the typical types, such as ultrasonic, coriolis 

and vortex ones, we find a high sensitivity of the measured flow, a lower pressure loss, apart from the fact 

that the generated voltage can also be used for self-feeding the device. 

Apart from the mentioned applications, there have been carried out studies that provide evidence on the 

performance and effectiveness of other types of applications, as well as researches on potential future 
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applications [8, 9, 10, 11] (Chen et al., 2019)(Vibration, 2020)(Lee, Lee, & Baik, 2018)(C. Wu, Wang, 

Ding, Guo, & Wang, 2019). 

3.1.3 U-TENG 

It is important to have a vision of what are the voltage levels, currents involved, and the energy generated 

in order to determine what their potential applications will be. In S.S.K. Mallineni et. al. [1], it is detailed 

the construction process of the ultra-simple triboelectric nanogenerator (U-TENG) and the energy levels 

and working ranges that are achieved according to size and frequency of work. 

The U-TENG is formed by plates made of PET coated with ITO, a commercially available material that 

consist on a polymer covered with a liquid conductive layer, that works as the two electrodes. A layer of 

Kapton is attached to the lower electrode, and behaves as the triboelectric layer. Both electrodes are kept 

separated by Pyrex insulating spacers. U-TENGs are, therefore, easy to build and low-cost. 

The electrical characterization of the U-TENG, with dimensions 3.5 cm × 2.75 cm, was performed by 

applying a periodic vertical force of ~ 50 N, at low frequencies (2 Hz), dropped from a height of 1 cm, 

which corresponds to a potential energy of 0.5 J. In order to apply this periodic force, a motorized pushing 

tester was manually built. Under these conditions, the U-TENG exhibited a maximum open-circuit output 

voltage (VOC) of ~ 120 V, a voltage value much lower than that predicted by theoretical MSCD-based 

COMSOL simulations (~ 4000 V). 

In order to increase the loads and, consequently, the output voltage, a cellulose paper, which is highly 

electropositive, was inserted between the ITO and Kapton electrodes. Only by inserting the cellulose 

paper was it possible to increase the Voc to ~ 480 V. The other parameters measured were a short-circuit 

current (ISC) of ~ 50 μA, and maximum peak power of 1.7 mW. The power density values obtained were 

~ 190 μW cm −2, considering the total area of the device, and ~ 490 μW cm −2, considering only the area 

of contact with the pushing tester (diameter ~ 20 mm). 

Finally, it is worth mentioning that by increasing the frequency with which the mechanical force is applied 

(> 10 Hz) higher charge densities can be achieved. Also, the U-TENGs support a wide range of load 

conditions, around 1–160 MΩ, without a significant loss in the output and there is no performance loss 

with fatigue (for more than 20,000 cycles). 

3.2 PROJECT ENVIRONMENT 

This project is created with the intention of continuing studies that have been previously developed on 

triboelectric nanogenerators in the area of biomedical engineering, and to provide information on their 

performance, and bases for subsequent studies. 

Biomedical engineering is a field that is in continuous growth and development globally. In Spain there 

are more than a thousand companies that are economically involved in biotech areas. To this, research 

units from hospitals and universities, and research centres are added. Furthermore, the biomedical 

engineering academic community and industry is supported by the SEIB (Sociedad Española de 

Ingeniería Biomédica). It is composed by more than 30 research groups in the different areas of 

biomedical engineering, such as the BSICOS Group, ISI or CEIT. SEIB is affiliated with the International 

Federation for Medical and Biological Engineering (IFMBE) and the European Alliance for Medical and 

Biological Engineering and Science (EAMBES). 
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If we refer to the regulation framework, since the project does not intend to design a triboelectric generator 

to be subsequently integrated into an implant or wearable for medical use, it is not necessary that they 

meet the requirements set forth by the respective rules and regulations. Even so, the one fabricated in 

this project will work with biocompatible materials to contextualize it in the field of medical devices. If it 

was intended to integrate it into a medical device and commercialize, it would be necessary to be under 

the regulations and standards, which are stricter in the case of life support devices. 

In addition, it is also within environmental regulations, since these systems are based on the generation 

of sustainable and renewable energy, which is obtained from human body activity, and avoids the use of 

batteries or other less clean energy sources. 

It is worth to bear in mind that it is an emerging technology that can be manufactured through innovative 

nanomaterials and polymers, such as graphene and carbon nanotubes, PDMS or others. Therefore, the 

development of our technology will depend on the evolution of the materials market and the appearance 

of new materials. In addition, our market will also evolve according to demand, so that the more 

bioengineering companies are interested in our technology, the more investment there will be for its 

development. It should be said that it is a market that is highly dependent on private financing.  
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4 MARKET ANALYSIS 

Research on triboelectric nanogenerators, as we have already mentioned, is a booming sector. R&D area 

of companies, research centres, universities and hospitals are working on the development and 

improvement of this technology. 

Not only do those who develop TENGs work on energy harvesting, but they share their goals with other 

types of self-feeding systems based on other types of energies, such as those based on piezoelectric 

effect, biofuel cells, endocochlear potential, light or body temperature [12] (Fan, Tian, & Lin Wang, 2012). 

An example of alternative systems based on energy harvesting are self-powered biofuel cells, for example 

those that take advantage of the energy generated in metabolic processes by enzymes. It is a technology 

with great potential, but it has limitations such as short lifetimes and reduced performance resulting from 

slow direct electron transfer. Furthermore, temperature alters the activity and stability of enzymes. 

One of main substitute technologies is the use of piezoelectric nanogenerators (PENGs), that also obtain 

electricity from mechanical energy. Unlike triboelectric nanogenerators, PENGs can only make use of 

limited types of materials, piezoelectric materials, therefore allowing little margin for variation.  Because 

of this reason, the cost of piezoelectric devices may be expensive, as micromachining sophisticated 

technologies are required. Furthermore, those materials with a higher piezoelectric coefficient are less 

flexible, a necessary feature in some implantable devices. 

Moreover, we can find hybrid energy harvesting methods based on coupling different fields. For instance, 

we may find a combination of a triboelectric with a piezoelectric, with a photovoltaic or with a 

electrochemical method.  

The benefits of TENGs devices, with respect to its substitutive products, are their simple manufacturing 

and simple structure, as well as the low cost of the process of fabrication and materials. The main 

advantage over piezoelectric based devices is that TENGs can use a wide variety of materials for their 

components. Among the most frequently used materials we find rubber or silicone elastomers, coated 

textiles and flexible films, which often are fabricated with 3D printing. 

The portfolio of potential clients is highly diversified, given the wide usefulness of this technology in various 

types of medical devices. The main target sectors are companies for medical diagnostic, monitoring and 

therapy equipment; as well as any other company dedicated to medical technology, specifically 

mechanical sensors or implantable or wearable systems that require self-feeding. 

4.1 HISTORICAL EVOLUTION AND FUTURE PROSPECTS OF THE MARKET 

The physical phenomenon on which this type of generators is based, the triboelectric effect, has been 

known for centuries. As early as the 17th century, Francis Hauksbee manufactured a triboelectric 

electrostatic generator [11] (C. Wu et al., 2019), based on Otto von Guericke's electrostatic generator. 

Despite being a known and described physic principle, the first flexible triboelectric nanogenerator was 

invented in 2012, by Prof. Zhong Lin Wang's group [12] (Fan et al., 2012).. In 2006, this same group had 

developed the first piezoelectric nanogenerator, from ZnO nanowires. 

The innovation introduced by Zhong Lin Wang's team from the Georgia Tech Institute was the proposal 

to make use of triboelectric nanogenerators as mechanical energy harvesters. Since then, research has 

focused on exploring its applications and its commercialization potential, but the main challenge to 

overcome has been that the power output was very low. 
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With the aim of improving efficiency and power output, several studies have been carried out [13] (Zhong 

Lin Wang et al., 2015), demonstrating and reaching values for output area power density of 500 W m− 2 

and total energy conversion efficiency of up to 85% [2] (Shi et al., 2018). 

In 2017, the ultra-simple triboelectric nanogenerator (U-TENG) was invented by a group of physicists at 

the Clemson Nanomaterials Institute, S.S.K. Mallineni et al. [1], which is the one that will be taken as a 

model for this project. Under this same premise, the W-TENG was designed, which used materials of 

such opposite affinities that they generated enough electric field to be used for wireless connections. 

This technology opens doors to generate renewable energy from clean sources, including the one 

produced by the daily movement of the human body. As we have mentioned, the research lines seek to 

improve performance and power density, so that in the future it is intended to obtain devices capable of 

charging batteries from smartwatches or phones.  

But, so far, one of the limitations of the projects still being the maximum level of energy transformed by 

the device at its maximum performance. Therefore, it results interesting for enterprises and investigation 

institutes to work on initiatives based on the design of a device that can potentially supply the needs of 

the energetic market. 

Currently, triboelectric generators are already in development stage, as their use as energy harvesting 

devices is new. Despite it has been demonstrated its good performance, there are still being needed more 

studies to make it a competitive system in the market. Therefore, inversion costs in the development of 

these devices may not be very high, but neither will be the benefits, at least in a short period of time. With 

research and evolution in this technology, it may become a potential option for energy generation. 

The power levels at which the triboelectric generators work determine the applications that can be applied 

to them. So far, the triboelectric generator, due to its robustness and biocompatibility characteristics, has 

been shown to be intended to work for implantable devices. 

Speaking of the market projection, we can say that it is a growing market of constant demand. Since it 

shows great potential for growth and development, as well as proliferation and integration in the medical 

field. Furthermore, given their simple structure and manufacturing process, the cost of these devices is 

low, which makes triboelectric nanogenerators a sustainable and economical alternative to current power 

supplies. 
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5 CONCEPTION ENGINEERING 

This chapter aims, once the state of the art is known, to select the orientation that the project will take, as 

well as the choice of a model on which to base it. 

5.1 PROJECT ORIENTATION 

5.1.1 Solution study 

The study of triboelectric generators can be approached from different perspectives and orientations, 

depending on the type of study we want to do and the data to obtain. 

One possible orientation of the project is to model a generator element, its design and simulation of the 

circuit with a simulation software. This can be done with a Spice (Simulation Program with Integrated 

Circuit Emphasis) type software, which can perform different types of analysis and has a wide variety of 

elements to simulate the circuit. It is a very powerful and useful tool, if the data is supplied correctly, as it 

reduces the analysis time. Among the Spice software that are available, LTSpice [14] allows free access 

from any computer. These types of simulators are based on three procedures: definition of the 

characteristics of the elements that are part of the circuit, running the program and creation of an output 

file, and indicating to the program how to present the results obtained. 

