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Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
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Abstract

Electron cryomicroscopy (cryo-EM) is essential for the study and functional un-

derstanding of non-crystalline macromolecules such as proteins. These molecules

cannot be imaged using X-ray crystallography or other popular methods. Cryo-

EM has been successfully used to visualize molecules such as ribosomes, viruses,

and ion channels, for example. Obtaining structural models of these at various

conformational states leads to insight on how these molecules function. Recent

advances in imaging technology have given cryo-EM a scientific rebirth. Because

of imaging improvements, image processing and analysis of the resultant images

have increased the resolution such that molecular structures can be resolved at

the atomic level. Cryo-EM is ripe with stimulating image processing challenges.

In this article, we will touch on the most essential in order to build an accurate

structural three-dimensional model from noisy projection images. Traditional

approaches, such as k-means clustering for class averaging, will be provided

as background. With this review, however, we will highlight fresh approaches

from new and varied angles for each image processing sub-problem, including a

3D reconstruction method for asymmetric molecules using just two projection
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images and deep learning algorithms for automated particle picking.

Keywords: Cryo-electron microscopy, Single Particle Analysis, Image

processing algorithms

1. Introduction1

Cryo-Electron microscopy (cryo-EM) of single particles has been established2

as a key technique for the elucidation of the three-dimensional structure of3

biological macromolecules. The Nature Methods Method of the Year (2015) and4

the Nobel Prize in Chemistry (2017) endorse this view. Cryo-EM is currently5

capable of achieving quasi-atomic resolution (1.8Å) in some specimens, and6

visualizing specimens with molecular weights below 100 kDa with a resolution7

better than 4Å [1]. Beside that, Cryo-EM can yield key insight into the dynamics8

of macromolecules [2, 3, 4], and it provides a solid base for structure-based drug9

design, although some technical problems in this arena remain open [5].10

The main advances in the last five years have come from multiple sources:11

1) more sensitive and faster detectors at the microscope, 2) faster and more ro-12

bust image processing algorithms, and 3) more reproducible sample preparation13

techniques.14

In this review we address the image processing algorithm developments of15

the last five years. To begin, we quickly summarize here the advances in the16

other aspects of EM (not covered in this review) that also affect the image17

quality:18

• Image formation process. Much attention has been placed on better un-19

derstanding of the physicochemical processes leading to radiation damage20

[6, 7, 8], beam induced movement [9, 10] characterizing camera noise (mod-21

eling the noise produced by sensors capturing EM images) [11, 12], mod-22

elling and correcting optical aberrations [13, 14, 15], especially the defocus23

gradient along the specimen [16, 17, 18], the charging effect [19, 20], the24

design and use of phase plates as a way to increase contrast [21, 22, 23], and25

single band imaging as a way to address the defocus gradient [24, 25, 26].26
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• Better detectors. Direct electron detectors have caused a quantum leap27

in EM. The current trends include thinner back-ends as a way to reduce28

the actual size of the point spread function, increased quantum efficiency29

of the detector in order to increase its sensitivity, and faster readouts as30

a way to better correct for the beam induced movement [27, 28].31

• Better sample preparation. Research in sample preparation has focused32

on increasing the sample stability [29] and reducing the amount of sam-33

ple required for vitrification as a way to increase its freezing speed and34

reproducibility [30, 31, 32, 33].35

This paper is organized as follows: in Section 2 we review the advances36

during the last five years in image processing algorithms for Single Particle37

Analysis. In Section 3 we expose the current open problems in the field from38

the algorithmic point of view, and present conclusions. A graphical summary39

of the main topics discussed is shown in Figure 1. The blue arrows between 2D40

Processing and 3D Analysis depict the cyclical nature of different stages - the41

order of steps may vary from method to method.42

2. Recent Advances in Image Processing Algorithms for Single Par-43

ticle Analysis44

In terms of software, large packages tend to be very inclusive, covering the45

whole pipeline from image acquisition to the final 3D reconstruction (Relion [34],46

Eman2 [35], Frealign and Cistem [36], Xmipp [37], Spider [38], Sparx [39], Bsoft47

[40]). These packages even include small tools from other software providers48

solving specific image processing problems. Two large integrative platforms49

have appeared in the domain: Scipion [41] and Appion [42]. In these platforms,50

the user may easily call different algorithms from different providers, and the51

system automatically performs the necessary conversions. In recent years, many52

engineering groups are contributing software that solve very specific problems53

along the image processing pipeline. These tools tend to be incorporated in the54

integrative platforms.55
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Figure 1: Summary of the main topics discussed in this review. Pictured is a 3D reconstruction

of β-galactosidase (isosurface representation of Xmipp highres reconstruction.)

2.1. Movies and Micrographs56

The contrast between the sample and its background is one of the factors57

that determine the final quality of an image. Grant and Grigorieff [43] demon-58

strated a method of using optimal exposure values to filter movie frames, yield-59

ing images with improved contrast that lead to higher resolution reconstructions.60

They were studying how quickly a large virus-like particle is damaged under the61

electron beam. These experiments identified an optimum range of exposure to62

electrons that provides the highest image contrast at any given level of detail.63

Their findings were used to design an exposure filter that can be applied to the64

movie frames. With higher contrast, greater levels of structural information can65

be obtained. However, this increase in contrast requires the use of longer expo-66

sure to the electron beam. To overcome this issue, instead of recording a single67

image, it is possible to record movies in which the movement of the sample under68

the electron beam can be tracked. The correction of specimen movement was69

solved by a number of algorithms. Ripstein et al. [44] explained and compared70

several of the most popular existing algorithms for computationally correcting71
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specimen movement including Motioncorr [45], alignframes lmbfgs and align-72

parts lmbfgs [46], Unblur [43], and others, while summarizing all the advantages73

of each technique.74

While conceptually simple, the algorithms used to perform motion correction75

vary widely, because each alignment routine uses different criteria to guide and76

smooth the alignment. Through understanding the different options, we may77

achieve insights to better design the next generation of alignment software.78

McLeod et al. [47] presented a software package Zorro, which provides ro-79

bust drift correction for dose fractionation by use of an intensity-normalized80

cross-correlation and logistic noise model to weight each cross-correlation in the81

multi-reference model and filter each cross-correlation optimally. Frames are re-82

liably registered here with low dose and defocus. The package utilizes minimal83

heuristics that minimizes the number of arbitrary input parameters required of84

the user. The most critical input parameters, weighting of peak significance and85

