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Abstract 

Organ-on-a-chip (OoC) is an emerging technology which combines microfluidics with cell culture 

to create platforms that replicate human organs. These predictive models are used to understand 

human physiology and to predict responses to medical treatments. Being the small intestine the 

largest interface between the environment and the human organism and one of the most important 

organs involved in drug metabolism, there is an increasing interest from researchers and the 

pharmaceutical industry for reliable in vitro intestine models. However, currently available gut-on-

a-chip devices that replicate the complex microenvironment found in the in vivo tissue are scarce, 

limiting their translational capabilities to clinical outcomes. Therefore, in this work we aim to develop 

a reproducible gut-on-a-chip device that mimics the 3D architecture and cell heterogeneity of the 

small intestinal mucosa. SLA 3D bioprinting will be used to fabricate cell-encapsulating GelMA-

PEGDA hydrogels that support the formation of an epithelial monolayer on top, to replicate the two 

compartments of the intestinal mucosa; the lamina propria and the intestinal epithelial barrier. The 

hydrogels contain fibroblasts and immune cells, which play a key role in maintaining the intestinal 

mucosa integrity and homeostasis. These scaffolds will be then incorporated into PDMS 

microfluidic chips to create the final biomimetic system. Although further improvements are needed, 

this gut-on-a-chip, obtained using precise and fast fabrication techniques, might be a useful tool for 

drug development and human physiology studies.   
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1. Introduction 

Organ-on-a-chip (OoC) microdevices aim to create in vitro models of human organs by simulating 

the in vivo environment found in the tissues, combining microfluidics with cell culture [1]. These 

predictive models are used to understand the human body functions and the pathogenic 

mechanisms of disease for drug development and toxicity assessment.  

The need for biomimetic systems arises from the major gap between the current in vivo and in vitro 

models. In the preclinical phase of drug development, compounds are tested in 2D cell cultures. 

Although these cultures give primary information on the effect of the substances in cell activity, they 

are inadequate to predict patient outcomes, as they do not mimic the complex dynamic tissue 

microenvironment [2]. Therefore, the pharmaceutical industry is interested in the development of 

platforms that allow for rapid, efficient, cost-saving and reliable drug screening, reducing the need 

for animal testing [3].  

One of the most important organs when studying pharmacokinetics is the gut. Drugs administered 

through the oral route have to be absorbed in the small intestine in order to enter the bloodstream 

and be distributed throughout the body. This tissue is formed by several layers, being the intestinal 

mucosa the innermost layer and in direct contact with the external environment. It is responsible 

for protection against pathogens, nutrient absorption, and waste secretion, and is made up of an 

epithelial barrier and an underlying lamina propria, followed by muscular layers [4]. To increase the 

surface area where nutrients absorb, the tissue presents a characteristic architecture of 

protrusions, called villi, followed by invaginations, known as crypts [5] (Figure 1). The epithelial 

monolayer is composed of different cell lineages (enterocytes, enteroendocrines, Paneth cells, Tuft 

cells, Goblet cells and stem cells) which are characteristically distributed throughout the crypt-villus 

domains. The most abundant cells are the enterocytes, which are highly polarized absorptive cells 

that present microvilli on the apical side exposed to shear stress. Differently, the lamina propria is 

connective tissue with residing fibroblasts, myofibroblasts and immune cells that support the 

intestine functions and maintain its homeostasis [6].   
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Figure 1. Schematic of the intestinal mucosa with the crypt-villus architecture. The epithelial monolayer is composed of enterocytes, 

enteroendocrines, Paneth cells, Tuft cells, Goblet cells and stem cells. The underlying lamina propria has residing fibroblasts, 

myofibroblasts and immune cells that support the intestinal barrier function. (Created in BioRender.com). 

Given the complexity of the living tissue, it is challenging to mimic the small intestinal mucosa. 

Specifically, OoC models that incorporate the structural features and recreate the cell heterogeneity 

of the gut are scarce. Therefore, this project is focused on fabricating a gut-on-a-chip device, which 

simulates, on the one hand, the stromal compartment by incorporating a 3D cell-encapsulating 

hydrogel with crypt-villus architecture and, on the other hand, the intestinal barrier, by growing an 

epithelial monolayer on top. To create a reproducible and cost-effective system, digital light 

projection stereolithography (DLP-SLA) 3D bioprinting will be used to fabricate the hydrogels with 

embedded fibroblasts and immune cells. All of this will be carried out in combination with 

microfluidic technology to obtain the final gut-on-a-chip device.  

 

1.1. Objectives 

The project seeks to fabricate a reproducible gut-on-a-chip device that mimics the small intestinal 

mucosa. To do so, 3D SLA bioprinting and microfluidic technology will be used in combination with 

cellular cultures.  To meet the primary goal, some secondary objectives are defined:  

- To fabricate hydrogel scaffolds using SLA 3D bioprinting.  

- To determine the hydrogel scaffold pore size. 

- To encapsulate intestinal stromal cells (fibroblasts and immune cells) into the bioprinted 

hydrogels and assess their behavior in a 3D microenvironment.  

- To obtain a model of the intestinal mucosa with epithelial and stromal cells and monitor the 

barrier properties.   

- To obtain a gut-on-a-chip device containing the cell-laden hydrogel and the microfluidic 

component, and assess cell viability inside the chip. 
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1.2. Project scope  

The project was carried out between the 1st of February and the 22nd of June of 2021 in the 

Biomimetic Systems for Cell Engineering research group at the Institute for Bioengineering of 

Catalonia (IBEC). It was divided into different stages, which are explained in detail in Section 6.  In 

short, first, a literature review was carried out, followed by an experimental part, and finishing with 

a result analysis.  

 

For the experimental research, a previous training, completed during the summer months of 2020, 

was necessary in order to use all the IBEC’s facilities and to learn the basic laboratory techniques. 

The experimental research consisted of the fabrication and characterization of the bioprinted 

hydrogels, first without cells embedded for pore size determination and then with stromal cells 

encapsulated. Monocytes and fibroblasts containing hydrogels were fabricated and epithelial cells 

were seeded on top, mimicking the lamina propria and the epithelial barrier. The co-cultured 

hydrogels were studied alongside hydrogels laden with immune cells alone, to evaluate their 

differentiation into macrophages. As it is difficult to incorporate sensors into the microfluidic device, 

cell behavior inside hydrogels was first studied in static Transwell® models. After verification of 

epithelial barrier formation and monocyte differentiation in flat hydrogels, the gut-on-a-chip was 

assembled. This included the microfluidic chip with the cell-laden hydrogel presenting a villus-crypt-

like architecture. Owing to the time restrictions, we were not able to develop a fully functional 

system, thus, further experiments are needed.  

 

1.3. Memory structure 

The result analysis was followed by the report preparation and writing. The memory includes a brief 

introduction containing the motivation and goals of the project. Following, the state of the art of 

OoC technology and the commercialized products are reviewed. Next, the methodology of the 

experiments carried out is described and the obtained results are discussed. The report also 

includes the technical and economic feasibility and viability of the project, as well as the current 

regulations regarding OoC. Finally, the conclusion and future improvements are stated. 

  

2. Background 

2.1. From microfluidics to organ-on-a-chip 

OoC based devices appeared over a decade ago as an evolution of Lab-on-a-Chip (LoC), which 

emerged after the appearance of microfluidic technologies. Microfluidics is the use of 

microminiaturized devices with different compartments, such as channels, pumps, mixers or 

separators that support the study of the fluid’s behavior. Reducing the scale induces a laminar flow 

enabling more precise control of the system, all with less sample volume [7]. Therefore, 

microfluidics has reinforced the development of LoC devices, which integrate multiple laboratory 

functions for automated cell or molecular analysis into small, compact and portable devices [8]. 
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The OoCs devices can be classified into three different groups: OoCs that emulate the barrier 

function of a tissue, OoCs that replicate one specific organ, and microfluidic platforms that 

incorporate multiple interconnected organs to study their interaction [9].  

 

Generally, all OoC devices include two main components, microfluidics and 2D or 3D living cell 

tissues. The first component comprises the channels that will reproduce the fluid flow in the human 

body, distributing the nutrients and oxygen throughout the tissue model. Furthermore, the 

microchannels are used to induce specific states for studying pathological processes or to deliver 

drugs. For fabrication of the microfluidic chip [10], [11]poly(methyl methacrylate) (PMMA)[12], [13] 

and polydimethylsiloxane (PDMS) are widely used materials  [10], [11],[12], [13]. However, PDMS 

has become the most popular as it presents unique characteristics including gas permeability, 

biocompatibility, cytocompatibility elasticity, low cost and optical transparency.  

 

As for fabrication techniques, soft lithography has become the foundation of OoCs fabrication due 

to its simplicity and low cost. It consists of curing soft elastomers on a master mold with the desired 

micropatterns. Yet, 3D printing is gaining attention since it allows for automated and high-resolution 

fabrication while giving the possibility for the direct incorporation of the tissue component into the 

microfluidic device [14]. 

 

The second component in OoC is the cell culture, or biological component, and is simulated with a 

combination of cells and proteins. Advancements are made on the incorporation of 3D scaffolds 

that simulate the structural features of the tissue.  In this context, hydrogels have drawn most of 

the attention as these polymeric networks absorb high amounts of water mimicking the extracellular 

matrix (ECM). Furthermore, their mechanical and chemical properties can be tuned by changing 

the composition, polymerization method and crosslinking density. For hydrogel fabrication, 

synthetic (e.g. polyvinyl alcohol, polyethylene glycol, polyacrylic acid, etc.)  or natural polymers 

(e.g. collagen, gelatin, chitosan, alginate, pectin, etc.)  can be used [15]. The natural polymers are 

biocompatible and biodegradable but lack mechanical stability. The synthetic ones provide 

structural integrity and prevent fast degradation, but they lack cell adhesion motifs. Thus, a 

combination of the two would give the best results for cell-laden hydrogels with topographical 

features.  