The Spice model would allow us to know if the designed circuit works or not, how the circuit behaves and 

to make simulations in time, frequency or others. In this way, the signal generation of the triboelectric 

generator could be simulated, and numerical calculations could be performed for the analysis of the circuit. 

Otherwise, despite modelling the generator element with a Spice program allows an exhaustive study on 

the behaviour of triboelectric generators, the conditioning electronics and the realization of complex 

mathematical calculations in a short period of time, it is limited to a theoretical study of the ideal operation 

of triboelectric generators. 

With the LTSpice simulation, triboelectric generator output signal, and the characterization of the 

conditioning circuit that surrounds it can be obtained. However, if we are interested on studying the 

triboelectric generator structure and the properties of its materials, a possible approach is manufacturing 

one.  

There are several articles on the manufacture of triboelectric generators, in which they discuss the 

process or methodology that is followed to control it [15] (Rodrigues‐marinho, Castro, Correia, Costa, & 

Lanceros‐méndez, 2020). In Rodrigues-Marinho et. al., an evaluation of the power output is made as a 

function of different pairs of polymers or polymer compounds. The different materials compared occupy 

different positions in the triboelectric series, but are also distinguished in their dielectric constant and 

surface roughness.  

It has been reported that the output current and voltage depend proportionally on the charge density of 

the triboelectric surface, in such a way that the power is proportional to the square of charge density [11] 

(C. Wu et al., 2019). Generally, several studies have been carried out in order to improve the electrical 

output of triboelectric generators, an objective that can be reached by increasing the charge generation 

[16] (Kim, Lee, Kim, & Jeong, 2020).  

One of the main approaches to be considered for performance enhancement is increasing contact area, 

by fabricating microscale or nanoscale structures so that the effective surface is increased. Among the 

proposed methods to fabricate these micropatterns we find soft lithography, nanotubes deposition, force-
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assembled colloidal arrays, surface nanomaterial fabrication or others [17] (Lee et al., 2017). It has also 

been reported that surface charge generation can be improved by increasing the adhesion energy [18] 

(Hinchet et al., 2018). 

Another approach worth mentioning focus on materials and material designs. One of the main strategies 

is surface functionalization for material modification, such as increasing surface charge density or facilitate 

charge transfer, and bulk composition manipulation [11] (C. Wu et al., 2019). Ion doping, radical injection 

and plasma treatment are techniques that may enhance charge generation. Thanks to chemical surface 

functionalization, the functional groups of the triboelectric layer are exposed on the surface so that charge 

capture capability is improved. Moreover, output power can be increased thanks to electron-donating and 

electron-withdrawing functional end groups of the layer surface [16] (Kim et al., 2020). 

Intrinsic material properties, such as dielectric constant or polarity, can be changed as a strategy for 

performance improvement. For example, when polarizing ferroelectric polymers by electric poling, a better 

triboelectrification is observed. Other techniques for material modification are chemical doping and 

nanocomposite formation. It is also interesting to delve into the development and creation of new materials 

through molecular synthesis or the formation of nanocomposites. 

However, all these advanced techniques for charge density optimization would suppose an increase of 

time and cost. Therefore, simple structure, low complexity and wide range of materials determine a low 

overall cost of the fabrication process of triboelectric generators.  

In the case of manufacturing a triboelectric generator, one could try to design a new idea of a triboelectric, 

or manufacture one based on a model defined in previous studies. The option of designing one from 

scratch requires a lot of prior knowledge and studies on the subject, which entails more time than the one 

we have. In addition, there are several studies that explain in detail the manufacturing process of 

triboelectric generators, which could facilitate the process. 

5.1.2 Proposed solution 

All these things considered, the option that provides a theoretical and experimental view of triboelectric 

generators and its performance is to simulate its behaviour in a Spice-type program and to further 

manufacture one. 

Firstly, the TENG will be modelled and simulated. Then, the integration electronics will be designed, for 

which a Spice-type program can be used to simulate the operation of different accommodation circuits 

prior to its manufacture.  

The option that focuses more on triboelectric generators structure is to manufacture one. The construction 

will be done through materials that meet conditions of flexibility, reliability and biocompatibility, of which 

there is natural abundance. Low cost commercially available materials will be used, so that nanopatterning 

will not be necessary. But this strategy has some risks associated, which will be discussed in the next 

chapter, that may hinder the development and manufacturing of the product. Once built, the U-TENG will 

be characterized, and the parameters obtained can be introduced to the LTSpice simulation, in order to 

adapt it to our model.  

In order to facilitate the construction process, a previously defined model will be used on which we will 

base for the design of our triboelectric generator. That is why we must also define which model we will 

use for our project. 
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5.2 MANUFACTURING MODEL 

5.2.1 Solution study 

A model to consider is the triboelectric defined in 2012 by Fan et al. [12] (Fan et al., 2012). It consists on 

a two polymer sheets sandwiched structure. The polymers used are a Kapton film placed onto a PET 

substrate. Bottom and top structures are coated with a thin layer of Au alloy film, that produces two mobile 

charges, of the same modulus and opposite sign, in the interfacial region. Moreover, the coatings behave 

as electrodes, that are directly connected to an external circuit. The maximum output voltage obtained 

was 3.3V and a peak output power density of 10.4 mW/cm3. 

Another possibility is to follow the model described in S.S.K. Mallineni et al [1]. The U-TENG top and 

bottom electrodes are made of a commercially available material, PET coated with ITO. To the bottom 

electrode it is also adhered a Kapton film and four Pyrex insulating spacers create an air gap that 

separates the electrodes. The values obtained from this device were a maximum output voltage of 480V 

and output power density of ~490 μW cm. 

In the study made by Jihong Rao et al. [5], several materials that can be used in the context of skin 

sensors are described. Among the mentioned materials stretchable materials are one of the most used, 

such as PDMS or rubbers, with an aluminium foil or gold nanolayers, for which an output power density 

value of 76.27 W m−2 is obtained. In addition, it also refers to the use of textiles covered with a layer of 

PEDOT: PSS or flexible films, with output power density values of 2 W m−2 and 5 W m−2, respectively. 

However, this article does not explain in as much detail the construction of the triboelectric generator as 

in the previous two, as it focuses more on applications. 

In the other articles found about triboelectric generators, such as the gas flowmeter, by Trung et al. [7], 

uses of triboelectric generators for self-powering devices are defined, so that they focus more on potential 

applications and measured values of their performance, than on the explanation of its manufacturing. 

5.2.2 Proposed solution 

The model on which we will rely for the manufacture of the triboelectric generator is the one defined in the 

article by Mallineni et al. [1]. This is one of the most detailed articles, both in the explanation of the 

manufacture and the characterization of the electrical circuit. Moreover, it does not require pre-processing, 

since commercially available materials are used that do not require micro-patterning or metal-electrode 

deposition, so it reduces manufacturing costs and time required. Its robustness and easy reproducibility 

make this article a suitable model on which we can base our project. 

As we have mentioned, high electric power outputs are obtained, thanks to the difference in tribopolarity 

between ITO and Kapton. Furthermore, Kapton has shown to have high thermal stability (maintains output 

power of ~ 480 V even at 60 ° C), high tensile strength (234 MPa), and high dielectric strength (240 V / 

μm) and ITO has a high electrical conductivity (~ 10 S cm). The ITO surface acts as a friction layer against 

the Kapton film, in addition to be a current-collector for the top layer, which reduces material costs, as 

well as making a more compact structure. 

In summary, this model contains all the data needed to manufacture a one-cell robust U-TENG, in a 

simple and low-cost way, from commercially available PET / ITO and Kapton electrodes. 
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6 DETAIL ENGINEERING 

6.1 ELECTRIC CIRCUIT MODELLING 

There are several types of triboelectric generators.  Most of the references differentiate between sliding-

mode and parallel contact-mode plates, with in-plane and vertical charge separation, respectively [18, 19] 

(Hinchet et al., 2018)(Niu & Wang, 2014).  

 

Figure 3: Theoretical models for sliding mode and parallel contact-mode plates. Reproduced from Niu et 

al. [19] (Niu & Wang, 2014). 

In our case we will model the one of parallel contact-mode plates. Specifically, the one that follows the 

metal-air-dielectric-metal structure.  

 

Figure 4: Theoretical models for metal-air-dielectric-metal contact-mode plates. Reproduced from 

Ronan Hinchet et al. [18] (Hinchet et al., 2018). 

A triboelectric, as we observe, has the structure of a capacitance, in which the distance between the 

electrodes is variable due to a mechanical force. In the case of conductor-to-dielectric type, between the 

two electrodes we introduce a layer of a dielectric material. The charges will accumulate near the surface 

and can be characterized with the surface charge density σ. In Figure 4, we also see represented the 

dielectric electrode layer thickness ddie and its permittivity εdie. As regards as the top electrode, the metal 

layer works also as a triboelectric layer, meanwhile in the bottom, the dielectric layer is the one that works 

as triboelectric layer and the metal one is the electrode.  

The dielectric layer is introduced between the plates, since this material shows a high polarization, so that 

it acts as an insulator and allows the conductive places to never get in contact. The dielectric increases 

capacitor capacitance, reducing the electric field strength and therefore the voltage needed to obtain a 

charge. 



 

19 
 

Study of systems powered by triboelectric generators for bioengineering applications                                                                 Helena Rodríguez González 

 

The vertical distance between the metal and the air-occupied dielectric corresponds to the distance x(t). 

A voltage is induced when the electrodes separate from each other, which means that x(t) increases, and 

this potential difference triggers the charge transfer between the two electrodes. The charge transferred 

between the two electrodes is defined as Q and the triboelectric layer charge is expressed by means of 

the surface charge multiplied by the total surface (Sσ). In the top metal layer, as it works as electrode and 

triboelectric layer, the total charge will be Sσ-Q. 

Once the structure of the system is defined, we can discuss its behaviour. As already mentioned, a change 

in x(t) will induce a voltage in the system. Knowing that x(t) will vary periodically, due to periodic 

mechanical force, we can deduce that: 

- When the distance between both triboelectric surfaces x(t) tends to zero (considering the zero 

distance as two surfaces in contact), the capacity will be maximum and, therefore, the voltage 

will tend to zero. 

x(t)  0; CTENG maximum; VOC  0 

- When the distance x(t) is maximum, the capacity will acquire its minimum value and the voltage 

its maximum value. 
 

x(t) maximum; CTENG minimum; VOC maximum 

According to equation V-Q-x, varying this distance x(t), it also varies potential and load. 

