
Treball final de grau

GRAUS DE MATEMÀTIQUES i
ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

ITERATION OF HOLOMORPHIC
FUNCTIONS AND VISUALISATION

OF FRACTALS

Autor: Adrià Torralba Agell

Directores: Dra. Núria Fagella Rabionet and
Dra. Anna Puig Puig

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, June 21, 2020

Abstract

When a holomorphic function is iterated, it generates a dynamical system on the complex
plane. In this project we describe both the local and global theory of the different orbits of
holomorphic functions, focusing on the polynomial families. We present the necessary results
leading to two algorithms to draw both Julia sets and Mandelbrot (and Multibrot) set: the
Escape Algorithm and Henriksen Algortihm. In addition, we present the development of an
interactive application, made with Unity, that allows us to visualise fractals on the complex
plane -rendered using the aforementioned algorithms- and a generalisation of them over a
3-dimensional space, directly on a website.

Resum

Quan una funció holomorfa és iterada, aquesta genera un sistema dinàmic al pla complex.
En aquest projecte descrivim tant la teoria local com la global de les diferents òrbites de
les funcions holomorfes, concentrant-nos especialment en les famílies polinòmiques al pla
complex. A part, exposem els resultats necessaris per a justificar dos algorismes de rende-
rització per a dibuixar tant conjunts de Julia com el conjunt de Mandelbrot (i Multibrot):
l’Algorisme d’Escapament i l’Algorisme de Henrisken. A més a més, presentem el desenvo-
lupament d’una aplicació interactiva, feta amb Unity, que permet tant la visualització de
fractals al pla complex -renderitzats usant els algorismes esmentats- com una generalització
d’aquests en un espai 3-dimensional, tot directament des d’una web.

Resumen

Cuando se itera una función holomorfa, ésta genera un sistema dinámico en el plano comple-
jo. En este proyecto describimos tanto la teoría local como la global de las diferentes órbitas
de las funciones holomorfas, concentrándonos especialmente en las familias de polinomios en
el plano complejo. A parte, exponemos los resultados necesarios para justificar dos algorit-
mos de visualización para dibujar tanto conjuntos de Julia como el conjunto de Mandelbrot
(y Multibrot): el Algoritmo de Escape y el Algoritmo de Henriksen. A de más, presentamos
el desarrollo de una aplicación interactiva, hecha en Unity, que permite la visualización de
fractales en el plano complejo -renderizados usando los algoritmos antes mencionados- así
como una generalización de estos en un espacio 3-dimensional, todo directamente desde una
web.

2020 Mathematics Subject Classification. 37F10, 97N80

Clouds are not spheres,
mountains are not cones,
coastlines are not circles
and bark is not smooth,
nor does lightning travel in a straight line.

BENOÎT MANDELBROT

Acknowledgements

To my directors Anna Puig and Núria Fagella, for their absolute availability, patience, help
and encouragement.

To my parents Montse and Francisco, my grandmother Gràcia, my aunt Mª Àngels and
my brother Jordi because, without their support, none of this would have been possible.

To my friends Youwei, Àlex, Àngel, Ignasi and Jesús, for the funny moments studying
and at class.

And to my life partner Sara, for her unconditional support.

Contents

Introduction iv

I Iteration of Holomorphic Functions 1

1 General Concepts and Local Theory 3

1.1 Basic concepts in dynamics . 4

1.2 Local Stability . 5

1.3 Towards Global Theory . 10

2 Global Theory 13

2.1 Normal Families . 13

2.2 Julia and Fatou Sets . 14

2.3 Henriksen Algorithm for Julia set . 17

2.4 Classification of Periodic Components . 19

2.4.1 Wandering Domains . 19

2.4.2 Classification Theorem of Fatou’s Components 20

3 The Dynamical Plane of Polynomials 23

3.1 Julia and Fatou Sets for Polynomials . 24

3.2 Escape Criteria for Julia set . 25

3.3 Escape Algorithm for Julia set . 26

4 Parameter space: The Mandelbrot and Multibrot sets 29

4.1 The Basic Dichotomy . 29

4.2 Escape Criteria . 31

i

4.2.1 Escape Algorithm for Mandelbrot and Multibrot sets 32

4.3 Another approach to rendering the Mandelbrot and Multibrot set 33

4.3.1 Henriksen Algorithm for Mandelbrot and Multibrot sets 34

II Visualisation of Fractals 37

5 Basic Notions on Computer Graphics 39

5.1 The camera object . 39

5.2 Types of Camera Projection . 40

5.3 Coordinate Systems . 41

5.4 Programable Visualisation Pipeline . 42

5.5 Shader Structure . 43

5.6 Type of Shaders . 44

5.6.1 Vertex Shaders . 44

5.6.2 Geometry Shaders . 44

5.6.3 Fragment Shaders . 44

5.6.4 Post-Processing Shaders . 44

5.7 Some Shader Parameters . 45

5.8 Blinn-Phong Illumination . 46

6 Problem Overview 47

6.1 Analysis of Requirements . 47

6.1.1 Functional Requirements . 48

6.1.2 Non-Functional Requirements . 53

6.2 Antecedents . 53

6.2.1 State-of-the-Art: 2D Fractal Visualisation 54

6.2.2 State-of-the-Art: 3D Fractal Visualisation 55

6.2.3 Existing Software Comparison . 56

6.3 Conclusions . 58

7 Proposal 59

7.1 Strategy of 2D visualisation . 60

7.1.1 Rendering 2D Fractals using the CPU 60

7.1.2 Optimisations on GPU . 61

7.2 Strategy of 3D visualisation . 62

7.2.1 Ray-Marching . 62

7.2.2 Our implementation . 64

7.3 Architecture of the System . 68

7.3.1 Fractals Package . 68

7.3.2 Interface Controller Package . 70

7.3.3 Controller Package . 71

7.3.4 Utilities Package . 72

7.3.5 Tabs Package . 72

7.3.6 Export Package . 73

7.3.7 Shaders Package . 74

8 Results and Benchmarks 77

8.1 Application . 77

8.2 Benchmarks . 80

8.2.1 2D Fractals . 80

8.2.2 3D Fractals . 84

9 Conclusions and Future work 89

9.1 Conclusions . 89

9.2 Future work . 90

A Class Diagrams 91

B Application Screenshots 95

C Minimum Requirements 99

C.1 Desktop Platform . 99

C.2 Mobile Platform . 99

C.3 Website Platform . 99

Bibliography 101

Introduction

From the earliest times, all civilisations have had an interest in the superstition, the obser-
vation and the classification of the geometric figures that we can see in nature.

Most of the ancient civilisations were already fascinated by classical geometrical forms,
such as triangles and circles, and they tried to provide a rational description of natural
objects taking these classical forms as starting point.

Two of the most well known examples of this interest and knowledge about classical
geometry are The Elements, a geometry treatise written by Euclid in the IV century b.C.,
or the famous welcoming sentence written in Plato’s academy: "Let no one ignorant of
geometry enter".

Nonetheless, nature often lacks these most wanted classical geometry properties, such as
symmetry, proportion and harmony, making it impossible to describe the world only using
these elementary shapes. In many cases, simplifications were tried and often they lead to
error, like the assumption that celestial orbits were perfectly circular.

It was not until the XIX century when mathematicians like Weierstrass, Koch or Cantor
explored objects whose properties were not explained by traditional geometry. These objects
are known nowadays as fractals. However, due to a lack in computer visualisation, their
works were very abstract.

In the XX century, Poincaré, Schröder, Fatou and Julia did their first incursions in the
world of iteration in both the euclidean and the complex plane, giving birth to what we call
dynamical systems nowadays. They realised that some of them behaved in a chaotic way,
i.e., similar initial conditions produced very different behaviours when iterated.

In the complex setting, we can highlight the work of Fatou and Julia who used the
recently developed theory of normal families in order to split the complex plane in two
different regions with different dynamical behaviour. These sets are known today as the
Julia set and Fatou set, also known as the chaotic set and the stable set, respectively.

Both Julia and Fatou were very fascinated by the surprising properties of these objects.
However, both got rapidly stuck when they tried to visualise them, because of the lack of
computing power to do so. However, we can find a first "draft" of the Julia set for the
particular polynomial P (z) = 1

2 (3z − z3) that Julia draw in order to try to observe its
self-similarity (See Figure 1, left) . Even with this lack of means, Julia managed to visualise

v

vi Introduction

a very early drawing of the Julia set for this polynomial, which we can compare with the
right picture in Figure 1, the actual Julia.

Figure 1: On the left, the hand drawn sketch of the Julia set for the polynomial P (z) =
1
2 (3z − z3), drawn by Julia. On the right the actual Julia set.

It was not until 1982 that D. Sullivan applied the theory of quasiconformal mappings in
order to finalise the classification of Fatou components or connected components of the Fatou
set. This fact, in combination with the advances in technology regarding processors, both
central processor unit (CPU) and graphical processor unit (GPU), provided the world with
the capacity of doing millions of numerical operations per second, promoted the renaissance
of this topic during the 80’s. Thanks to this boost in computer performance, one was enabled
to draw these sets in seconds, which allowed mathematicians to make conjectures and open
new problems.

Nonetheless, these objects -far from being only a mathematical curiosity- kept appearing
when studying natural phenomena and the universe that surrounds us, such as snow flakes
or thunderbolts. These observations opened the eyes to a brand new world of possibilities.

Some years later, the studies from Brooks and Matelski about Kleinian groups1 provided
the first computer image of a well known fractal: the Mandelbrot set (See Figure 2 [39],
left). Which we can compare with the right picture in Figure 2, a modern image of the
Mandelbrot set.

Regarding this computer explosion, the summit has not been reached even today. Every
day new visualisation techniques keep appearing that enhance the previous existing ones.

1See their work on [1].

Introduction vii

Figure 2: On the left we can see the first picture of the Manelbrot set made by Brooks and
Matelski. On the right we can see a modern image of the Mandelbrot set.

Main goal

The goal of this project is twofold.

On the one hand, we aim to present an introduction to iteration of complex polynomials.
Our guiding thread is to justify with mathematical rigour, the rendering algorithms that
we aim to implement in the second part of this document to draw images of the complex
fractals both in the dynamical and the parameter planes.

On the other hand, equipped with the results on the first part, we design and develop an
application to visualise fractal objects that are the result of polynomial iteration. A gener-
alisation of these sets on a 3-dimensional space is also presented as a rendering visualisation
exercise.

The application we present here aims to be a practical tool with plenty of features to
explore the world of complex polynomial dynamics. In particular, it has been designed and
thought to be used by the students of Models Matemàtics i Sistemes Dinàmics (Mathemat-
ical Models and Dynamical Systems), a second year course in the Mathematics Bachelor’s
degree at Universitat de Barcelona.

viii Introduction

Specific goals

In order to accomplish the above mentioned goal, we have subdivided it into the following
specific achievements.

1. Give general concepts about dynamical systems and present the most important results
about local theory of iteration of holomorphic functions.

2. Give the definitions of Fatou and Julia sets, and a compendium of their properties,
for an arbitrary holomorphic function. In addition, we aim to show the basic results
about classification of Fatou components.

3. Make a brief study of the dynamical plane of the polynomial family.

4. Present the parameter space with its basic dichotomy and main properties.

5. Analysis of the software requirements of the web application.

6. Analysis of the related work in 2D and 3D fractals. Optimisations of 3D visualisation
using GPUs.

7. Design and development of a web application to render fractals.

8. Comparison of performance and accuracy of CPU and GPU based implementations.

Structure of the Document

This project is divided in two parts: the mathematical formalisation of the iteration of
holomorphic functions and the development of a web application to render fractals.

Thus, in Part I, we present a background on iteration of holomorphic functions focusing
on polynomials and with the main goal to state and prove the results that support the
algorithms we implement on the software project in Part II. This first part is structured as
follows:

In the 1st chapter, we make a brief introduction to general concepts about dynamical
systems, we explain the most important results about local theory as well as others that will
help us in order to obtain global results.

The 2nd chapter presents the definition of Julia and Fatou sets for a holomorphic function
in general. It also contains a compendium of important properties of those sets that will help
us to prove the algorithms on the nexts chapters. In this chapter we find the first algorithm to
draw Julia sets called Henriksen Algorithm. In addition, we study the components of Fatou
set, concluding with the statement of the theorem of classification of Fatou components, an
important result from the 80’s.

The 3th chapter is focused on the polynomial family. Here we present the particular
definition of Julia and Fatou sets for polynomials as well as the escape criteria in which
relies the Escape Algorithm for Julia sets.

Introduction ix

Chapter 4 contains the basic dichotomy for the Mandelbrot and Multibrot sets, providing
also the Escape criteria that leads to the Escape Algorithm for Mandelbrot and Multibrot
sets, as well as another approach to these sets in which we obtain the Henriksen Algorithm
for Mandelbrot and Multibrot sets.

Part II of this project consists on the development process of a software that draws
fractals resulting from iteration of unicritical polynomials in C, as well as a generalisation
to 3-dimensional space.

In chapter 5, we introduce the basic notions about the visualisation pipeline when ren-
dering images through a GPU.

In chapter 6, we expose the definition of the problem. This includes an analysis of
requirements, both functional and non-functional, as well as a brief state-of-the-art about
fractal visualisation and finally, a comparison between existing software that render fractals
and shows its basic properties.

Chapter 7 contains our Proposal to solve the Problem definition defined on the previous
chapter.

In chapter 8, we show the functionality of our developed application as well as a detailed
benchmark in terms of rendering time and level of detail.

In addition to this, we provide the detailed Class Diagrams of the software project
on Appendix A, many additional screenshots of the application on Appendix B and the
minimum requirements in order to run this application on Appendix C.

x Introduction

Part I

Iteration of Holomorphic
Functions

1

Chapter 1

General Concepts and Local
Theory

The reader can find the references for this chapter in [2, Chapter 8], [3, Chapter 1], and [4,
Part III].

Although dynamical systems can be studied in a very general setting (continuous maps
on metric spaces), in this project we choose to restrict to those systems generated by the
iteration of holomorphic maps on the complex plane.

We present the basic definitions and results that we will use in the following chapters.
We start by recalling the definition of a holomorphic function. If V ⊂ C is an open set of
complex numbers, a function f : V → C is called holomorphic (or "complex analytic") if the
first derivative

z 7→ f ′(z) = lim
h→0

f(z + h)− f(z)
h

is defined as a function from V to C or, equivalently if f has a power series expansion about
any point z0 ∈ V , which converges to f in some neighbourhood of z0.

We recall that holomorphic functions are open maps.

Occasionally, we will be interested in studying a whole family of holomorphic functions.
So, given an open set U ⊂ C, we denote the family of holomorphic functions from U to C,
this is f : U → C as

H(U) = {f : U → C | f holomorphic}.

In this text, we use the topology given by the uniform convergence on compact sets as
follows.

Definition 1.1 (Uniform convergence on compact sets). A sequence of holomorphic
functions {fn}n∈N of maps defined on C converges uniformly on compact sets to f if

∀ compact K ⊂ C ∀ε > 0, ∃N = N(K, ε) : |fn(z)− f(z)| < ε, ∀z ∈ K, if n ≥ N .

3

4 General Concepts and Local Theory

1.1 Basic concepts in dynamics

In this section, we run through the most basic definitions, observations and results about
dynamical systems.