B-filter strength, are performed automatically.86

Recently, a novel software tool MotionCor2 [48] for anisotropic correction of87

beam-induced motion was introduced. The algorithm is based on an experimen-88

tally validated model that describes the sample motion as a local deformation89

that varies smoothly throughout the exposure. It combines the correction of90

both uniform whole-frame motion and anisotropic local motion, and it stream-91

lines all the necessary preprocessing steps including bad pixel detection and92

correction before the normal cryo-EM processing pipeline.93

Another problem with movies is related to their acquisition using Direct94

Electron Detector (DED), where non-negligible differences between the gain of95

different sensor areas could be introduced. Therefore, approaches to estimate96

the DED camera gain at the pixel level were developed. Afanasyev et al. [49]97

assimilate the gain of the camera to the standard deviation of each pixel over98

a large number of movies and prove this is a successful way of identifying dead99

pixels. However, Sorzano et al. [50] showed that this approach does not provide100

a consistent gain estimation; therefore, they introduced a different approach to101

estimate the DED camera gain at each pixel from the movies. Their algorithm102
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iteratively refines the gain image using local smoothness of the histograms of103

image rows and columns. A monitor of the gain estimate can be set to warn104

the user if the residual acquisition gain goes beyond certain limits (defined by105

the user as thresholds on its standard deviation and other percentile based106

parameters.)107

2.2. 2D Processing108

2.2.1. CTF Estimation109

An electron microscope, as with any other imaging device, has a number110

of physical aberrations that distort the ideal projections, by modulating ampli-111

tudes and phases of the recorded electrons. To reach the best resolution, it is112

necessary to correct these distortions by estimating and correcting the contrast113

transfer function (CTF). The fitting procedure consists in an iterative adjust-114

ment minimizing the discrepancy between simulated and experimental power115

spectral densities (PSD) using a non-linear optimization that depends on an116

initial estimation of the model parameters, particularly the defocus.117

Several improvements of the CTF estimation have been done during the last118

years trying to improve the computation time and the accuracy, due to the119

large amount of micrographs to analyze. A novel parameter-free approach has120

been presented in [51] in which a fast way to recover the defocus and astigma-121

tism of the CTF without the need of non-linear optimization procedures and122

an initial defocus estimation is proposed. This method is available in Xmipp123

3.0 [37]. Other software has been developed for the CTF estimation such as124

CTFFIND4, which provides an improved version of CTFFIND3 that is faster125

and more suitable for images collected using modern technologies such as dose126

fractionation and phase plate [52]. Gctf accelerates the CTF estimation using127

GPU. The main target of this is to maximize the cross-correlation of a sim-128

ulated CTF with the logarithmic amplitude spectra of observed micrographs129

after background subtraction. Also, an approach for local CTF refinement of130

each particle in a micrograph or frames in a movie is provided to improve the131

accuracy of CTF determination [53]. With the different programs available, it132
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is becoming more difficult to compare their results across several runs and to se-133

lect the best parameters to measure the CTF quality. To address this difficulty,134

a new parameter has been proposed in [54]. They introduce for this purpose135

the so-called CTF resolution, where they measure the correlation falloff of the136

calculated CTF oscillations against the normalized oscillating signal of data. It137

is a robust metric to select the best parameters for each micrograph.138

A novel phase contrast technique called the Volta Phase Plate (VPP) [21] has139

been developed during the last years trying to get more contrast in the electron140

micrographs. The phase shift brought in by a physical phase plate introduced in141

the microscope column allows for the maximum contrast in low frequencies, thus142

producing a better contrast between particles and their background. The main143

problem of this method is that the image acquisition is in-focus and it is not144

possible to estimate the CTF, so it is not possible to correct physical aberrations.145

Danev et al. [55] proposed using the VPP with a bit of defocus. The advantage146

of this proposal is that the defocus can now be readily be identified through the147

oscillations of the Thon rings, and its drawback is that the small defocus causes148

some high frequencies to be damped. The CTF correction for Volta Phase Plate149

data is available in the three software implementations mentioned earlier.150

2.2.2. Particle Picking151

Because of the strong background noise, low contrast images, and sample152

heterogeneity, typically a large number of single-particle images is required for153

reliable 3D reconstruction. Methods for particle picking from micrographs can154

be divided into two main categories. The first one is a manual picking process,155

which is usually a laborious and time-consuming task. It requires a large amount156

of human effort to obtain a sufficient number of particles that also must be of157

high quality for high-resolution 3D reconstruction. Moreover, manual picking is158

considered subjective and can introduce bias and inconsistency.159

Therefore, currently more popular is the second category consisting of semi-160

automated and automated methods. This category includes generative ap-161

proaches, which measure the similarity to a certain reference image. A typical162

7



(a) Detected particles

(b) Xmipp Particle Picker inter-

face

Figure 2: Use of the Xmipp Particle Picker with user input to select single particles. (a)

Particles are detected and highlighted in the recorded micrograph. (b) Xmipp Particle Picker

interface with a list of all micrographs showing the number of particles found in each micro-

graph.

representative of generative methods is a template-matching technique, which163

is employed in RELION [56, 57] or in highly parallel GPU-accelerated gEM-164

picker [58]. The input here consists of a micrograph and images containing165

2D templates to match. The idea behind template-matching is that the cross-166

correlation between a template image and a micrograph is larger in the presence167

of the template. Template images could be chosen as a disk with a radius corre-168

sponding to the particle size with its edges softened by application of a Gaussian169

kernel [59]. Another alternative is Gautomatch developed by Kai Zhang [60],170

which is a GPU accelerated program for flexible and fully automatic particle171

picking from cryo-EM micrographs with or without templates. The automatic172

particle picker can learn also from the user the particles of interest by way of173

the method given in [61]. This method is available in Xmipp 3.0 software [37],174

and an example of use is shown in Figure 2.175

Since automatic and semi-automatic particle pickers are selecting a non-176

negligible number of incorrect particles, particle quality assessment and a sort-177
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ing method based on multivariate statistical analysis of a particle set could be178

used to separate most erroneously picked particles from correct ones [62]. The179

problem of discriminating between particles on carbon and particles in ice is180

solved by detecting carbon supports using EMHP package [63].181

In recent years, deep learning methods start to be employed for particle182

picking in regular micrographs (not tilted pairs.) DeepPicker [64] consists of183

two modules, where in model training, labeled positive and negative samples are184

used to train a convolutional neural network (CNN) model, while in the particle185

picking module, the trained CNN classifier is then used to select particle images186

from input micrographs. Another recent model also derived from a deep CNN187

is DeepEM [65].188

In cases when an initial model is not available, a low-to-medium resolution189

model can be obtained from negatively stained samples by the Random Conical190

Tilt (RCT) [66] or Orthogonal Tilt Reconstruction (OTR) [67] procedures. The191

basis for these two methods is in collecting two images of the same sample192

at different tilt angles, identifying and boxing particles in both images. An193

accurate solution to finding both the particle correspondence and the tilt-axis194

estimation was proposed in [68] along with MaverickTilt software determining195

tilt pairs from independent particle coordinates from images [69]. Vilas et al.196

introduced a method of automatically finding correspondences of particles in197

the untilted and tilted micrographs [70]. The method is available in Scipion198

[41].199

2.2.3. Denoising and Image Restoration200

During the acquisition process, images are usually degraded by blur and201

noise. Most imaging devices, like CMOS and CCD cameras, are photon counting202

devices where the resulting noise is non-additive and signal-dependent and it can203

be modelled by a mixed Poisson-Gaussian (PG) distribution, often encountered204

also in astronomy [71, 72], biology [73] and medicine [74]. Image restoration205

methods (CTF correction and denoising) are based on estimating original images206

from these blurred and noisy observations. In one first step, restoration methods207
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can be separated in two big groups non-blind and blind, depending on whether208

the Point Spread Function (PSF) is known or not.209

In addition, the non-blind image restoration techniques can also be broadly210

categorized into two kinds of approaches [75]. The first is an approach known211

as phase flipping, which involves flipping the sign of the Fourier coefficients at212

frequencies for whose CTF amplitude is negative, ignoring the effect of the CTF213