𝑅
𝑑𝑄

𝑑𝑡
 =  𝑉 

𝑉 =  −
1

𝐶𝑇𝐸𝑁𝐺
𝑄 + 𝑉𝑂𝐶  

Equation 1: V-Q-X equation described in Niu et al. [19] (Niu & Wang, 2014). 

Where CTENG is the capacitance between the two electrodes, which resemble a capacitor, and Voc is an 

open circuit voltage. Q refers to the charges on the plates of the triboelectric nanogenerator. As indicated 

in Simiao Niu et al., the terms of this equation will be two elements of the circuit equivalent to the 

triboelectric generators that we will model and integrate through a Spice type software. 

From the equation 1, we model the equivalent electric circuit of 

the triboelectric nanogenerator, where the voltage source and the 

capacitor are placed in serial connection. The capacitor will 

behave as an impedance to the AC voltage source Voc. 

The voltage source will be simulated as an ideal voltage source. 

Since this voltage is caused by the separation of the charges on 

the plates, it will depend on the x-distance between them. In 

addition, the capacity will also be defined by the same distance 

between plates. These dependencies will be discussed later. 

In Simiao Niu and Zhon Lin Wang article [20] (Niu et al., 2014), 

voltage and capacity for parallel plate contact-mode TENGs were 

defined with the following equations: 

Figure 5: Equivalent circuit 

model of the triboelectric 

generator schematic. Based 

on Niu et al. [19] (Niu & 

Wang, 2014). 
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𝑉𝑇𝐸𝑁𝐺  =  
𝜎

𝜀𝑜
𝑥(𝑡)                                  𝐶𝑇𝐸𝑁𝐺  =  

𝜀𝑜𝑆

𝑑0 + 𝑥(𝑡)
 

Equation 2: VTENG and CTENG equations. Defined in Niu et al. [19] (Niu & Wang, 2014). VTENG described 

in the equation corresponds to the Voc described in Equation 1. 

Therefore, we need to define the parameters on which the voltage and the capacity depend. These are: 

the TENG surface S, the dielectric electrode layer thickness ddie and its permittivity εdie, the total 

triboelectric charge QTE and the triboelectric charge density σTE (which is placed on the bottom electrode 

and facing the top electrode). The separation distance x is variable, and this air gap has a permittivity εair. 

The parameter do corresponds to the effective dielectric thickness and is defined by the expression:   

𝑑0  =  ∑
𝑑𝑖

𝜀𝑖

𝑛
𝑖   . 

 

TENG material parameters  

Dielectric (PTFE) εrdie=3.4 ddie=125 µm 
Surface (S) 0.005 m2 
Surface charge density (σ) −8 µC m−2 
Maximum separation distance (xmax) 0.002 m 
Velocity (v) 0.1 m s-1 
  

Table 2: TENG material parameters. Obtained from Ronan Hinchet et al. [18] (Hinchet et al., 2018) and 

compared with Niu et al. [19] (Niu & Wang, 2014). 
 

In the equations defined above (Equation 2), we see that both voltage and capacity depend on the 

distance x. In the article the distance x was modelled as a simple harmonic movement following this 

equation: 

𝑥 =
𝑥𝑚𝑎𝑥

2
 −  

𝑥𝑚𝑎𝑥

2
cos (

𝜋𝑣

𝑥𝑚𝑎𝑥
𝑡 +  𝜑)  

Equation 3: Gap distance x(t) mathematical expression. Defined in Ronan Hinchet et al. [18  (Hinchet et 

al., 2018)]. 

In order to make a study of the theoretical behaviour of a triboelectric generator we will model it. It can be 

modelled with Matlab, HDL or PSpice. We will use the last one because of its simplicity and ease of 

making the interface with the SPICE simulator, type LTSpice, directly. 

We will simulate the distance x as a voltage source that emulates displacement. Therefore, when 

integrating the Voc into LTSpice, we must create a voltage source controlled by voltage, that is, controlled 

by x. This type of voltage source has analog behaviour and follows a sine shape where the amplitude is 

x(t). Also, when integrating the capacity, this will become a voltage-controlled capacitor. 

6.1.1 Modelling a voltage-controlled voltage source for VOC(x) 

In order to model voltage-dependent voltage-source, we first look for its definition in the LTSpice Help:  

Syntax: Exxx n+ n- nc+ nc- <gain> 

  

This circuit element asserts an output voltage between the nodes n+ and n- that depends on 
the input voltage between nodes nc+ and nc-. This is a linearly dependent source specified 
solely by a constant gain. 
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In our case we have a constant gain, since the voltage depends linearly on the distance. Therefore, the 

gain is 
𝜎

𝜀𝑜
 . If we take the surface charge density and air permittivity parameters defined in Table 2 [18] 

(Hinchet et al., 2018) we obtain the following gain: 
 

𝑉𝑇𝐸𝑁𝐺  =  
8 ·  10−6

8,8541878 ·   10−12 
𝑥(𝑡)  =  9,035 ·  105 𝑥(𝑡) 

 

Considering that the maximum distance is 0.002 m, the maximum output voltage (VOCMax) de ≈1807,06 

V. With the objective of understanding the behaviour of this voltage source dependent on another voltage 

source (Voc), we will first do a simulation in which the x signal varies linearly between the zero and the 

maximum separation distance xmax limits. 

Based on the definition given above for the separation distance x, we simulate the x-distance as a 

sinusoidal voltage independent source.  

Since LTSpice does not allow us to directly generate a cosine function for voltage, we will work with the 

sine and a phase. The 
𝑥𝑚𝑎𝑥

2
  term corresponds to the DC Offset. To model it, we take the equation and 

parameters in Table 2. 

 

X(t) = 0.001 – 0.001*cos(50𝜋t) = 0.001 – 0.001*sin(90 - 50𝜋t)     

𝑉 =  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗  𝑠𝑖𝑛(2 ∗  𝑝𝑖 ∗  𝐹 ∗  𝑡 +  𝑃ℎ𝑖)  +  𝐷𝐶_𝑂𝐹𝐹𝑆𝐸𝑇 

Equation 4: Definition of the voltage that represents the displacement in meters. 

As mentioned, this change in distance will be simulated as a change in potential. Therefore, 0.002 meters 

will be equivalent to 0.002 mV. When matching both expressions, and considering that 
𝜋𝑣

𝑥𝑚𝑎𝑥
= 2𝜋𝑓, we 

obtain the terms to introduce in the simulation: 

Amplitude = -0.001 mV 

F = -25 Hz 

Phi = 90º 

DC_OFFSET = 0.001 mV 
 

By entering the terms obtained from equation 4 in LTSpice we obtain the following simulation:  

         

Figure 6: (A) Voltage-controlled voltage source schematic. (B) Transient simulation of Voc.  

B

 

A 
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The open circuit observed has a semi-period of 20 ms, which coincides with the one of the displacement 

x(t). As the resistor value is fixed, when the x(t) takes its maximum value, 2 mV, it also does the open 

circuit voltage and the current at Rload, with values of 1.8 kV and 1.8 µA. 

In this simulation we have worked with a sine pulse with the frequency obtained from the parameters in 

Table 2. However, we must keep in mind that our project is contextualized in a biomedical application, in 

particular, in taking advantage of the heartbeat to mark the motion of the triboelectric plate. The cardiac 

movement does not exactly match the sine shape with which we have worked, and that is why we should 

look for the most suitable expression to model the heartbeat as a pulse. 
 

6.1.1.1 Modelling heartbeat as a pulse 

The heartbeat is a complex process as it ranges from the excitation due to an activation potential to the 

refractory period after depolarization of myocardial cells. This process can be measured from different 

physiological factors: pressure, electrical signal, resonance, vibration, etc. It is clear that a simulation of 

the heart pulse will never become accurate, as it may approach its shape but will not contemplate possible 

alterations, arrhythmias or others. 

When modelling it, we must bear in mind different features, such as frequency of oscillation, how much 

the oscillatory rate changes, how does the signal behaviour change within an oscillation, etc. Considering 

these factors, am adaptive non-harmonic model is defined in Hau-Tieng Wu et. al. [21] (H. T. Wu et al., 

2016) to model the pulse signal. 

This model uses parameters obtained from observations of the physiological signal and introduces the 

wave shape function, that models signal oscillation over a period. The article [21] (H. T. Wu et al., 2016) 

describes a phenomenological model given by the following expression: 

𝑓(𝑡) = 𝐴(𝑡)𝑠(2𝜋𝜙(𝑡))   

Equation 5: Intrinsic model type function of the pulse wave signal, where s is a wave shape function, A 

is a positive differentiable function and ϕ is a monotonically differentiable function. 

Despite this would be a more accurate model, we will not use it because of its complexity, as we are more 

interested in the oscillatory behaviour. For this reason, we will focus on describing the x(t) displacement 

by associating the cardiac frequency to a characteristic pulse for a given frequency. 

Among the studies that discuss the performance of implantable triboelectric nanogenerators for energy 

harvesting in the heart, in 2019 was proposed the Symbiotic cardiac pacemaker [22] (Ouyang et al., 2019). 

This study seeks to take advantage of the cardiac movement for the displacement of the TENG plates, 

introducing it between the pericardium and the heart. The energy generated by the TENG is sent, through 

a rectifier, to a capacity of 100 µF, where the energy is stored and then used to power a pacemaker. 
Prior to the implantation of the triboelectric, an in vitro study was carried out. In the in vitro test, the 

movement of the heart was modelled with a linear motor. The parameters used for this test were: 

Frequency = 1Hz 

Operating distance = 50 mm 

Acceleration/deceleration = 1 m/s2 

Maximum speed = 1 m/s 
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The defined frequency corresponds to 60 bpm (beats per minute), which approximates to the reference 

values for a person in rest. This test was followed by an accelerated fatigue test in vitro, to study the 

damage of materials under cyclic stresses reducing the test time: 

Frequency = 100Hz 

Operating distance = 1.5 mm 

Finally, to make a more realistic simulation of the in vivo environment, the iTENG was placed in a chamber 

with phosphate buffer saline and the accelerated fatigue test was repeated. 

Previously to this study, in 2016, Zhong Lin Wang’s team [23] (Zheng et al., 2016) carried out a study to 

demonstrate the usefulness of implantable triboelectric nanogenerators (iTENG) for in vivo biomechanical 

energy harvesting.  