Definition 1.2 (Trajectory or Orbit. Seed). If V ⊂ C is an open set, given f : V → C a
holomorphic function and z0 ∈ V , the sequence defined by the iterates (of f at z0) is known
as the trajectory or the orbit of z0. This is usually noted as

{zn := fn(z0)}n≥0.

The point z0 is called the seed or initial condition.

It is important to remember that, formally, this last definition defines the positive orbit
of z0, since when you "iterate backwards" you usually obtain more than one pre-image that
defines what is called the negative orbit of z0.

Henceforth, when we will use orbit of f at z0 to refer to the positive orbit of z0.

Definition 1.3 (Periodic Point. Fixed Point). We say that z0 is a periodic point of
period p ≥ 1 if fp(z0) = z0 and fn(z0) 6= z0 ∀n < p. If p = 1, we call z0 a fixed point.

Definition 1.4 (Pre-periodic Point). We say that z0 is pre-periodic if z0 is not periodic,
but fk(z0) is periodic for some k ≥ 1.

As a first observation, if we have a fixed point of fp, this will be either a fixed point of
f or a point of period d of f for some divisor d of p.

Definition 1.5 (Periodic Orbit or Cycle). If z0 is a periodic point, the sequence
{z0, z1, . . . , zp−1, z0, z1, . . . } is called periodic orbit or cycle. We usually denote it as O =

{z0z1 . . . zp−1}.

Usually we are interested on how a certain set evolves with time. In particular, we are
interested on those sets that remain invariant in time.

Definition 1.6 (Positive Invariant Set. Negative Invariant Set. Invariant Set). A
set D is positive (resp. negative) invariant of {fn}n∈N if the set contains the positive (resp.
negative) orbit of all its points.

A set D is called invariant (or totally invariant) if D is both positive and negative
invariant.

For instance, a periodic orbit is a positive invariant set.

Observe that if {z0z1 . . . zp−1} is a periodic orbit of period p then, by the chain rule, for
any i = 0, . . . , p− 1

(fp)′(zi) =

p−1∏
s=0

f ′(zs) = f ′(z0) · · · · · f ′(zp−1).

1.2 Local Stability 5

This quantity is known as the multiplier of the periodic orbit.

Most of the time, we will be interested in the stability of periodic points and periodic
orbits.

Definition 1.7 (Stability of Periodic Points). Given f : V → C a holomorphic function
over V ⊂ C an open set. Let us suppose that z0 is a fixed point of f . We say that z0 is an
attracting point if it is stable and all points close enough to z0 have orbits that tend towards
z0, i.e.

∃ε > 0 : |z − z0| < ε⇒ |fn(z0)− z0| < δ for some δ

and if U is a neighbourhood of z0, then for all z ∈ U , fn(z) ∈ U , ∀n ≥ 1.

We say that a periodic point of period p of f is an attracting periodic point if it is
attractor as a fixed point of fp.

Moreover, we say that z0 is a repelling point if it is attractor by f−1. Likewise, a periodic
point of period p of f is a repelling periodic point if it is repeller as a fixed point of fp.

When talking about repelling points, we can only guarantee that the orbit will leave the
neighbourhood at some point. However, we can not ensure that the orbit does not return
to the neighbourhood later on.

1.2 Local Stability

In this section we study the local stability around periodic points.

Once we have introduced some general notions about dynamical systems, we are now
ready to present a result about the local theory of iteration of holomorphic functions.

Theorem 1.8 (Local Stability of periodic points). Let f : V ⊂ C → C holomorphic,
V ⊂ C an open set and z0 = fp(z0) a periodic point of f of period p ≥ 1. Then, z0 is

(a) attracting if |(fp)′(z0)| < 1,
(b) repelling if |(fp)′(z0)| > 1.

If |(fp)′(z0)| = 1 we call z0 neutral, and if (fp)′(z0) = 0, we call it super-attracting.

Proof. Without loss of generality and to simplify this proof, we consider p = 1.

(a) Let us suppose that z0 is a fixed point of f and |f ′(z0)| < 1. So, if z is close enough
to z0, there will be µ < 1 such that

|f(z)− f(z0)|
|z − z0|

< µ < 1.

Since f(z0) = z0, we can read the last inequality like |f(z)− z0| < µ|z− z0|. i.e. f(z)
is closer to point z0 rather than z (with a factor of µ < 1). This lets us to apply

6 General Concepts and Local Theory

the same argument n times to obtain |fn(z)− z0| < µn|z − z0|. Since µ < 1, we can
conclude that

lim
n→+∞

fn(z) = z0

for all z in a neighbourhood of z0.

(b) Let us suppose now that z0 is a fixed point of f and |f ′(z0)| > 1. Then, in this case,
we have this inequality

|f(z)− f(z0)|
|z − z0|

> 1.

Again, since f(z0) = z0, |f(z)− z0| > |z − z0|. So, the points close to z0 go away, at
least during the firsts iterations, from it. This does not guarantee that these points
could return.
However, the fact is that we can build a neighbourhood around the fixed point z0 in
which the orbit of the points leaves this neighbourhood after a few iterates.

We just say a few words about neutral points. This case is equivalent to f ′(z0) =

eiα, α ∈ [0, 2π).

As a first approach we consider α = 0, this is f ′(z0) = 1. The canonical example for this
case is f(z) = z + z2 which has z0 = 0 as fixed point and f ′(0) = 1. One can easily check
that the real axis is a positive invariant set. Furthermore, if we consider a point over the
negative real axis, this is x . 0, its orbit will be closer and closer to origin over the negative
real axis, while if we consider a point over the positive real axis, this is x & 0, its orbit will
tend to infinity over the same positive real axis. These directions are called attractive and
repulsive directions, respectively.

Keeping the same example, to understand the orbit of points which are not over the real
axis, it is needed to use special coordinates (called Fatou Coordinates) to proof that any
complete neighbourhood around the origin behave like the Figure 1.1a [3, Page 34].

In general, there are three types of neutral points.

• Let us take α = p
q ∈ Q, that is f(z) = e2πiαz+ az2 + Then fq(z) = z+ amz

m +

. . . , am 6= 0, for some m, in which case we return to case α = 0.
When a fixed (or periodic) point has a multiplier of module 1 and its exponent α is
rational, the fixed (or periodic) point is called parabolic or rationally indifferent.

• Let us take α ∈ R \Q. We should consider different cases.

– If f is linear, then f(z) = e2πiαz. Let us consider the dynamics described by the
iterates of any seed z0 6= 0. If z0 = r0e2πiθ0 , then |fn(z0)| = r0 for all n ∈ Z.
Then, the orbit for every seed z0 ∈ C is

A = {z ∈ C : z = r0e
2πi(θ0+kα), k ∈ Z},

inside the circumference of radius r0. Jacobi’s Theorem stands that A is dense
over the circumference of radius r0. (See Jacobi’s Theorem on [5, Page 21]).

1.2 Local Stability 7

(a) f(z) = z + z2
(b) f(z) = z + z3

(c) f(z) = z + z4 (d) f(z) = −z + z2

Figure 1.1: The dynamic in a neighbourhood around the origin for different functions

– If f is non linear, i.e. f(z) = e2πiαz+ az2 + . . . , the main discussion is to decide
which values of α, if any, give rise to the same behaviour as the linear case. To
answer this, we need to talk about the degree of "irrationality" of α. In some cases,
one can prove that the dynamics of a neighbourhood around the origin is similar
to the dynamic on the linear case z 7→ e2πiαz. This is, there are invariant curves
where the dynamic of the orbits are dense. When the dynamic of the iterates has
this geometry, we say that the point is linearisable or is a Siegel point and the
neighbourhood around this fixed point where the dynamic is preserved is called
Siegel disc.
The remaining cases are called Cremer points and the dynamics are more complex.
For more details we refer to [2] and [4].

It is important to observe that neutral points in complex plane are never attracting nor
repelling. However, when we see this topic on real numbers we can have attracting neutral
points, repelling neutral points or neither of this behaviour. For instance, on Figure 1.1b, if
we restrict the study to the real line we can see that the origin is a neutral point, which is
repelling.

In the previous explanation we talked about similar dynamics. In many situations we will
require to compare dynamical planes for different functions, so we need some mathematical

8 General Concepts and Local Theory

tool that lets us to decide if two dynamic planes are (essentially) different, or otherwise, we
can see both of them as one, i.e., the first one is a deformation of the second.

Definition 1.9 (Conjugacy). Given f , g : C → C two dynamical systems, we say that f
is conjugate to g if there exists a homeomorphism ϕ such that

ϕ(f(z)) = g(ϕ(z)).

The condition of conjugacy forces the function ϕ to send the fixed points of the first dy-
namical plane to fixed points on the second dynamical plane. In the same way, it sends peri-
odic points to periodic points, pre-periodic points to pre-periodic points, a certain asymptotic
behaviour to the same asymptotic behaviour, etc. In general, ϕ sends orbits to orbits.

Alternatively, we say that ϕ conjugates or is a conjugacy between f and g, and we con-
clude that both dynamical planes from f and g are the same from a dynamical perspective.

For instance, a quadratic polynomial P (z) = γz2 +αz+ β can be conjugated by z′ = az

to a monic polynomial z2 + αz + β. Furthermore, this can be conjugated by a translation
z′ = z + t to move any given point to 0. If we move one of the fixed points to 0 we have
conjugated P to the form ρz+ z2, where ρ is the multiplier of the fixed point. However, this
does not determine the conjugacy class uniquely, as we can place the second fixed point at
0. But if we move the critical point to 0, we have conjugated P to the form

Pc(z) = z2 + c.

It is important to note that, the more regular ϕ is, the stronger will be the conjugation
between f and g. The strongest type of conjugacy is the conformal map.

Definition 1.10 (Conformal Map). A map ϕ is called conformal if, and only if, ϕ is
holomorphic and bijective. A conformal map is a function that locally preserves angles.

Conformal conjugacies preserve the multipliers of periodic orbits.

Now let us present an important result about local linearisation. Let us take a function
f(z) and express it by the power series expansion, which can be chosen so that the fixed
point corresponds to z = 0,

f(z) = ρz + a2z
2 + a3z

3 + · · · ,

which converges for |z| sufficiently small. Just recall that the initial coefficient ρ = f ′(0)
is called the multiplier of the fixed point.

Theorem 1.11 (Kœnigs Linearisation). Let V ⊂ C an open set and f : V → C a
holomorphic function. Let z0 be a fixed point of f . If the multiplier ρ satisfies |ρ| 6= 0, 1,
then there exists a local holomorphic change of coordinates ω = φ(z) with φ(z0) = 0, so
that φ ◦ f ◦ φ−1 is the linear map ω 7→ ρω for all ω in some neighbourhood of the origin.
Furthermore, φ is unique up to multiplication by a nonzero constant.

1.2 Local Stability 9

In other words, the following diagram is commutative,

V f(V)

C C,

f

φ φ

ρ·ω

where φ is univalent (or injective) on the neighbourhood V ∪ f(V) of z0.

It is important to note that in this linearisation theorem we need to avoid super-attracting
and neutral points. We recall that this is |ρ| 6= 0, 1.

Proof. • Proof of Uniqueness. If there were two such maps φ and ψ, then the com-
position ψ ◦ φ−1 would commute with the map w 7→ ρw. Expanding it as a power
series,

ψ ◦ φ−1(w) = b1w+ b2w
2 + b3w

3 + · · · ,

and then composing on the left or right with multiplication by ρ, we see by comparing
coefficients that ρbn = bnρ

n for all n. Since ρ is neither zero nor a root of unity,
this implies that b2 = b3 = · · · = 0. Hence ψ ◦ φ−1 = b1w, or in other words,
ψ(z) = b1φ(z).

• Proof of Existence when |ρ| < 1. Choose a constant d < 1 so that d2 < |ρ| < d. As
in the proof of Theorem 1.8, we can choose a neighbourhood Dr for some r > 0, in this
case around the origin, so that |f(z)| < d|z| for z ∈ Dr. Thus for any starting point
z0 ∈ Dr, the orbit {z0, z1, · · · } under f converges geometrically towards the origin,
with |zn| < rdn. By Taylor’s Theorem, we have |f(z)− ρz| ≤ D|z2| for D < 1 and
z ∈ Dr, and hence

|zn+1 − ρzn| ≤ D|zn|2 ≤ Dr2d2n.

Let us consider k = Dr2

|ρ| and then we have another sequence wn = zn
ρn that satisfies

|wn+1 −wn| ≤ k
(
d2

|ρ|

)n
.

Now these differences converge uniformly and geometrically to zero. Since the holo-
morphic functions z0 7→ w(z0) converge, uniformly throughout Dr, to a holomorphic
limit φ(z0) = lim

n→+∞

zn
ρn

.

The required identity φ(f(z)) = ρφ(z) follows immediately. Furthermore, since each
correspondence z0 7→ wn = zn

ρn has derivative 1 at the origin, it follows that the limit
function φ has derivative φ′(0) = 1 and hence is a local conformal isomorphism.

• Proof of Existence when |ρ| > 1. The statement in this case follows immediately
by applying the argument above to the map f−1, due to 0 < |ρ−1| < 1.

10 General Concepts and Local Theory

1.3 Towards Global Theory

Let us start by placing some basic definitions that lay the foundation about global theory.

Definition 1.12 (Basin of Attraction). Given z0 ∈ C an attracting fixed point, we can
define the basin of attraction (of z0) as the open set of points of the complex plane whose
orbits tend to z0. We note this as A(z0), in other words,

A = A(z0) = {z ∈ C : fn(z) −−−−−→
n→+∞

z0}.

It is important to note that, in many cases, the basin of attraction is not a connected
set.

Definition 1.13 (Immediate Basin of Attraction). We call the immediate basin of
attraction of an attracting fixed point z0, denoted by A∗ = A∗(z0), the connected component
of A(z0) which contains z0.

Finally, the points of f where its first derivative does not exists or is zero are called
critical points of f .

Now, recalling the result of theorem 1.11, if we focus only on the attracting case 0 <

|ρ| < 1, we can go ahead and rewrite this last theorem in a more global form as follows.
Suppose that f : C → C is a holomorphic function with an attracting fixed point p = f(p)

of multiplier ρ 6= 0.

Corollary 1.14. With p = f(p) as stated above and being A the basin of attraction of p,
there is a holomorphic map φ from A to C with φ(p) = 0, so that the diagram

A A

C C,

f

φ φ

ρ·

is commutative, and so that φ takes a neighbourhood of p biholomorphically onto a neigh-
bourhood of zero. Furthermore, φ is unique up to multiplication by a constant.

Proof. To compute φ(z0) at an arbitrary point of A we must simply follow the orbit of p0
until we reach some point pk which is very close to p, then evaluate the Kœnigs coordinate
φ(pk) and multiply by ρ−k.

Finally we are able to present an important result to justify the rendering algorithms for
the parameter space.

Theorem 1.15 (Finding Periodic Attractors). If f is a polynomial map of degree d ≥ 2,
then the immediate basin of every attracting periodic orbit contains, at least, one critical
point. Therefore, the number of attracting periodic orbits is finite, less than or equal to the
number of critical points.

1.3 Towards Global Theory 11

This theorem is a consequence of Corollary 1.14. However, we skip the formal proof since
it is out of the scope for this project. See [2, Lemma 8.5] for more details.