on the Fourier amplitudes. Phase flipping is easy to implement but preserves214

the noise statistics. The second commonly used approach is Wiener filtering215

(WF), which takes into account both the phases and amplitudes of the Fourier216

coefficients. However, to calculate the Wiener filter a prior estimation of the217

spectral signal to noise ratio (SSNR) of the signa is required, which by itself is218

a challenging problem.219

T. Bhamre et al. [76] presented a new approach for non-blind image restora-220

tion of cryo-EM images based on a modified Wiener filtering. They name it the221

covariance Wiener filter (CWF) because the main algorithmic step is the esti-222

mation of the covariance. CWF performs phase and amplitude CTF correction,223

as well as denoising, thus improving the SNR of the resulting images. In par-224

ticular, CWF applies Wiener filtering in the data-dependent basis of principal225

components (eigenimages), while traditional Wiener filtering is applied in the226

data-independent Fourier basis.227

The first step of CWF is estimation of the covariance matrix of the under-228

lying clean images, whereas the second step is solving a deconvolution problem229

to recover the underlying clean images using the estimated covariance.230

In this statistical model, the Fourier transformed clean images are assumed231

to be independent, identically distributed (i.i.d.) samples. Since the clean im-232

ages are two-dimensional projections of a certain three-dimensional molecule in233

different orientations, the covariance matrix represents the overall image vari-234

ability due to the three-dimensional structure, the distribution of orientations,235

and the varying contrast due to changes in ice thickness and structural variabil-236

ity, which are all of course unknown at this stage. While these model assump-237

tions do not necessarily hold in reality [77, 78], they simplify the analysis and238
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lead to excellent denoising.239

The method is thought to deal with images that have an additive white noise,240

which has equal intensity at different frequencies. However, for a more realistic241

colored noise process, with different power spectra, the images are processed242

in order to whiten the noise. The noise power spectrum is estimated using243

the pixels in the corners of the experimental images. One can define a new244

effective CTF including the whiten filter to estimate the new covariance matrix.245

However, this case is ill-conditioned, and it takes a large number of iterations246

for the conjugate gradient to converge to the desired solution. Instead, a well247

conditioned linear system is sought similar to one in the case of white noise.248

The second step of the CWF is to use the estimated covariance to solve249

the associated deconvolution problem using Wiener filtering. The result is a250

denoised and CTF-corrected image for each experimental image.251

On the other hand, in many situations it is difficult to accurately estimate252

the PSF (or the CTF) and blind methods may be preferable. B. Bajic et al. [79]253

presented a novel restoration method for images degraded with PG noise which254

jointly estimates the original image and the PSF from the observed data. Al-255

though the method was not designed to process cryo-EM images, they illustrate256

its applicability in this field.257

To simultaneously recover the original image and the PSF, the method mini-258

mizes an objective function. That function firstly contains a term which depends259

on the targets (clean image and PSF), driving the solution towards the observed260

data. Secondly, a regularization term which only depends on the clean image261

provides a noise suppression, whereas a parameter controls the trade-off of the262

two terms. The role of the regularization term is to provide numerical stability263

and it may be designed based on the desired characteristics of the unknown264

image, such as wavelet-based sparsity, smoothness, small total variation, etc.265

During the clean image estimation, minimization of the objective function266

is seen as a constrained optimization problem that can be optimized by means267

of an iterative gradient-based method.268
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2.2.4. 2D Alignment, Clustering, and Classification269

One of the main drawbacks of the cryo-EM single particle analysis is to deal270

with images with very poor SNR. However, a large number of experimental271

images is usually acquired. Therefore, averaging all similar and aligned images272

can substantially enhance the SNR. The averaged images are normally referred273

to as 2D averages, and they can be used to produce a reliable 3D starting model274

[80, 81, 82]. The most used methods to simultaneously 2D align and cluster275

(SAC) are based on the multi-reference alignment (MRA) following a k-means276

strategy. This strategy involves some randomized initial cluster centers followed277

with an iterative local-search-based cluster assignment and in-plane rotation278

[83]. It is possible to employ a previous step of principal component analysis279

(PCA), so that the clustering is actually performed using a low dimensional280

representation of the particles, accelerating the process.281

The results from MRA using k-means strongly depends on the cluster ini-282

tialization and the number of classes [84], compromising the reproducibility and283

robustness of the method. C. Reboul et al. [85] presented a stochastic hill climb-284

ing (SHC) method based on random walks, where the correlation maximizing285

step of k-means is replaced with the relaxed requirement of identifying the first286

in-plane rotation and cluster assignment that improves the previous correlation,287

given random sequences of in-plane rotation and cluster assignments. Thus, the288

references are randomly ordered and the rotation scan is also performed ran-289

domly. As soon as a configuration is improving the previous best correlation,290

the random walk ends and the next particle is processed. Since the cluster cen-291

ters are not updated until all particles are done, the random walk is performed292

on all particles independently. The result is faster and less-dependent on the293

initialization in comparison to previous approaches.294

Besides improving the SNR, 2D classification can be useful to remove con-295

taminants. Usually the input dataset is too heterogeneous. The degree of296

heterogeneity in a cluster can be analyzed using a great variety of procedures,297

e.g. via PCA of each cluster, obviously after removing the variability caused298
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by image misalignment. Outliers can be identified through their Mahalanobis299

distance to the centroid [86, 87] of the PCA subspace composed by the first300

few components. The Mahalanobis distance measures how many standard de-301

viations away a point is from the mean of a distribution. Images close to the302

cluster centroid as measured by the Mahalanobis distance form the class core303

[86].304

If our 2D clustering is hierarchical [88], the class core can be further refined305

by considering the subset of images that are basically classified together in306

the whole hierarchical process. Usually, outliers swap between several classes307

whereas the true projections tend to remain together in a stable behavior. This308

refined subset is called stable core. To be more flexible, the implementation can309

relax this condition. In this way, the stable core is a subset of these particles310

which have been together for all classification levels (with a certain number of311

tolerance).312

The previous methods are devoted to discrete classification; however, this313

kind of approaches could not be well suited with macromolecules exhibit contin-314

uous molecular motions. In this situation, several low-resolution maps showing315

different states of the molecule can guide the alignment and 2D classification of316

cryo-EM images, e.g. [89].317

2.3. 3D Analysis318

The 3D reconstruction process can be seen as an optimization problem in319

which we need to move through a solution landscape where every point repre-320

sents a 3D model. Each model has an associated energy that depends on the321

error between that model and the 2D experimental images collected. The aim of322

this process is to reach the optimal 3D model considering the information car-323

ried by the 2D cryo-EM images. This task is a main challenge in the field and324

significant effort has been applied by several researchers to develop algorithms325

to solve the problem.326

The whole 3D reconstruction process is commonly managed starting with327

an initial model estimation, which can be seen as an estimation of the start-328
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ing point in the solution landscape, followed by a refinement to move along329

the whole landscape, improving the reconstructed model in every step. The330

refinement algorithms easily get stuck in local minima of the solution landscape331