 

One of the main fabrication techniques of hydrogel scaffolds is bioprinting due to its high resolution, 

versatility, and throughput. 3D bioprinting can be classified in extrusion-based, inkjet-based, laser-

assisted, or stereolithography (SLA) [16]. Among them, SLA presents the best attributes for 

fabricating cell-encapsulating hydrogels due to its low cost, lack of pressure exertion, and high 

speed, reducing time exposure of cells to non-physiological conditions [14]. It is based on the 

projection of UV or white light on the bioink, which consists of a mixture of a photosensitive 
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prepolymer solution with cells, inducing the photocrosslinking of the biomaterial in a layer-by-layer 

manner (Figure 2).  

 

 
Figure 2. Schematic of working principle of SLA bioprinting technique. A building platform is submerged into the photocrosslinkable 

prepolymer and light is irradiated triggering the curing of a layer in its surface. Once polymerized the platform moves upwards in the 

z-direction, after which light is irradiated again with a new pattern, adding a newly cured layer on top of the previous one. (Created 

in BioRender.com) 

2.2. Gut-on-a-chip 

Efforts in the gut-on-a-chip field are focused on emulating the absorption and metabolism function 

of the intestine, incorporating physiological realistic cell types, a 3D villus-crypt architecture, fluid 

flow and peristaltic motion [17].    

 

The simplest intestine chip models are microfluidic systems with two channels, separated by a 

porous membrane with immortalized intestinal epithelial cells seeded on top replicating the 

intestinal barrier [18].  One channel represents the gut lumen whereas the other channel the blood 

stream, and are both perfused with a continuous laminar flow of culture medium (Figure 3 (a)). 

These models are mainly used for permeability assays.  

 

The complexity of these systems is increased with the addition of biochemical and biomechanical 

cues, similar to the one's tissues experience under physiological conditions [9]. The biomechanical 

cues play a key role in tissue maturation and different gut-on-chip models have been developed to 

incorporate this increased complexity. On the one hand, it has been proved that the stiffness and 

topography of the scaffolds can regulate the cell activity and its resemblance to the native human 

gut  [19]. Therefore, villus-shaped structures have been incorporated into the microfluidic device. 

For example, Shim et al. developed a microfluidic gut model that incorporated a 3D villi collagen 

scaffold fabricated with photolithographic technique (Figure 3 (b)) [20]. On the other hand, 

mechanical active stimuli such as tensile stretching have been proved to induce epithelial cell 

polarization and differentiation. Kim et al. generated a model with cyclic peristalsis-like mechanical 

deformations by incorporating two lateral channels subjected to suction cycles (Figure 3 (c)) [10].  

The stretching of the channels triggered villus morphogenesis of the epithelial monolayer, which in 
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static conditions remained flat. Commensal microbes were also integrated into the model, to study 

their interaction with epithelial cells and their contribution to intestinal homeostasis.  

 

One of the most recent works in this field has been carried out by Lutolf et al. [11].  They have 

developed a hydrogel-based microfluidic chip with a crypt-like architecture that induces organoid 

morphogenesis (Figure 3 (d)). The 3D topography, obtained with the laser-ablation technique, 

triggered the differentiation of intestinal stem cells into the distinct cell types found in the intestinal 

epithelium that were spontaneously arranged across the crypt and villus domains as in the in vivo 

tissue. Moreover, they included stromal cells, such as myofibroblasts and immune cells that 

supported the tissue barrier function.  

 

 
Figure 3. Intestine-on-a-chip devices. (a) Schematic of a simple microfluidic intestinal barrier model, composed of two channels 

separated by an epithelial monolayer. Adapted from Ref. 18 [18](b) Schematic of the assembly of a microfluidic intestinal model with 

a 3D villus-like collagen scaffold. Adapted from Ref. 20. (c) Schematic of intestine-on-a-chip that recreates the in-vivo mechanical 

forces.  (i) Cross-section of the device with lateral vacuum chambers. (ii) Schematic vacuum chambers suction to generate a cyclic 

stretch of the membrane. Adapted from Ref 10.  (d) Mini-intestine 3D hydrogel-containing microdevice (i) Schematic of the 

microfluidic device. (ii) Photograph of the top view of the channel with the 3D crypt-shaped hydrogel of collagen/Matrigel and 

dimensions. Adapted from Ref 11.  

The present study is a continuation of the previous work from the group [21], in which they 

developed a model of the intestinal mucosa using gelatine methacrylate (GelMA) – poly(ethylene 

glycol) diacrylate (PEGDA) hydrogel co-networks. This scaffold allowed for the encapsulation of 

intestinal fibroblasts with high adhesion and viability, as well as the intestinal epithelial monolayer 

formation on top. A follow-up study encapsulated immune cells together with fibroblasts inside the 

GelMA-PEGDA hydrogels [22] and demonstrated that this immune component had an important 

role in the intestinal barrier properties. However, these hydrogels were not incorporated into 

microfluidic chips and presented no topographical features.  

 

Therefore, we will use the projector-based SLA 3D bioprinting technique to rapidly fabricate well-

defined reproducible scaffolds, giving room for automated fabrication. Moreover, we aim to 
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incorporate an immune component into the stromal compartment to replicate the immune-

modulatory functions of the intestine while integrating the hydrogels into a PDMS microfluidic chip.  

The final complete intestine model is shown in Figure 4.   

 
Figure 4. Bioprinted gut-on-a-chip to mimic the small intestinal mucosa. The model is composed of a microfluidic chip with two 

channels, recreating the lumen and blood-stream, that incorporates a cell-laden hydrogel with crypt-villus architecture and with 

epithelial cells seeded on top. Created in BioRender.com.  

This chip provides several advantages in comparison with already existing models. Firstly, it does 

not only replicate the epithelial barrier but also the lamina propria and its immune system function. 

Thus, increasing the complexity and functionality of the model. Secondly, the microfluidic device 

incorporates an ECM-like matrix with a 3D architecture that resembles the native tissue, combining 

natural and synthetic polymers. Third, it uses a projector-based SLA bioprinting technique for the 

fabrication of the constructs. This method allows for high-resolution, mechanically robust and fast 

cell-laden hydrogel fabrication, that ensures cell viability up to 95% [16], [23]. Lastly, a customized 

commercially available 3D printer is used, reducing the costs that come from highly specialized 

bioprinter. Additionally, this printer gives us the possibility of printing several hydrogels 

simultaneously by increasing the moving platform surface.  

 

3. Market analysis 

The OoC concept appeared in 2010 when the first successful lung-on-a-chip device was produced 

by the Wyss Institute led by Donald Ingber [24]. The same group later founded Emulate, one of the 

first commercial OoC ventures. They now offer supported models of liver, kidney, and intestine, as 

well as microfluidic chips that can be configured to emulate many organs. New companies have 

emerged since, offering different alternatives of single chips; Alveolix, TARA Biosystems, Synvivo 

or Nortis, to name a few.  

 

TissUse and Hesperos are bringing body-on-a-chip devices to the market with, for instance, the 

HUMIMC and Heart-liver-skeletal muscle-neuron four organ model, respectively. These models 

support the study of absorption, distribution, metabolism, and excretion of compounds.  
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Another pioneer in the field is MIMETAS, who introduced hydrogel-liquid interfaces into their 

microfluidic chips to mimic the ECM. Furthermore, they also lead the advancements onto creating 

multi-chip plates for throughput screening (OrganoPlate 2-lane 96). This approach has also been 

followed by AimBiotech. 

 

Regarding intestine models, Emulate commercializes the Emulate Colon Intestine-Chip that 

combines organoid-derived epithelium with colon-specific endothelium and mechanical forces. 

There are no other gut-on-a-chip devices, although we find publications in which research groups 

use the customizable commercialized models to seed intestinal cells [25].   

 

In 2020 the microfluidic market size was valued at USD 17.9 billion, in which the organ on a chip 

presence is increasing and is expected to expand at a compound annual growth rate (CAGR) of 

21.9%, as it will be adopted by new markets, including hospitals and cosmetic and chemical 

industries [26].   

Given the complexity of the gut, it is challenging to create robust biomimetic microsystems that can 

be put on the market and so the focus is on integrating the morphological characteristics and 

dynamic environment while extending the device life span [27]. Furthermore, for improved 

functional readout, the incorporation of built-in sensors is being studied. Provided that the main 

end-users are pharmaceutical companies, life science companies, research institutes and contract 

research organizations, who are looking for efficient and cost-saving techniques for in vitro testing, 

the industry is questing to find a balance between complexity and costs. The final goal is to create 

reproducible, simple, and cost-effective systems for commercial use. Therefore, this project aims 

at creating a gut-on-a-chip that satisfies the current demands of the market using 3D bioprinting.  

The use of 3D bioprinting technology to fabricate hydrogel scaffolds that can be integrated in the 

microfluidic chip has not been adopted yet by the developers. The bioprinting concept appeared in 

the early 2000s when its potential for tissue engineering, therapeutic or drug screening applications 

was discovered. Organovo is considered the first 3D bioprinting company, specialized in fabricating 

tissue models with inkjet-based modality, and was followed by RegenHu and Poietis in the 

commercialization of extrusion-based and light-based 3D bioprinters, respectively.  However, 

owing to the high costs, research groups opted for the adaption of commercially available 3D 

printers to create tissue constructs.  Consequently, Allevi, CELLINK and Se3D emerged with 

affordable general bioprinters [28]. The market was valued in 2020 at USD 1.4 billion and is 

expected to grow due to the increasing research in organ bioprinting for transplantation [29].  
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4. Concept engineering  

4.1. Cell culture 

The intestine has a complex microenvironment, formed by different cell types that support its 

function. Enterocytes, which are hyperpolarized epithelial cells, are the most important constituents 

of the intestinal barrier.  Although this epithelial barrier plays a key role in protection against 

pathogens and nutrient absorption, many other cell types found in the underlying lamina propria 

are crucial for supporting this barrier function while maintaining homeostasis [4]. To name a few, 

macrophages, lymphocytes, fibroblast, and myofibroblasts.  For the fabrication of a 3D model of 

the gut, three different cell cultures were used: NIH-3T3 as fibroblasts, THP-1 as monocytes that 

are differentiated into macrophages, and Caco-2 BBe as enterocytes. 