Furthermore, we present the following Corollary since this is a crucial result in order to
justify the rendering algorithms of the parameter space that we aim to implement.

Corollary 1.16. For a polynomial map of degree d ≥ 2, there are at most d− 1 finite critical
points and, therefore, at most d− 1 periodic attractors (without the fixed point at infinity).

12 General Concepts and Local Theory

Chapter 2

Global Theory

The reader can find more details about the topics in this chapter on [2] and [3].

At the end of this chapter we will be able to define a first algorithm to draw Julia sets
called Henriksen Algorithm.

In this chapter, we define the Julia and Fatou sets. Nonetheless, we need to study first
one last topic in order to formalise them: normal families.

2.1 Normal Families

Definition 2.1 (Normal Family). The family of holomorphic functions F = {fn}n∈N

defined as the iterates of f on a domain D forms a normal family on D if every sequence
of functions of F has a subsequence that converges uniformly over compacts of D. In that
case, the limit is always a holomorphic map or infinity.

We can informally say that the family of iterates {fn}n∈N is a normal family in a
neighbourhood of z if all the points in this neighbourhood behave, under iteration of f , in
a manner similar to z.

Definition 2.2 (Normal or Stable Point). Let f be a holomorphic function on C. We
say that z0 is a normal or stable point of f if there is any neighbourhood U ⊂ C of z0 such
that the iterates family {fn}n∈N form a normal family on U .

One can easily note that it is difficult to verify this definition of normal point in practise.
Due to this, we present a classical result on analytical function theory that give us an easier
criteria to check the normality of a normal family: Montel’s Theorem.

Theorem 2.3 (Montel’s Theorem). Let F = {fn}n∈N be the sequence of iterates of an
analytical function f defined on a domain D. If ∪n∈Nf

n(D) omits at least three different
points on Ĉ, this is, if there are distinct points a, b, c ∈ Ĉ so that f(D) ⊂ Ĉ \ {a, b, c}, then
F is a normal family on D.

13

14 Global Theory

We skip the proof for this theorem since it is out of the scope of this project.

2.2 Julia and Fatou Sets

Now we are able to place the definitions of Julia and Fatou sets for an arbitrary holomorphic
function.

Definition 2.4 (Julia and Fatou sets). Let f be a holomorphic function on C. We define
the Fatou set of f , F(f) as the set of normal points of f .

We define the Julia set of f , J (f) as the complementary of Fatou set or, in other words,
the set of non-normal points of f .

A first (and important) observation that one can easily extract using only the definition
above is that the Julia set is a closed set and, hence, Fatou set is an open set.

As an early property for both Julia and Fatou sets we have the following Proposition.

Proposition 2.5 (Julia and Fatou sets are totally invariant). Let f be a holomorphic
function. If z ∈ J (f) (resp. z ∈ F(f)), then the image and pre-image(s) of z also belongs
to J (f) (resp. to F(f)). In other words, Julia and Fatou sets are totally invariant.

Proof. To prove this result, it is enough to prove that the Fatou set is totally invariant, since
the Julia set is the complementary of the Fatou set.

Let us consider an open neighbourhood U of z such that U ⊂ F(f). Since the iterates
sequence {fn}n∈N in U forms a normal family, then we can get a subsequence {fnj}j∈N

convergent in U .

Since f(U) is an open set (for being f analytical), we can immediately see that the
subsequence {fnj−1}j∈N is convergent in f(U), in a way that the image of f(z) admits
a neighbourhood f(U) where the family of iterates is normal. If we repeat this process
inductively for fn(U), n = 2, 3, . . . we prove that Fatou set is positive invariant.

However, since f−1(U) is also an open set and if we consider the subsequence {fnj+1}j∈N

we can see, using induction once again, that Fatou set is also negative invariant. In conse-
quence, Julia and Fatou sets are both fully invariant.

We present the following theorem as a compendium of Julia and Fatou sets properties.

Theorem 2.6 (Julia and Fatou Sets Properties). Let f be a holomorphic map, F(f)
and J (f) are Fatou and Julia sets of f , respectively.

(a) (Transitivity) If z ∈ J (f) and U is a neighbourhood of z, the union of all iterates
of U , i.e.

⋃
n≥0 f

n(U), covers the Riemann Sphere Ĉ with the exception of, at most,
two points.

2.2 Julia and Fatou Sets 15

(b) (Attracting points and basins are on Fatou set) The attracting periodic points
and their basins of attraction belong to the Fatou set.

(c) (Iterates of f) For any k > 0, the Julia set of fk, J (fk), coincides with the Julia
set of f , J (f).

(d) (Parabolic points) All neutral periodic points belong to the Julia set except for Siegel
points.

(e) (J (f) is not Empty) If f is a polynomial map of degree d ≥ 2, then the Julia set
J (f) is non-empty.

(f) (Iterated Pre-images are dense) If z0 belongs to J (f), the set of all pre-images
of z0 is dense on J (f).

(g) (J (f) is a perfect set) The Julia set J (f) contains no isolated points, that is, J (f)
is a perfect set.

(h) (J (f) is the closure of the repelling periodic points) The repelling points belong
to Julia set. Furthermore, they form a dense set on J (f). In other words,

J (f) = {z ∈ Ĉ : z is a repelling periodic point}.
(i) (Julia set with Interior) If the Julia set contains an interior point, then it must be

equal to the entire Riemann Sphere Ĉ.

(j) (Basin boundary = Julia set) If A ⊂ Ĉ is the basin of attraction of some attracting
periodic orbit, then the topological boundary ∂A = A \A is equal to the entire Julia
set. Moreover, every connected component of the Fatou set Ĉ \ J (f) either coincides
with some connected component of this basin A or else is disjoint from A.

(k) (Julia set and union of components) If D is a union of components of F that is
completely invariant, then J = ∂D.

Proof. (a) (Transitivity) This fact is an immediate consequence of Montel’s Theorem
2.3. If the iterates family were to avoid 3 or more points, then z would be a normal
point. Hence, this is a contradiction with z ∈ J (f).

(b) (Attracting points and basins are on Fatou Set) We can observe first that
the basin of attraction of any attracting periodic point of period p ≥ 1 is an open
set. Therefore, if z belongs to the basin of attraction of a fixed point z0, for any
neighbourhood U sufficiently small (inside the basin of attraction), the iterates of f
converge on U towards the constant function g(z) ≡ z0. Hence, z is normal and
belongs to F(f).
On the other hand, if z belongs to the basin of attraction of a periodic point z0 with
period p > 1, we can use the same argument over the function h = fp.

(c) (Iterates of f) We provide an outline for this proof. One first observation is that
we can also work for Fatou set since F(f) = C \ J (f). Suppose, for instance, that
z belongs to the Fatou set of f ◦ f . This means that, for some neighbourhood U

16 Global Theory

of z, the collection of all even iterates f2n
|U is contained in a compact subset K ⊂

H(U). It follows that every iterate of f , restricted to U , belongs to the compact set
of K ∪ (f ◦K) ⊂ H(U). Therefore, z belongs to the Fatou set of f .

(d) (Parabolic points) Let w be a local uniformizing parameter, with w = 0 correspond-
ing to the periodic point. Then some iterate fn corresponds to a local mapping of the
w-plane with power series expansion of the form w 7→ w + apw

q + aq+1wq+1 + · · · ,
where q ≥ 2 and aq 6= 0. It follows that fnk corresponds to a power series w 7→
w+ kaqw

q + · · · . Thus the qth derivative of fnk at 0 is equal to q!kaq, which diverges
to infinity as k → ∞. It follows from Weierstrass Uniform Convergence Theorem1

that no subsequence {fnkj} can converge locally uniformly as kj →∞.

(e) (J (f) is not empty) Let us assume that f is a polynomial map of degree d ≥ 2.
Suppose that J (f) = ∅. Then {fn}n∈N is a normal family on all Ĉ, and so there is a
subsequence such that {fnj}j∈N −−−−−→

j→+∞
g(z) for some analytical function g from Ĉ to

Ĉ. Since g is holomorphic on all of Ĉ it is a polynomial function. If g is constant then
the image of fnj is eventually contained in a small neighbourhood of the constant
value, which is impossible since fn covers Ĉ. If f is not constant, eventually fnj

has the same number of zeros as f (applying the Argument Principle) which is also
impossible since fn has degree dn.

(f) (Iterated Prei-mages are dense) This fact is a consequence of (a). Let be w ∈ J (f)
and U a neighbourhood of w. We shall proof that U contains any pre-image of z0.
Given that the images of U should cover all Ĉ (except, at most, two points), it must
exist N > 0 such that z0 ∈ fN (U). This yields that U has some point that, under N
iterates, is sent to z0; which is the definition of pre-image of z0.

(g) (J (f) is a perfect set) Take z0 ∈ J (f) and U an open neighbourhood of z0. First
assume z0 is not periodic and choose z1 with f(z1) = z0. then fn(z0) 6= z1 for all n.
Since z1 ∈ J (f), backward iterates of z1 are dense in J (f) (we have proved this in
(f)), so there is ξ ∈ U with fm(ξ) = z1. Hence ξ ∈ J (f) ∩ U and ξ 6= z0.
Next suppose fn(z0) = z0 for some minimal n. If z0 were the only solution of fn(z0) =

z0 then z0 would be a super-attracting fixed point for fn, contradicting z0 ∈ J (f).
Hence, there is z1 6= z0 with fn(z1) = z0. Furthermore, f j(z0) 6= z1 for all j since
otherwise it would hold for some 0 ≤ j < n (by periodicity) and hence f j(z0) =

fn+j(z0) = fn(z1) = z0, contradicting the minimality of n. As before, z1 must have
a pre-image in U ∩J (f) which cannot be z0.

(h) (J (f) is the closure of repelling periodic points) Suppose there is an open disc
U that meets J (f) and that contains no fixed points of any fn. We may assume U
contains no poles of f nor critical values of f . If f1, f2 are two different branches of
f−1 on U , then since there are no solutions of fn(z) = z in U ,

gn =
fn − f1
fn − f2

· z − f2
z − f1

1For more information see [2, Theorem 1.4].

2.3 Henriksen Algorithm for Julia set 17

omits the values 0, 1 and ∞ in U . By Montel’s Theorem 2.3, {gn}n∈N is normal and
hence so is {fn}n∈N which is a contradiction. Therefore, periodic points are dense
in J (f). Since there are only a finite number of attracting and neutral cycles (a
consequence from Theorem 1.15) and, since J (f) is perfect , the repelling orbits are
dense in J (f).

Observation 2.7. This provides us an with algorithm in order to draw Julia sets. Details
can be found in Section 2.3.

(i) (Julia set with interior) If J (f) has an interior point z1, then choosing a neigh-
bourhood N ⊂ J (f) of z1, the union U ⊂ J (f) of forward images of N is everywhere
dense, U ⊂ Ĉ. Since J (f) is a closed set, it follows that J (f) = Ĉ.

(j) (Basin boundary = Julia set) If N is any neighbourhood of a point of the Julia set,
then by (a) implies that some fn(N) intersects A, hence N itself intersects A. This
proves that J (f) ⊂ A. But J (f) is disjoint from A, so it follows that J (f) ⊂ ∂A. On
the other hand, if N is a neighbourhood of a point of ∂A, then any limit of iterates fn|N
must have a jump discontinuity between A and ∂A, therefore ∂A ⊂ J (f). Finally, one
can see that any connected Fatou component which intersects A must coincide with
some component of A, since it cannot intersect the boundary of A.

(k) This fact is directly a consequence of being ∂D a subset of J (f), by (c).

2.3 Henriksen Algorithm for Julia set

With the results obtained from Theorem 2.6 (h), we now explain the Henriksen Algorithm
for Julia set.

Given a point over the complex plane (a pixel on an image), we want to iterate it in
order to check if this point is periodic, i.e., we want to check if fn(z) = z for some n ∈N,
n ≥ 1.

However, we need to tolerate an error for this calculation. So, we want to check if

fn(z + ε)
?
= z + ε, |ε| << 1.

Then, approximating the above by its Taylor expansion series of order 1, we want to check
if:

fn(z + ε) ≈ fn(z) + ε(fn)′(z)
?
= z + ε ⇐⇒ z − fn(z)

(fn)′(z)− 1 = ε

Hence we will check if |ε| is sufficiently small.

In order to compute (fn)′(z) we do the following. Since fn(z) = f(fn−1(z)), by the
chain rule,

(fn)′(z) = f ′(fn−1(z)) · (fn−1)(z).

18 Global Theory

So, when coding, we can implement this by initialising an accumulator dz = 1 (since
z′ = 1) and we apply the recurrence dz ← f ′(z) · dz. In our case, since f(z) = zd + c, we
have that dz ← d · zd−1 · dz.

With this, we can place the following algorithm to draw Julia sets. See Algorithm 1.

Algorithm 1: Henriksen Algorithm for Julia set
Result: Returns the Julia set on a given image.
Input: A maximum number of iterations N , a degree d ≥ 2, a Tol value and a seed

(cx, cy).
Output: An image of the Julia set.

1 foreach pixel (x, y) on image do
2 c← cx + icy
3 z ← x+ iy

4 dz ← 1
5 w ← x+ iy

6 orbitFound← false

7 i← 0
8 while orbitFound = false and i < N do
9 dz ← d · zd−1 · dz

10 z ← zd + c

11 if |z| > 500 then
12 Set colour white on (x, y)
13 end
14 if |dz − 1| > 1e−12 then
15 ε← w−z

dz−1
16 else
17 continue
18 end
19 if |ε| < Tol then
20 orbitFound← true

21 break
22 end
23 i← i+ 1
24 end

/* We check if i > 5 to avoid draw as black fixed points. */
25 if orbitFound = true and i > 5 then
26 Set colour black on (x, y)
27 else
28 Set colour red on (x, y)
29 end
30 end

2.4 Classification of Periodic Components 19

2.4 Classification of Periodic Components

The references for this section are [2, Chapter 5], and [4, Part IV].

In this chapter we focus on the behaviour of a polynomial function f(z) on the Fatou
set F . Our main goal is to define a classification of the components of the Fatou set because
this will help us when defining the rendering algorithms for the parameter space.

2.4.1 Wandering Domains

We assume that the degree of f is d ≥ 2 and that the image of any component of the Fatou
set F under f is a component of F . Moreover, the inverse image of a component of F is the
disjoint union of, at most, d component of F .

Let us define the different types of component that we can obtain under the influence of
f .

Definition 2.8 (Types of components of F). Consider a component U of F . Then,

1. If f(U) = U , we call U a fixed component of F .

2. If fn(U) = U for some n ∈ N,n ≥ 1, we call U a periodic component of F . Further-
more, the minimal n is the period component. In particular, if n = 1, we have a fixed
component.

3. If fm(U) is periodic for some m ≥ 1, we call U a pre-periodic component of F .

4. Otherwise, if all {fn(U)} are distinct, we call U a wandering domain.

One can proof that some entire functions have wandering domains2. However, this is not
possible for polynomial functions.

Theorem 2.9 (Sullivan). A polynomial map has no wandering domains.

Since this proof is out of the scope for this project, we skip the formal proof of this
theorem.

Proposition 2.10. If U is a completely invariant component of F , then ∂U = J , and every
other component of F is simply connected.