[90]. Therefore, a good design of the initial volume estimation and refinement332

algorithms is key in the accuracy of the final 3D model generated.333

2.3.1. Initial model334

The goal of the initial model procedure is to create a low-resolution molecu-335

lar density of the underlying structure, that can be further refined into a high-336

resolution map. This process is especially important for molecules whose struc-337

ture is unknown, as using an incorrect initial model can lead to bias in the final338

map, or slow convergence of the refinement algorithm.339

In the recent years a plethora of initial model algorithms have appeared and,340

if 5 years ago the initial volume was an important problem, currently, there are a341

sufficiently high number of methods such that at least one of them will produce342

a suitable initial volume.343

A family of these new algorithms are based on the Central Slice Theorem344

[91] that states that the Fourier transform of a 2D image belonging to a certain345

projection direction, corresponds to a slice of the 3D Fourier transform of the346

volume in the perpendicular direction. So, every pair of the 2D images coming347

from different projection directions will intersect at a line in the Fourier space,348

named the common line. The methods [80, 92, 93, 94, 95] are based on this the-349

orem. [92] described an algorithm based on synchronization to determine the350

direction of all the 2D images at once. Combining the common lines outcomes351

for pairs of images, a global assignment of orientations that maximizes the num-352

ber of satisfied pairwise relations can be derived. The idea of synchronization353

was further studied in [94] where a graph-partitioning algorithm is suggested354

to consistently assign orientations, giving a confidence value to each one. One355

typical problem with these methods is that they are prone to detect false com-356

mon lines. In [93] a method dealing with this problem is proposed, in which the357

orientations were estimated by minimization of the sum of unsquared residuals,358
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adding a spectral norm term to avoid the artificial clustering that appears with359

overlapping slices in the Fourier space. The algorithm proposed in [95] presented360

a way to model the errors in the estimated common lines giving them a proba-361

bility value. However, the main drawback of the common lines approaches has362

not been overcome yet, as they still tend to easily fail when the detection rate363

of common lines is too low due to the low SNR in typical cryo-EM 2D images.364

[96]365

Another usual approach to the initial model problem is to follow a statisti-366

cal framework, e.g., [97, 82, 98, 99], in which the alignment parameters can be367

found optimizing some related quantity. [97] presented a probabilistic initial 3D368

volume generation (PRIME) where each image is assigned to a range of orien-369

tations with the highest correlations. Then, the 3D initial model is generated370

giving a weight to every image in every specific orientation proportional to the371

obtained correlation. The method in [82] is based on dimensional reduction of372

class average 2D images with the aim of obtaining representative sets of class373

images with the main structural information. Then, with the 2D representative374

image sets several initial models are generated. The best initial model can be375

determined using random sample consensus (RANSAC).376

[98] was based on Bayesian inference. A pseudo-atomic model is used to377

represent the 3D structure, whilst the estimation of the unknown 3D structure378

and image orientations is carried out with a maximum a posteriori optimization.379

However, it must be taken into account that a low number of pseudo-atoms in380

the pseudo-atomic model could generate inaccurate structural representations.381

The algorithm presented in [99] followed a maximum likelihood approach where382

the projection parameters are treated as hidden random variables and the goal is383

to find the volume that maximizes the likelihood of observing the experimental384

images (although normally this algorithm is applied to 2D class averages). The385

method ends up in a weighted least squares problem, in which the weights are386

given by both the experimental image and the projection direction. Actually,387

this method introduced an important idea in the field: not only experimental388

images can vote during the construction of a model by assigning a weight to389
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each projection direction, but projection directions can also vote and help in390

the decision of the weights of the experimental images.391

The main drawbacks of statistical approaches are the following: the compu-392

tational complexity is usually high due to the iterative framework, and, as they393

need some first estimation to iterate until getting the definitive initial model,394

tend to easily finish in local minima. This is the problem with a solution land-395

scape containing plenty of local minima - algorithms may get trapped in these396

less optimal solutions.397

In 2018, a new approach to ab initio modeling was presented that does not398

require estimation of the viewing directions of projections. Assuming that the399

projection orientations are uniformly distributed across the sphere, Levin et al.400

[100] show that a low-resolution estimate is achievable by using just two denoised401

projections. The authors use Kam’s autocorrelation method and solve for the402

missing orthogonal matrices by using projection matching. There are a few403

limitations to this method, one being the assumption that viewing directions are404

distributed uniformly, as some molecules have preferred orientations. However,405

the methods shown in this paper may lead model initialization research in a406

fresh, promising direction.407

Finally, [101] a particle swarm optimization method is introduced that col-408

lects different initial volume proposals from other algorithms and considers them409

to be individuals of a population of initial volumes. Particle swarm optimiza-410

tion refers to allowing candidate solutions, called ”particles”, to traverse, or411

”swarm”, the search space of solutions and approach the optimal solutions. This412

population is evolved using an algorithm combining stochastic gradient descent413

and particle swarm optimization. Ordinarily, the whole population converges414

to a single structure, which is usually a correct initial volume.415

In many cases, is not possible to build an initial model following the common416

cryo-EM pipeline. In this situation, it is possible to use negatively stained sam-417

ples and the Random Conical Tilt (RCT) [66] or Orthogonal Tilt Reconstruction418

(OTR) [67] procedures, obtaining a low-to-medium resolution model.419

Although there is a wide range of possibilities to tackle the initial volume420
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estimation, this is still an open problem, but to a much lesser extent than it was421

five years ago. More robust algorithms are still in need, since there are situations422

in which the existing algorithms are not able to produce a satisfactory result.423

2.3.2. Refinement and Reconstruction424

One key step in the cryo-EM image processing pipeline is the 3D reconstruc-425

tion of a model compatible with the available 2D images coming from projections426

of the molecule under study, achieving a resolution sufficiently to interpret de-427

tails in the macromolecular structures. This is the problem that refinement and428

reconstruction methods try to solve.429

Despite the fact that 2D projection images are contaminated by a huge430

amount of noise, thanks to the large number of available images in SPA, the431

averaging of many images coming from the same direction is able to greatly432

reduce the noise level, making the reconstruction process mainly limited by433

incomplete coverage of the viewing directions, limiting effects of the CTF, and434

execution time. We can find plenty of reconstruction methods, mainly organized435

in two families: direct Fourier inversion and iterative algorithms.436

Direct Fourier inversion methods are based on the Central Slice Theorem437

[91]. They are well suited to handle a large number of projections, which is438

common in SPA, with a reasonable computational burden and high accuracy439

when the angular coverage of the set of projections fully fills the 3D Fourier440

space. However, when we do not have a good angular coverage the outcomes441

generated by these methods cannot be optimal solutions. Abrishami et al. [102]442

dealt with the angular coverage problem by introducing a gridding-based direct443

Fourier method that used a weighting technique to compute a uniform sampled444

Fourier transform. This proposal followed the general idea of [34] and added a445

weighting scheme in which every projection direction with weights is estimated446

in an iterative way - evaluating a function similar to a kernel interpolator.447

Another research line has sought to incorporate a priori information in the448

3D reconstruction process. Some iterative procedures have exploited sparse449

representation of the reconstructed volume. For instance, Moriya et al. [103]450
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(a) β-galactosidase: RELION (b) β-galactosidase: Xmipp

(c) Virus: RELION (d) Virus: Xmipp

Figure 3: Examples of two reconstructed strutures using RELION autorefine (left) and Xmipp

highres (right.). Despite the input date were the same, both algorithms cast different degree

of detail keeping the same structure. The representative slices from 3D reconstruction of

β-galactosidase (EMDB entry 10013) (top) and Brome Mosaic Virus (EMDB entry 10010)