4.1.1. NIH-3T3 fibroblasts 

The NIH-3T3 (ATCC® CRL-1658™) is a mouse embryonic fibroblast cell line. The cells are cultured 

in flasks with Dulbecco’s Modified Eagle’s Medium (DMEM Medium) (Gibco) supplemented with 

10% (v/v) of Fetal Bovine Serum (FBS) (Gibco) and 1% of (v/v) Penicillin/Streptomycin (Pen/Strep) 

(Sigma-Aldrich). We will refer to this medium as Supplemented DMEM. They are incubated at 37ºC 

and 5% CO2. Cells were subcultured when reaching 80-90% confluency. To do so, the culture 

medium from the flask was discarded, and cells were washed with phosphate-buffered saline 

solution (PBS) (Thermo Fisher) to eliminate all the remains of serum containing trypsin inhibitors. 

Afterwards, cells were incubated with Trypsin-EDTA (Thermo Fisher) solution for 5 min, or until 

they were detached from the surface. Supplemented DMEM was added to inhibit trypsin enzymatic 

activity and cells were centrifuged at 1200 rpm for 5 min. The pellet was then resuspended and 

seeded in a new flask at a ratio of 1:10.  

 

4.1.2. Brush border expressing human epithelial colorectal adenocarcinoma (Caco-

2 BBe) 

The Caco-2 BBe cells (ATCC® CRL-2102™) are cloned from the human colorectal 

adenocarcinoma derived cell line, Caco-2. The cells form a polarized monolayer with an apical 

brush border (BB). They are cultured in flasks with Supplemented DMEM at 37ºC and 5% CO2. 

Cells were subcultured when reaching 80-90% confluency. As explained above, cells were washed 

with PBS and trypsinized. After blocking the trypsin activity with Supplemented DMEM, cells were 

centrifuged at 900 rpm for 5 min. The pellet was then resuspended, and the 250.000 cells were 

seeded in a new T75 flask.  

 

4.1.3. THP-1 monocytes 

The THP-1 (ATCC® TIB-202™) is a human leukemia monocytic cell line. The cells are cultured 

with Roswell Park Memorial Institute (RPMI)-1640 medium (Gibco) supplemented with 10% (v/v) 

FBS, 1% (v/v) P/S, 1% (v/v) sodium pyruvate (Gibco), 1% (v/v) 4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid (HEPES) (Gibco) and 0.1% (v/v)  β-mercaptoethanol (Gibco), which 

was added just before use. We will refer to this medium as Supplemented RPMI. They are cultured 

in suspension at a density of 2x105 cells/mL in non-adherent T75 culture flasks and incubated at  

37ºC and 5% CO2. When cell concentration arrived at a maximum of 1x106 cells/mL they were 

subcultured by dilution with Supplemented RPMI to reach a concentration of 2x105 cells/mL.  

 

In some experiments, THP-1 cells were differentiated into macrophages-like cells (M0). To induce 

the differentiation, 8x106 cells were seeded in a petri dish with Supplemented RPMI with phorbol 

12-myristate 13-acetate (PMA) at 50 ng/mL. After 72 h, the medium containing PMA was discarded, 

cells were rinsed with PBS and incubated with 3mL Accutase® cell detachment solution for 10 min 

in the incubator. With the help of a cell scraper, cells were carefully detached from the surface and 

7 mL of Supplemented RPMI Medium was added to inactivate the Accutase® enzymatic activity. 

Lastly, the suspension of differentiated THP-1 was centrifuged at 400xg for 5 min with a slow 

deacceleration.  

4.2. Synthesis of gelatin methacryloyl (GelMA) 

Gelatin methacryloyl (GelMA) is synthesized by the reaction of gelatine with methacrylic anhydride 

(MA) following the method described previously [30]. The methacryloyl groups of MA react and 

bond to the amino groups present in the side chains of gelatin, forming modified gelatin that can 

be photocrosslinked.  

 

Gelatin from porcine skin type A (Sigma-Aldrich) was dissolved in sterile PBS at a concentration of 

10% (w/v) at 50ºC for 1 h. Then, the MA (Sigma-Aldrich) was added to the gelatin solution at 0.5 

mL/min using a syringe pump (NE-1000 Programmable Single Syringe Pump, New Era) to get a 

final concentration of 1.25% (v/v) MA. After complete addition, the reaction was kept under stirring 

conditions at 50ºC for 1 h. The solution was then centrifuged at 1200 rpm for 3 min at 20ºC to 

remove the unreacted MA. The supernatant was diluted in warm PBS (40ºC) to double its volume 

to stop the reaction. Finally, the solution was dialyzed against MiliQ water bath at 40ºC using 

dialysis membranes (Spectra/Por® 1 Dialysis Membranes, MWCO 6000 to 8000, Spectrum ®), 

previously hydrated. This step is required to eliminate all the byproducts and unreacted MA. The 

membranes were left for 3 days in MiliQ water, which was changed three times a day. Finally, the 

pH of the GelMA solution was adjusted at 7.4, distributed in 50 mL falcon tubes and lyophilized for 

3-4 days to obtain a foamy solid. The final product is then kept in the freezer at -20ºC until use.  

 

4.2.1. Determination of the degree of functionalization of GelMA 

The degree of methacrylation of the GelMA used in the bioink will affect the fabrication conditions 

and the properties of the hydrogel [30]. This property is quantified by the TNBSA assay, a method 

developed by Habeeb 1966 [31]. When MA reacts with gelatin, it bonds to reactive amine groups 

found in the lysine residues, decreasing their availability. Trinitrobenzene sulfonic acid (TNBSA) 
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reacts with the still available amino groups in an aqueous solution at pH 8 and produces an orange-

colored derivative, whose absorbance at 335 nm can be measured.  Therefore, by measuring the 

absorbance, the number of free amino groups can be quantified, and thus the methacrylation.   

 

To perform this assay gelatin and GelMA (known and unknown concentration) were dissolved in 

carbonate buffer (0.1 M NaHCO3, pH 8.4) (Sigma-Aldrich) at a concentration of 2 mg/mL. To 

generate a standard curve, a serial dilution of 100 L of gelatin and GelMA solutions were placed 

in a 96-well plate (Thermo Scientific™). Wells with only carbonate buffer were also added as blank. 

Then, 50 μL of working solution (TNSBA 0.01% in carbonate buffer) (Sigma-Aldrich) was added 

and the plate was incubated at 37ºC for 2 h in the dark. Next, the reaction was stopped and 

stabilized by adding 50 μL of sodium dodecyl sulfate (SDS) (Sigma-Aldrich) at 10 % (w/v) and 25 

μL of HCl 1 M in Milli-Q water to each well. Absorbance was measured at a wavelength of 335 nm 

with a microplate reader (Infinite M200 PRO Multimode Microplate Reader, Tecan). The resulting 

values were used for calculating the degree of methacrylation of GelMA, comparing the calibration 

curve of the gelatin solution (total of free amines available) to the calibration curve of the GelMA 

solution. 

 

Finally, the percentage of methacrylated lysines, also known as the degree of methacrylation, was 

calculated with Equation 1.  

𝐷𝑒𝑔𝑟𝑒𝑒 𝑀𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 = 100 − % 𝑓𝑟𝑒𝑒 𝑎𝑚𝑖𝑛𝑒𝑠 Eq. 1 

  

4.3. Hydrogel fabrication  

4.3.1. Bioink preparation 

The fabricated hydrogels should have robust mechanical properties that allow for the printing of the 

hydrogel channel with villus-like microstructures as well as cell adhesion motifs that allow for cell 

encapsulation, proliferation, and migration. For this reason, the polymer solution (bioink G8) is 

composed of 5% (w/v) GelMA, suitable for cell adhesion and biodegradable, 3% (w/v) poly(ethylene 

glycol) diacrylate (PEGDA) (Sigma-Aldrich), synthetic polymer that provides mechanical stability, 

(0.4% w/v) lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) (TCI Chemicals) as 

photoinitiator and (0.025% w/v) tartrazine (Sigma-Aldrich) as photo absorber. This last component 

is a synthetic dye that acts as a photo blocker by absorbing light at 405 nm and is crucial for 

enabling high print resolution. 

 

To prepare the G8 bioink, PEGDA, LAP and tartrazine were dissolved in Hank’s Balanced Salt 

Solution (HBSS) (Gibco) supplemented with 1% (v/v) Pen/Strep at 65ºC for 1 h and then filtered 

using a 0.22 μm filter. In parallel, GelMA was dissolved in supplemented HBSS at 65ºC. Once 

completely dissolved, equal volumes of the two polymer solutions were mixed to obtain the G8 
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bioink. For cell encapsulation, NIH-3T3 and/or THP-1 were trypsinized as explained above and 

counted to have a concentration of 6.5x106 cells/mL each. The desired volume of cell suspension 

was extracted and centrifuged. After centrifugation, the supernatant is carefully removed and 

directly resuspended in the polymer solution, to obtain the cell-containing G8 bioink. 

 

4.3.2. Substrate silanization 

The silanization with vinyl groups of the substrate on which the hydrogel is fabricated, round 

coverglass (VWR, 13 mm diameter) or polyethylene terephthalate (PET) membranes (it4ip, 10 mm 

diameter, 0.4 μm pore size), improves its attachment upon printing.  In this process, the surface of 

the substrate is activated with a UV ozone cleaner (ProCleaner™, Bioforce Nanosciences) for 15 

min. Directly after, the substrates were incubated in a solution containing 2% (v/v) 3-

(trimethoxysilyl)propyl methacrylate (Sigma-Aldrich), 3% (v/v) acetic acid (diluted 1:10) and 95 % 

(v/v) absolute ethanol for 2 h and then rinsed thoroughly with ethanol. Then, the substrates were 

placed in the oven at 65ºC for 30 min.  Silanized substrates were stored in the vacuum desiccator 

until use.  

 

4.3.3. 3D bioprinting of the hydrogel 

The hydrogels were fabricated using SLA bioprinting. The printing setup was a customization of 

the commercially available Solus 3D printer (Junction3d), a DLP (digital light processing) projector-

based SLA printer (Figure 5). The printing setup consists of a vat, adapted to the small dimensions 

of the hydrogels, pre-heated at 37ºC where the bioink is introduced. The light is projected through 

an HD beam projector coupled to an infrared cut-off filter to restrict the light projection to the visible 

range. Additionally, the printer has a building platform attached to a z-axis actuator where the 

substrate (silanized PET or coverglass) is attached and the hydrogel will be printed.  