In the in vivo study, the displacement of the plates was driven by the cardiac movement of an adult swine. 

In this case, the iTENG was connected to a 10 μF capacitor through a rectifier, and aimed to feed a 

cardiac monitoring device.  

In the in vitro study, the TENG was driven by a linear motor under different frequency values of the applied 

force:  0.5, 1, 1.5, 2, 2.5, and 3 Hz. These frequency values are associated to heart rates from 30 to 180 

bpm, exceeding the limits of normality. The testing time was 10 s (charging time). 
 

6.1.2 Modelling a voltage-controlled capacitor C(x) 

As a previous step, in order to define the capacity depending on the voltage in LTSpice, it is important to 

mention the physics of them. The ability of an electrical charge store (Q) is proportional to the applied 

voltage (V) and its capacity (C). Therefore, the capacitor charge formula is Q = V * C, with Q measured 

in Coulombs, V in volts and C in Farads. To introduce this expression in LTSpice we will use the following 

syntax: 

Syntax: Cnnn n1 n2 Q = <expression> 

Where the corresponding expression will be the product of the capacitance per x, that means the voltage 

across the device. 

First, we will consider a controlled scenario of capacity variation for a better understanding of its behaviour. 

In this scenario, we assume a capacity that varies linearly between two limit values (from 1nF to 10nF), 

depending on an X signal, a voltage. We define this voltage as a PWL function between t=0 x=1 and 

t=20μs x=10, that is, an X(t) that varies linearly.  To test it we will create a circuit in which the capacitor is 

in serial connection to a known resistance and connected to the rectangular pulse voltage source defined 

previously. 

 

Figure 7: LTSpice schematic of a linearly varying capacitor from 1nF to 10 nF during 20μs (A) and the 

representation of the voltage difference through the capacitor (Vin – Vr) during this period of time (B). 

A B 
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We observe that it does not give time to the capacitor to get charged completely, as when increasing the 

capacity, the capacitor load time (τload) increases consequently. Because of that, the capacitor will start 

discharging before arriving to 1V with a growing discharge time (τdischarge). 

Once we have seen the behaviour of a linearly changing capacitor, we can go back to the TENG 

modelling. First of all, we will obtain an expression of the CTENG by introducing the parameters of Table 2 

in the equation 2.  

𝑑𝑜 =
𝑑𝑑𝑖𝑒

𝜀𝑟𝑑𝑖𝑒
 =  

125 · 10−6 

3.4
 =  36.76 · 10−6 𝑚 

  𝐶𝑇𝐸𝑁𝐺  =  
8,8541878 ·   10−12  · 0.005

36.76 · 10−6 + 𝑥(𝑡)
 =  

4,427 ·   10−14

36.76 · 10−6 + 𝑥(𝑡)
  𝑖𝑛 𝐹 𝑎𝑛𝑑 𝑥(𝑡) 𝑖𝑛 𝑚  

Equation 6: Expression of CTENG obtained after substituting the values of the table 2 in the equation 2. 

Previously we have discussed that when x(t) equals zero, the triboelectric capacity will be maximum, and 

that when x(t) is maximum, the capacity acquires its minimum value. From these statements we can 

obtain: 

x(t) = 0  CTENG, MAX = 1,2·10-9 F 

x(t) = 0.002 m  CTENG, MIN = 2,17·10-11 F 

 

 

 

Figure 8: LTSpice schematic of the whole TENG system (A). In B, we observe the capacitor voltage 

against time. In C and D, the resistance voltage for R1 (Rload) of 1 GΩ and 10 GΩ, respectively. 

In this simulation, taking a value of 1 GΩ for Rload we observe that voltage through capacitor Vc tends to 

1.8 kV (Figure 8B), that is, when the capacitor is completely charged it acquires a voltage value equal to 

VOCMax. Moreover, we observe how the voltage through the resistance falls to zero as the capacitor gets 

charged, as the there is no current through the circuit (Figure 8C). In the case of a Rload or R1 of 10 GΩ 

(Figure 8D), we observe that the fall in Vr is slower, as a higher resistance means a higher charging time. 

D 

B A 

C 
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When studying the effect of the parameters, we have first analysed the variation of voltage depending on 

the surface charge density (𝜎). Depending on the material and the process of making the electrode, the 

loads will be located inside or on the surface of the dielectric layer and therefore the charge density (σ) 

will vary [18] (Hinchet et al., 2018). 

Basing on VTENG and CTENG equations (Equation 2), we can say that the capacitor value is independent of 

the value of the charge density. Therefore, this value only will change VTENG value, so that the higher 

charge density, the higher the voltage reached. In Figure 9, it has been simulated the voltage through the 

capacitor for two different charge density values. It is observed that, as capacitance value keeps equal, 

the charging time for both is the same, but the maximum voltage reached increases with charge density, 

as VTENG also does. 

 

Figure 9: Simulation of the voltage through capacitor against time for 𝜎=8·10-8 C/m2 and 𝜎=8·10-6 C/m2, 

left and right, respectively. 

In order to analyse the effect of Rload, we have simulated the behaviour of the system for a first semi-

period, which is 20ms, for different resistance values. As could be expected, when the resistance 

increases, the intensity circulating through the resistor decreases. Also, when we decrease the resistance 

we notice that the peak value of the voltage also drops.  

 

Figure 10: Voltage through the resistor against time for different values of Rload. 

Rload: 

100 kΩ 

1 MΩ 

10 MΩ 

100 MΩ 
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Figure 11: Current at the resistor against time for different values of Rload. 

In Figure 10, we have represented the voltage in the resistance. From this representation, we can obtain 

which is the behaviour of the charge peak, as when the resistor voltage increases, the voltage through 

the capacitor decreases and, consequently, the charge in the capacitor also decreases. Therefore, for a 

very small resistance, ideally zero, we will have the maximum load peak for our capacity. For higher 

resistances, we see the effect of the RC constant. 

It is therefore of special interest to represent the influence of the resistance on the output current and 

voltage. To do this, we will take the maximum values of intensity and voltage for different resistance 

values, obtain curves through interpolation and plot them. In Figure 12C, we can observe the relationship 

between power and load resistance, and in this way obtain the optimum resistance for the TENG 

parameters previously discussed. We observe a maximum output power peak of approximately 2.92mW 

for a load resistance value of 100 MΩ. 

 

 

 

Figure 12: Voltage (A), current (B) and power (C) variation depending on Rload. 
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Therefore, the modelled TENG exhibits: 

Table 3: Summary of power and tension values 

Maximum open-circuit voltage (Voc,MAX) 1.8 kV 

Maximum output power peak (Rload = 100 MΩ) 2.92 mW 

Power density (Rload = 100 MΩ and S = 0.005 m2) 584 mW / m2 

Table 3: Summary of power and tension values 

6.2 POWER MANAGEMENT CIRCUITS 

6.2.1 AC/DC rectifier circuit 

So far we have modelled the behaviour of our triboelectric with respect to ground, and we have seen that 
it is a time-varying signal that approximates to a sinusoidal signal. Actually, the signal inside the body 
would be differential, and that is why our system must work with respect to a floating reference, and not 
with respect to the ground.  

As discussed, the TENG gives as an output a very unstable AC signal. As it is not desirable for multiple 
applications, in order to recover energy, we will use power management circuits.  An example of a system 
that converts AC outputs to DC outputs is a rectifier bridge.  

With power management circuits, the energy generated by the TENG is stored in a capacitor through a 
rectifier. This stored energy can be used to feed an external electronic circuit with a specific function, as 
the capacitor charge behaves as a battery.  

First, it has been simulated a simple model with rectifier circuits to later move on to advanced rectifier 

circuits [24] (Santiago Rodriguez, Garraud, Alabi, Garraud, & Arnold, 2019). Based on Nanoenergy 2014 

[20] (Niu et al., 2014), our first approach is a diode bridge rectifier, and a Rload and CLoad with fixed 

values, 100 KΩ and 10 µF, respectively, that are parallel connected. To define the floating reference, a 

very high resistance is introduced, 100.1 GΩ, that connects the circuit to ground. 

 

Figure 13: Power management circuit formed by a diode bridge rectifier and a RL and CL (or C2) 

parallel connected. 
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Figure 14: At the top, representation of V(va)-V(vb) input signal and Vout signal against time. At the 

bottom, representation of Voc (open-circuit voltage) against time. RL = 100KΩ and CL = 10µF. 

As we observe in Figure 14, we have a periodic noisy signal in AC (V(va)-V(vb)) that, when introduced in 

the power management circuit with the given reference conditions, gives a 200mV DC output signal 

(Vout), approximately. 

To study the behaviour of the output voltage, we give different values to RL and CL, and see the output 

dependency on these two parameters. When comparing Figures 15A and 15B, we observe the effect of 

RL. As we decrease the value of the RL, the DC voltage signal also drops., and ripple increases. However, 

by decreasing the CL value, we do not have a voltage fall and only increase the ripple. 

 

   

Figure 15: Vout against time representation; (A) for RL = 100 KΩ and CL = 10 µF, (B) for RL=10 KΩ and 

CL = 10 µF, (C) for RL = 100 KΩ and CL = 1 µF and (D) for RL = 1000 KΩ and CL = 1 µF. 

RL = 100 KΩ 

CL = 10 µF 

 

RL = 100 KΩ 

CL = 1 µF 

 

RL = 10 KΩ 

CL = 10 µF 

 

RL = 1000 KΩ 

CL = 1 µF 

 

A 

C D 

B 
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In the simulations shown in Figure 15, we observe how the signal ripple depends on CL, which acts as a 

filter, so that a higher value of CL sets a lower voltage ripple. In Figure 15D, we see that when the RL takes 

large values, Vout behaves as a DC signal. Moreover, for high values of RL, we observe that a change in 

CL does not affect the DC voltage, and this is due to the fact that a capability behaves like an infinite 

impedance to a DC current, and being parallel to a resistor, the total equivalent impedance will depend 

only on RL.  

 

Figure 16: Transient simulation for (A) R = 10MΩ y C = 1µF, (B) R = 1MΩ y C = 10 µF. 

DC current and voltage are limited by Rload. This load resistor asks for more or less current depending 

on its value and, consequently, V(va)-V(vb) is also modified.  

As the CL will have little effect on VDC, it will only be necessary to define an optimal RL for which we will 

obtain the largest average DC power. With this purpose, we have studied more deeply the influence of 

the load charge with a fixed value of CL of 1 µF. In Figure 17C, optimization of the performance of the 

TENG as function of RL has been discussed, by obtaining average output power profile from the average 

voltage and current for different load resistances (Figure 17). We observe that the maximum average 

output value is obtained when RL is 10 MΩ, and this peak reaches 14.2µW. 