(bottom)

assumed a Median Root Prior which favored locally monotonic reconstructions.451

Xu et al. [104] used an improved L2 gradient flow method (L2GF) in which452

an energy functional consisting of a fidelity term and a regularization term was453

employed. For a review of iterative algorithms, the interested reader is referred454

to [105]. The use of different reconstruction algorithm depends on the user,455

because they might cast slightly but non-negligible results, an example showing456

two reconstruction methods is shown in Figure 3.457

The main drawback of existing refinement and reconstruction methods is458

the difficulty of managing the projection images. There are a limited number459
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of projection images available, which impedes the ability to correctly pose the460

inverse problem. Another drawback is the high computational cost, even when461

using highly optimized implementations on graphic processing units (GPUs).462

More general statistical methods are gaining popularity recently. [106] pro-463

posed a novel speedup of the expectation-maximization algorithm. The idea be-464

hind the approach was to represent the 2D experimental images and the model465

projections in two low-dimensional subspaces. The matching between experi-466

mental and projections images was performed in the subspace bases. Because467

the number of basis elements is much smaller than the number of images and468

projections, substantial speedup was achieved. The main difference between469

this algorithm and that proposed in [34] is that the latter is implemented in the470

Fourier domain whilst the subspace in [106] can be applied in Fourier or spatial471

domains. In [107] the stochastic gradient descent (SGD) and Bayesian marginal-472

ization algorithms were used to recover multiple 3D states of the molecule. The473

algorithm started with an arbitrary computer-generated random initialization474

that was incrementally refined with random selection of 2D images. The main475

problem of this algorithm, since it essentially relied on an arbitrary initial map,476

was the sensitivity to be biased towards the initial map, although the SGD is477

supposed to help in this regard.478

2.3.3. Molecule Heterogeneity479

Macromolecules can undergo conformational changes due to their functional480

needs and the interaction with other molecules and the environment. For this481

reason, in the 2D cryo-EM images it is possible to visualize different molecule482

conformations, which poses a great challenge in the development of processing483

algorithms to analyze the molecular structures. Heterogeneity is currently an484

active field of research in cryo-EM as to get the highest resolution in the 3D485

model reconstruction is essential to discover the presence of different conforma-486

tions. In this review, we divide the approaches into four main families: physical,487

statistical, covariance analysis, and projection subtraction methods.488

In the physical approaches we can find a family of algorithms based on489
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anisotropic network model (ANM), which is a direct application of the normal490

mode analysis, and molecular dynamics (MD) to predict the collective motions491

of structures and to describe full atomic molecular motions, respectively. [108]492

combined both with Monte Carlo/Metropolis scheme to randomly select the493

modes to deform the structure with the aim of generating trajectories between494

two conformational states. In [109] ANM and MD were also used to couple495

local and global motions efficiently. The method performed a large number of496

MD simulations, each of them corresponding to the excitation of a randomly497

determined linear combination of selected normal modes. Similarly, in [110]498

combinations of ANMs were used to calculate the conformational space for a499

molecule, and a clustering procedure was applied to construct representative500

substates.501

Among the statistical approaches is a method for sorting structural states502

found in [111]. It was based on bootstrapping of 3D sub-ensembles and 3D mul-503

tivariate statistical analysis followed by 3D classification. In [112] a method to504

analyze distances among elastically aligned pairs of EM models was presented.505

Each experimental 3D model was transformed by elastic deformation and com-506

pared with other models in terms of structural and conformational differences.507

Punjani et al. [107], that was described in the previous section, was also de-508

veloped to refine multiple high-resolution 3D models directly from single parti-509

cle images using SGD and Bayesian marginalization algorithms. [113] studied510

the conformational variability combining an iterative 3D classification approach511

with 3D principal component analysis (PCA). 3D classification gave hundreds512

of 3D structures, which were ordered according to their conformational similar-513

ities by applying PCA. Thus, this method is able to identify motion patterns514

of flexible components in a conformational landscape. An example is shown in515

Figure 4.516

A different approach to discover heterogeneity in cryo-EM data consists of517

estimating the covariance of the reconstructed model. [114] proposed a new518

estimator in the Fourier space that converges to the population covariance ma-519

trix as the number of images grows, but this method involves the inversion of a520
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Figure 4: Top, left: 3D Electron density map of the Tomato Bushy Stunt Virus and its pseu-

doatomic representation. Top, right: collectivity of the normal modes of the pseudoatomic

representation. Bottom, left: projection of the deformation parameters estimated for experi-

mental images onto a 3D Principal Component (PCA) Space. Clustering of these projections

into 4 classes. Bottom, right: The corresponding reconstructions of the 4 identified classes in

the PCA space are shown; their isosurface representation is superposed using the same colors

than the identified classes, exhibiting a conformational change.
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high-dimensional linear operator. In [115], instead of inverting the original lin-521

ear operator, it was proposed to use the conjugate gradient, achieving a lower522

computational complexity and the possibility of including the CTF correction.523

[116] estimated the whole covariance matrix, instead of only its main eigenvec-524

tors. Hence, this approach avoided the resampling problem and enabled the525

analysis of covariance in localized regions.526

The work described in [117] used fluctuation-dissipation theory for estimat-527

ing a spring-and-mass mechanical model. Thus, this approach was able to trans-528

form the covariance matrix into a generative mechanical model of the complex.529

The last family of methods to deal with structural heterogeneity is based530

on focusing the refinement process on the region where the motion is mostly531

taking place, masking out the fixed parts of the images. This procedure is usu-532

ally named projection subtraction and it is able to take into account during533

3D refinement only those parts of the images where the structural variability534

can be found. [118] proposed to subtract projections of the fixed part of the535

molecule from every experimental image. This way, the modified experimental536

image only contains the moving part of the molecule. This procedure required537

knowledge of the relative orientation of each particle, which was obtained from538

a consensus refinement of the entire data set against a single, unmasked refer-539

ence. A similar idea was published in [119], where a first 3D estimated model540

was separated into different modules according to prior knowledge. For every541

module, the orientation parameters were calculated by maximizing the cross-542

correlation coefficient. However, this method assumed that the resolution of the543

initial 3D model was high enough to discriminate different modules. One of the544

main drawbacks of the projection subtraction approaches is that the moving545

element needs to be rigidly moving and of enough size so that the subtracted546

projections can be correctly aligned.547

Despite all the research in heterogeneity, the main difficulties remain. First,548

the 3D models need to be reconstructed from 2D images, making it difficult to549

connect the models reconstructed from thousands of 2D experimental images550

with the actual conformational state associated to a projection. Moreover, the551
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noise problem must be highlighted, as 2D experimental images have a SNR552

well below 1 (which means that there is much more noise power than signal553

power). This problem poses a limit on the resolution that can be achieved554

in the 3D models reconstructed with SPA, making some conformational states555

indistinguishable.556

2.3.4. Validation of Results557

The reconstruction workflow involves many steps in which the user decisions558

might determine the quality or even the validity of the electron density map.559

The low SNR of cryo-EM images complicates the reconstruction process. In560

particular, it can induce problems in critical steps, especially in the angular561