 
Figure 5. (a) Commercially available Solus 3D printer (Junction3d). (b) Customized Solus 3d printer set up, with miniaturized tank 

and build platform for hydrogel printing.  

The printing process entails different steps. First, a 3D CAD design with the desired structure is 

created with the modeling software program FreeCAD. Two different designs were employed for 

different purposes. On the one hand, hydrogel discs of 6.5mm in diameter and 300m in height 
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were printed for the preliminary static measurements in Transwell® inserts (Figure 6 (a)). This 

simple design is used for studying the behavior of cells when being embedded in polymeric 

scaffolds. On the other hand, rectangular hydrogels (7x4x0.5mm) with micropillars that resemble 

the 3D villi intestinal architecture were fabricated for gut-on-a-chip experiments (Figure 6 (b)).  

 
Figure 6. Hydrogel FreeCAD designs. (a) Disc design for static measurements in Transwell® inserts. (b) Rectangular channel-like 

design with micropillars.  

The design is uploaded to the printer software and the proper printing parameters, regarding build 

resolution and layer printing parameters, are chosen. Then the printing process goes as follows: 

the liquid polymer solution is introduced into the tank. The building platform is submerged in the 

mixture and its surface is then irradiated with a light pattern, triggering the photopolymerization of 

a thin layer. Once the solution has polymerized the building platform moves upwards in the z-

direction and light is irradiated again with a new pattern, adding a newly cured layer on top of the 

previous one. This process continues layer-by-layer until obtaining a 3D structure with the desired 

morphology.   After printing the hydrogels were rinsed with warm PBS and removed from the 

platform.  

 

Moreover, the printing parameters used for fabricating the hydrogels were optimized to have the 

appropriate mechanical properties, whilst ensuring cell viability. The optimized values are 

hereunder detailed:  

- Layer thickness: 13m 

- Layer exposure time: 5s 

- Initial layer exposure time: 15s 

- Number of initial layers: 2 

- Exposure buffer time: 1s 

 

4.3.4. Transwell assembly  

For cell experiments, hydrogels fabricated onto PET membrane substrates were mounted on 

modified Transwell® inserts as described in [21], [32] (Figure 7). Briefly, the standard polycarbonate 

membrane was removed from the inserts. Then, a first ring of pressure-sensitive adhesive (PSA) 

with a 6.5 mm inner diameter and 13 mm outer diameter was attached to the Transwell® insert. 
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The hydrogel-containing membrane was then adhered to the PSA ring.  Finally, a second PSA ring 

was attached to the bottom of the PET to prevent leakage. Afterwards, 200 L of PBS (or 

Supplemented DMEM when encapsulating cells) were added to the upper compartment and 600 

L to the lower compartment. 

 

 
Figure 7. Schematic of the Transwell® assembly process. Created with BioRender.com. 

4.4. Characterization of hydrogel network  

The structural characterization of the hydrogels is of great interest as it affects cell behavior [33]. 

Besides, our hydrogels encapsulate intestinal stromal cells such as monocyte-derived 

macrophages. Thus, we are interested in knowing whether the PMA molecule, which induces the 

differentiation of THP-1 towards macrophages, can diffuse through the hydrogel.  

 

To determine the pore size of the hydrogels, we measure the permeation of dextrans with a defined 

size. Thus, fluorescently-labeled dextrans (Merck Life Science) of different molecular weights were 

used: 4 kDa, 70 kDa, 150 kDa, 500 kDa and 2000 kDa. Hydrogels were printed on silanized PET 

membranes and mounted on Transwell® inserts and kept in PBS. As controls, PET membranes 

without hydrogels were mounted on Transwells®. The following day, hydrogels were equilibrated 

at 37ºC in the incubator. Warmed dextran solutions of a concentration of 0.5 mg/mL in PBS were 

placed to the upper (donor) compartment and samples of 50 L were taken from the lower 

(acceptor) compartment at different time points during 4 h and transferred to a 96 well black plate. 

The fluorescence of the plate was measured with a Multimode Microplate Reader (Infinite M200 

PRO Multimode Microplate Reader, Tecan). Depending on the fluorescent label, FITC or 

Rhodamine B, the fluorescence was measured at the following excitation and emission 

wavelengths: 

 

a. FITC: λexc = 490 (+/- 10) nm; λem= 525 (+/- 20) nm  

b. Rhodamine B: λexc = 540 (+/- 10) nm; λem= 625 (+/- 20) nm  

 

From the intensity, the permeated amount of the different dextrans along time was determined. To 

do so, the fluorescence values are interpolated in the calibration curves to obtain the concentration 
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of dextran at the different time points. Using Equation 2 we can then calculate the total mass 

transfer at each time point, a measure of the hydrogel’s permeability. 

 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑉𝑠 ∗ (∑ 𝐶𝑛−1

𝑛

𝑛=1

) + 𝐶𝑛 ∗ 𝑉𝑟 Eq. 2 

 

The values of the mass transferred are then plotted as a function of time to discard those samples 

that present leakage. Namely, those whose tendency line does not go through the origin. The 

diffusion coefficient in the hydrogels of each dextran was also calculated using the equations from  

Engberg et al. [34]. (see Appendix A).  

 

4.5. Cell-laden hydrogels mimicking the intestinal mucosa  

Hydrogels encapsulating NIH-3T3 and/or THP-1 cells were bioprinted as explained above. These 

cell-encapsulating scaffolds were then assembled in Transwell® inserts and kept in culture with 

Supplemented DMEM medium containing Normocin (Invitrogen) (dilution 1:500) so that 

contamination is prevented. To mimic the intestinal epithelial barrier, Caco-2 BBe cells were seeded 

on top of the hydrogels at a density of 250.000 cells/sample either at day 1 or day 6 after hydrogel 

fabrication, and cultured for 21 days, changing the media every other day and monitoring the 

transepithelial electrical resistance (TEER) throughout the culture. 

4.5.1. Transepithelial electrical resistance (TEER) 

The transepithelial electrical resistance is a parameter essential for measuring the integrity of the 

cell monolayer. The TEER is measured through two electrodes, situated one at each side of the 

cellular barrier, that generate a voltage difference, provoking current to flow. With the current values 

and ohm’s law, the resistance of the samples can be obtained and normalized to the area of the 

monolayer.  

 

For TEER measurements the EndOhm-6G Chamber and the EVOM3 (Epithelial Voltohmeter) 

meter from World Precision Instruments were used. The EndOhm chamber is a glass cylindrical 

chamber with a circular electrode on the bottom and the opposing top electrode on the cap. To 

avoid TEER changes caused by temperature fluctuations, samples were equilibrated at room 

temperature for 15-20 minutes. Then, the Transwells® were inserted in the EndOhm chamber and 

the resistance value was obtained.  

 

The blank value, the resistance of the hydrogel without Caco-2 BBe, was subtracted from the 

acquired resistance values after seeding to get the resistance derived only from the epithelial 

monolayer (Rcell).  Then, the data was normalized to the surface of the hydrogel (Ahydrogel) following 

Equation 3. The AHydrogel of our samples was 0.33 cm2. 
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𝑇𝐸𝐸𝑅 = 𝑅𝐶𝑒𝑙𝑙 ∗ 𝐴𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑙 Eq. 3 

 

4.5.2. PMA-induced differentiation of THP-1 monocytes into M0 macrophages 

inside the hydrogels 

To mimic the intestinal mucosa with immunocompetent features, we encapsulated THP-1 cells 

inside the hydrogels and co-cultured with NIH-3T3 and Caco-2 BBe epithelial cells. In order to study 

whether it is possible to differentiate the encapsulated THP-1 cells into macrophages with PMA 

and the effect of this molecule on the epithelial monolayer, different conditions were tested. On day 

18 after printing, PMA at 81 nM (50 ng/mL) [22] or 200 nM [35] was added in the culture media for 

inducing cell differentiation, only in the apical compartment or in both apical and basolateral 

compartments. Samples without the addition of PMA were kept as controls. The effect of the PMA 

on the intestinal epithelial monolayer was evaluated with the TEER. Finally, the analysis of the 

macrophage cell differentiation was performed by flow cytometry explained in the following section 

(Section 4.6) .  

 

In a parallel experiment and in order to study the macrophage differentiation without the effect of 

other intestinal cells, either THP-1 or differentiated M0 cells were encapsulated alone into 

hydrogels. Then, three differentiation conditions were studied: non-differentiated THP-1 hydrogels, 

M0 hydrogels and THP-1 hydrogels treated with 200 nM PMA for 3 days. Afterwards, cells were 

recovered from the hydrogels and the degree of differentiation was analyzed by fluorescence-

activated cell sorting (FACS). 

 

4.6. Evaluation of the degree of THP-1 differentiation into M0 macrophages inside 

the hydrogels 

 

4.6.1. Hydrogel degradation with Collagenase type II  

In order to recover the encapsulated cells, the hydrogels were digested with collagenase as 

described in [35]. To optimize the conditions and assess the cell viability after the recovery, 

scaffolds encapsulating NIH-3T3 were used. To achieve this, hydrogel discs were printed 

encapsulating NIH-3T3 at a density of 7.5x106 cells/mL. The hydrogels were mounted on 

Transwell® inserts and kept in culture with supplemented DMEM medium. The hydrogels were 

digested at different time points: the same day of printing, one week after printing, and two weeks 

after printing, and viability was checked by cell counting and seeding. Once the process was 

optimized, hydrogels mimicking the intestinal mucosa were used for hydrogel digestion and further 

FACS analysis. 

 

For samples containing the epithelial cell monolayer, a previous step before the hydrogel digestion 

is required. The epithelial cell monolayer was first detached incubating the hydrogels with Accutase 
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for 10 min at 37ºC. The cell suspension was then recovered, neutralized with supplemented media 

and saved for later to be centrifuged together with the recovered cells from the hydrogels. Hydrogel 

digestion was achieved using collagenase type II. This enzyme was diluted at a concentration of 

300 U/mL in warm filtered PBS. The hydrogels were then removed from the Transwell® inserts, 

rinsed in PBS and transferred to an Eppendorf tube with 2 mL of filtered collagenase solution. For 

FACS analysis, 3 hydrogels were pooled and digested per sample. The Eppendorfs were left in the 

incubator at 37º for 45 minutes, or until the hydrogels were completely dissolved, mixing vigorously 

with the pipette every 10 min. Then, the PET membranes were removed, and samples were 

centrifuged at 300xg for 5 min. The cell pellet was resuspended in 100 L of supplemented DMEM 

medium for cell viability studies, or FACS buffer for immunophenotyping analysis as explained in 

the following section.  