Proof. If U is completely invariant then ∂U = J , by Theorem 2.6 (k). Furthermore, the
sequence {fn}n∈N omits the open set U on C\U , so {fn}n∈N is normal there and C\U ⊂ F .
Since U is connected, each component of C \ U is simply connected.

2See work from I.N. Baker on [6].

20 Global Theory

2.4.2 Classification Theorem of Fatou’s Components

Having ruled out the possibility of wandering domains, we can now be sure that every
component of the Fatou set is periodic or pre-periodic.

Apart from attracting basins, there are other types of Fatou components, some of which
have been mentioned before.

Definition 2.11 (Parabolic Component. Parabolic cycle). A periodic component U
of period n of the Fatou set F is called parabolic if there is a neutral fixed point ξ for fn on
its boundary, such that all points in U converge to ξ under iteration by fn. The domains
U , f(U), . . . , fn−1(U) form a parabolic cycle of Fatou components.

Furthermore, we can have another behaviour.

Definition 2.12 (Siegel Disc). A Fatou component on which f is conformally conjugate
to an irrational rigid rotation of the unit disc is called a Siegel disc, with the fixed point z0
as centre.

You can see an example of a Siegel disc on Figure 2.1.

Figure 2.1: The Julia set for c ≈ −0.390541− 0.586788i is a Siegel disc. You can see the
invariant curves in yellow

2.4 Classification of Periodic Components 21

Theorem 2.13 (Classification of Fatou’s Components for polynomials). Suppose U
is a periodic component of period p of the Fatou set F . Then exactly one of the following
holds.

1. U is an immediate basin of attraction of an attracting fixed pint of fp.

2. U an immediate basin of attraction of a parabolic fixed point of fp.

3. U is a Siegel disc of fp.

We skip the proof for this theorem since it is out of the scope for this project.

22 Global Theory

Chapter 3

The Dynamical Plane of
Polynomials

The references for this chapter are [3, Chapter 2] and [4, Part III].

In this chapter we aim to justify an algorithm to draw Julia sets called the Escape
Algorithm. So, once again, we consider a polynomial of degree d ≥ 2. We present here a
first basic property about complex polynomials.

Theorem 3.1 (∞ is a super-attracting fixed point). Any polynomial P of degree d ≥ 2
has ∞ as super-attracting fixed point.

Proof. We first see that ∞ is a fixed point for any complex polynomial of degree d ≥ 1. Let
us take a polynomial P (z) of degree d ≥ 1, this is

P (z) = a0 + a1z + · · ·+ adz
d, ai ∈ C, ad 6= 0.

Since its dominant term is ad 6= 0, we can easily prove that

lim
|z|→∞

P (z) =∞

which implies that infinity is a fixed point of P (z).

Now let us proof that this fixed point is super-attracting, i.e. that this is a point with
multiplier |ρ| = 0. In order to do this we consider the conjugacy φ(z) = 1

z . We observe that
∞ 7→ 0 by φ. We apply the conjugacy,

f(z) = (φ ◦ P ◦ φ−1)(z) = φ(P (φ−1(z)))

where φ−1(z) = 1
z . Then we obtain

P (φ−1(z)) =
a0zs + a1zs−1 + · · ·+ adz

s−d

zs
,

23

24 The Dynamical Plane of Polynomials

where s =
d∑
i=0

i =
d(d+ 1)

2 . Now,

f(z) = φ(P (φ−1(z))) =
zd

ad + ad−1z + · · ·+ a0zd
.

Where f(0) = 0 and

f ′(z) =
dzd−1(ad + ad−1z + · · · a0zd)− zd(ad−1 + ad−2z + · · · da0zd−1)

(ad + ad−1z + · · · a0zd)2 .

We can easily check as well that f ′(0) = 0, so the multiplier ρ = f ′(0) = 0. Since φ is a
conjugacy, we can conclude that ∞ is a super-attracting fixed point for P .

In summary, when considering polynomials we always have a super-attracting fixed point
at ∞, hence, the basin of attraction of infinity is always well-defined and we denote it by
A(∞).

Moreover, by Theorem 2.6 (k), the Julia set coincides with ∂A(∞).

3.1 Julia and Fatou Sets for Polynomials

Let us define the Julia and Fatou sets for polynomials.

Definition 3.2 (Filled Julia set. Julia set. Fatou set). We define the filled Julia set
of a polynomial P (z) as the set of points whose orbit is bounded, this is

K(P) = {z ∈ C : Pn(z) 6→ ∞}.

We define the Julia set of a polynomial P (z), that we write as J (P), as the boundary
of K(P). We define the Fatou set as the complementary of the Julia set, this is F(P) =

C \ J (P).

Let us show that the general definition for Fatou and Julia sets coincides with this
definition in the polynomial case.

Proposition 3.3. Let P (z) be a polynomial of degree d ≥ 2 . A point z ∈ C is non-normal
if, and only if, z ∈ ∂K(P). Equivalently, J (P) = ∂K(P) and F(P) = Int(K(P) ∪A(∞).

Proof. If z ∈ ∂K(P) we consider a neighbourhood U of z. By definition, U should contain
any points whose orbit is uniformly bounded and points whose orbit tends to infinity. Then,
the limit function of the sequence of iterates of {Pn}|U would not be even continuous, so we
conclude that z is not normal.

If z 6∈ ∂K(P), we consider a neighbourhood U of z that does not intersect with ∂K(P).
We consider two cases.

3.2 Escape Criteria for Julia set 25

• If U ⊂ A(∞), the family of iterates {fn}n∈N defined on U must avoid all the periodic
points (since those do not belong to A(∞)). Since there are infinitely many periodic
points (a finite number for each period), Montel’s theorem 2.3 ensures us that this
family is normal in z.

• If U ⊂ int(K(P)), the family of iterates {fn}n∈N defined on U must avoid the points
of the basin of attraction of infinity so, applying Montel’s theorem 2.3 once again, we
can conclude that this family is normal in z.

Let us study now the topology of the Julia sets for the particular case of polynomials.
We present two results that summarise the possibilities in the polynomial case.

Theorem 3.4. The Julia set J is connected if, and only if, there is no finite critical point
of P in A(∞), that is, if and only if, the positive orbit of each finite critical point is bounded.

Furthermore, at the other extreme we have the following.

Theorem 3.5. If Pn(q) −−−−→
n→∞

∞ for each critical point q, then the Julia set J is totally
disconnected.

Proof. Let D be a large open disc containing J such that P (C \D) ⊂ C \D. We choose
N sufficiently big that PN maps the critical points of P to C \D. Hence, for n ≥ N there
are no critical values of Pn in D, so that all inverse branches P−n are defined and map D
conformally into D. Let z0 ∈ J , then Pn(z0) ∈ J (by Theorem 2.6 (c)), and we define fn
as the inverse branch of Pn, which maps Pn(z0) to z0.

These {fn}n∈N are uniformly bounded on a neighbourhood of D, hence they form a
normal family there. Since fn(z) accumulates on J for z ∈ D ∩A(∞), any limit function
f maps D ∩A(∞) into J . Since J contains no open sets (by Theorem 2.6 (i)), f must
be constant. Hence, fn(D) has diameter tending to zero. Since fn(∂D) is disjoint from J ,
{z0} must be a connected component of J , and J is totally disconnected.

We want to remark that Theorems 3.4 and 3.5 cover all possible cases when considering
polynomial maps with one single critical orbit, like those of the form zd+ c. So in this case,
the corresponding Julia set for each c is either a connected or totally disconnected set. This
dichotomy allows us to draw the parameter plane as we explain later on.

3.2 Escape Criteria for Julia set

In this section we present the fundamental result for justifying the Escape Algorithm for
Julia set.

26 The Dynamical Plane of Polynomials

We place an important result in order to draw Julia sets.

Proposition 3.6. Let be d ≥ 2 and Pc(z) = zd+ c, R = max{2, |c|}. Set λ = Rd−1−1 > 1.
If z is such that |z| > R, then |zd + c| > λ|z| and hence

lim
n→∞

Pnc (z) =∞.

Proof. We can first observe that if |z| > R, then |z| > 2 and |z| > |c|, so

|zd + c|
|z|

≥ |z|d−1 − |c|
|z|
≥ Rd−1 − 1 = λ > 1,

where, we can obtain the first inequality once we apply the |a+ b| ≥ ||a| − |b|| property.
Hence, |Pc(z)| ≥ λ|z| and, therefore, |Pnc (z)| ≥ λn|z| −−−−→n→∞

∞, i.e. lim
n→∞

Pnc (z) =∞.

So, we can conclude with the following localisation criteria.

Corollary 3.7 (Localisation Criteria). The filled Julia set K(P) of the polynomial P is
entirely contained inside the disc of centre 0 and radius R, where R = max{2, |c|}.

Proof. This Corollary is an immediate consequence of Proposition 3.6.

3.3 Escape Algorithm for Julia set

Proposition 3.6 and Corollary 3.7 give us another algorithm to draw Julia sets. You can
find this algorithm on Algorithm 2.

We simply iterate through the pixels of an image. If |Pnc (z)| < 2 for 1 ≤ n ≤ N , where
N is the maximum number of iterations allowed, we colour the pixel as black, otherwise,
the colour of this pixel is white.

3.3 Escape Algorithm for Julia set 27

Algorithm 2: Escape Algorithm for Julia Set
Result: Returns the Julia Set on a given image.
Input: A maximum number of iterations N , a degree d ≥ 2 and a seed (cx, cy).
Output: An image of the Julia Set.

1 foreach pixel (x, y) on image do
2 c← cx + icy
3 z ← x+ iy

4 i← 0
5 while |z| < 2 and i < N do
6 z ← zd + c

7 i← i+ 1
8 end
9

10 if i = N then
11 Set colour black on (x, y)
12 else
13 Set colour white on (x, y)
14 end
15 end

28 The Dynamical Plane of Polynomials

Chapter 4

Parameter space: The
Mandelbrot and Multibrot sets

The reader can find the reference for this chapter on [4, Part VIII].

Let us consider P (z) a unicritical polynomial of degree d ≥ 2. By translating the critical
point to the origin, we can assume that the polynomial can be written as Pc(z) = zd+ c for
a complex parameter c ∈ C.

In this chapter we aim to provide the needed results to justify two different algorithms
to draw the Mandelbrot set.

4.1 The Basic Dichotomy

We are interested in how the dynamical behaviour of Pc depends on the parameter c. So,
we place the following Theorem that is known as the Basic Dichotomy.

Theorem 4.1 (Basic Dichotomy). If Pnc (0) −−−−→n→∞
∞ then, the Julia set J is totally

disconnected. Otherwise, Pnc (0) is bounded, and the Julia set is connected.

Proof. This is an immediate consequence of Theorems 3.4 and 3.5.

The set of parameter values c such that Pnc (0) is bounded is called the Multibrot set
and denoted by Md. In the case d = 2, this is the well known Mandelbrot set (see Figure
4.1). Hence c ∈ Md if and only if, 0 does not belong to the basin of attraction of the
super-attracting fixed point at ∞ (stated on Theorem 3.1). You can see the Multibrot sets
for z3 + c and z4 + c on Figures 4.2a and 4.2b, respectively.

29

30 Parameter space: The Mandelbrot and Multibrot sets

Figure 4.1: The Mandelbrot set

(a) Multibrot set for z3 + c (b) Multibrot set for z4 + c

Figure 4.2: Multibrot sets

4.2 Escape Criteria 31

For instance, the value c = 0.25 ∈ ∂Md, while c = 1 6∈ ∂Md. See Figure 4.3 to see a
comparison between a connected Julia set for c = 0.25 on the left, and a totally disconnected
Julia set for c = 1 on the right.

(a) c = 0.25 is connected (b) c = 1 is totally disconnected

Figure 4.3: In black we represent the filled Julia set. We can see on (a) that this set is
connected, while in (b) J (P) is a totally disconnected set (a Cantor set)

An important observation about theorem 4.1 is that this result is given thanks to Corol-
lary 1.16. We recall that this says that a polynomial can have as many attractors as critical
points. So, since zd + c has 0 as the unique critical point, we can ensure that we are not
missing any behaviour.

4.2 Escape Criteria

In this section we present the escaping algorithm to draw Multibrot sets. This algorithm is
based on the following result.

Theorem 4.2 (Structure of Multibrot set). The Multibrot setMd is a closed subset of
the disc D2 = {c ∈ C : |c| ≤ 2}, which meets the real axis in the interval [−2, 1

4]. Moreover,
C \Md is connectedMd consists of precisely those c such that |Pnc (0)| ≤ 2 for all n ≥ 1.

Proof. We apply Proposition 3.6. In the notation there, if |c| > 2 then R = |c|. Observe
also that

|P 2
c (0)| = |cd + c| ≥ |c|(|c|d−1 − 1) > |c|.

Hence, by Proposition 3.6,

Pnc (c
d + c) = Pn+2

c (0) −−−−→
n→∞

∞

32 Parameter space: The Mandelbrot and Multibrot sets

and c 6∈ Md. Hence |c| ≤ 2 for c ∈Md.

Suppose that |Pmc (0)| = 2 + δ > 2 for some m ≥ 1, by the same reasoning, c 6∈ Md.

This proves the final statement of the theorem, from which it follows thatMd is closed.

Henceforth, by the maximum principle, C \Md has no bounded components, so C \Md

is connected.

If c is real, then Pc(x)− x has no real roots if c > 1
4 . It has one root at 1

2 and if c = 1
4

and it has two real roots if c < 1
4 . So, if c >

1
4 , Pnc (0) is increasing and must go to infinity,

since any finite limit point would satisfy Pc(x) = x. On the other hand, if c ≤ 1
4 , let

a = (a+
√

1−4c)
2 be the larger root of Pc(x) = x. If additionally, c ≥ −2, one can check that

a ≥ |c| = |Pc(0)|. Then |Pnc (0)| ≥ a implies |Pn+1
c (0)| = |Pnc (0)2 + c| ≤ a2 + c = a, and

the sequence is bounded. Finally,Md ∩R = [−2, 1
4].

In addition, we review the various possibilities for the Julia set J of P . Again by
Corollary 1.16, there is at most one periodic cycle of bounded components of F . Now,
by Sullivan’s Theorem 2.9, every bounded component of F is eventually iterated into the
cycle since this theorem ensures that it can not end on wandering domains. Finally, the
classification Theorem 2.13 gives us the following four possibilities for c ∈Md.

1. There is an attracting cycle for P . Either there is an attracting fixed point, in which
case there is only one bounded component of F . Or the cycle has length two or more,
in which case there are infinitely many bounded components of F .

2. There is a parabolic cycle for P . Either there is a parabolic fixed point with multiplier
1, in which case there is only one bounded component of F . Or the cycle of parabolic
components of F has length two or more, in which case there are infinitely many
bounded components of F . This case only occurs for one value of c, in particular
c = 1

4 .

3. There is a cycle of Siegel discs.

4. There are no bounded components of F , i.e. F(P) = A(∞).

4.2.1 Escape Algorithm for Mandelbrot and Multibrot sets

Theorem 4.2, give us a simple algorithm to draw Mandelbrot and Multibrot sets. We define
this algorithm on Algorithm 3.