assignment of particles. Thus, low quality maps can be obtained or, in the562

worst case, a wrong map can be elucidated. The map validation can be carried563

by means of external techniques as X-rays or NMR, or alternatively by using564

the experimental images that must be in agreement with the volume. A set of565

methods addressed to validate the map have been proposed.566

1. Overfitting detection: Overfitting phenomena occurs particularly at high567

resolution. A reconstructed volume using noisy particles should stand568

out in the resolution of the map. By substituting a certain number of569

experimental particles by noisy particles and reconstructing, a validation570

can be carried out [120]. The goal will be to analyze the resolution of571

the reconstructed volume before and after noise substitution. If both572

resolutions are consistent, then an aligning problem is detected.573

2. Tilt Pairs Validation: This was the first validation method [121, 122, 123]574

and requires a measurement of the sample at two different tilt angles.575

The geometry constraint introduced by the tilt angle and direction must576

be conserved when the particle’s tilt pairs are aligned with the obtained577

volume, i.e. the angular relation between the untilted and tilted particle.578

The results of the angular alignment are simply plotted in a polar plot,579

in which the the radial measure represents tilt angle and the angle shows580

the tilt direction. When the volume is in agreement with the angular581
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alignment, the plot will exhibit a cluster. The high level of noise might582

introduce non-negligible alignment errors which are shown as scattered583

points in the polar plot; to analyze the existence of clusters an statistical584

approach is required [124].585

3. Alignability validation: These methods aim at measuring the alignability586

of the set of images used for reconstruction [125, 126]. Leaving out sym-587

metrical issues, each particle will be a map projection under one direction588

and it is expected that the most probable orientations for each particle589

form a cluster in the projection sphere. Additionally, if we make a de novo590

angular assignment, it is expected that the new angular assignment is con-591

sistent with the angular assignment used for reconstruction. In contrast,592

pure noise images are expected to behave in the opposite way: the most593

probable directions are not clustered, and the de novo angular assignment594

does not coincide with the assigned angles.595

4. Atomic model Validation: Many structures elucidated by cryo-EM were596

previously obtained by other techniques such as X-ray crystallography or597

NMR. In these cases, the atomic model is known. Then, the electron den-598

sity map must follow the atomic model at least at medium-low resolution.599

2.4. Resolution600

Once the macromolecular structure has been obtained and validated, it is601

necessary to report a quality measurement of its electron density map. The602

resolution tries to answer this regard. There is no consensus about a universal603

definition of resolution, the most widespread being the size of the smallest reli-604

able detail in the map. However, from an optical point of view, resolution has a605

clear definition as the capability of an imaging system of distinguishing two sep-606

arated points in an acquired image. The Rayleigh criterion can be considered as607

the standard in optics [127]. It should be highlighted that this definition implies608

that resolution is a property of the imaging system instead of a property of the609

acquired image (map in cryo-EM). Nevertheless, when the imaging system is610

omitted and only the image is analyzed, other criteria are used, e.g., Johnson611
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criteria [128].612

In cryo-EM, the resolution has been traditionally analyzed in a global sense,613

that is, reporting a single parameter called global resolution that summaries the614

quality of the map. For a comprehensive review of these resolution measures,615

the reader is referred to [129]. The most used global resolution method is the616

Fourier Shell Correlation (FSC) where the correlation of two band-pass filtered617

independent reconstructions is measured. The resolution is defined as the central618

frequency of the band-pass filter at which the correlation drops below a given619

threshold. The problem with this measure is that it is a self-consistency measure620

of the reconstruction process, rather than a quality measure of the reconstructed621

volume, e.g. it rewards systematic errors during the reconstruction process. To622

do that, the Gold Standard procedure is carried out. It consist in sppliting the623

set of particles in two sets, and then performing two independent reconstructions624

[130, 131]. This is a self-consistency measurement because both reconstructions625

should cast similar maps. If one of the reconstructions exhibits overfitting,626

it will not correlate with the other. Despite the gold standard, there is still627

some overfitting. In this regard, the phase-randomization method can be used628

to calculate the true FSC-resolution by noise substitution of particle phases629

beyond a certain frequency [132]. Cryo-EM images present low SNR and even630

particles of noise can be aligned i.e. features of noise correlate with the reference631

[133, 134, 120], in particular at high frequencies. When many particles of noise632

are aligned, those poor features are reinforced and a model bias is introduced.633

This problem is called the phantom in the noise or Einstein from noise.634

However, as the pioneers of the local resolution showed, one number does not635

fit all [135]. It has been shown that resolution is actually a tensor (it depends636

on the location within the volume and the direction) [129], and the global reso-637

lution summarizes this rich information into a single number. The local quality638

differences have their origin in the reconstruction process. The SPA workflow639

considers that all particles (projections of the macromolecular complex) are640

identical and uniformly distributed on the projection sphere. Unfortunately,641

reality differs from this assumption because of heterogeneity and angular orien-642
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tation. The heterogeneity has been identified as one of the main problems in643

cryo-EM [136], and contradicts the SPA hypothesis that all particles are iden-644

tical copies of the same complex. Thus, we distinguish heterogeneity due to 1)645

the macromolecular complexes not being rigid and presenting a certain degree of646

flexibility, i.e. conformational heterogeneity; 2) despite the purification efforts647

some proteins present slight, but not negligible, structural heterogeneity. Radi-648

ation damage can also be responsible for this kind of heterogeneity. In any case649

the heterogeneous region of the macromolecule will be blurred. The angular650

assignment of particles is the second main source that induces local variations651

in the electron density map. If the sample presents preferred directions or even652

lack of information in others, the distribution of angular assignments will be653

non-uniform, and will cast better solved directions than others [137]. To over-654

come this problem of angular coverage, [138] showed that by tilting the sample655

the overall resolution can be increased and the quality map improves.656

Blocres was the first method for estimating local resolution maps in cryo-657

EM [135]. It extends the FSC measurement in a local sense. Thus, by means of658

two half maps and a moving window centered in the interest voxel a local FSC659

can be calculated. The critical point is to set the window size. Logically, this660

is a self-consistency measurement, as the FSC itself, and it preserves all FSC661

properties. Interestingly, Blocres introduced the possibility of computing the662

locally filtered map at the local resolution values.663

Nowadays, the most spread method in local resolution measurements is664

ResMap [139]. Its rationale is the local detection of a sinusoidal signal above665

the noise level in a statistical sense. This task is carried out by means of a666

steerable function basis that allows for modeling of sinusoidal signals by means667

of linear combinations. Moreover, this method overcomes the drawback of using668

two half maps by computing local resolution maps using just a single volume669

or two half maps. In addition, it considers the spatial correlation in terms of670

resolution between closest voxels and computes a False Discovery Rate i.e. in671

an hypothesis the expected value of the number of resolutions wrong assigned672

over the total number of resolution assigned.673
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Figure 5: Local resolution map of the Thermoplasma acidophilum 20S proteasome using the

MonoRes method [140].