 

4.6.2. Flow cytometry direct immunophenotyping   

To assess the differentiation state of the immune cells, a direct immunophenotyping and flow 

cytometry analysis was performed. We used CD11b Antibody (Thermo Fisher) as membrane 

marker specific for the differentiated THP-1 (M0), the CD31 (PECAM-1) monoclonal antibody 

(Thermo Fisher) as extracellular marker specific for both differentiated and non-differentiated 

monocyte, and DAPI for cell viability. An isotype control is required to determine the non-specific 

binding of the marker. After hydrogel digestion and cell recovery, the pellet was resuspended in 

100 L of ice-cold FACS Buffer; 10% (v/v) FBS and 1% (w/v) sodium azide (Sigma Aldrich) in PBS.  

Then 5 L of the desired antibodies was added, and the samples were incubated at 4ºC in the dark 

for 30 mins. Cells were then centrifuged and washed twice with 500 L FACS buffer. Finally, the 

samples were resuspended in 250 L of FACS buffer and filtered with 70 m cell strainer before 

being analyzed with the flow cytometer (Gallios Research Flow cytometry, Beckman Coulter).   

 

4.7. Gut-on-a-chip assembly  

After cell-laden hydrogel characterization, scaffolds with the 3D villi channel structure encapsulating 

THP-1 and NIH-3T3 were printed onto a coverglass and assembled into a PDMS microfluidic chip. 

The chip is formed by two patterned sheets of PDMS, cured into a 3D printed mold. The bottom 

PDMS layer contains a small cavity in which the coverglass perfectly fits. The top PDMS layer 

contains the cavity in which the hydrogel is embedded and the channel features. Two different chip 

designs were used: single-channel (Figure 8 (a)) and two-channel chip (Figure 8 (b)). To seal the 

chip and prevent leakage between the PDMS layer, a chip holder was designed, consisting of a 3D 

printed case with screws (Figure 8 (c)). In Figure 8 (d) a schematic of the PDMS microfluidic chips 

with the custom-made chip holder is shown. Once the whole gut-on-a-chip was assembled, it was 

perfused with supplemented DMEM medium at a constant flow rate of 2.5 l/min using a syringe 

pump (NE-1000 Programmable Single Syringe Pump, New Era) and left in the incubator at 37ºC 

and 5% CO2  (Figure 8 (e)).  
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Figure 8. Microfluidic chip and custom-made chip holder. (a) Single-channel chip illustration. (b) Two-channel chip illustration. (c) 

Single-channel chip and holder system with perfused medium. (d) Chip and holder assembly schematics. (e) Chip perfusion set up. 

4.7.1. Cell viability assay  

The viability of the encapsulated cells inside the hydrogels on the chip was assessed using the 

Live/DeadTM viability/cytotoxicity assay kit (Invitrogen). After 5 or 7 days, the chips were 

disassembled and hydrogels were washed three times with warm PBS and incubated for 20 min 

with 4M ethidium homodimer-1 (EthD-1), 2M calcein AM and Hoechst (dilution 1:1000) in PBS 

at 37 ºC. Afterward, the samples were washed and analyzed with the confocal microscope (LSM 

800, Zeiss). EthD-1 will only stain the nuclei of dead cells in red, whereas the non-fluorescent 

calcein AM will be converted into fluorescent calcein only by living cells. Then, cell viability 

quantification was performed manually stack by stack.  

5. Detail engineering  

5.1.  Determination of the degree of functionalization of GelMA 

Through the methacrylation process, gelatin becomes a photocrosslinkable and thermostable 

polymer, which can be used in photopolymerization printing of hydrogels. The degree of 

methacrylation determines the mechanical properties of the GelMA as well.  Thus, by varying the 

ratios of gelatin to MA in GelMA synthesis the stiffness of the scaffold can be tuned. Studies suggest 

that the appropriate degree of methacrylation ranges between 30% and 60% [36]. Lower values 

lead to low crosslinking and hydrogels with no structural integrity, whereas high values result in 

hard scaffolds that reduce cellular spreading and proliferation  [37].  

 

We performed the TNBSA assay to determine the extent of substitution of free amine groups in 

newly methacrylized GelMA (B6), which is expected to be around 40% for a MA concentration of 

1.25% (v/v) and compare it with the previous GelMA batch (B5). The batch B5 and new batch B6 

had 44% ± 6 and 34% ± 2 occupied amine groups, respectively. These percentage values were a 
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bit lower than expected, yet they were still in the suitable range for hydrogel fabrication and 

subsequent cell adhesion.  

 

5.2.  Characterization of hydrogel network  

Hydrogels are crosslinked polymeric networks and thus present a pore architecture. The mesh size 

determines cell attachment, survival, migration, and proliferation, as well as ECM secretion [38]. 

Research shows that small pore size increases initial cell attachment, but that larger pore improves 

infiltration and so long-term viability [33]. Besides, porosity is correlated to swelling, stiffness and 

molecular diffusion of nutrients to and metabolites out of the scaffold. In our work, the determination 

of the hydrogel pore size is crucial to know if the PMA molecule would diffuse through the hydrogel.  

The PMA molecule activates THP-1 cells which differentiate into macrophages. These phagocytic 

cells play a major role in maintaining intestinal homeostasis. Although differentiated macrophages 

can be directly embedded in the hydrogel [22], encapsulation of the monocytes is preferred, as the 

fabrication process may affect cell phenotype. To differentiate them inside the scaffolds, the PMA 

molecule should diffuse through the hydrogel.   

 

The hydrogel pore size can be estimated using the diffusion of dextrans of different molecular 

weight (Figure 9).  

 

Figure 9. Amount of permeated dextran through the hydrogel on top of a PET membrane, and the PET membrane alone, as a 

function of time. (a) 4 kDa dextran with a 1.4 nm radius. (b)  70 kDa dextran with a 5.8 nm radius. (c) 150 kDa dextran with an 8.5nm 

radius. (d) 500 kDa dextran with a 16 nm radius. (e) 2000 kDa dextran with a 20.8 nm radius. The values shown are mean ± SD, 

n>2.  
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The FD4 dextran, which has a radius of 1.4 nm, passed freely through the hydrogel. The FD70 and 

FD150 were also able to permeate, although the hydrogel hampered their movement. Finally, the 

permeated amount of FD500 and FD2000 was below the limit of detection, meaning that they were 

not able to diffuse through the hydrogels. Considering the results, we can estimate that the average 

pore size is between the radius of the 150 kDa and 500 kDa dextran, meaning between 8.5 nm and 

16 nm and larger molecules will be not able to permeate through the mesh. Having a molecular 

weight of 616.8 Da and a radius of 1.1 nm, the PMA molecule will easily diffuse through the hydrogel 

reaching the encapsulated THP-1 cells. Other small molecules important to ensure cell viability, 

such as oxygen and glucose, are also able to diffuse.  

 

5.3. Characterization of cell-laden hydrogels mimicking the intestinal mucosa  

The 3D model of the intestinal mucosa was bioprinted using the G8 bioink. The model contained 

encapsulated NIH-3T3 fibroblasts and THP-1 cells as stromal compartment and Caco-2 BBe 

enterocytes forming the epithelial barrier. In order to better characterize the cell behavior, hydrogels 

were first studied in static conditions assembled into Transwells® (Figure 10 (a)). Thus, standard 

cell culture assays such as the evaluation of the epithelial monolayer’s integrity through TEER 

measurements can be performed.  

In previous works using a similar intestinal mucosa model, epithelial cells were seeded on top of 

the hydrogel one day after fabrication [21]. However, it was observed that during the first week after 

seeding, the epithelial barrier was not yet formed, and the TEER values did not increase. This lag 

phase was probably due to the lack of secreted ECM from the stromal compartment. Thus, we first 

studied the epithelial monolayer formation on top of cell-laden hydrogels seeded 1 or 6 days after 

hydrogel fabrication.  The TEER was monitored throughout the culture (Figure 10 (b)). From the 

beginning of the culture, samples seeded one week after fabrication showed TEER values higher 

than the samples following the standard procedure (seeded 1 day after fabrication), reaching the 

TEER plateau after 2 weeks of culture instead of the 3 weeks needed for the cells seeded at day 

1.

 

Figure 10. (a) 3D model of the intestinal mucosa in Transwell® inserts, composed of hydrogel with embedded NIH-3T3 and THP-1 

and a monolayer of Caco-2BBe. (b) TEER values for different seeding times, 1 day after printing and 6 days after printing, as a 

function of seeding days. The values shown are the Mean ± SEM, n>9.  
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With these results, we can conclude that the interaction and cross-talk between epithelial and 

stromal cells enhance the growth and formation of the epithelial barrier. Fibroblasts need time to 

adhere to the hydrogel and secrete ECM. If we allow the cells to migrate and proliferate before 

seeding, we can reduce the amount of time that enterocyte cells require to establish tight junctions 

and form a selective permeable epithelial barrier.   

 

5.4. PMA induced differentiation of THP-1 monocytes into M0 macrophages inside 

the hydrogels 

Intestinal macrophages are mononuclear phagocytes primarily found in the lamina propria, 

responsible for maintaining mucosal homeostasis and intestinal barrier integrity. Overall, they are 

accountable for the intestinal immune response [39]. Thus, if incorporating these cells into our 

bioprinted intestinal mucosa we would obtain a model with increased functionality and immune-

competent features. Macrophages can be incorporated into the hydrogel already differentiated [22] 

or as monocytes that can be later differentiated into macrophage-like cells [35]. To do this, we first 

need to evaluate the differentiation of monocytes inside the hydrogel, without disrupting the 

epithelial monolayer.  

 

5.4.1. Effect of PMA on epithelial monolayer integrity.  

Co-cultured hydrogels were exposed to different concentrations of PMA (81 and 200 nM) and the 

effect on the epithelial integrity was monitored. Moreover, it was analyzed whether the 

differentiation molecule triggered the same cell response when being administered only in the 

basolateral side, or in the basolateral and apical sides of the barrier.  