   

 

Figure 17: Average Vout and average current at Rload versus Rload, A and B, respectively. In C, 

derived curve for average output power versus Rload. 

C 

A B 

A B 
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To advance in the studio, the input power performance as function of the load resistor has also been 

discussed. For this, the input current and input voltage (Va-Vb) have been simulated for different values 

of Rload. In Figure 18, we observe an AC voltage and a current with a shape different from a sinusoidal 

one due to the harmonics.  

 

Figure 18: Input current and voltage for a Rload of 10 MΩ. 

By multiplying both, we would obtain the instantaneous power. In order to obtain a single value of input 

power for each Rload, we have made the product of the RMS values of both intensity and voltage. The 

ratio of the output and input power gives us the efficiency of our circuit, shown in Figure 19. 

   

Figure 19: Dependence of the input power and efficiency percentage on Rload, left and right, 

respectively. 

This single phase rectifier gives us an AC input and a DC output, from which we have obtained RMS 

power value and the average power, respectively. Fixing a RL value of 10 MΩ, which is the optimum value, 

we obtain a RMS input power of 23.2 µW. Therefore, this specific power management circuit has an 

efficiency of 66.2%, a very low value. 

Table 4: Efficiency analysis of the diode bridge rectifier (R = 10MΩ AND C=1µF). 

 

DIODE BRIDGE RECTIFIER  (R = 10MΩ AND C=1µF) 

 Voltage  Current Power 

INPUT 6.3 V (RMS) 3.6 µA (RMS) 23.2 µW 

OUTPUT 11.6 V 1.22 µA 14.2 µW 

EFFICIENCY ~ 66.2% 



 

31 
 

Study of systems powered by triboelectric generators for bioengineering applications                                                                 Helena Rodríguez González 

 

A further study has been carried out in order to study if this low efficiency was triggered by the voltage 

drop of the diodes. On a diode bridge there are always two forward diodes, so since each diode needs 

0.7 V (conventional silicon diodes), together they take 1.4V, voltage that we are losing. As the input 

voltage increases, the voltage drop in the rectifier becomes less significant in proportion, that is why this 

circuit has an efficiency proportional to its input voltage. Therefore, a general way to enhance the 

performance is introducing a diode with less voltage drop. An example of a very low drop diode is Schottky 

diodes, which have a threshold voltage of approximately 0.2 V to 0.4 V. 

 

Figure 20: Simulation the voltage drop at of a silicon type diode (left) and a Schottky type diode 

(bottom). The silicon type diode (model 1N914,) shows a forward voltage drop of 653,2mV. The 

Schottky diode (model MBR0530L) shows a voltage drop of 224.6 mV. 

However, when comparing the performance of four different diode types, two silicon types (1N1914 and 

MURS120) and two Schottky (CMDSH2-3 ans RB058L_40), there is no evident change in efficiency. 

Therefore, more advanced electronic configuration methods will be necessary to improve the efficiency 

of the system. 
 

6.2.2 TENGs stack 

It has been reported that one way to obtain a higher output power while maintaining the device area is by 

vertically stacking of several triboelectric generators [25] (Seol et al., 2015). In the study of Seol et. al., 

each TENG is made up of three electrodes: the upper and lower electrodes act as anodes, inside the 

encapsulation formed by the two anodic electrodes we find a vibrating membrane that contains the 

cathodic electrode inside. In the resulting structure, the anode electrodes were connected to each other 

and the cathode electrodes were also connected to each other, therefore TENGs connected in parallel 

are obtained. 

Therefore, a parallel TENG configuration is proposed. In this way, total area keeps constant, which results 

of special interest as we must adapt to size limitations for bioengineering applications. The resulting 

structure, based on our TENG model, is shown in figure 21. 

 

Figure 21: Schematic of the resulting structure model. 
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To see if this configuration actually involves an improvement in output we have simulated the behaviour 

in LTSPICE. Firstly, a schematic with two separated TENGs has been generated in order to study them 

individually. We observe a peak of voltage at 1.175 kV and at the same time a peak of current at 1.36 µA, 

which correspond to a peak of power of 1.6 mW. 

 

Figure 22: LTSpice simulation of voltage, current and power at Rload of two individual triboelectric 

generators (Rload = 1GΩ). 

If we perform the simulation of both TENGs in parallel, with the configuration defined in Figure 21, and 

we give Rload a value of 500 MΩ, which is the equivalent resistance of two Rloads in parallel, a power 

peak of almost 3 mW is reached, with voltage and current values of 1.2 mV and 2.5 µA, respectively. We 

observe that, as we are working with parallel connected voltage sources, the voltage does not vary while 

the current is doubled. 

 

Figure 23: LTSpice schematic of two triboelectric generators parallel connected with a unique load 

resistance of 500MΩ. 
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Figure 24: LTSpice simulation of voltage, current and power at Rload of two triboelectric generators 

parallel connected (Rload = 500MΩ). 

Therefore, by parallel stacking two triboelectric generators, output electric power is doubled, as currents 

are added and voltage does not vary. Consequently, by stacking more than two TENGs, electric power 

will keep increasing proportionally to the number of TENGs stacked. However, we must bear in mind that, 

although parallel stacking is the preferred option for stacking as total area is kept, it causes an increase 

of the total current, which is the most important factor when talking about electric risk, as it will be 

discussed in chapter 6.4.  
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6.3 EXPERIMENTAL SET-UP 

6.3.1 U-TENG fabrication 

As mentioned above, have reproduced the metal-air-dielectric-metal model of parallel contact plates. 

Specifically, we have manufactured the ultra-simple TENG (U-TENG) described in Mallineni et. al. [1]. 

The materials used for the fabrication are commercially available and low-cost. The U-TENG is 

constructed with Indium tin oxide (ITO), an alloy that forms the conducting part of our electrodes, 

Polyethylene terephthalate (PET), a plastic polymer, and Kapton, a polyamide resistant to high 

temperatures that acts as the dielectric layer. 

For top and bottom electrodes, we have used PET sheets that are coated with ITO in one side, which will 

be facing the inner part. As a dielectric material we have used Kapton adhesive tape, which has been 

attached to the bottom electrode. The dimensions of the electrodes are 3.5cm x 2.75cm.  

 

Figure 25: Schematic of the fabricated U-TENG, profile and top view. Based on Figure 3 of Mallineni et. 

al. [1]. 

ITO is a liquid metal that, in this structure, behaves as triboelectric material and electrode, while Kapton 

behaves as the other triboelectric layer, which is negatively charged. Therefore, liquid-solid friction is 

obtained, which has better contact effectiveness than solid-solid friction due to material roughness, as the 

solid material is moved in and out the liquid during the operation. 

The described model has been designed in SolidWorks, a CAD software for 2D and 3D mechanical 

modelling: 

 

Figure 26: 3D model of the fabricated U-TENG. Performed with SolidWorks software. 

All the materials used are low cost and commercially available. It has been used ITO coated PET Plastic 

from Adafruit, which is coated with an ITO layer on one side, has a thickness of 0.175 mm and shows a 

resistance of 7.75 Ω per cm2, as described in the technical details given by the manufacturer.  
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Moreover, insulating Pyrex separators, of approximate dimensions of 4 mm x 4mm x 1mm, have been 

used to maintain an air gap between the two layers. Therefore, the distribution will be PET-ITO-AIR-

KAPTON-ITO-PET. Finally, Cu wires have been used to connect the electrodes, attached on the edges 

of the ITO face of the electrodes, as it is the conducting side. 

If we refer to the process of preparing the materials, this process is composed by: acquisition, shaping 

and assembly. The acquisition of the products is detailed in the economic viability chapter, where the 

providers are mentioned. The materials were shaped and cut with the dimensions described above. For 

cutting the Pyrex spacers, a glass cutter has been used. 

 

Figure 27: Materials preparation. At the top, from left to right: PET-ITO already covered with the Kapton 

tape, PET-ITO, and the four Pyrex spacers. At the bottom, the two Cu Wires. 

 

Figure 28: Manufactured U-TENG, profile and top view. 

In the modelling section, we have taken a surface area value of 50 cm2, while the surface area of the U-

TENG is much lower. Moreover, the maximum separation distance between plates has been defined as 

2mm in the model, while the separators used for the fabrication are 1mm thick. However, as plates are 

made of flexible materials, the distance between them can vary beyond the spacers, so this difference is 

not so significant. Therefore, the previous study allows us to understand the electric behaviour of 

triboelectric generators, but the values obtained will not be shared with the fabrication. 

6.4 STUDY OF THE PERFORMANCE OF THE TENG IN BIOENGINEERING APPLICATIONS 

The purpose of this research project is to study triboelectric generators performance as energy harvesters, 

and specifically to study the application of TENGs in the field of biomedical implantable devices, so we 

need to know their power and voltage requirements. In general, these devices do not need a high value 

of power supply, it uses to be in a range of microwatts and milliwatts, and voltage requirements around 2 

and 3V [26] (Zhao et al., 2020). It is worth mentioning that the supplies for these implantable devices have 

limitations such as size, compatibility of the material and electric security. 
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Table 5: Biomedical implantable devices 

Cardiac implant  8-190 µW 

Cochlear implant  5 - 40 mW 

Retinal implant  30 µW – 5 mW 

Drug pump  100 µW – 2mW 

Neural implant  30 µW – 23 mW 

Muscle stimulator  1.3 mW 

Table 5: Examples of biomedical implantable devices and its power supply levels [26, 27] (Zhao et al., 

2020)(Cadei, Dionisi, Sardini, & Serpelloni, 2014). 

Currently, the main way to power these devices is through the use of batteries. However, given its limited 

lifespan, research is being carried out on transducers to obtain electric power from the human body itself. 

Apart from triboelectric generators, among the applicable energy harvesters for implantable devices, we 

find: piezoelectric generators, biofuel cells, thermal electric generators, photovoltaic cells and 

radiofrequency harvesters [26] (Zhao et al., 2020). 

Table 6: Alternative energy harvesting technologies 

Piezoelectric generators  0.4 – 30 µW / mm2 

Biofuel cells  0.5 – 13 µW / mm2 

Thermal electric generators  0.4 – 100 µW / mm2 

Radiofrequency harvesters  0.1 – 200 µW / mm2 

Photovoltaic cells  10 – 200 µW / mm2 

U-TENG [1]  4.9 µW / mm2 

Table 6: Power values obtained from alternative energy harvesting technologies  [26] (Zhao et al., 

2020). 