Recently, a new method called MonoRes for estimating local resolution has674

been published [140]. The idea of this method is to measure the local energy of675

the macromolecule and the energy distribution of the noise. The discrimination676

between noise and particle is provided by a mask. Thus, a frequency sweep677

is carried out performing hypothesis tests to determine if the energy of each678

voxel in the filtered map is significantly higher than the energy of noise at679

that frequency. This new method has the advantage of being fully automatic680

without user intervention, computationally faster than other approaches, and681

invariant under b-factor correction, and any other isotropic frequency correction.682

In addition, it also provides a local filtered map at the local resolution values,683

shown in Figure 5.684

2.4.1. Fitting an Atomic Model685

Thus far, we have discussed methods for building and refining a 3D recon-686

struction of the molecule being imaged. This reconstruction is in reality just687

a density map. The ultimate interest in the research community is focused on688

an atomic level structural model of the macromolecule. Initially, a fitting can689

be performed for secondary structure elements (SSEs) such as α-helices and β-690

sheets. Initial methods from the early 2000s focused on one particular SSE for691

search, but in more recent years, with SSELearner (2012) and the like, different692
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SSE types can be resolved using just one method [141]. There are different ap-693

proaches to fitting multiple SSEs. SSELearner uses a local structure tensor to694

characterize shape at density voxels. A support vector machine is trained with695

discriminatory tensors and known SSEs. This learning approach uses previously696

solved structures to solve similar unsolved molecular structures. [142]697

When fitting to 3D density maps, both rigid fitting and flexible fitting mech-698

anisms can be used. Rigid fitting is often used as a precursor to flexible fitting,699

which then makes allowances for conformational changes. These changes oc-700

cur especially during interaction of the protein with other proteins. Another701

precursor to flexible fitting can be coarse graining. Coarse graining combines702

multiple atoms based on neighborhood arrangement into psuedoatoms that can703

be arranged into a low resolution model. This can save computational energy704

when modeling large molecules. [143] The coarse grained model can then be705

refined, like rigid fitting, with flexible fitting - flexible fitting requires search706

of the solution space of possible conformations. Many methods use simulated707

annealing to find the best fit [144].708

Best fit can be determined using a variety of metrics, the oldest being cross-709

correlation between the estimated structure and the density reconstruction.710

Different metrics have been proposed over the years, including surface area711

agreement with the density model, stereochemistry metrics considering atomic712

bonding and van der Waals forces, and others. Recent work has shown that a713

combined metric of local mutual information and amount of overlap with the714

density reconstruction performs better than cross-correlation alone [145]. It715

seems that along with validation methods for 3D reconstructions, evaluation of716

atomic models is a promising direction for cryo-EM research.717

Atomic model refinement is also a popular topic of current research which718

goes hand in hand with model evaluation. Current work improves fitting of719

amino acid sidechains by using multiple local optimization results instead of720

one global optimization result [146]. For model refinement, researchers have721

also analyzed physical properties that should be taken into consideration, such722

as partial charges on atoms [147].723

28



Building an accurate atomic model is possible even without a reliable 3D den-724

sity map. As noted in previous discussions, we know that molecules have certain725

preferred orientations within a grid. If the set of orientations only includes a726

few possible rotations, then 3D reconstruction through traditional methods is727

intractable. Traditionally in these situations, 2D class averages are compared728

to candidate models, which are represented by a graph of SSE components and729

amino acid side-chains [148]. Comparisons are performed based on similar met-730

rics as when fitting to density maps. More recently, in 2015, electron atomic731

scattering factors (EASF) have been used to generate 3D EM volumes from732

atomic models. The EASF for each element represents the shape of atoms as733

seen by electrons in the electron beam, and is related to the elastic scattering734

of electrons. These EASF functions can be sampled to create an atomic model735

of a macromolecule, that can then be used with any of a number of popular736

software tools to generate a density map of the molecule. [78]737

Another exciting new direction for atomic model fitting is to find the pathway738

of conformational change. Matsumoto et al. generate various atomic models739

with different conformations, which are then deconstructed into their hypothet-740

ical prior 2D projections. The projections are compared to actual projection741

images, building a distribution of conformations from the best matches. From742

this distribution, the path of conformational changes that a protein undergoes743

can be estimated, which is important for understanding functional relationships.744

[149]745

3. Conclusions - Current Image Processing Challenges746

Despite the recent successes of cryo-EM, this modality is still a very ac-747

tive research area, and experimental advances are still in development including748

sample preparation [7], camera detection efficiency [7, 136, 150], specimen stabi-749

lization under the beam [150], better electron optics (energy filters, aberration750

corrections) [151, 152, 153], in-focus phase contrast [7], computational means to751

validate structures [154, 7, 136], wider access to high-end microscopes [7, 150],752
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and better training [7]. From the data analysis point of view, we would like to753

complement this list with the following considerations:754

1. Better BIM correction: Specimen movement under the electron beam is a755

serious issue. The steady progress in this area is clear and positive, with756

proposals at the level of sample preparation [155, 156], computational757

frame alignment [157] and dose weighting [43, 158]. However, the best758

way to combine all these approaches is still unclear, and even some BIM759

effects, such us out-of-plane rocking along beam direction, are not yet760

addressed by any method.761

2. Finer aberration corrections: Microscope aberrations that have not been762

corrected by hardware must be estimated and corrected by software. Many763

attempts have been made to correct for spherical aberrations [159], mag-764

nification anisotropy [160], or local defocus changes [161], but their use765

is not widespread, probably indicating that still a better match into the766

processing workflow is required. Even such a basic task as focus deter-767

mination is far from trivial and reliable for high resolution [162]. Ad-768

ditionally, the weak-phase approximation is violated for large specimens,769

and at high resolution the Central Slice Theorem does not hold as an770

image formation model [151, 14, 16]. This implies that beyond a given771

resolution, reconstruction algorithms are not correctly handling frequency772

coordinates. Finally, the much anticipated introduction of phase plates773

as a way to avoid defocusing [163] poses additional challenges, since focus774

determination in these conditions is especially difficult.775

3. Handling homogeneity/heterogeneity and flexibility: Particle flexibility and776

heterogeneity is at the same time a blessing and a curse of EM. On one777

side, flexibility helps to reveal the dynamics of the macromolecule under778

study. On the other side, only homogeneous sets of particles can be re-779

constructed to atomic resolution. The compromise between a data set780

being as large as possible and as homogeneous as possible is still an open781

problem, particularly due to the low contrast and SNR of the acquired im-782
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ages. Significant advances in this regard have been made in recent years783

[57, 164]. However, the issue is far from settled, particularly in those cases784

in which conformational changes correspond to a continuous distribution785

of states. This issue has been explored in some works [165, 89], but this786

problem still needs further investigation. A particularly challenging situa-787

tion occurs when studying a macromolecule of unknown structure. Indeed,788

most image classification algorithms are designed as local optimizers that789

start from a reasonably good initial map. If this map is not available, al-790

gorithms may easily find nonsensical structures. There are specific initial791

volume algorithms to handle this issue [166]. However, currently, there is792

no algorithm specifically designed with flexibility/heterogeneity in mind.793

4. Complement with other information sources: With very few exceptions794

[167], current reconstruction processes do not consider any source of in-795

formation other than the projection images produced by the microscope.796

After a 3D map is obtained, modeling - especially the modeling of large797

macromolecular complexes - certainly benefits from other sources of in-798

formation, such as cross-linking and mass spectroscopy [168] or protein-799

protein interaction data [169]. However, the explicit algorithmic incorpo-800

ration of a priori information about the type of signals (macromolecular801

maps) being handled is missing in the field.802

5. Validation: For the good and for the bad, data analysis always produces803

a model of the macromolecular structure. Unfortunately, due to the high804

level of noise and the high dimensionality of the optimization process,805

the chances of getting trapped in a local minimum are not negligible.806

There are two possible manifestations of a local minimum: 1) the overall807

shape of the structure is incorrect (despite the fact that its projections808

are compatible, to a certain degree, with the experimental images); 2)809

small details of the structure are incorrect (the algorithm has overfitted810

noise). The first problem can be alleviated if similar maps are obtained811

when starting from several initial models. However, automatic algorithms812

capable of detecting this situation are still in need [122, 120, 125, 126].813
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The second case can be alleviated by independently processing two halves814