In this procedure, we simply iterate across all pixels on an image and iterate each pixel.
If |Pnc (0)| ≤ 2 for 1 ≤ n ≤ N , where N is the maximum number of iterations allowed, we
colour the pixel as black, otherwise, the colour of this pixel is white.

Once again, this algorithm relies strongly on Corollary 1.16 and the fact that a polynomial
zd + c has a unique critical point at 0 with multiplicity d− 1.

4.3 Another approach to rendering the Mandelbrot and Multibrot set 33

Algorithm 3: Escape Algorithm for Mandelbrot set
Result: Returns the Mandelbrot set on a given image.
Input: A maximum number of iterations N and a degree d ≥ 2.
Output: An image of the Mandelbrot set.

1 foreach pixel (x, y) on image do
2 c← x+ iy

3 i← 0
4 while |z| < 2 and i < N do
5 z ← zd + c

6 i← i+ 1
7 end
8

9 if i = N then
10 Set colour black on (x, y)
11 else
12 Set colour white on (x, y)
13 end
14 end

4.3 Another approach to rendering the Mandelbrot and
Multibrot set

In this section we aim to justify another rendering algorithm for the Mandelbrot set and the
Multibrot sets called Henriksen Algorithm. We start by defining the centres ofMd.

Definition 4.3 (Centre of Md). A point c ∈ Md is called centre of Md if 0 is periodic
under Pc(z) = zd + c. This is, Pnc (0) = 0 for some n > 0.

The centres of Md are located in the interior of Md. Indeed, if c0 is a centre, then Pc
has a cycle with multiplier 0 since P ′c(0) = 0. If |c− c0| is small enough, this cycle persists
and it is still attracting, so c ∈Md.

We define Cd = {c ∈ C : c is a centre ofMd}.

This algorithm is based on the following theorem.

Theorem 4.4. Let Md be the Multibrot set for the polynomial Pc(z) = zd + c, d ≥ 2 and
Cd the set of centres ofMd. Then

Acc(Cd) ⊂ ∂Md,

where Acc(Cd) denotes the set of limit points of Cd. In other words, the set Cd is dense at
the boundary of the Multibrot set.

34 Parameter space: The Mandelbrot and Multibrot sets

Proof. Let D be a disc that meets ∂Md but 0 6∈ D. Let us suppose that U does not contains
c values for which 0 is periodic. Then, consider a branch of d

√
−c defined on D.

We have that Pnc (0) 6= d
√
−c because otherwise Pn+1

c (0) = 0 and 0 is periodic. If we
define the sequence {fn(c)}n∈N = Pn

c (0)√
−c , this sequence omits values 0, 1 and ∞ on D,

hence, by Montel’s Theorem 2.3, {fn(c)}n∈N is a normal sequence on D. However, since D
meets ∂Md, it contains points c with fn(c) bounded and with fn(c) −−−−→

n→∞
∞. This is a

contradiction.

4.3.1 Henriksen Algorithm for Mandelbrot and Multibrot sets

Theorem 4.4 gives a way to draw the Multibrot sets. You can see the Henrisken Algorithm
for Mandelbrot and Multibrot sets on Algorithm 4.

Given the polynomial Pc(z) = zd+ c, in this algorithm we iterate through an image and
for each pixel we fix c and we check:

• If |Pnc (0)| > 500, then c 6∈ Md so we colour this pixel as white.

• If Pnc (0) = 0 for some n, then c ∈ ∂Md so we colour this pixel as black.
To be precise, we need to tolerate an error in order to check this condition. That is,
fixed a complex number c, we want to check if

Pnc (0 + ε)
?
= 0.

We approximate by the Taylor expansion series of first order,

Pnc (0 + ε) ≈ Pnc (0) +
∂

∂c
(Pnc (0)) · ε

?
= 0 ⇐⇒ ε =

Pn(0)
∂
∂c (P

n(0))

Hence we will check if |ε| is sufficiently small.
Likewise we stated on Section 2.3, in order to compute ∂

∂c (P
n(0)) we do the following.

Since Pn(z) = P (Pn−1(z)), by the chain rule,

∂

∂c
(Pn(0)) = ∂

∂c
(P (Pn−1(0))) = ∂

∂c
((Pn−1(0))d+ c) = d · (Pn−1

c (0))d−1 · ∂
∂c

(Pn−1
c (0))+ 1.

So, when coding, we can implement this by initialising an accumulator dc = 0 (since
c′ = 1) and we apply the recurrence dc← d · zd−1 · dc+ 1.

• Otherwise, the point c ∈ int(Md), so we colour this pixel red.

Again, this algorithm relies strongly on the result from Corollary 1.16. We check all
these conditions iterating at 0 because this result ensures us that there is at most one d− 1
periodic attractor since 0 is the only critical point of Pc(z) = zd + c with multiplicity d− 1.

4.3 Another approach to rendering the Mandelbrot and Multibrot set 35

Algorithm 4: Henriksen Algorithm for Mandelbrot Set
Result: Returns the Mandelbrot Set on a given image.
Input: A maximum number of iterations N , a degree d ≥ 2 and a Tol value.
Output: An image of the Mandelbrot Set.

1 foreach pixel (x, y) on image do
2 c← x+ iy

3 z ← 0 + 0i
4 dz ← 1
5 orbitFound← false

6 i← 0
7 while orbitFound = false and i < N do
8 dz ← d · zd−1 · dz + 1
9 z ← zd + c

10 if |z| > 500 then
11 Set colour white on (x, y)
12 return
13 end
14

15 ε← z
dz

16 if |ε| < Tol then
17 orbitFound← true

18 break
19 end
20 i← i+ 1
21 end
22

23 if orbitFound = true then
24 Set colour black on (x, y)
25 else
26 Set colour red on (x, y)
27 end
28 end

36 Parameter space: The Mandelbrot and Multibrot sets

Part II

Visualisation of Fractals

37

Chapter 5

Basic Notions on Computer
Graphics

In this chapter we explain the process of visualisation with special emphasis on the elements
that define the projections, the different systems of coordinates, and the visualisation strate-
gies used to obtain interactive renderings. The scene to render includes one fractal that is
calculated in time of visualisation. Thus, we start this chapter with the definition of a cam-
era and all its required parameters to render a scene, going deeper into two different types of
projection. Then, we will detail the coordinates system used in all the different visualisation
stages. Finally, we will present the different stages of this visualisation pipeline.

5.1 The camera object

The Camera is the main object of any scene, since without it one cannot render any scene.
Since Camera is an actual object, you can centre it wherever you want. So, this centre
point is called viewpoint or lookFrom. The point where the camera is looking at any given
time is called lookAt (VRP). In addition to this, we can consider an important parameter
in form of vector called vertically vector (VUP) that its purpose is to define the verticality
of the camera object respect to the scene. For instance, a V UP = (0, 1, 0) keeps the same
verticality as the scene. At this point, we can define a system of coordinates by picking an
orthogonal basis of vectors with V RP as the origin point. This set of vectors is pointing to:
lookAt, VUP and the third one is the vectorial product of the previous ones.

You can see in Figure 5.1 that there are other non-positional parameters that need to
be defined in order to acquire a unique camera over the volume of vision or frustrum in the
world space. These parameters are clipping planes, type of projection; which is detailed in
the next section; and the viewport, where we display the content.

39

40 Basic Notions on Computer Graphics

Figure 5.1: Non-Positional Camera

5.2 Types of Camera Projection

There are two basic types of projections when one want to project any 3D scene into a 2D
plane.

On the one hand there is the Orthographic projection where the projectors are perpen-
dicular to the projection plane and we deal with a direction of projection (DOP) due to
the centre of projection is located at infinity. So, the content visible of the scene is located
inside a parallelepiped volume defined among the antero-posterior and the lateral planes
(named clipping planes). One may find difficult to imagine this mode since we; as human
beings; perceive the world through eyes in the following type of perspective. You can see a
representation of this projection type on Figure 5.2a [7, Page 196].

On the other hand, the Perspective Projection projects the content of a scene in a more
"natural" way. In this case, the projection is defined using the COP of projection. You can
see a representation of this projection type on Figure 5.2b [7, Page 196]. This projection
type renders the objects that are inside a cropped pyramid.

Figures 5.2c [40] and 5.2d [40] show the visibility of an object related to the clipping
planes and the shape of visible volume. One can easily note that on both Figures, the green
box is visible to the camera, while the blue one is hidden.

5.3 Coordinate Systems 41

(a) Representation of orthographic projection (b) Representation of perspective projection

(c) Orthographic Projection (d) Perspective Projection

Figure 5.2: Projection types of a camera

5.3 Coordinate Systems

There are several coordinate systems involved in the process of rendering images from the
visualisation pipeline. So, each object that will appear on the screen must go across the
following.

1. Local Space mapped by the Local Coordinates.

2. World Space mapped by the World Coordinates.

3. View Space mapped by the Local Camera Coordinates.

4. Clip Space mapped by the Clipping Coordinates.

5. Screen Space mapped by the Window Coordinates.

The Figure 5.3 [41] summarises this process showing each phase with its transformation
matrix.

Local Coordinates are used to represent the vertices of an object in a system where no
other external element is involved. The point of reference in this case is called centre of the
object or centre of the model. By applying the model matrix to all the vertices of an object,

42 Basic Notions on Computer Graphics

Figure 5.3: Coordinate Systems and its matrices involved.

local coordinates can be transformed to world coordinates. They are used to specify the
position of a point in a global system where all the points are sharing the same origin called
centre of the scene.

The view matrix is able to transform world coordinates to other coordinates that are
linked to the position of a specific camera. The resulting coordinates are named camera
coordinates.

Now, depending on the type of projection (that we have seen in the last section) the field
of view might be clipped in a way or another. The field of view of a camera before clipped
is called frustrum of vision. This transformation is carried on by the projection matrix that
projects all the content of the scene into a squared defined by coordinates between 1 and -1.
These are the clipping coordinates.

The last step is to fit the image into the screen of the camera. In order to do this we must
apply the last transformation, where a scale and translations are applied. The coordinates
resulted are called window coordinates.

5.4 Programable Visualisation Pipeline

In this section, we explain this the visualisation pipeline focusing on OpenGL. See [7].

The visualisation or rendering pipeline is the process, or set of stages, where the objects,
lights and the camera (or cameras) of a scene are transformed and shaded in order to be
displayed on the screen with some characteristics that do not appear in their definitions. To
name a few, we can have illumination, shadows or glows among other many effects.

Here we define an object as a set of 3D points (by default) that are displayed in triangles
called faces. Then, the shaders are the programs that handles these triangles by using the
GPU. In addition to this, shaders can be classified into different categories depending on
the coordinates they modify work out.

5.5 Shader Structure 43

You can see on Figure 5.4 [42] the scripts available to program in blue. These parts will
be explained on section 5.6.

Figure 5.4: OpenGL Visualisation Pipeline

As we have stated before, the main advantage using shaders on a GPU over a CPU (for
instance) is their capability of working in parallel. Since each shader is executed on a core
of a GPU, all the vertexs of an object can be processed in parallel using the same program
distributed among all the GPU cores available. This specific technique is known as SIMD
or Single Instruction Multiple Data.

At this point, one can easily think that most of the modern CPU can easily have 4 or
8 cores and even usually each core can handle two threads at the same time, so it is easy
to have, at the very end, 8 or 16 threads of execution on a "regular" CPU. So, what is the
point about using a GPU in this case? Well, one low-tier GPU can easily have, at least, 400
cores available to do these kind of computations. This is the real improvement about using
a GPU over CPU to do this particular computation.

5.5 Shader Structure

A shader is a special program written in high-level language that does not compile together
with the project. So, this is usually compiled "on-the-fly" during the execution time. It
handles the data that receives from the CPU to the GPU using special modifiers called in,
out and uniform. Thanks to this, the programmer gain control over the GPU. Let us detail
each of these modifiers.

Uniform These variables are used to pass the exact same information from CPU to all the
shaders. For instance, if we want to colour one object as red, we shall pass the red
colour through a uniform variable.

In The in modifier behaves in the opposite way compared to the uniform. For example, a
in should be used for customising the content of each shader, like the normal vector
associated to each of them.

Out This modifier assigns a variable to be passed to the next pipeline step.

44 Basic Notions on Computer Graphics

5.6 Type of Shaders

There are several types of shaders, we usually will distinguish them by when they are applied
on the visualisation pipeline. In general terms, there are vertex shaders, geometric shaders,
fragment shaders and post-fragment shaders.

5.6.1 Vertex Shaders

At this stage in the visualisation pipeline, each vertex of the model is processed in a GPU
core. The vertex coordinates, the normal vector to this vertex, and some other attributes
are passed as input to this program. The expected output of this shader is also a vertex,
but it is modified to have some special effect. The transformations applied at this stage are
usually related to individual lightening of each specific vertex, modifying its position and its
normal.

At this moment, the model matrix and view matrix (seen on Figure 5.3) are applied and
with this, usually, we obtain the window coordinates at the end of the stage. In addition,
some calculations can also be done using other properties of the scene. For example, we can
modify some matrices that we will use on the nexts stages.

It is important to note that the rasterisation step will produce the interpolation effect
that is useful when we want a smooth transition between two different colours.

5.6.2 Geometry Shaders

Typically, the Geometry Shader handles the vertices manipulation of the model. At this
stage, the vertices can be displaced or even split to create new ones that the original model
did not has. This type of shaders shines when the loaded object from memory has not
enough vertices and, using Geometry Shaders, new vertices can be created in order to
smooth surfaces or to have more accurate objects.

5.6.3 Fragment Shaders

These kind of shaders are applied after the rasterisation process, as stated on Figure 5.4.
At this stage, the assembly of the primitives (results of the flow from vertices, normals and
buffers involved in the whole process) give place to smaller elements that are pixel-related.
These are the fragments where this program run in parallel.

5.6.4 Post-Processing Shaders

Once all the visualisation process is completed, the final image is sent to the screen. At
this moment, one can apply some special shaders, called post-processing shaders, but in this
case they are applied over the output image directly (this means that any vertex or objects
are involved at this point).

5.7 Some Shader Parameters 45

It is important to note that one can also apply a bunch of post-processing shaders in a
certain order to obtain some effect, for instance, blurring effect or paint-style effect.

5.7 Some Shader Parameters

In this subsection we present some relevant input parameters of the shaders, since we will
be using them when colouring the fractals. You can see these parameters summarised in
Figure 5.5 [44]

R

V N H

L

Figure 5.5: Vectors involved in illumination

Let us detail them,

Position, P This is a four component vector that holds the position of a vertex on world
coordinates using homogeneous coordinates1. We usually use position or vertex to refer
to the same concept.

Normal vector, −→N This vector refers to the normal vector of a vertex when stored in an
object.

Light Vector, −→L Usually a shader is linked with a point of light that affects its properties.
This vector has its origin at the vertex of the object and it is pointing to the source
of light.

Viewing vector, −→V Since a camera is needed in order to visualise any scene, this vector can
be defined as the vector with origin at the vertex pointing to the camera’s coordinates
(LookFrom).

Reflection Vector, −→R This stores the reflection from the light point. It depends on the
surfaces where the shader is applied to.

Middle Vector, −→H It is defined as −→H =

−→
L +

−→
V

||
−→
L +

−→
V ||

and it is used sometimes in order to

boost some calculations.
1See [8] for more details.