By comparing the values of table 5 with those of table 6, we can affirm that the different energy harvesting 

methods mentioned meet the supply requirements of the most used implantable medical devices. 

Therefore, all of them seem to be a valid option for self-feeding medical implants, without the need of any 

battery. 

Despite this, most of these technologies are limited due to their large size, since the power will depend 

on the surface of the device. In the case of medical implantable devices, energy harvesting devices must 

be limited in size, as they must be implanted: around 1 cm3 [27] (Cadei et al., 2014). In addition, the 

energy obtained in all of them will be unstable and will require accommodation circuits, integrated in 
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flexible electronics. All these devices must be embedded in a flexible and biocompatible encapsulation, 

that must try to not affect the performance of the energy harvesting device. 

One of the main advantages of triboelectric generators, as well as other energy harvesting technologies, 

is the low intensity of the electrical current, as it is the most important parameter to quantify the electrical 

risk. It is important that the body does not get in contact with currents greater than 10 mA [28] (Fish & 

Geddes, 2009), and as it has been discussed, current takes values of microamperes, so the electric risk 

is widely reduced. 

Since TENGs are mechanical harvesters, they can obtain energy from different physiological movements 

of the human body. Among the possible sources we find: muscle contraction and relaxation, cardiac and 

lung motion or blood circulation. 

One of the features that make triboelectric generators an ideal candidate for biomedical applications is 

the wide range of materials with which they can be assembled, since almost all kinds of materials (metal, 

polymers, wood, etc.) show triboelectrification effect [29] (Zheng, Shi, Li, & Wang, 2017). Among the 

possible materials, we can choose between those that have the optimal characteristics for its application, 

such as flexibility, biocompatibility and mechanical properties. Furthermore, most of these materials are 

commercially available and inexpensive. 

In addition, the good performance of the use of biodegradable materials for the manufacture of TENGs 

(BD-TENGs) has also been demonstrated. Wen et. al [30], talks about the use of silk fibroin film as a good 

biocompatible and biodegradable strategy for the construction of flexible electronics. BD-TENG was 

implanted in sub-dermal region, and after some time it was dissolved without leaving any residue. 

Several studies have been carried out in order to demonstrate the application of TENGs in implantable 

form. This is the case of the study by Zheng et. al. [31], in which an implantable triboelectric nanogenerator 

(iTENG) was implanted in a living rat to harness its breathing motion to obtain energy. Encapsulation was 

necessary in order to protect the triboelectric structure from the physiological environment. 

Apart from power supplying, triboelectric nanogenerators can be used as a sensor to detect small changes 

of motions inside our body. Ye Ma et. al. [32], proposes an implantable triboelectric active sensor (iTEAS), 

that allows continue monitoring of several physiological and pathological signals. This self-powered 

sensor, enables the real-time detection of cardiac arrhythmias, monitoring of respiratory and heart rates 

and others, reaching an accuracy of ∼99%. In response to the heartbeat, an open-circuit voltage (VOC) 

of ∼10 V and a short-circuit current (ISC) of ∼4 μA can be obtained. 

 

6.4.1 Cardiac motion and self-powered implantable devices 

Among all the possible body movements from which we can transduce mechanical energy to electric 

energy, such as breathing or motion in human joints, we will focus on cardiac motion. With this purpose, 

we will simulate the movement of the heart as our source of tension. That is why we are interested in the 

movement having the maximum similarities with the heart rate (we will simulate in a sinusoidal way) and 

the behaviour of the heart, as if the triboelectric were located on the surface of the same. 

Assuming an average heartbeat of 60 bpm (beats per minute), the heart works at a fundamental heartbeat 

rate of 1 Hz. Therefore, this will be the frequency with which we will work in order to emulate the cardiac 

frequency at rest. Increasing the velocity of motion is equivalent of increasing the frequency of the AC 
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voltage source VOC and, therefore, decreasing the impedance of the CTENG. By increasing the frequency, 

the matching resistance is lowered and, consequently, the voltage value obtained is higher.  

As a first approach, it has been developed an analysis simulation with the same circuit as the one used 

in the modelling section, with the parameters of Table 2, and operative conditions of RLOAD of 10MΩ and 

CLOAD 1µF, as these have been discussed to be the optimum values. 

 

Figure 29: Transient simulation of (A) Open Circuit Voltage and (B) Output Voltage after the rectifier 

circuit.  

 

Figure 30: Simulation of the input and output tension in a rectifier circuit for f = 1Hz, RLOAD =10MΩ and 

CLOAD = 1nF. At the bottom, current at Rload. 
 

Table 7: Input and output values for the rectifier circuit. TENG working at a frequency f = 1Hz, 

RLOAD=10MΩ and CLOAD = 1nF. 

We observe that the output power is decreased with frequency, as the output voltage is also lowered. For 

a frequency of 1Hz, and the resistor and capacitor values described, an output voltage of 715mV in DC 

and an output power of 51nW are obtained. Although an optimal voltage is obtained, the output power 

would not meet the supply requirements for a cardiac implant, defined in table 5. Therefore, 

implementation of the electronics for energy storage, together with the development of strategies for a 

better triboelectric performance, appear as new challenge.  

 VOLTAGE  CURRENT POWER 

INPUT VALUES 850 mV (RMS) 160 nA (RMS) 136 nW 

OUTPUT VALUES 715 mV 71.5 nA 51 nW 

       F = 1 Hz 

       F = 25 Hz 

A 
B 
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7 U-TENG EXPERIMENTAL VALIDATION 

This chapter aims to evaluate the performance of the manufactured device by an experimental validation 

process. 

In the first place, before assembling, the electrical continuity of the electrodes, which is the face of PET 

coated with ITO, has been checked. For the manufacture, two sheets of ITO-coated PET were purchased 

and none of them gave the same resistance results shown in the technical details, so that it seemed to 

be non-conductive. Since an infinite resistance does not appear between the two probes, as occurs when 

measuring insulating materials, we can say that it shows a very low conductivity. 

Moreover, continuity has also been looked at in the Cu wires, which show conductivity on the side where 

the copper is exposed and not on the side that is covered by the adhesive layer. Cu wires have been 

bent, so that both sides are conductive. After assembling, it has been shown that there is conductivity 

between the wires and the ITO, although it is low, due to the low conductivity of the ITO. Finally, Kapton, 

Pyrex and PET have shown to be good insulators as expected.  

Once the material properties have been checked, we can proceed to study the U-TENG performance. As 

we have modelled, we will have two different materials assembled face to face, with an electrode in the 

back side of the isolating material. In terms of experimental development and characterization, the 

potential differences come from friction between the two materials. By applying a mechanical force 

periodically, the spacing between the plates varies and, therefore, the following steps will take place 

cyclically: 

1. When the two materials are in contact, opposite static charges appear on the inner surface of the 

triboelectric layers. 

2. As materials separate a potential difference is created, and charges go from one electrode to the 

other through an external circuit (where the voltmeter is placed). 

 

Figure 31: Experimental set-up. 

This periodic force has been applied with the finger, covered with a glove so that charges do not escape. 

The top electrode has been pushed against the bottom electrode once per second (frequency of 1Hz). 

The electrical measurements have been carried out with a digital multimeter from Kaise. 

By applying a periodic force with the fingers, a varying DC voltage has been measured. The open load 

voltage measured has reached peaks up to 1.071 V, which is the maximum peak voltage obtained. 

Therefore, it has been shown that the U-TENG works and that a tension is recovered but at levels much 

lower than expected. 
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The great differences between simulation and experimental may be related to the methodology in the 

process. Due to this, it would be advisable to standardize more the triboelectric manufacturing process.  

One of the main limitations that causes that the simulation resulting values do not coincide with those 

measured experimentally is that not all the surface is in contact when testing its performance, as the 

contact surface coincides with the area of the pusher, i.e. the finger. Consequently, the charges are not 

equally distributed and the equivalent surface is smaller than the theoretical one. Therefore, the surface 

on which we should base on our study is the area that is in contact when applying the force. Moreover, 

as friction is not homogeneous, the electrostatic phenomena does not take place in the same way in all 

the parts of the plates. 

When applying the force with the finger, neither the modulus of the force nor the contact area remain 

constant, as they may vary slightly in each cycle. Also, periodicity is not granted. Therefore, making use 

of a pushing tester, instead of applying force with the finger, may lead to a more stable output signal. 

It is worth to discuss the effect of area, as the higher the surface the higher the charges that are generated 

and, consequently, the higher the voltage obtained. With the main aim of observing this effect, triboelectric 

generators with dimensions 3.5cmx5.5cm and 5.5cmx7cm, which duplicate and quadruple the original 

size, have been developed. It has been observed a maximum open load voltage of 2.69V and 5.3V, for 

surfaces of 19.25 cm2 and 38.5 cm2. 

Therefore, it has been observed linearity between surface and the voltage peaks obtained, as shown in 

Figure 32. From this we can conclude that in order to optimize triboelectric output surface, increasing 

effective area is a good strategy. 

 

Figure 32: Experimental plot of the maximum voltage peak measured against surface. 

The tensions measured with the voltmeter correspond to the open circuit voltage, which was described in 

Equation 2 as 𝑉𝑂𝐶  =  
𝜎

𝜀𝑜
𝑥(𝑡) . This output tension reaches its peak value when the distance x(t) is 

maximum. The current operating conditions of the laboratory do not provide a proper way to extract the 

charge density of our U-TENG. Therefore, in order to obtain a value of the equivalent surface charge 

density (𝜎), we consider that the maximum distance between plates is the thickness of the Pyrex 

separators (1mm), and that it does not depend on the surface, so we can relate them to the maximum 

peaks measured for each U-TENG constructed (Table 8).  
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Surface Maximum voltage peak Equivalent surface charge density 

9.625 cm2 1.071 V 9.5 nC/m2 

19.25 cm2 2.69 V 23.8 nC/m2 

38.5 cm2 5.3 V 46.9 nC/m2 

Table 8: Summary of the maximum voltage peaks measured for different TENG areas and the 

calculated equivalent surface charge density. 

Although the same materials have been used for each triboelectric manufactured, we observe that the 

equivalent sigma keeps proportionality with the voltage peak and surface. From the results obtained we 

can deduce that conductivity does depend on surface, and the lower the surface the lower the 

conductivity. Proportionality between surface and Vocmax has been experimentally demonstrated, which 

may suggest that Equation 2 should be adjusted to show the dependence of peak voltage or charge 

density on surface. However, we must bear in mind that we have considered that the distance x(t) reached 

does not depend on surface, which is not an accurate assumption as plates are very flexible and their 

deformation may overpass the thickness of the separators. Higher surfaces may deform more and, 

consequently, increase the maximum distance between plates (xmax). 