 

Figure 11 shows that in both concentrations, PMA-free samples present lower TEER values than 

those supplemented with the differentiation molecule. However, this is not correlated with the 

presence of the molecule. In order to ensure the exposure to PMA in a compartmentalized manner 

(only basolateral or both apical and basolateral), the PMA was added on the third last day of culture 

to samples that did not present leakage so they already had higher TEER values. During the 

incubation with PMA, the epithelial integrity was not affected since the TEER values did not 

decrease in any condition. Moreover, no significant difference between PMA applied in the 

basolateral side or the basolateral and apical sides was observed. These results are also supported 

by Gjorevski et al. who also observed that Caco-2 cells lining a PMA-containing collagen matrix 

with embedded THP-1, could form a confluent monolayer, and were not affected by the molecule 

[40].  
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Figure 11. TEER values for samples without PMA, with PMA in the basolateral side, and PMA in the basolateral and apical side at 

a concentration of 200 nM (a) and 81 nM (b). The values shown are the Mean ± SEM, n=3. 

The cell morphology was also evaluated by optical microscopy (Figure 12). The Caco-2 BBe 

seeded on the surface of the hydrogel formed a confluent and tight monolayer and presented a 

cobblestone-like morphology for all the conditions (Figure 12 (a, d, g)).  As to the cells embedded 

inside the hydrogel, spherical and elongated NIH-3T3 (Figure 12 (f)) were observed, as well as 

spherical THP-1 (Figure 12 (b, i)). Interestingly, large globular cells were distinguished in the 

stromal compartment (Figure 12 (c, e, h)), especially on the PMA treated samples.  

 
Figure 12. Microscope images of the epithelial monolayer and the stromal compartment, with encapsulated fibroblasts and 

monocytes (a-c). Samples were exposed to PMA on the basolateral side (d-f), or in the basolateral and apical sides of the barrier 

(g-i). The epithelial monolayer formed by Caco-2 BBe cells on the surface of the hydrogels can be clearly distinguished (a,d,g). The 

THP-1 embedded in the hydrogel presented round, single-cell morphology (b, i) whereas encapsulated NIH-3T3 were elongated (f). 

Large globular cells inside the hydrogel were also observed (c, e, h). Scale bar: 200 μm. 
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Considering the results, we reaffirm the abovementioned conclusion. Epithelial cells can adhere to 

the hydrogel and proliferate in the presence of PMA forming a uniform monolayer, and stromal 

fibroblasts could also spread inside the hydrogel. In the case of the monocytes, the large spherical 

cells presenting a morphology similar to the macrophages lead us to believe that PMA could induce 

the differentiation of encapsulated THP-1. To verify this assumption a flow cytometry assay was 

carried out.  

 

5.4.2. Hydrogel degradation with Collagenase type II  

Once demonstrated that the PMA did not affect the epithelial monolayer, the differentiation degree 

of the THP-1 cells inside the hydrogels was evaluated by FACS. First, we needed to develop a 

protocol to degrade the hydrogel and recover the encapsulated cells without affecting their viability. 

Hydrogels encapsulating NIH-3T3 at different culture time points were used to optimize the 

procedure. The hydrogel was digested with collagenase type II and fibroblast retrieval was 

successfully achieved. The scaffolds were completely digested after 45 min incubated in 300 U/mL 

filtered collagenase solution. All the hydrogels digested 4 hours, 7 days or 14 days after fabrication 

were digested at the same rate. 

 

From a single hydrogel, 45% of the total encapsulated cells were recovered after one week of 

incubation, whereas this percentage increased to 61% after two weeks. The enzymatic digestion 

did not seem to affect the cell viability as retrieved fibroblasts adhered to the cell culture dish after 

15 min of seeding (Figure 13). 

 

 
Figure 13. NIH-3T3 recovered from a hydrogel digested 4 hours after printing. Scale bar: 200 μm. 

5.4.3. Flow cytometry direct immunophenotyping  

The differentiation degree of the encapsulated THP-1 cells was assessed by direct 

immunophenotyping analysis and flow cytometry. CD31 antibody was used to demonstrate the 

presence of differentiated and non-differentiated THP-1 cells, CD11b antibody to detect  

differentiated THP-1 (M0) and DAPI for cell viability. To check the specificity of the CD31 and 

CD11b antibodies, the cell types present in our intestinal mucosal model (Caco-2 BBe, NIH-3T3 

and THP-1, differentiated and non-differentiated) were cultivated in standard flasks and trypsinized 

to get a suspension of around 1x106 cells/mL. Then, the immunophenotyping assay and analysis 
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by FACS was performed (Figure 14). Isotype controls give the non-specific background signal and 

determine the fluorescence intensity threshold above which cells are considered positive, so-called 

gate. As expected, the non-differentiated THP-1 were only positive for CD31, whereas M0 were 

positive for CD31 and CD11b. Samples with only Caco-2 BBe and NIH-3T3 were negative for both 

markers (see Appendix B).  

 

Figure 14. Flow cytometry direct immunophenotyping histograms and dot plots (CD11b vs CD31) of 2D cultures with CD31 and 

CD11b markers. (a) THP-1 monoculture isotype control. (b) THP-1 monoculture. (c) M0 monoculture isotype control. (d) M0 

monoculture. 

Then we evaluated if we were able to induce the differentiation of the THP-1 once encapsulated 

inside the hydrogels. Thus, THP-1 laden hydrogels were printed and exposed to 200 nM PMA for 

72 h. As controls, M0 cells that had been differentiated before the hydrogel fabrication were also 
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encapsulated. Rounded cells were observed in the scaffolds with THP-1 with or without PMA after 

2 days of printing, without any noticeable difference between these two conditions (Figure 14 (a, 

b)). The monocyte-derived macrophages M0 appeared in form of big aggregates (Figure 15 (c)) 

due to a problem during the hydrogel fabrication. When the bioink was prepared with the cell 

suspension, the cell pellet was not properly resuspended and clumps of cells were encapsulated 

inside the hydrogel, instead of a single-cell suspension. 

 
Figure 15. Optical microscope images of cell-laden hydrogels with THP-1 (a), THP-1 exposed to PMA (b) and M0 (c). Scale bar: 

100 μm. 

After 72 h of PMA treatment, hydrogels were digested, and cells were recovered. The direct 

immunophenotyping showed that 90% of embedded M0 cells were positive for CD31 and CD11b, 

meaning that after printing most of the macrophages did not return to the monocytic state (Figure 

15). Interestingly, the THP-1 cells had an unexpected behavior. The THP-1 cultivated in 2D were 

12.5% positive for CD11b. When these THP-1 cells were encapsulated inside the hydrogels for 3 

days, 64% of the cells spontaneously differentiated into CD11b-positive cells. Thereby, it can be 

deduced that a 3D microenvironment affects cell behavior and promotes cell differentiation. When 

encapsulated THP-1 were exposed to PMA, this percentage increased to 88%. Thus, PMA can 

effectively induce monocyte differentiation inside hydrogels.  
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Figure 16. Flow cytometry direct immunophenotyping. (a) Amount of positive cells for markers CD31 and CD11b in 2D and 3D, 

THP-1 and M0 monocultures. (b) Dot plot (CD31 vs CD11b) of THP-1 encapsulating hydrogels. (c) Dot plot (CD31 vs CD11b) of 

THP-1 encapsulating hydrogels exposed to PMA. (d) Dot plot (CD31 vs CD11b) of M0 encapsulating hydrogels.  

Spontaneous polarization of THP-1 encapsulated in GelMA or PEGDA hydrogels was already 

reported by Cha et al [41].  Monocytes within GelMA scaffolds enlarged and expressed an anti-

inflammatory M2-like phenotype whereas when encapsulated in PEGDA hydrogels they 

differentiated into proinflammatory M1 macrophages. Considering that the main difference of 

GelMA scaffolds compared to PEGDA is the presence of adhesive motifs, the authors concluded 

that integrin interactions control the immune response of the monocytes. Similar cell enlargement 

and differentiation were observed in our monoculture GelMA-PEGDA co-networks, inferring that 

the architectural environment and material have a critical impact on the behavior of monocytes.    

Finally, the behavior of the immune cells was studied in the complete intestinal model, where THP-

1 were co-cultured with the NIH-3T3 and Caco-2 BBe cells for 21 days. At day 18, some of the 

samples were treated with PMA (81 or 200 nM) administered only in the basolateral side or in both 

apical and basolateral compartments. The differentiation of the THP-1 was studied by FACS 

(Figure 17). Due to some experimental issues, only the CD11b marker could be used. Without PMA 

treatment, only 5% of total cells were positive for CD11b. The scaffolds did not only contain THP-

1, but also NIH-3T3 and Caco-2 BBe. Thus, the THP-1 cells only accounted for 15% of the total 

cells. 
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Figure 17. Amount of cells positive for maker CD31 in cell-laden hydrogels cultured in different conditions: without PMA, with PMA 

on the basolateral side and with PMA on the basolateral and apical side. PMA was administered at a concentration of 81nM or 

200nM. 

When the THP-1 were exposed to the low PMA concentration, we did not observe an increase in 

the differentiation rate. However, when cells were incubated with a higher PMA concentration, both 

apical and basolateral, around 15% of total cells were positive for CD11b. If the proportion of the 

initial cells was maintained throughout the 3 weeks of culture, this result would mean that almost 

all the encapsulated cells were differentiated. However, this experiment should be repeated with 

the CD31 marker to identify the total number of immune cells present in the cell suspension.  

5.5. Gut-on-a-chip assembly  

Once the cell-laden hydrogels were characterized the gut-on-a-chip model was assembled. 

Hydrogels encapsulating NIH-3T3 and THP-1 cells were printed with a villi-like architecture, as 

seen in Figure 18.  

First, two cell-laden 3D constructs were incorporated into two single-channel microfluidic chips. 

After 5 days of perfusion with medium, we did not observe cell migration towards the channels and 

the cells remained rounded. Some air bubbles appeared as well on the channels of both chips but 

did not disrupt the hydrogels. Although one of the chips presented leakage and was contaminated 

with yeast, the other one was used for a Live/DeadTM assay after one week of perfusion. 