46 Basic Notions on Computer Graphics

5.8 Blinn-Phong Illumination

Blinn-Phong Lightning [9, 10] is an empirical lightening model. It defines the light model
as three different behaviours. See Figure 5.6 to see the three separated components.

Figure 5.6: Blinn-Phong Illumination

Let us specify each of these components:

• Ambient component: This is obtained by the influence of the diffuse lights that do
not act directly over the object.

• Diffuse component: This is the diffuse reaction of the object light. In many cases,
this defines the main colour of the object.

• Specular component: This is the reflectance level of the material. Basically, it
handles the size of the highlights.

The general formula of Blinn-Phong illumination is the following.

Iglob = Iaglobka+
∑

l∈Lights

 1
ald

2
l + bldl + cd

(Idl
kd max(−→ll · −→n , 0)︸ ︷︷ ︸

diffuse

+ Isl
ks max(−→n · −→hl , 0)β︸ ︷︷ ︸

specular

+Ial
ka

(5.1)

Where ka, kd, ks are properties of the emulated material in terms of ambient, diffuse and
specular behaviour respectively. Ia, Id, Is are the light properties. −→n and −→h are the normal
and middle vectors detailed in Section 5.7. d is the coefficient that handles the attenuation if
the light is far from the object and, finally, β controls the level of reflectance of the material
(its shininess).

It should be noted that in this project, we will not use this illumination approach directly,
however, we will use some parts from formula (5.1) in order to illuminate the scenes in our
solution.

Chapter 6

Problem Overview

In this chapter we define our problem, we specify the requirements for this problem, we
review the state-of-the-art on this topic and, finally, we make a comparison between some
existing available software that display fractals using computer graphics.

6.1 Analysis of Requirements

In this section we will analyse the requirements (both functional and non-functional) for our
application.

However, first things first, the aim of this application is to provide a software that
allows the User to visualise and manipulate some fractals interactively. In particular, we are
interested on two types of fractals,

1. 2D Fractals: These fractals are the result of iterating holomorphic functions on the
complex plane. Specifically, we want to visualise what are called Mandelbrot and Julia
sets over polynomial functions.

2. 3D Fractals: These are a generalisation about the aforementioned 2D Fractals. In
particular, we want to visualise a generalisation of fractals over polynomial functions
called Mandelbulb [11] and we are also interested on visualise another type of fractals
that are the result of apply an IFS (Iterated Function System) [12].

On both types, we also want to be able to tweak some parameters in order to see how
they react at these changes.

Finally, we will be interested on using the GPU in order to boost the visualisation process
for both on 2D Fractals and 3D Fractals as well.

47

48 Problem Overview

6.1.1 Functional Requirements

In this subsection we will analyse the functional requirements for our problem. In order
to do this, and as a helping tool, we provide four Use Cases Diagrams that will help us to
understand this problem.

The software application should have four different parts. Let us specify each of them.

Main Page

The first one can be found on Figure 6.1. Let us specify the main use cases on this page.

Figure 6.1: Use Cases Diagram for the Main Page

• Visualise 2D Fractals CPU: This user story should drive the User to visualise 2D
Fractals using the CPU.

• Visualise 2D Fractals GPU: This user story should drive the User to visualise 2D
Fractals using the GPU.

• Visualise 3D Fractals GPU: This user story should drive the User to visualise 3D
Fractals using the GPU.

6.1 Analysis of Requirements 49

• More information: This use case will provide information about each main user
story about visualisation.

• About: This use case will show a small about prompt to the User.

It is important to note that, since the 3D requires much more calculations to be displayed,
this problem only consider them to be rendered using the GPU due to; generally; it has more
computation power than a CPU.

Nonetheless, we can consider both approaches regarding the 2D Fractals, this is CPU
and GPU, since it usually takes less computational cost to render them.

2D Fractals on CPU

You can see the Use Cases Diagram for this on Figure 6.2. Let us specify the main use cases
on this page.

Figure 6.2: Use Cases Diagram for 2D Fractals on CPU Page

• Pan on fractals: This user story should allow the User to interact with the fractal
(both Mandelbrot and Julia), either using interactive buttons or filling input fields, in
order to navigate through the fractal vertically and/or horizontally.

• Zoom on fractals: This use case should allow the User to interact with the fractal
(both Mandelbrot and Julia), either using interactive buttons, Right-Clicking with the
mouse the image to Zoom In (resp. Left Shift + Right-Clicking the image to Zoom
Out) or filling an input field, in order to apply zoom in or out into the fractal.

50 Problem Overview

• See pan and zoom values: This user story allows the User to visualise all time the
current values for pan and zoom on both fractal images.

• Choose Rendering Algorithm: In this user story, the User will chose the algorithm
that will render each of these sets. The rendering algorithms considered are the Escape
Algorithm and Henriksen algorithm.

• Choose number of iterations for renderer Algorithm: This use case should
allow the User to choose the maximum number of iterations for the current rendering
algorithm.

• Choose Family Functions: This use case will allow the User to choose a family of
functions that will be iterated in order to render fractals. Initially, only the polynomial
family is considered.

• Visualise coordinates of fractals: This user story will allow the User to see the
coordinates on the complex plane when the mouse is placed over a certain pixel of the
resulting image.

• Choose c on Julia Set: Since you need a seed to draw Julia sets, this use case will
provide the User a way to choose this parameter c, either clicking on the Mandelbrot
image or filling input fields.

• Visualise logs: During the interaction between the User and the software, we should
provide some logs in order to produce feedback to the User. These logs will be fed
when

– a drawing is started,
– a drawing is finished (providing also the amount of time it took to complete it)

or stopped,
– the User fill an input field with an incorrect value (meaning "incorrect" an invalid

value here, such as placing a negative number on a only positive field) or a not-
a-number value,

– exporting an image it should feedback with the status of this operation.

• Enable/Disable multi-threading processing: This user story should allow the
User to enable or disable an option to render these sets using only a single thread or
using all CPU power available with multi-thread.

• Choose Colormap for visualisation: This user story will allow the user to choose
the Colormap that will fill the Fractal images.

• Visualise Julia images: This user story will allow the user to see the first n iterates
over the Julia image given a certain point (that the user will choose with the cursor).
This feature is interesting in order to find "empirically" periodic orbits. See Definition
1.5.

• Export images: This user story should allow the User to export the resulting image
of the rendering to a static image, for both Mandelbrot and Julia Sets. The exporting
formats considered are PNG and JPG.

6.1 Analysis of Requirements 51

2D Fractals on GPU

This page is similar to the last one, however there are some differences. The Use Cases
Diagram for this page is on Figure 6.3. Since many use cases in this page are identical to
the previous one, we only specify here the different ones (they are the green ones on the
Figure).

Figure 6.3: Use Cases Diagram for 2D Fractals on GPU Page

• Control the camera: This user story should allow the User to interact with the
fractal (both Mandelbrot and Julia) in order to navigate through the fractal using the
mouse and the keyboard. The scroll wheel from the mouse will handle the zoom of
the fractal, while the arrows of the keyboard will handle the pan of the fractal.

• Visualise logs: During the interaction between the User and the software, we should
provide some logs in order to produce feedback to the User. These logs will be fed
when

52 Problem Overview

– the User fill an input field with an incorrect value (meaning "incorrect" an invalid
value here, such as placing a negative number on a only positive field) or a not-
a-number value,

– exporting an image it should feedback with the status of this operation.

• Enable/Disable smooth-camera navigation: This user story should allow the
User to enable or disable an option that changes the behaviour of the camera when
the User navigates through the fractal. If this option is enabled, the camera performs
an interpolation at each step giving to the User the sensation of a smooth movement.
If this option is disabled, the camera behaves without any interpolation at all.

3D Fractals on GPU

Finally, the Use Cases Diagram for this page is Figure 6.4. Let us detail the main use cases
for this page.

Figure 6.4: Use Cases Diagram for 3D Fractals on GPU Page

• Control the camera: In a similar way to 2D Fractals GPU, this use case should
give to the User the ability of control the camera using the arrows the keyboard to
move the camera around the fractal and, use the mouse to change the orientation of
the camera in the scene.

6.2 Antecedents 53

• Choose rendering resolution: This user story will allow the User to change the
resolution in which the resulting scene is displayed.

• Choose Level of Detail for rendering: This use case should allow the User to
choose the amount of detail to be displayed on the fractal.

• Choose the type of fractal to visualise: This user story will allow the user to
select which type of fractal is going to be displayed. Initially, two types of fractals are
considered, that are polynomial-based fractals (in which case the User will be able to
choose its degree) and an IFS fractal (in which case the User could choose the number
of IFS iterations).

• Enable/Disable automatic camera movement: This feature will let the User to
toggle between an automatic camera rotation and a static one.

• Save the scene as an image: This user story allows the user to save the renderer
scene to a static image as PNG format.

6.1.2 Non-Functional Requirements

Once we have specified the Functional Requirements, we detail the Non-Functional Require-
ments. These are related to the platforms where this software will be deployed, its controls,
the project maintenance, the extensibility of the code, its reusability, etc.

Since the aim of this project has academic and lecture finalities, it is important to present
a software reachable by as many Users as possible. Due to this, the main Non-Functional
Requirement for this software is its platform. For instance, a Web deployment would do the
work for this purpose.

Therefore, the main interaction with it will be using a keyboard and a mouse (or track-
pad) on a Desktop computer, for instance.

Since this exploration topic about fractals is very large, we need a software as extensible
as possible, so we can easily add new requested features from User feedback, or rework an
existing one.

Speaking about reusability, this is always a nice to have requirement since it makes the
development more easily and robust, hence reusability provides stronger and more reliable
code.

6.2 Antecedents

In this section, we will provide a review about the existing fractal visualisation software
and techniques for both 2D Fractals and 3D Fractals. Then we will compare some of the
available software that draws fractals and, finally, place conclusions about the motivation of
this project.

54 Problem Overview

6.2.1 State-of-the-Art: 2D Fractal Visualisation

Let us start with 2D Fractals. This subsection is based on the work from [13].

Formerly, we place here just a recall that we are only interested on visualising the fractals
resulting from iterating complex polynomials on the complex plane. In particular, we are
interested on drawing the Mandelbrot (and Multibrot) sets and Julia sets for the polynomial
family Pc(z) = zd + c, with z, c ∈ C and d ≥ 2. Therefore, this state of art will be focused
on the drawing of these particular sets.

There are plenty of algorithms that are capable about plotting Multibrot and Julia Sets.
Some of them rely on a very simple mathematical formalisation and have exceptional results
in terms of accuracy and performance.

However, if one dig deeper on these mathematical formalisation, one can find even better
-in many cases in terms of accuracy rather than performance- algorithms capable to draw
these sets.

Let us explain a couple of rendering algorithms.

1. Escape Algorithm: This is, probably, the best known rendering algorithm for plot-
ting Mandelbrot and Julia Sets. This is one of the simplest algorithm as well. In the
case of Mandelbrot (and Multibrot) set, it relies on the Theorem 4.2 in Section 4.2.
In general terms, this algorithm iterates across each pixel of a given image and com-
putes zd + c, starting at z = 0 and where c is the point given by the double loop
iteration through the whole image. These algorithms keeps iterating until a maximum
number of iterations has reached or until the complex number z has reached a module
greater than an arbitrary number (greater than 2).
The aforementioned works only when drawing the Mandelbrot set. However, this same
algorithm admits a variation in order to draw Julia sets. This modification rely on
the same structure but in this case we start at z the point given by the double loop
iteration and now the c is a given fixed seed.

2. Inverse Iteration Method (IIM): This algorithm only plots Julia Sets. The ap-
proach for this algorithm is different from the previous one, since this algorithm draws
simple points. This means that this does not iterate across all the pixels of an image
but this only paint a few pixels of an image. This algorithm is based on the results
that the Julia set is J (Pc) = {P−nc (z0) : n ∈N}. In other words and let us fix d = 2
(this is a complex quadratic polynomial for simplicity on the exposition), then the
Julia set for this polynomial is the set of zn = ±√zn−1 − c. However, it is important
to note that the number of iterated pre-images grows exponentially, so this is not fea-
sible computationally. This is the reason why we usually at each step we choose, by
random, one of the pre-images of Pc.

Although, there are many other algorithms. For instance, the escape angle algorithm,
the Curvature Estimation, using Statistics, the Orbit Traps Method and Gaussian Integers
Algorithm to name a few [14].

6.2 Antecedents 55

Finally, it is worth mentioning that one can enhance almost any of the aforementioned
algorithms by applying a distance estimation [15]. This technique is based on estimate the
distance of a current pixel to the boundary of the set.

6.2.2 State-of-the-Art: 3D Fractal Visualisation

Let us review the current state of art regarding 3D Fractal Visualisation. The references for
this subsection are on [16].

Unlike 2D Fractal Visualisation, where each type of algorithm requires a certain rendering
technique, when one try to render 3D Fractals in real time, especially using the GPU, you
have no other choice but use the "traditional" rendering techniques. These are, mostly,
Z-Buffer, Ray-Tracing and Ray-Marching.

This is driven by the fact that, when visualising scenes using the GPU, these chipsets
are specialised computing using the Single Instruction Multiple Data (SIMD) mode. With
this, most part of the rendering algorithm for 3D fractal visualisation are intrinsic to them.

Let us review each one of these techniques. Generally, the main difference between them
resides on the degree of realism achieved and its performance capability (in terms of frames
per second or FPS).

1. Z-Buffer [17] : This technique is also known as Depth Buffering. The main purpose
for this approach is to decide which elements of a renderer scene are visible and which
are hidden. When applying this technique to our problem, the main concern here is to
determine which points are visible (part of the fractal) and which not. In addition to
this, one need to sample the fractal to decide which points will be sent to the rendering
pipeline.

2. Ray-Tracing [18]: This technique and the next one are the most common ones used
for this type of problem. This is because its algorithm matches really well with the
problem to solve. This is a rendering technique for generating an image by tracing the
path of light through pixels from a plane image and tries to simulate the effects of the
intersection of these paths with virtual objects. With this technique, one is capable to
obtain high detailed images with a very high degree of realism. However, this carries
a great computational cost with it.

3. Ray-Marching [19]: This algorithm is a modification from Ray-Tracing. The main
difference between them is the way the ray is sampled. Generally, Ray-Marching tries
to ease the manner the rays are sampled across the scene with the finality to obtain
more performance in sacrifice of image quality and degree of realism.

In addition, when using any of these rendering technique, one needs to calculate the
normal associated to each point of the fractal in some way, since they are an essential
component when colouring surfaces and objects on 3D scenes (as we have seen on Section
5.7). However, usually the objects used to represent these fractals does not have the normal
associated with them.

56 Problem Overview

Regarding the fractal colouring, we recall the formula defined on formula (5.1), typically
it is used the diffuse component and the normal vector from the Blinn-Phong formula.

Finally, in order to get a better and more realistic approaches when rendering 3D Fractals,
shadowing techniques are usually applied to obtain shadows in our result. See [20] for details.

6.2.3 Existing Software Comparison

Once we have done a state of the art for both 2D and 3D fractal visualisation, in this
subsection we compare some of the existing software available on the Internet that draw
fractals using computer graphics.

We are going to review the most important software available right not. Let us detail
each considered software.