Once the voltage peaks have been measured and equivalent surface charge density has been calculated 

for each manufactured triboelectric, we could model it and simulate which would be its output power and 

voltage values under specific conditions, in order to assess the performance of our triboelectric generation 

in bioengineering applications. To do it, we have selected the manufactured triboelectric with the smaller 

surface (9.625 cm2) and its respective equivalent surface charge, which is 9.5 nC/m2, as we must bear in 

mind that one of the main limitations of implantable medical devices is their size. 

Again, we have contextualized our simulations in cardiac motion energy harvesting, so the frequency of 

the movement of x(t) is set to 1 Hz, and its amplitude to 1mm, as it is the thickness of the Pyrex separator. 

As far as the material parameters, the dielectric constant and dielectric permittivity used are the ones 

described in Table 2 by Ronan Hinchet et. al. [18] (Hinchet et al., 2018). For these parameters, the voltage 

and capacitor expressions are: 𝑉𝑇𝐸𝑁𝐺  =   1072.94 𝑥(𝑡) and 𝐶𝑇𝐸𝑁𝐺  =   
8,52 ·  10−15

36.76 ·10−6+𝑥(𝑡)
. 

In the simulation, an oscillating DC voltage has been obtained, which reaches peaks of 1.1 V, a value 

very close to the one measured experimentally (1.071 V). 

 

Figure 33: Electric modelling of the manufactured U-TENG and simulation of the voltage obtained. 

Moreover, it has been studied the operation in the diode bridge rectifier circuit. The AC voltage obtained 

from the device has been extracted, together with the DC voltage obtained after the rectifier circuit, with 

RLOAD of 10MΩ and CLOAD 1µF. For this simulation the output voltage obtained was 7.36 µV negative, 

and a output current of the order of femtoamperes, i. e. very small electric output (Figure 34A). 
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The fact that the voltage obtained is so low implies that a bad operation. Therefore, by increasing this 

voltage, the performance of the system will improve. Among the possible proposals to improve the voltage 

we find increasing the distance between plates xmax, increasing the charge density, which implies 

increasing the gain of the voltage source dependent on another voltage source, or increasing the 

frequency of the movement. If we simulate the last case, for a frequency of 25 Hz, we observe that positive 

rectified voltages are obtained (Figure 34B), but the voltage level is still very low, of the order of microvolts, 

and insufficient for biomedical applications. 

 

  Figure 34: Electric modelling of the manufactured U-TENG and simulation of the voltage obtained. 

In addition, measurements have been repeated with the same U-TENG with which 1.071V were obtained, 

but 4 days later to see if the passage of time meant any alteration or wear of the materials. In this case, 

the maximum peak measured was 0.529 mV. This may be due to the fact that ITO is a very delicate 

coating and can be worn, along with the accumulation of dust and others, and this may trigger that the 

same voltage is not reached. 

Another study has taken place in order to observe which is the effect of having an electrode with higher 

conductivity. The performance of a triboelectric with similar characteristics has been studied, where the 

electrodes were made of an Aluminium sheet deposited on PET, instead of ITO, as the TENG described 

in Bhamre et. al. [33] (Bhamre, Mali, & Mane, 2020). With this TENG it has also been observed the 

triboelectric effect, as a varying DC tension appears when applying mechanical force. However, in this 

case, the maximum peak voltage values reached were of 699 mV, which is smaller to the one obtained 

with ITO electrodes. 

Furthermore, in Mallineni et. al. [1], it was described that the performance could be improved by adding a 

cellulose paper sheet between the two plates. However, when introducing the cellulose layer between the 

plates, it has not been observed any obvious change in the voltage levels. 
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8 IMPLEMENTATION TIMELINE 

8.1 WORK BREAKDOWN STRUCTURE  

Figure 35: Work Breakdown Structure 

8.2 TASK MATRIX AND CPM/PERT 

In the following table we define the tasks carried out for the project implementation, indicating an 

approximation of the time expected to expend, in an optimistic and pessimistic perspective, and the time 

described in the dictionaries, which is the normal time.  

Definition Task 
Precedent 

tasks 
Normal 
time µm 

Optimistic 
time µo 

Pessimistic 
time µp 

Probabilistic 
time µj * 

Conception of the 
TENG 

A - 30 25 35 30 

Electric model of the 
TENG 

B A 10 15 20 13 

Material preparation C A 5 5 10 6 

Construction and 
assembling 

D C 25 20 35 26 

Performance testing E D 30 20 40 30 

TENG Simulation F B 30 25 40 31 

TENG electric 
characterization 

G F 50 40 55 50 

Power management 
circuit simulation 

H G 40 35 45 40 

Power management 
circuit characterization 

I H 60 50 70 60 
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Performance testing in 
the bioengineering 

application 
J E, I 20 20 30 22 

Table 9: Task matrix. Time expressed in hours.  

The probabilistic time is defined by in the equation 7 and is the one used for the PERT/CPM diagram 

implementation. 

µ𝑗 =
µ𝑜 +  4 µ𝑚 +  µ𝑝

6
 

Equation 7: Probabilistic time 

The planning involves a total of 14 hours/week, and the date for the beginning of project task execution 

is programmed to the 9th of November of 2020.  

From the data provided in the task matrix, we can develop the PERT/CPM diagram. In this network 

diagram we define the connectivity between tasks and their dependence on the others, which allows us 

to find the critical pathways. 

 

Figure 36: PERT/CPM diagram. In the nodes we observe the early time and last time, in the left and 
right side, respectively. In red the critical path. 

In red we observe the critical path of the project, which may trigger a delay of the project if the tasks 

included are not carried out on time. This path is the one that determines the duration of the project and 

on which we must exert more control. We must bear in mind that the times are probabilistic, so that an 

error on the estimation of the probabilistic time may trigger a change of critical path, as the difference of 

time with other paths is not very large. 

8.3 GANTT TIMING 

In order to design the GANTT timing plot, we must define the following table, with the start and final date 

programmed for each task and their duration. 

Description Task Start date Duration Final date 

Conception of the generator A 09-nov 15 24-nov 

Electric model B 24-nov 5 29-nov 

Material preparation C 29-nov 2.5 01-dec 

Construction and assembling D 01-mar 12.5 13-mar 

Performance testing E 13-mar 15 28-mar 
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Electric characterization F 28-mar 15 12-apr 

Simulation G 12-apr 25 07-may 

Emulation H 15-feb 20 07-mar 

Integration electronics design I 07-mar 30 06-apr 

Performance testing in the 
bioengineering application 

J 06-apr 10 16-apr 

Table 10: Tasks required for the realization of our project with the starting dates and final dates for 

each. Duration is expressed in days (14 hours/week). 

From this schedule we can have an overview of the programmed tasks in a visual way. As the responsible 

of the development of each task is the same, the performance of tasks simultaneously may trigger an 

increase of the time per week.  

  

Figure 37: GANTT diagram 
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9 TECHNICAL FEASIBILITY 

For the proposed solution, an analysis has been carried out to study the situation of the project, by making 

a SWOT matrix of the internal and external characteristics. 

Table 11: SWOT matrix of the project 

If we refer to the specifications and technical characteristics of the U-TENG, the main advantages are the 

wide range of materials that can be used, as well as its robustness. Moreover, as we have already 

indicated above, its manufacture is simple, and the necessary materials are inexpensive. It is a renewable 

green energy that can be obtained from any form of mechanical energy.  

Another strength is that U-TENGs can be used for multiple applications involving different load resistance 

conditions and can be well rectified. Furthermore, it has been shown in the modelling section that the high 

output values obtained, both in power and in voltage. 

Despite this, for a high output voltage, we obtain a low current, which triggers that the triboelectric 

generator is not directly applicable to active implantable electronic medical devices. Moreover, although 

the triboelectric effect has been observed, these high voltages have not been obtained experimentally.   

One of the main threats to the viability of this project in biomedical applications is that encapsulation may 

be necessary to integrate the triboelectric generator into a biocompatible implantable medical device, 

which may make more difficult to apply an external mechanical force. Another outcome for its applications 

  
TABLE 11: SWOT MATRIX 

  
INTERNAL ANALYSIS 

 
EXTERNAL ANALYSIS 

POSITIVE 

 
STRENGTHS 

- Simple structure, easy manufacturing 
- Wide range of materials 

- Inexpensive materials and 
manufacturing process. 

- Temperature stability of U-TENG  
- High output values 

- Renewable energy from any 
mechanic motion. 

- Abundance of starting materials  
- Robustness 

- Wide range of load resistances 
 

 
OPPORTUNITIES 

- Market trends looking for new forms 
of sustainable energy. 

- Development of new biosensors 
looking for self-feeding systems. 

- Appearance of new materials and 
nano-patterning. 

- Development of structures on stack. 
- Low commercial prices of the material 

needed 
 

NEGATIVE 

 
WEAKNESSES 

- Low current, not directly applicable to 
active implantable electronic medical 

devices. 
- Irregular energy generation for 

biomedical applications. 
 

 
THREATS 

- Limited time 
- Limited resources 

- Lack of experience in handling with 
this technology 

- Alternative ways of energy harvesting 
- Mechanical properties may be altered 

when encapsulating. 
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in bioengineering is that the energy generation will not be regular, as it depends on a human body motion, 

which can be altered physiologically. 

Among the factors that we can take advantage of to achieve the successful integration of triboelectric 

generators in the market, we highlight that many lines of research are emerging looking for forms of green 

and renewable energy. In addition, the design of biosensors by biomedical companies that require a self-

feeding system will favour implantation of triboelectric generators. However, it is worth mentioning that 

alternative products for energy harvesting are also being developed, such as biofuel cells or piezoelectric 

generators, which may result competitive in the market. 

Finally, with the appearance of micro/nano-patterning or similar technologies, the performance of the 

triboelectric generator can be enhanced by increasing contact area. Furthermore, triboelectric generators 

can also improve their efficiency by making use of configurations of TENGs on stack.  