Subsequently, two two-channel microfluidic chips were assembled with cell-encapsulated 3D 

scaffolds. These chips presented almost no leakage after 5 days of perfusion, however, there was 

no migration towards the channels. A Live/DeadTM assay was carried out of the two hydrogels after 

5 days of perfusion.  
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Figure 18. NIH-3T3 and THP-1 encapsulating hydrogels with micropillar structures. (a) Cell-laden hydrogel in a single-channel 

microfluidic chip, 72 hours after fabrication. (b) Cell-laden hydrogel in a two-channel microfluidic chip, 2 hours after fabrication. Scale 

bar: 200m.  

To evaluate the cell viability, a Live/DeadTM assay was carried out and the percentage of living cells 

was calculated in the center and the channel-facing side with the 3D villi structure (Figure 19 (a)).  

The 3D projections and reconstructions of the confocal images taken from the channel-facing side 

of the hydrogels are seen in Figure 19 (b,c). All the nuclei are stained with Hoechst reagent, and 

blue-colored, living cells are depicted in green and dead cells in red. For quantification, cells that 

presented double staining were considered dead.   

 

Figure 19. Live/Dead viability/cytotoxicity assay in THP-1 and NIH-3T3 encapsulating hydrogels. The hydrogels were incorporated 

into single-channel and two-channel microfluidic chip and perfused for 7 and 5 days, respectively. (a) The number of living cells was 

counted in the area next to the channel and the center of the hydrogel. The values shown are the Mean ± SD, n=2. A minimum of 

60 cells were counted from each sample. Maximum intensity projection and 3D reconstruction of confocal images from hydrogels 

inside single-channel (b) and two-channel (c) chip are also shown.  Living cells are stained in green and dead cells in red. Hoechst 

reagent was used for nuclei staining in blue. Scale bar: 100m 
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For both chips, single-channel and two-channels, the cell viability is very low, between 20% and 

30%, being slightly higher for the hydrogel in the two-channel chip. Since cell viability in the 

hydrogels was already confirmed in the flow cytometry tests and other previous studies [21], the 

PDMS microfluidic system is considered to be responsible for cell toxicity.  

One possible explanation may relate to the physical constraints to which the cells are subjected. 

The holder generates pressure to ensure appropriate sealing and coupling of the two PDMS sheets. 

Since the hydrogel is in between these two layers, an undesired pressure may be exerted on the 

scaffold leading to cell death. Studies suggest using PCR adhesive tape for strong bonding 

between PDMS layers, a simple and low-cost alternative [42].  

Another hypothesis would be that the supplemented medium going through the channel cannot 

reach all the embedded cells. Nevertheless, if this was the cause of cell death, we would expect 

that the cells near the channels in contact with the medium would have higher viability, but that was 

not the case. The last possible explanation may be the release of toxic compounds by the PDMS 

sheets, cured in 3D printed resin molds. The resin, a synthetic organic compound, can still elude 

soluble substances after polymerization and ultimately alter the PDMS biocompatibility [43].   

Almeida Monteuro Melo Ferraz et al. demonstrated that solutions incubated in PDMS fabricated 

using SLA 3D printed resin molds presented leachates [44]. They confirmed that after conditioning 

the PDMS chip overnight with a medium, removing the eluded substances, the chip could support 

cell growth. In our work, the molds were only silanized before PDMS curing.  Additional steps, such 

as isopropanol washing reported by previous studies [45], could be implemented in future 

experiments for PDMS fabrication.  

Nonetheless, additional experiments should be carried out to determine if the PDMS fabrication 

method or the microfluidic chip system need to be modified to ensure cell viability.   
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6. Execution schedule 

6.1. Work Breakdown Structure 

The Work Breakdown Structure of the project is depicted in Figure 20.  

 

Figure 20. Work Breakdown Structure of the project. 

6.2. Task definition 

1. Practical training: A training was required before starting the project to use the IBEC facilities 

and to learn all the basic laboratory tasks - cell passaging and culture maintenance, viability 

tests, immunofluorescence assays, to name a few.    

2. Bibliographic review: To gain insight into biomimetics systems and cell-laden scaffolds, the 

current state and advancements in the field were reviewed. However, a literature search was 

carried out throughout the whole project to find new ways of characterizing the cell-laden 

hydrogels.   

3. Hydrogel bioprinting and characterization: The first step in developing the OoC was to prepare 

the bioink for hydrogel 3D printing. Thus, gelatin must be methacrylized, after which, the bioink 

with GelMA, PEGDA, LAP and tartrazine solution is prepared, and the hydrogel is bioprinted. 

Ten, mesh size of the hydrogel is determined. For each experiment, the bioink was freshly 

prepared.  

4. Cell-laden hydrogel characterization: After hydrogel characterization, cell-laden hydrogels 

were printed. On the one hand, studies of printed hydrogels encapsulating fibroblast and 

monocytes, together with epithelial cells on the surface were carried out. On the other hand, 

monocyte behavior inside hydrogels was also assessed.  

5. Gut-on-a-chip assembly: Once the components of the OoC were studied and fabricated, the 

whole gut-on-a-chip, with cell-laden hydrogel, microfluidic chip, holder and hydrogel scaffolds 

were assembled, and the performance was assessed.   
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6. Project analysis: After each experiment, the data was processed and analyzed. Yet, a general 

overview of the outcomes was done after completing all the experiments and before starting 

the final report.  

7. Final Report: This is the final step of the project that consisted of gathering all the information 

regarding OoC, the experiments, and the results.   

8. Project presentation: After report delivery, the project will be presented and discussed in front 

of a jury.  

6.3. PERT-CPM 

In Table 1 the tasks involved in the project, order of execution, and duration are shown.  

Task Activity Previous activities Next activities Duration (Weeks) 

A Practical training   -  C, D, E 9 

B Bibliographic review - D, G 30 

C 
Hydrogel bioprinting and 

characterization  
A D, E 20 

D 
Cell-laden hydrogel 

characterization 
B, C E 10 

E Gut-on-a-chip assembly C, D F 3 

F Project analysis E G 2 

G Final report B,F H 5 

H Project presentation  G - 1 

Table 1. Project task sequence and duration (in weeks). 

From the task planning the PERT-CPM charts were created (Figure 21).  

 

Figure 21. PERT diagram of the project with the critical path indicated by the red-colored circles.  
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6.4. GANTT Chart 

The detailed timeline of the tasks was represented with a GANTT chart (Figure 22).   

  

Figure 22. Detailed GANTT Chart of the activities carried throughout the project. 

7. Technical feasibility 

Table 2 shows the strength, weaknesses, opportunities, and threats (SWOT) analysis of the 

project.  

 

 

 

 

 

 

 

 

 

 

 

ACTIVITY START DATE DUE DATE

IBEC Facilities Tour 06/07/2020 12/07/2020

Safety and Health Course 09/09/2020 09/09/2020

Practical training 06/07/2020 30/09/2020

Bibliographic review 06/07/2020 14/06/2020

GelMA fabrication and 

characterization
03/02/2021 10/02/2021

Hydrogel fabrication 10/02/2021 15/05/2021

Porosity characterization 11/02/2021 22/02/2021

Study of co-culture hydrogel 08/03/2021 05/04/2021

Study of THP-1 differentiation when 

embedded on hydrogels
01/04/2021 30/04/2021

Co-culture hydrogel on microfluidic 

chip with a single channel
07/05/2021 14/05/2021

Co-culture hydrogel on microfluidic 

chip with two channels
12/05/2021 19/05/2021

Project analysis 01/05/2021 15/05/2021

Final report   10/05/2021 14/06/2021

Presentation preparation 14/06/2021 22/06/2021

   Bioink fabrication and characterization

Training process and project preparation

Cell-laden hydrogel characterization

Gut-on-a-chip assembly

Final Report and project presentation

6 7 8 9 10

April 2021

16

May 2021

11 12 13 14

June 2021Summer  2020

Jul-Aug-Sept 17 18 19 20 211 2 3 4 5 15

February 2021 March 2021
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Strengths Weaknesses 

- Mimics the in-vivo 3D architecture. 

- Co-cultured hydrogels that support 

cell-cell interaction. 

- Device with immunocompetent 

features for inflammatory analysis. 

- Use of simple and reproducible 

bioprinting and microfluidics 

technology. 

- High-resolution and control of the 

microenvironment architecture. 

- Real-time and on-chip analysis. 

- Low cell viability in hydrogels inside 

the microfluidic chip. 

- Leakage and air bubble formation 

inside the microfluidic chip. 

- Require controlled temperature and 

humidity conditions for bioprinting. 

- Lack of peristaltic motion. 

 

Opportunities Threats 

- Increase demand of OoC. 

- Increase areas of application. 

- Automated bioprinting of cell-laden 

hydrogels. 

- Integration of sensors. 

- No current legislation or validation 

method. 

- End-users, specifically the 

pharmaceutical industry, are in a 

highly regulated environment to 

predict drug responses and 

toxicological outcomes. 

Table 2. SWOT analysis of the project. 

8. Economic viability  

The materials and equipment used in the project were provided by the Biomimetic System for Cell 

Engineering research group and by the IBEC Core facilities. These last ones had an additional cost 

specified in Table 3.   

Equipment Hours Price rate  (€/h) 

Oven 6 4.44 

ProCleaner™ 3 2 

3D Printer Solus CleanRoom 25 16.52 

Confocal Microscopy 12 28 

M200 PRO Multimode Microplate 

Reader 

4 20 

Gallios Research Flow cytometer 10 28 

Table 3. Hours of use and price rates of the equipment provided by Core Facilities, IBEC. 
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The reagents, materials and software used with their correspondent cost are shown in Table 4.  