• Mandel from Wolf Jung [21]: This is an interactive program for drawing the
Mandelbrot set and Julia sets and for illustrating and researching their mathematical
properties. It is available on Desktop (MacOS, Linux and Windows). The main
features are the ability of drawing the Mandelbrot and Julia sets and tweak some
parameters, export results as images and it contains many functionalities to explore
the mathematical properties of these sets. You can see an image of this software on
Figure 6.5.

Figure 6.5: Mandel Software

• Mandelbulber [22]: This software renders 3D Fractals. In particular this software
allows you to visualise trigonometric, hyper-complex, Mandelbox, IFS among other
3D fractals. It offers Desktop build (for MacOS, Linux and Windows) and its main
features are high-performance computing with multiple graphics accelerators cards
(multi-GPU support via OpenCL), it offers a rich GUI developed in Qt5 and plenty of

6.2 Antecedents 57

options to decorate and enhance the final visualisation image. You can see an image
of this software on Figure 6.6.

Figure 6.6: Mandelbulber Software

• FRAX [23]: This is a software that renders 2D fractals. It offers pre-selected scenes
where the user can zoom infinitely and change rendering values, such as texture and
lightning, in order to enhance the final visualisation. This software offers only a mobile
application on iOS. You can see an image of this software on Figure 6.7.

Figure 6.7: FRAX Software

• XaoSjs [24]: This is a version of the XaoS software based on Java-script and it offers
an experimental support of visualising 2D Fracals, in particular the Mandelbrot set

58 Problem Overview

for the quadratic polynomial family, directly on the Web. You can see an image of
this software on Figure 6.8.

Figure 6.8: XaoSjs Software

6.3 Conclusions

In conclusion, we place a comparison Table as a summary of the existing software that tries
to solve our problem on Table 6.1.

Mandel Mandelbulb FRAX XaoSjs
2D Fractal Visualisation × × ×
Mathematical properties ×
3D Fractal Visualisation ×
Availability on Desktop Platforms × ×
Availability on Mobile Platform ×
Availability on Website ×

Table 6.1: Comparison Table among existing Fractal Visualisation Software

It is important to note that only one of them offers a Website version, however, it only
renders 2D Fractals and it is on a very early stage of development.

So, we can conclude that there is an open line to explore a new development that allows
to visualise fractals both 2D and 3D directly on the web giving the possibility of tweak
parameters and that offers features to explore its mathematical properties.

Chapter 7

Proposal

In this chapter we place our proposal to solve the problem stated on the previous chapter.

We have developed this software using Unity3D [25]. On the one hand, it allows a perfect
combination among visualising 2D and 3D graphics all on the same graphical user interface.
On the other hand, Unity3D has a built-in engine that provides many tools to the developer
to easily build software for computer graphics.

Figure 7.1: Unity3D Logo

Since stated on Section 6.1 an important feature for this software is to enhance it with
tools that allows you to visualise its dynamical and mathematical properties behind them.
This has been accomplished by letting the user click over the Julia set (or press ’P’) in order
to visualise the function image of the selected point. In addition, there is a slider that allows
you to choose how many images will be calculated. With it, we can visualise periodic orbits.

In an aim to make this software more engaging to the User, it provides interactive but-
tons, input fields, sliders as well as a logs system. With this last, the User can immediately
receive feedback at any change on the application. In addition to this, we bring many
keyboard-bindings to build up the interaction with the system.

The exact user interaction is specified on Section 8.1.

As we had just analysed on subsection 6.2.3, there are several (and wide-ranged) ap-
plications available all over the Internet that allows you to visualise fractals, both 2D and
3D.

Nonetheless, almost all of them require you to download some software or an application
in order to use them. Since, as we have aforementioned, one of the main requirement for

59

60 Proposal

this project is to present a software solution that lets you to draw fractals (both 2D and 3D)
and interact with them (from simply changing the zoom to change the colormap of them),
we have implemented an application with all packed that runs on a Website. So, one can
simply browse to this site and start use this application from scratch. This website version
has been deployed using WebGL technology [26].

However, since Unity allows easy deployment into many platforms, we could offer an
enhanced version for Desktop (MacOS, Linux and Windows) and an application for mobile
platforms (iOS and Android). The main benefit using these versions is a boost on the
rendering speed for fractals drawn over CPU by implementing the rendering algorithms
using multi-thread. Unfortunately, WebGL software does not allow the developer to use
more than one main Thread.1

In the following sections we detail the strategy taken for both visualise 2D and 3D
fractals.

7.1 Strategy of 2D visualisation

In this section we present the strategy of visualisation we take when visualising 2D Fractals.
For this particular visualisation, two approaches were considered: 2D fractal visualisation
using the CPU and its optimisations using the GPU.

7.1.1 Rendering 2D Fractals using the CPU

As we have aforementioned on Section 6.1, two different rendering algorithms were consid-
ered when visualising 2D Fractals: the Escape Algorithm and the Henriksen Algorithm.

In general, since we are rendering images, we need to define the viewport of the image.
This is done by defining xmin,xmax, ymin, ymax values that defines the size of the window to
be rendered in world coordinates.

However, since we are drawing Mandelbrot and Julia sets, each of them needs a modifi-
cation of these mentioned algorithms. Let us explain each of them.

Escape algorithm for Mandelbrot set

You can find the Escape Algorithm for Mandelbrot set on Algorithm 3 in Subsection 4.2.1.

We have modified this algorithm so we allow the user to choose the "escape" condition
on Line 6. This parameter is called threshold and allow us to visualise what are called
equipotential curves.

In addition, we have modified the final if-else condition, starting on line 11, in a way
that we colour the pixel black if we have reached the maximum amount of iterations allowed.
However, when otherwise, we have implemented a colour gradient to colorise the image in

1See [27] for details.

7.1 Strategy of 2D visualisation 61

function of how many iterations we delayed to escape. To be precise, we have implemented
five different colour maps.

Henriksen algorithm for Mandelbrot set

Here we have simply let the user to choose the value of Tol, representing the size of a pixel
in a way that, the smaller this value is, the more defined will be the Mandelbrot set.

In addition, and similar to the Escape Algorithm for Mandelbrot set, we also have mod-
ified this algorithm when we colour the pixel white (on Line 11), allowing to the user to
choose the colormap based on how many iterations did it last until it escaped (if it escaped).

You can find this algorithm on Subsection 4.3.1, Algorithm 4.

Escape algorithm for Julia Set

Since this algorithm is quite similar to the Mandelbrot Escape Algorithm, we have applied
the same modifications to enhance its visualisation.

You can see the Escape Algorithm for Julia set on Algorithm 2 in Section 3.3.

Henriksen algorithm for Julia Set

You can find this last algorithm on Algorithm 1 in Section 2.3.

In a similar way as the Henriksen algorithm for Mandelbrot set, we have modified this
algorithm to allow the user to input a custom Tol value representing the size of a pixel. In
addition, we have also implemented here a colormap gradient based on how many iterates
it took to escape (on Line 12).

7.1.2 Optimisations on GPU

Since we are drawing pixels over an image, there are many optimisations about the stated
above using a GPU as the processor. As we previously detailed on Chapter 5, we use
programs on the GPU in order to boost the drawing performance.

To be precise, we have implemented two different shaders to visualise 2D Fractals on the
GPU. One for Mandelbrot Set and one for Julia Set.

When we tried to port the Henriksen Algorithm from CPU to a shader GPU we realised
that, due its nature, it will be not feasible this conversion. Since this algorithm requires
deeper precision than the escape algorithm implemented. So we dismissed it.

62 Proposal

7.2 Strategy of 3D visualisation

In this section we present the strategy of visualisation we took when visualising 3D Fractals.
In this particular case, we only considered rendering them using the GPU since it usually
takes a great computational cost, as we aforementioned before.

As we explained on subsection 6.2.2, there are several ways to implement software that
renders 3D Fractals.

However, the approach taken in this project is to use ray-marching as the rendering
technique to visualise them. So, we go deeper on this topic on the next subsection.

7.2.1 Ray-Marching

This subsection is based on the work from [28].

To explain this algorithm, we need to define first a special kind of functions called signed
distance functions or distance estimators.

Definition 7.1 (Signed Distance Function (SDF) or Distance Estimator (DE)).
A signed distance function (SDF) or distance estimator (DE), is a function that returns the
shortest distance between a point in space; given by its coordinates x, y, z; and some surface.
The sign of the returned value indicates whether the point is inside or outside.

For example, let us consider a sphere centred at the origin. So, in this case, points inside
the sphere will have a distance from the origin less than the radius, points on the sphere will
have distance equal to the radius, and point outside the sphere will have distances greater
than the radius.

For a sphere centred at the origin with radius 1, the Distance Estimator function look
like this:

DE(x, y, z) =
√
x2 + y2 + z2 − 1.

Once we have defined the key function for this rendering technique, we are now ready to
explain the basics of the algorithm.

In general, we select a point for the camera, put a grid in front of it, send rays from the
camera through each point in the grid and we match each point to each pixel of the output
image. In Figure 7.2 [46] you can see a diagram with the stated above.

Until this point, the algorithm is identical to Ray-Tracing, however, the difference with
this other technique comes in how the scene is defined which, consequently, changes our
approach for finding the intersection between the ray view and the scene.

In ray-marching, the entire scene is defined in terms of a distance estimator. Hence, in
order to find the intersection between the view ray and the scene, we start at the camera,
and move a point along the view ray, bit by bit. Then, at each step we ask "Is this point
inside the scene surface?" or, in other words, "Does the DE evaluate a negative number

7.2 Strategy of 3D visualisation 63

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Figure 7.2: Ray-Tracing

at this point?" When this occurs, we hit something. If not, we keep going up until some
maximum number of iterations has been reached along the ray.

One can easily note that it is important to define how to take these steps at each iteration.
However, we can handle this using the sphere tracing, instead of taking a tiny step. This
is, we take the maximum step we know is safe without going through the surface. So, we
step by the distance to the surface, which the DE provided us. You can see an example on
Figure 7.3 [47].

Figure 7.3: Sphere Tracing for Ray-Marching

In Figure 7.3, p0 corresponds to the camera position and the blue line lies along the ray
direction cast from the camera through the view plane. So, we keep going the algorithm
until the current point is close to the surface.

64 Proposal

7.2.2 Our implementation

Once we have detailed the main ray-marching algorithm, we are ready to place the algorithm
implemented on this software project in order to render 3D Fractals. You can find this
algorithm on Algorithm 5.

Algorithm 5: Ray-Marching Algorithm
Result: Returns the minimum distance to a surface.
Input: The lookFrom and lookAt from the camera, an integer MAX_STEPS and

DE as a Distance Estimator function.
Output: The minimum distance to a surface.

1 t← 0
2 d← 0
3 totalDistance← 0
4 minimumDistance← ε, |ε| << 1
5 foreach step = 0 to MAX_STEPS do

/* Sample t */
6 t← lookFrom+ totalDistance · lookAt
7 d← DE(t)

8 totalDistance← totalDistance+ d

/* If t is close enough to the surface */
9 if d < minimumDistance then

10 return d
11 end
12 end

So, this simple algorithm gives us the ray-marching technique to render 3D fractals.

However, we need to define explicitly what DE(t), or Distance Estimator, exactly is. It
depends on the type of fractal we aim to visualise. As we have aforementioned on Section
6.1, we recall that we are interested on drawing two types of fractals here: the Mandelbulb,
and IFS Fractals. Let us define the DE of each of them, we start with the Mandelbulb
Distance Estimator on Algorithm 6.

Mandelbulb Distance Estimator

Here we present the Distance Estimator for the Mandelbulb set.

In this algorithm, we iterate from 0 to a maximum number of steps (defined by MAX_STEPS).
We consider a 3-Dimensional point p and at each iteration we check if the length of r is greater
than 5, in that case we can ensure that the point iterated does not belong to Mandelbulb
set. If otherwise, we convert the coordinates of the point p to polar coordinates, so we can
generalise the behaviour done with the Multibrot algorithm on 3-Dimensional space. This
is, we multiply the polar coordinates by the degree d, the accumulator r powered by d− 1
and the derivative plus 1 (this is a simply an application of the chain rule over a conjugacy
of functions). Then we scale the point and apply the correspondent rotation and finally

7.2 Strategy of 3D visualisation 65

convert back to cartesian coordinates. At the end of this algorithm, we return the distance
accumulated though this loop tweaked in order to represent the minimum distance from a
given point to the Mandelbulb set. See [29] for details.

Algorithm 6: Mandelbulb Distance Estimator
Result: Returns the distance to the Mandelbulb of degree d.
Input: A point p, a degree d ≥ 2 and an integer MAX_STEPS.
Output: The distance from p to the Mandelbulb surface.

1 z ← p

2 dr ← 1
3 r ← 0
4 θ ← 0
5 φ← 0
6 s← 0
7 foreach i = 0 to MAX_STEPS do
8 r ← ||z||
9 if r > 5 then

10 break
11 end

/* Convert the point to polar coordinates */
12 θ ← arccos(z.z

r)

13 φ← arctan(z.y
z.x)

14 dr = rd−1 · d · dr+ 1
/* Scale and rotate the point */

15 s← rd

16 θ ← θ · d
17 φ← φ · d

/* Convert back to cartesian coordinates */
18 z ← s · (sin(θ) · cos(φ), sin(φ) · sin(θ), cos(θ))
19 z ← z + p

20 end
21 return 0.5 · log(r) · rdr

Let us specify the other distance estimator about IFS. We want to visualise two particular
instances of these types of fractals: the Sierpiński Tetrahedron [30] and the Menger Sponge
[31].

Sierpiński Tetrahedron Distance Estimator

Let us start with Sierpiński Distance Estimator Tetrahedron on Algorithm 7.

In this algorithm, we first define the four vertex of our initial tetrahedron and we iterate
from 0 to MAX_IFS_STEPS calculating the distance between the given point p and each vertex.

66 Proposal

At each iteration, we update the position of p and we move it towards the closer vertex to
it. The more we iterate, the closer we get to one of these vertices. See [32] for more details.

Algorithm 7: Sierpiński Tetrahedron Distance Estimator
Result: Returns the distance to the Sierpiński Tetrahedron.
Input: A point p and an integer MAX_IFS_STEPS.
Output: The distance from p to the Sierpiński Tetrahedron.

1 a1 ← (1, 1, 1)
2 a2 ← (−1,−1, 1)
3 a3 ← (1,−1,−1)
4 a4 ← (−1, 1,−1)
5 c← 0
6 dist← 0
7 d← 0
8 foreach i = 0 to MAX_IFS_STEPS do
9 c← a1

10 dist← length(z − a1)

11 d← length(p− a2)

12 if d < dist then
13 c← a2
14 dist← d

15 end

16 d← length(p− a3)

17 if d < dist then
18 c← a3
19 dist← d

20 end

21 d← length(p− a4)

22 if d < dist then
23 c← a4
24 dist← d

25 end
26 p← 2 · p− c
27 end
28 return lenght(p) · 2−MAX_IFS_STEPS

Menger Sponge Distance Estimator

Finally, let us present the last algorithm for the Menger Sponge Distance Estimator on
Algorithm 8.