If we refer to the technical feasibility of the application of the TENG devices manufactured as energy 

sources for medical devices, specifically for heartbeat harvesting as is the one that has been studied, we 

can affirm that the constructed triboelectric generators do not provide optimum values for this use. This is 

why, improvements will be needed at the manufacturing level: such as increasing the effective surface or 

stacked structures. 
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10 ECONOMIC FEASIBILITY 

As previously mentioned, triboelectric generators in bioengineering applications are in development 

phase, with the aim of improving their properties and performance, and thus increasing the energy 

obtained, and consequently the income. 

Since the main costs are due to the materials and construction of the structure, it is an inexpensive project. 

As commercially available materials have been used, obtaining them is much easier and less expensive 

than if we had to design specific materials from micro/nano-patterning. In addition, the price of the 

necessary material is low, and few quantities of material are needed, since the designed triboelectric 

generator has reduced dimensions. 

Apart from the price of the materials, we must take into account the cost of assembling the structure. This 

process is simple and requires little time, since the moulding of the pieces and their handling is simple. 

Therefore, the cost per hour of labour is not expensive either. 

In the article followed for the fabrication [1] (Mallineni et al., 2017), it indicates that the U-TENG can be 

manufactured with a price of ~ $0.06 cm-2. Taking basis on the dimensions defined in the article, the 

budget of the material cost of a single U-TENG has been estimated. It is worth mentioning that the prices 

that appear in the following table, are approximations obtained from web pages of commercial products. 

Among the supplying companies and providers, we find Twdrer, Sigma-Aldrich, Katigan and others, all of 

them distributed by Amazon. 

 Commercial price One U-TENG cost (€) 

ITO-Coated PET Film 0.01 – 0.05 €/cm2 ~ 0.3  
Kapton adhesive tape 0.001 – 0.0006 €/cm2 ~ 0.01 
Pyrex insulating spacers 0.01 -0.05 €/cm2 ~ 0.04 
Cellulose paper 0.001-0.002 €/cm2 ~ 0.01 
Cu wires 0.01-0.004 €/cm ~ 0.04 
 
TOTAL  

  
~ 0.40 

Table 12: Cost of fabrication material and process of a U-TENG. Commercial prices obtained from firms 

and brands that sell their products in Spain. The cost of a U-TENG is calculated by considering the 

dimensions of 3.5 cm×2.75 cm, two Cu wires of 4 cm, four Pyrex spacers of 4mmx4mm. 

However, for this project it has been necessary to manufacture different U-TENGs, in order to test different 

manufacturing methods, different sizes and others. That is why much more material has been required 

and the total price of the materials required for the project amounts to a total of 78.66 euros. 

 Price Brand 

ITO-Coated PET Film 19.96 € (x2)* Adafruit  
Kapton adhesive tape 9.29 € Changrongsheng 
Pyrex insulating spacers 12.9 € Twdrer 
Cu wires 5.05 € Katigan 
Shipping costs 
TOTAL  

11.5 €  
78.66 € 

Table 13: Materials cost. (*) Two ITO-Coated PET Films have been acquired. All the materials have 

been bought on Amazon. 
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As a group, and as a student, we have the products under the license from National Instruments, from 

which we can access different resources and software. For the electrical simulation, LTSpice is a freely 

available platform. 

The university investigation group already has access to the laboratory instrumentation necessary and, 

therefore, the cost to the project does not depend on its total purchase price, but rather on the amortization 

of the equipment with respect to the time it will be used. The principal materials used are a digital 

multimetre for the electric measurements and a laptop. Moreover, as a group, we have access to the 

products under the license from National Instruments, from which we can access different resources and 

software. For the electrical simulation, LTSpice is a freely available platform. 

If we compare them with other more efficient triboelectric generators, many of them require techniques 

for micro-structuring the surface or functionalizing it, which increases the cost and manufacturing time. 

Purchasing commercially available materials reduces the price of our triboelectric generator dramatically. 

The cost of manufacturing the U-TENG is simply reduced by the low price of the materials that compose 

it, since its manufacturing does not require any specific type of instrumentation. 

The different circuits or power management configurations can also make the final cost of the product 

vary, depending on its complexity. 
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11 CONCLUSIONS AND FUTURE LINES 

Throughout this research triboelectric generators have been studied as energy harvesters, their 

modelling, characterization and the design of power management circuits and other strategies that seek 

to optimize the energy obtained. In addition, their compatibility and possible application in biomedical 

implants has been studied, considering the size restrictions and characteristics to which they must be 

adapted. In order to assess the degree of satisfaction with the study carried out, we proceed to discuss 

the particular objectives that have been met and their degree of achievement. 

In the first place, it was proposed to make an electrical model of the triboelectric generator and study 

different accommodation circuits for our generator. As regards the modelling section, the physics of the 

TENG has been discussed so that the electric model was consistent with its structure and operation, so 

that it has been compared to a voltage source and a capacitor that depend on a displacement, modelled 

as another voltage source. For this simulation, a maximum open circuit voltage of 1.8 kV and a maximum 

output power peak of 2.92 mW have been obtained, given the material parameters of Table 2. Moreover, 

the dependence on the different parameters and properties of the materials have been discussed. In the 

simulation analysis, it has been observed that TENGs behave as a high voltage source, but since the 

intensity levels are on the order of microamperes, its output power is reduced to milliwatts. Therefore, the 

objective of simulating an electric model of the triboelectric generator and reproducing the results obtained 

in other studies has been fully accomplished. 

Furthermore, it has been possible to create an accommodation circuit based on a rectifier bridge that 

allows obtaining a rectified DC signal from an AC. Despite the fact that the DC signal obtained presents 

good electric output values, with little ripple, the efficiency of this system is very low. Given the time 

limitation of this project, it has not been possible to study more efficient power management circuits that 

have a more optimal performance. However, it has been demonstrated through simulations that stack 

configurations are a valid solution for enhancing electric output power. With the mentioned studies, it has 

been possible to study the performance of a specific accommodation circuit, its optimum components 

values and its output electric values. Although we have not been to find more efficient accommodation 

circuits and compare their performance, as expected in the particular objectives, an alternative method 

has been proposed to increase the obtained power. 

Another of the main objectives of the project was to manufacture a triboelectric generator. Specifically, in 

this project an attempt has been made to reproduce the U-TENG described in Mallineni et. al. [1] (Mallineni 

et al., 2017). However, despite the fact that the triboelectric effect has been observed when applying a 

force periodically, the output values have been much lower than those described in the article. Even so, 

it has been possible to obtain an open circuit voltage of the order of volts, and the dependence of this 

output voltage on the surface area has been demonstrated, which was another of the purposes of the 

project. The differences between the simulation and the results obtained experimentally have been 

attributed to the manufacturing process and the properties of the materials. 

In the particular objectives, it was also expected to make the electric characterization of the manufactured 

TENG, however, this study has been limited by the low and unsteady values obtained, and unsatisfactory 

results have been obtained. During the study of the U-TENG performance some worth-mentioning points 

have been observed. First of all, the signal obtained is considerably unstable. This may be caused by 

many factors, such as the kind of movement and contact that the plates make. Another fact to bear in 

mind is that the ITO coating can be easily lost by scratching. Taking into account that our TENG bases 

its operation on friction and contact, this can lead to the loss of the conductive layer. 
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Finally, the last objective was to demonstrate the application of triboelectric nanogenerators as self-

feeding systems in bioengineering applications. Due to the fact that the electric output of the manufactured 

TENG, it has not been possible to deepen in their use as self-feeding devices. Therefore, a contingency 

plan has been applied and a bibliographic study has been carried out on the possible application of 

triboelectric generators in bioengineering, and specifically for self-feeding implantable medical devices. In 

it, it has been shown that the use of triboelectric generators is an energy harvesting strategy that meets 

the supply requirements of the main implantable devices, in addition to presenting a wide range of 

materials that can be used, many of them biocompatible, and low cost. 

11.1 FUTURE LINES OF THE PROJECT 

The field of energy harvesting is, therefore, a booming area of special interest to the biomedical sector. 

That is why there is still much to advance and study in this environment, and specifically, for triboelectric 

generators, which have proven to be a promising strategy. 

Regarding the future prospects of this project, different lines of work can be defined. The first one refers 

to the optimization of the manufactured device. This includes reproducing improvements described in 

other articles to improve the electrical output of the system [11, 16, 17] (C. Wu et al., 2019)(Kim et al., 

2020)(Lee et al., 2017), such as functionalizing or micro-structuring surfaces, or even looking to design 

new ones. A first approach could be to make use of soft lithography for micro-patterning of the surface, 

since it is a relatively simple and cheap solution. 

To deepen in the study, it would be advisable to develop different triboelectric generators with different 

pairs of materials and characterize them and compare their performance. Moreover, it is strongly 

recommended that when testing the performance of the manufactured TENG, a pushing tester is used, 

so that periodicity is granted, and force modulus and contact area do not vary at each cycle. Another 

improvement at the modelling and validation study is to deepen in the influence of sigma and surface on 

the results. 

Another line in which progress can be made is in the development of power management circuits, since 

it has been observed in the modelling and in the experimental part that the TENG gives an AC output that 

is very irregular, and therefore cannot be directed directly to the electronics of a device as these require 

a stable DC input. Additionally, the energy harvested that comes from the body environment is quite 

unstable and can be modified under stress situations. 

The energy harvested can be stored in batteries or supercapacitors through power management circuits. 

However, in this project it has been demonstrated that the efficiency of the system is too low due to the 

difference in impedance between TENGs and energy storage devices [11](C. Wu et al., 2019). Therefore, 

it would be interesting to study more advanced rectifying circuits for a better efficiency of energy storage. 

Two possible approaches are designing power converters for impedance matching or designing a 

charging cycle to maximize energy transfer [15] (Rodrigues‐marinho et al., 2020). In order to stabilize the 

output voltage, an advanced configuration for a DC-DC circuit could be studied, together with a protection 

circuit with low consumption. 

The study of the application of TENGs in bioengineering applications shows a wide range of options such 

as comparing the working ranges obtained experimentally with those required by medical devices, 

studying different biocompatible triboelectric materials or to design a suitable encapsulation to protect the 

TENG from the body environment but also granting that biomechanical energy is not lost. 
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Furthermore, the purpose of the introduction of TENGs as power sources is to overcome the limitation of 

the short lifespan of batteries. However, this hypothesis is based on the idea that TENGs are able to 

harvest energy without reducing their performance with time. This is why, it would be interesting to carry 

out a study of the lifetime of TENGs, specifically for liquid-solid friction ones, as they show less abrasion. 

Finally, this study has focused on the performance of TENGs as power sources, but it would be desirable 

to deepen in the performance as active sensors and discuss it sensitivity, stability and its multifunctionality. 
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