Resource Units  Cost (€) 

Reagents 

Dulbecco's Modified Eagle Medium 

(DMEM) 

500 mL 25.8 

Roswell Park Memorial Institute (RPMI)-

1640 medium 

500 mL 31.44 

Fetal Bovine Serum (FBS) 125 mL 175 

Trypsin-EDTA 60 mL 10.5 

Penicillin/Streptomycin (Pen/Strep) 20 mL 10.5 

Sodium pyruvate  5 mL 0.1 

4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 

5 mL 7.2 

β-mercaptoethanol 500 L 0.5 

Phorbol 12-myristate 13-acetate (PMA) 100 ng 1 

Accutase® 10 mL 5.5 

Phosphate Buffered Saline Solution 1 L 90.5 

Gelatin porcine skin type A 10 g 2.75 

Methacrytic anhydride 5 mL 0.72 

2,4,6 – Trinitrobenzene sulfonic acid 

(TNSBA) 

20 L 0.5 

Sodium dodecyl sulfate (SDS) 5 mL 0.1 

Sodium bicarbonate solution (NaHCO3) 1 mL 0.1 

Hydrochloric acid (HCl) 500 L 1.5 

Lithium arylphosphanate 40 mg 4 

Poly(ethylene glycol) diacrylate 300 mg 64.5 

Tartrazine 2.5 mg 1 

Hank’s Balanced Salt Solution (HBSS)  10 mL 0.5 

3-(Trimethoxysilyl) propyl methacrylate 0.2 mL 0.1 

Acetic acid 0.3 mL 4 

FITC-dextrans  8.8 mg 11.2 

70 kDa Rhodamine-dextran (FD70) 2.2 mg 30.8 

Normocin 600 L 7.6 

Collagenase type II 5 mg 2 

Sodium azide 250 mg 0.1 

CD31 Antibody and Isotype 75 L 57.3 

CD11b Antibody and Isotype 150 L 114.6 
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Live/DeadTM viability/cytotoxicity assay 

kit 

9 L 150 

Hoechst 6 L 0.1 

Polydimethylsiloxane (PDMS) pre-

polymer elastomer and curing agent 

1 kg 173 

Materials 

Dialysis membranes 20  30.8 

Labware  N/A 600 

Labcoat 1 25 

Laboratory notebook 1 15 

Softwares 

FreeCAD N/A 0 

Fiji-ImageJ N/A 0 

Microsoft 365 N/A 0 

Graphic Tools N/A 0 

 Total cost 1651.31 

Table 4. Reagents, materials, and software used throughout the project. 

Considering the price of the equipment, the reagents and products used, and the supervision and 

tutoring from an experienced researcher (25€/h) the total project expenditure was of around 5000€.  

9. Regulation and legal aspects.  

Given the infancy of this technology, no specific regulations or standards have been defined. 

Consequently, a regulatory framework and body that facilitate the validation process of organ-on-

a-chip models for its future application are needed. With this objective in mind, the EU initiated the 

ORCHID project in 2017. The project, coordinated by Leiden University Medical Center and the 

Dutch Organ-on-Chip consortium hDMT, had the goal of assessing the current technology status, 

presenting guidance for regulation and standardization, identifying a roadmap for technology 

adoption, and raising awareness. After the project’s termination in 2019, the European Organ-on-

Chip Society (EUROoCS) was born.  This consortium has taken the lead in building a network that 

includes regulatory bodies, end-users and developers, supporting OoC development and creating 

a roadmap and guidelines for OoC implementation. The defined roadmap consists of six steps: 

application, specification, qualification, standardization, production and upscaling, and adoption 

[46].  

 

In this context, the JRC’s European Union Reference Laboratory for alternatives to animal testing 

(EURL ECVAM) also plays a key role. Their goal is to ensure the EU member states' compliance 

with the 3R’s principle (replacement, reduction and refinement) defined in the Directive 2010/63/EU 

to minimize animal testing for scientific and educational purposes. The European body is 
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responsible for validating the alternatives, in which the OoC would be included, with the help of an 

independent Scientific Advisory Committee (ESAC). Moreover, they are currently collaborating with 

the EUROoCS in the implementation of quality control assays carried out by testing centres to 

evaluate the performance of the in vitro models [47].  

 

Despite the lack of availability of specific regulations, some existing international quality standards 

can be applied to OoCs. For instance, the Medical Devices-Quality Management System (ISO 

13485:2016) sets the requirements to ensure the robustness, reproducibility, and reliability of the 

models.    

 

Finally, as we are working with biological agents we should adhere to the following guidelines: 

Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the 

protection of workers from risks related to exposure to biological agents at work. 

 

10. Conclusion and future directions.   

OoC is an emerging technology that has caught the attention of the pharmaceutical industry, and 

potentially the healthcare sector for personalized medicine. In only ten years’ time new companies 

and research groups have been able to find new efficient, effective, and cost-saving methods for 

in vitro drug screening and human physiology studies. However, currently available OoCs lack 

complex tissue features limiting the translational capabilities of the devices to clinical outcomes. 

This aspect is crucial in organs such as the gut, which have a very characteristic architecture that 

must be emulated in order to get a reliable model. For fabricating these ECM-like constructs, 3D 

bioprinting techniques are being explored due to its simplicity, reproducibility and precision.  

Therefore, in the present project, we attempted to develop a gut-on-a-chip device that mimicked 

the small intestinal mucosa combining SLA 3D bioprinting with microfluidic technology. We aimed 

to fabricate a 3D bioprinted cell-encapsulating hydrogel with villus-crypt architecture that supported 

epithelial monolayer formation on top, which would be later incorporated into a PDMS microfluidic 

chip. The 3D constructs are fabricated with the object of replicating the two layers in the intestinal 

mucosa; the lamina propria and the intestinal barrier.   

The stromal compartment was successfully reproduced by GelMA-PEGDA bioprinted hydrogels 

with embedded fibroblasts and monocytes. The scaffolds were printed with the SLA technique and 

provided a suitable environment for NIH-3T3 and THP-1 adhesion and proliferation, as well as 

subsequent epithelial monolayer formation. This last process was proved to be accelerated by the 

secretion of ECM by encapsulated NIH-3T3.  

Furthermore, the incorporation of immune cells into the model was of great interest due to the key 

role resident macrophages play in intestinal homeostasis. In this study, hydrogel-embedded THP-
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1 differentiation into macrophages was accomplished with the diffusion of PMA through the pores 

of the hydrogels. Interestingly, it was observed that the 3D microenvironment alone induced the 

spontaneous differentiation of monocytes into the phagocytic cells. 

The ability of PMA induced differentiation in complete 3D intestinal models, this is, NIH-3T3 and 

THP-1 encapsulating hydrogels with Caco-2 BBe seeded on top, was also analyzed. It was 

demonstrated that PMA did not affect the barrier integrity. Even though some cells presented 

macrophage-like morphology in the PMA exposed models, further experiments are needed to verify 

and quantify monocyte differentiation.  

Lastly, SLA bioprinting allowed for the fabrication of rectangular cell-laden hydrogels with crypt-

villus architecture on one side. However, the incorporation of this hydrogel inside the microfluidic 

system resulted in cell death. The cause is yet to be determined, although possible explanations 

are excess compression or the release of leachates by the cured PDMS in 3D printed resin molds.  

Thus, future experiments need to focus on and the improvement of the PDMS chip and holder 

system to ensure cell viability. Once this is guaranteed, the next step would be to seed the side-

channel facing surface of the hydrogel with Caco-2 BBe to model the epithelial barrier, by perfusion 

of epithelial cell suspension through the channel. 

Hereafter, the complexity and functionality of the biomimetic systems can be increased with the 

incorporation of biomechanical or chemical cues as well as the integration of biosensors for in situ 

monitoring of functional parameters. With regards to the fabrication process, given the importance 

of rapid and precise fabrication in the OoC market, the current bioprinting setup should be optimized 

and automated, as the current configuration is optimized for single scaffold bioprinting. Lastly, the 

robustness and predictiveness of the model should be assessed, to guarantee stable experimental 

conditions when used in drug screening and toxicity tests.  

While there is still a lot of room for improvement, this biomimetic gut-on-a-chip device might 

potentially be used to study intestinal physiology and disease mechanisms, as it replicates many 

of the relevant features of the native human gut.  
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12. Appendix 

Appendix A   

The diffusion coefficient of each dextran in the hydrogels was also calculated through the formulas 

extracted from Engberg et al.  
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Eq. 6 

 

Where h is the thickness of the hydrogel and N the initial mass of the solute. Finally, the diffusion 

coefficient of the dextrans in the hydrogels can be compared to the diffusion in water, calculated 

with the Stokes-Einstein equation:  

𝐷0 =
𝐾𝐵𝑇

6ℎ𝑝𝑟
 

 

Eq. 7 

Considering that the hydrogels were printed on top of PET membranes the diffusion coefficient of 

the dextrans through the membranes was also assessed. The diffusion coefficient of the hydrogels 

was then calculated, considering a dual membrane (hydrogel and PET membrane) configuration. 

To do so, the equations extracted from C.J Lee et al.[48] were used:  
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   Eq. 10 

The diffusion coefficient for dextrans of 4kDa, 70 kDa, 150 kD, 500 kDa and 2000 kDa in the 

hydrogels, subtracting the effect of the membrane, are shown in Figure 23 (a). The ratio of diffusion 

through hydrogel and diffusion through water has been also calculated (Figure 23 (b)).   
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Figure 23. Hydrogel pore size characterizatio.  (a) Diffusion coefficient in the hydrogel of the dextrans with a molecular weight of 

4kDa, 70kDa, 150kDa, 500kDa and 2000kDa. The values shown are mean ± SD, n>2. (b) Ratio between the diffusion coefficient in 

the hydrogel and water of the different dextrans. The values shown are mean, n>2.  

Appendix B   

A direct immunophenotyping analysis and flow cytometry assay with marker CD11b (Figure 24) 

and CD31 (Figure 25) in cultures of Caco-2 BBe and NIH-3T3 was also carried out to verify the 

specificity of these markers for THP-1 and M0.  Isotype and autofluorescence controls were 

included to determine the non-specific background signal. Assays with the CD11b marker were 

analyzed with the FACSAriaTM III Cell sorter (BD, Biosciences), whereas those with CD31 marker 

were analyzed with Gallios Research Flow cytometry (Beckman Coulter).  

 

 
Figure 24. Direct immunophenotyping assay and analysis by FACS with marker CD11b of Caco-2 BBe (a) and NIH-3T3 (b) 2D 

cultures, including autofluorescence and isotype controls.  

 



 

47 
 

 
Figure 25. Direct immunophenotyping assay and analysis by FACS with marker CD31 of Caco-2 BBe (a) and NIH-3T3 (b) 2D 

cultures, including isotype controls.  

 

 

 

 

 