of the data [170]. But the field needs better data processing strategies815

that do not imply using only a half of the dataset at hand.816

6. Standardization: Thanks to the success of cryo-EM as an imaging tech-817

nique, many engineering groups are getting involved in the global research818

effort and adding new small pieces of software solving specific problems. In819

addition, we have the traditional software packages that cover the whole820

image processing pipeline (Relion [171], Eman [172], Xmipp [173, 37],821

Spider [38], Imagic [174], Frealign [175], ...) and systems that integrate822

algorithms from multiple sources (Appion [42] and Scipion [41, 176]). This823

ecosystem of software lacks a common standard of interchanging informa-824

tion. Although some attempts have been proposed at the level of metadata825

[177] and geometry [178], they have not been widely adopted. Addition-826

ally, the field is lacking a mechanism to report the image processing steps827

carried out from the acquired movies to the final 3D reconstruction.828

7. Data Management: The number of solved structures is growing year af-829

ter year. Thus, the structural biology community and in particular EM-830

community is getting awareness about sharing this information. To achieve831

that, there are some web services as they are: The EMDataBank (http://www.emdatabank.org),832

Worldwide Protein Data Bank (wwPDB; http://wwpdb.org). Other databases833

such as EMPIAR (http://www.ebi.ac.uk/pdbe/emdb/empiar/) pursues834

raw data availability. For a good review on data management and databases835

in structural biology see [179].836
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J. Gutiérrez, J. Gómez-Blanco, J. Burguet-Castell, J. Cuenca-Alba,985

V. Abrishami, J. Vargas, J. Otón, G. Sharov, J. L. Vilas, J. Navas,986

P. Conesa, M. Kazemi, R. Marabini, C. O. S. Sorzano, J. M. Carazo, Sci-987

pion: A software framework toward integration, reproducibility and vali-988

dation in 3D electron microscopy., Journal of Structural Biology 195 (1)989

(2016) 93–99.990

[42] G. C. Lander, S. M. Stagg, N. R. Voss, A. Cheng, D. Fellmann, J. Pulokas,991

C. Yoshioka, C. Irving, A. Mulder, P. W. Lau, D. Lyumkis, C. S. Potter,992

B. Carragher, Appion: an integrated, database-driven pipeline to facilitate993

em image processing., Journal of Structural Biology 166 (2009) 95–102.994

[43] *T. Grant, N. Grigorieff, Measuring the optimal exposure for single par-995

ticle cryo-EM using a 2.6̊a reconstruction of rotavirus VP6., elife 4,996

Dose weighting of the movie frames is crucial to preserve high quality997

information in the micrographs.998

[44] Z. A. Ripstein, J. L. Rubinstein, Processing of cryo-EM movie data., Meth-999

ods in Enzymology 579 (2016) 103–124.1000

[45] X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld, S. Gubbens,1001

D. A. Agard, Y. Cheng, Electron counting and beam-induced motion1002

correction enable near-atomic-resolution single-particle cryo-EM., Nature1003

Methods 10 (6) (2013) 584–590.1004

[46] J. L. Rubinstein, M. A. Brubaker, Alignment of cryo-EM movies of indi-1005

vidual particles by optimization of image translations., Journal of Struc-1006

tural Biology 192 (2) (2015) 188–195.1007

[47] R. A. McLeod, J. Kowal, P. Ringler, H. Stahlberg, Robust image align-1008

38



ment for cryogenic transmission electron microscopy., Journal of Struc-1009

tural Biology 197 (2017) 279–293.1010

[48] S. Q. Zheng, E. Palovcak, J.-P. Armache, K. A. Verba, Y. Cheng, D. A.1011

Agard, Motioncor2: anisotropic correction of beam-induced motion for1012

improved cryo-electron microscopy., Nature Methods 14 (2017) 331–332.1013

[49] P. Afanasyev, R. B. G. Ravelli, R. Matadeen, S. De Carlo, G. van Duinen,1014

B. Alewijnse, P. J. Peters, J.-P. Abrahams, R. V. Portugal, M. Schatz,1015

M. van Heel, A posteriori correction of camera characteristics from large1016

image data sets., Scientific Reports 5 (2015) 10317.1017

[50] C. O. S. Sorzano, E. Fernández-Giménez, V. Peredo-Robinson, J. Vargas,1018
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R. Melero, M. Mart́ınez, P. Conesa, J. L. Vilas, R. Marabini, J. M. Carazo,1424

High-resolution reconstruction of single particles by electron microscopy,1425

Journal of Structural Biology 204 (2) (2018) 329–337.1426

[167] J. Velázquez-Muriel, K. Lasker, D. Russel, J. Phillips, B. M. Webb,1427

D. Schneidman-Duhovny, A. Sali, Assembly of macromolecular complexes1428

by satisfaction of spatial restraints from electron microscopy images.,1429

Proc. Natl. Acad. Sci. USA 109 (46) (2012) 18821–18826.1430

[168] A. Politis, F. Stengel, Z. Hall, H. Hernández, A. Leitner, T. Walzthoeni,1431

C. V. Robinson, R. Aebersold, A mass spectrometry-based hybrid method1432

for structural modeling of protein complexes., Nature Methods 11 (4)1433

(2014) 403–406.1434

[169] J. Segura, R. Sanchez-Garcia, D. Tabas-Madrid, J. Cuenca-Alba, C. O. S.1435

Sorzano, J. M. Carazo, 3DIANA: 3D domain interaction analysis: A tool-1436

box for quaternary structure modeling., Biophysical Journal 110 (4) (2016)1437

766–775.1438

[170] S. H. W. Scheres, S. Chen, Prevention of overfitting in cryo-EM structure1439

determination., Nature Methods 9 (9) (2012) 853–854.1440

[171] S. H. W. Scheres, Methods in Enzymology. The Resolution Revolution:1441

Recent Advances In cryoEM, Academic Press, 2016, Ch. Processing of1442

structurally heterogeneous cryo-EM data in RELION, pp. 125–157.1443

[172] S. J. Ludtke, 3-d structures of macromolecules using single-particle anal-1444

ysis in eman., Methods in Molecular Biology 673 (2010) 157–173.1445

[173] C. O. S. Sorzano, R. Marabini, J. Velázquez-Muriel, J. R. Bilbao-Castro,1446

S. H. W. Scheres, J. M. Carazo, A. Pascual-Montano, XMIPP: A new1447

54



generation of an open-source image processing package for electron mi-1448

croscopy, Journal of Structural Biology 148 (2004) 194–204.1449

[174] M. van Heel, G. Harauz, E. V. Orlova, R. Schmidt, M. Schatz, A new1450

generation of the IMAGIC image processing system, Journal of Structural1451

Biology 116 (1996) 17–24.1452

[175] N. Grigorieff, Methods in Enzymology. The Resolution Revolution: Recent1453

Advances In cryoEM, Academic Press, 2016, Ch. Frealign: an exploratory1454

tool for single-particle cryo-EM, pp. 191–226.1455
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