In a similar way to Sierpiński Tetrahedron Distance Estimator, we define first a cube
of length 10 centred at point p. Then we iterate from 0 to MAX_IFS_STEPS. At each step,

7.2 Strategy of 3D visualisation 67

we consider the cube created before and we create the a "cross" made by 3 infinite boxes.
Finally, we substract this cross from our initial cube. Iterating this process we get the effect
desired. See [33] for more details.

Algorithm 8: Menger Sponge Distance Estimator
Result: Returns the distance to the Menger Sponge.
Input: A point p and an integer MAX_IFS_STEPS.
Output: The distance from p to the Menger Sponge.

1 da← 0
2 db← 0
3 dc← 0
4 c← 0
5 s← 0.05
6 a← 0
7 d← sdBox(p, (10, 10, 10)))
8 foreach i = 0 to MAX_IFS_STEPS do
9 a← frac(p · s)− 0.5

10 s← s · 3
11 r ← abs(1.− 6 · abs(a))
12 da← max(r.x, r.y)
13 db← max(r.y, r.z)
14 dc← max(r.z, r.x)
15 c← min(da,max(db,dc))−1

2·s
16 if c < d then
17 d← c

18 end
19 p← 2 · p− c
20 end
21 return d

22 Function sdBox(p, b):
23 di← abs(p)− b
24 mc← max(di.x, max(di.y, di.z))
25 return min(mc, length(max(di, 0)))

After all, it is important to note the power about this rendering technique. Since, with
one simple algorithm of visualisation showed on Algorithm 5, we are able to visualise a wide
variety of different fractals just changing the Distance Estimator.

68 Proposal

7.3 Architecture of the System

In this section we detail the architecture of the system implemented in this software project.
We provide the Class Diagram that will help us to understand the software engineering
behind this solution. Since the whole Class Diagram is huge, we have separated it in different
parts related by its behaviour or main goal.

As a general note and since we are working on Unity, most of the classes implemented
inherit from MonoBehaviour class.

You can find the global simplified class diagram on Figure 7.4.

Figure 7.4: Class diagram showing the relation between the different packages

7.3.1 Fractals Package

Let us start with the Fractals Package. You can find a simplified class diagram for this on
Figure 7.5. However, we provide the complete the class diagram on Figure A.1.

Let us detail a bit the most important classes in this diagram.

• Fractal: This is an abstract class that represents any fractal in our application. I.e.,
any fractal drawn with this application; either 2D or 3D fractal; inherits from this
class. It also holds the main and common properties to represent a fractal. Hence, it
contains an instance of RenderingParameters class, which contains all necessary data

7.3 Architecture of the System 69

Figure 7.5: Class Diagram for Fractals Package

to determine the drawing parameter of a 2D fractal; such as the panX and panY, the
zoom given by xmin, xmax, ymin, ymax as well as the Texture2D that holds the image
itself, among others. It also contains a FractalParameters instance that stores all
the data related to the fractal itself (that are not rendering parameters), for instance,
the maxIters for the algorithms, the algorithm chosen or the degree of the polynomial
are stored here. Finally, this class provides a couple of methods in order to obtain the
real and imaginary part over the complex plane given two coordinates x and y from
the image.

• FractalCPU: This is an abstract class that represents a 2D Fractal drawn by CPU.
However, since we want to draw Mandelbrot and Julia sets, this class provides a
common point for the classes that actually implements the drawing algorithms. In
order to provide code extensibility, it implements an abstract method called Draw()
that any child class must implement. With it, we ensure that any class that inherits
from this will be a drawing class. In addition, this class also stores the ColorData
class as a way to provide gradient colouring when drawing.

• MandelbrotCPU: This class inherits from FractalCPU and implements the most im-
portant method: Draw(). With this method a Mandelbrot set is drawn using the
escape algorithm. Furthermore, there are other Draw methods implemented in this

70 Proposal

class. Concretely, there are four methods in total. One for each algorithm and one for
each rendering mode (this is using multi-thread and single-thread).

• JuliaCPU: This class inherits from FractalCPU as well and, hence, implements the
Draw() method. However, in this case; as we have seen on Algorithm 1 and 2; we need
to use the seed in order to draw the Julia set. In addition, this class also implements
four Draw methods in total, one for each algorithm and one for each rendering mode.
Finally, this class also implements the CalculateImageAndDrawImage() method that
calculates the image of a given point and draws a line over the Julia set image.

• FractalGPU: On the other hand, this class represents a 2D fractal drawn using the
GPU. Since the fractals drawn by a GPU are rendered using shaders, it implements
the basic methods to update each needed rendering parameter.

• MandelbrotGPU: This is a simple instance of the FractalGPU class. Since the super-
class implements all its needed methods, this class only initialises its values when the
scene is started.

• JuliaGPU: This class inherits from FractalGPU. As long as this class is used to handle
the data to draw the Julia set on GPU, using the methods from the parent class is
almost enough. Nonetheless, it needs to implement one additional method to handle
the seed of each Julia set.

• Fractal3D: Finally, this class represents a 3D Fractal. It also controls the minimal
interface on the scene where this fractal is rendered. The most important part on this
class is that it holds an auxiliary camera which renders the fractal into a Texture. This
Texture is the object that we visualise on the scene.

As a general commentary, it is important to note that the implementation of all drawing
methods are implemented using Unity coroutines. This provides us a way to send the
workload to the background while maintaining the GUI responsive. Moreover, on the cases
of parallel processing, we have used Unity Tasks as well as coroutines.

7.3.2 Interface Controller Package

A simplified Class Diagram for Interface Controller classes is on Figure 7.6. You can find
the complete class diagram on Figure A.2.

Let us detail a bit the most important classes on this package.

• InterfaceController: This is the main controller class on the 2D CPU scene. It
handles all the input data from the User as well as it updates all the data manipulation
through text labels, sliders, dropdown menus and input fields into the screen.

• InterfaceControllerGPU: In a similar way as the previous item, this handles all the
input data and its text labels, sliders, dropdown menus and input fields into the screen
on the 2D GPU scene. We needed to create a separate script since the 2D CPU scene
and 2D GPU do not require the same methods and class attributes.

7.3 Architecture of the System 71

Figure 7.6: Class Diagram for Interface Controller Package

7.3.3 Controller Package

A simplified Class Diagram for Controller classes is on Figure 7.7. However, you can find
the complete class diagram on Figure A.3.

Figure 7.7: Class Diagram for Controller Package

Let us detail a bit the most important classes on this package.

• CameraMovementController: This class handless all the input motion data from the
user when the mouse is over the Mandelbrot or Julia image on the 2D GPU scene. In
order to do this, it modifies the required attributes on MandelbrotGPU and JuliaGPU
classes.

• LogsController: This class provides static methods to access the Logs system of this
application from anywhere.

• SimpleCameraController: This class allows to the User to move the transform of
Camera object using WASD or the arrows on a keyboard. It also rotates the camera
if the User hold the right click pressed and drags around the screen. Finally, the scroll
allows the user to choose the movement speed of the camera. This class uses the
CameraState class as the class that actually modifies the Camera transform.

72 Proposal

• RaymarchController: This class inherits from ScreenViewFilter class. With it,
here is where parameters for the 3D fractal shader are updated.

• WelcomePageController: This class handles all the logic about the Welcome Page of
the application.

7.3.4 Utilities Package

Let us continue to a simplified Class Diagram about Utilities classes on Figure 7.8. You can
find the complete class diagram on Figure A.4.

Figure 7.8: Class Diagram for Utilities Package

Let us detail a bit the most important classes on this package.

• Coordinates Listener: This class implements the interfaces IPointerEnterHandler,
IPointerClickHandler and IPointerExitHandler and it is attached to an image.
Thanks to this, this class allows the user to visualise the coordinates of the Mandel-
brot and Julia sets on both 2D CPU and 2D GPU scenes by mouse hover over the
image.

• FractalParametersListener: This class manages all the dropdown menus, input
fields and sliders regarding the fractal parameters. For instance, the dropdown menu
for choosing the algorithm, the slider to choose the maximum iterations or the input
field to specify the degree.

• FractalParametersListenerGPU: Since the 2D GPU scene is slightly different to the
2D CPU scene, we needed to create another script in order to manage its fractal
parameters in this case.

• FPSDisplay: This class calculates the FPS achieved on both 2D GPU and 3D GPU
scenes and display this result into a label on the scene.

7.3.5 Tabs Package

A simplified Class Diagram for this package is on Figure 7.9. You can find the complete
class diagram on Figure A.5.

7.3 Architecture of the System 73

Figure 7.9: Class Diagram for Tabs Package

Since Unity does not provide a native tab system solution, we needed to implement one.
This implementation of tab system is very extensible since it does not constrain you on
the maximum number of tabs. Furthermore, due the implementation of the methods in
IPointerEnterHandler, IPointerClickHandler and IPointerExitHandler, it provides a
way to give feedback to the user when a tab is selected, hovered or deselected.

7.3.6 Export Package

Let us move on the next Class Diagram about exporting scenes into images. You can see a
simplified version on Figure 7.10 and a complete version on Figure A.6.

Figure 7.10: Class Diagram for Export Package

• ExportListener: This class is attached to a button on the screen and it provides the
necessary methods to store the result from a Texture2D into an image and store it
into the hard drive of the current platform. This class is used on both 2D CPU and
2D GPU scenes.

• ExportListener3DScene: Due to technical reasons, we had to use another separated
class to port the exact same functionality as above to the 3D scene.

74 Proposal

It is important to note that we have used 3rd party Assets in order to store images from
WebGL, Desktop and mobile platforms iOS and Android.

We have used UnityStandaloneFileBrowser asset [48] to store images from WebGL and
Desktop, and we have used unity-native-toolkit asset [49] to store images from mobile plat-
forms into the camera roll.

7.3.7 Shaders Package

In this package we store all the shaders implemented in this project. See Figure 7.11 to see
a Diagram with the shaders implemented.

Figure 7.11: Diagram for Shaders Package

Let us specify each shader.

• MandelbrotShaderUnlit: This shader implements the optimisation for drawing Man-
delbrot sets over the GPU and it is handled by the MandelbrotGPU class. It features a
simple vertex shader and a fragment shader (that implements the actual algorithm) all
together on a single file. It is worth mentioning that this shader is based on a special
type of shaders on Unity called Unlit shaders. The main particularity about them is

7.3 Architecture of the System 75

that when colouring, they ignore the source (or sources) of light when computing the
final colour. So we can freely choose the colour without light interferences. It stores
values (that the MandelbrotGPU class updates) for the Zoom and Pan of the fractal,
the maximum number of iterations allowed on the Escape Algorithm, the Degree of
the polynomial, among others.

• JuliaShaderUnlit: This shader is similar to the previous one and it is handled by
the JuliaGPU class. It is also based on the same Unlit shader family. However, the
fragment shader implements the modified version of the Escape Algorithm that makes
use of the Seed value to render it.

• 3DScene: This shader packs all the implemented 3D fractal shader together on one
file. It is handled by the RaymarchController class. The most important method is
trace that is called by the fragment shader at each ray of the ray-marching algorithm.
Then it features the four different Distance Estimators explained at Subsection 7.2.2,
the mandelbulbDE for the Mandelbulb Set, sierpinskiDE for Sierpiński Tetrahedron,
mengerDE for the Menger Sponge and sphereDE for the distance estimator of a sphere
centred at origin with radius 1. In addition, it also implements different auxiliary
methods in order to compute shadows and ambient occlusion for the Menger Sponge.
This shader also stores all its needed rendering parameters for each of these fractals.
For instance, the degree of the polynomial on _Power or the maximum amount of IFS
iterations on _IFSIters.

76 Proposal

Chapter 8

Results and Benchmarks

In this chapter we place many screenshots of the application and we explain what the user
can do on each screen. Then, we do benchmarks testing the time it takes to render in the
case of CPU rendering and the Frames Per Second (FPS) we can obtain in the case of GPU
rendering.

8.1 Application

In this section we present some screenshots about the result of this software implementation.

You can see the welcome screen of the application on Figure 8.1.

Figure 8.1: Main Page of Yet Another Fractal Explorer

77

78 Results and Benchmarks

In this page you can click on the tabs at the centre of the screen in order to read some
text explaining how to use the different scenes. On the bottom right you can click the button
to toggle an about dialog. See Figure B.1.

We present on Figure 8.2 an example of finding empirically a periodic orbit of period 5
by clicking over the Julia set image. In addition you can hold ’P’ while hovering over the
image to do this.

Figure 8.2: Finding periodic orbits

On both 2D CPU and 2D GPU scenes, you can press ’R’ while the pointer is over an
image to reset its rendering values.

Use WASD or movement arrows to pan through the fractal and use the mouse wheel to
zoom the fractal on 2D GPU scene. Alternatively, you can press ’-’ to Zoom In and ’-’ +
Right Shift to Zoom Out.

(a) Fractal Parameters (b) Export into images buttons

Figure 8.3: Fractal Parameters and Export Options

On Figure 8.3a, we can see the options that manipulates the fractals. We can see sliders
and input fields to enter the maximum number of iterations; the escape threshold (in case

8.1 Application 79

we choose the Escape Algorithm) or the detail (in case we choose the Henriksen Algorithm);
and the degree of the polynomial. In addition, we provide dropdown menus to choose the
rendering algorithm; the colormap; and the family of functions.

Moreover, on Figure 8.3b, we can see the export buttons on bottom left side. This is
implemented both on 2D CPU and 2D GPU scenes. You can save the images into PNG
and JPG format. On 3D GPU scene you can find this button on the bottom centre of the
screen.

(a) Mandelbulb for z8 + c rendering (b) Sierpiński Tethreaedon rendering

(c) Menger Sponge rendering

Figure 8.4: 3D Fractal Results

You can see on Figure B.4 a sample of different GPU rendering of Mandelbrot and Julia
sets for zd + c for d = 2, 3, 4, 5.

Regarding the 3D GPU scene, we can see on Figure 8.4 the three different fractal imple-
mented on this page. It is important to note that this scene has a minimal interface placed
on the bottom of the screen. Containing; from left to right; the dropdown menus for choos-
ing the Rendering Resolution and Level of detail, the button to save the result as image, a
toggle that switch between static camera and automatic rotation, a slider that handles the
maximum iterations of the ray-marching algorithm and finally, the type of fractal to render
with its slider, allowing to manipulate the degree of the polynomial in case of Mandelbulb
and the IFS Iterations in case of IFS fractals.

The controls in this scene are binded to WASD or movement arrows to move around
the scene and you can hold the right-click of the mouse while dragging around to change

80 Results and Benchmarks

the orientation of the camera. Finally, you can press ’R’ anytime to reset the camera to its
initial position.

Finally, let us do a brief comparison between the results between Escape Algorithm and
Henriksen Algorithm when applying the same colormap. See differences between Figure B.2
and Figure B.3.

You can find on Annex C the minimum requirements for all the aforementioned compat-
ible platforms to run this software.

8.2 Benchmarks

The following benchmarks have been made using a Macbook Pro Retina 15 inch, late 2013
under MacOS Catalina 10.15.5, using an i7 4850HQ 2.3GHz Quad-Core CPU [34] and an
Nvidia Geforce GT 750M with 2GB of GDDR5 [35] and 16GB of RAM DDR3 at 1600MHz
[36]. The software version tested has been compiled to MacOS using Unity 2019.3.15f.

In the following, the software has been tested running the application on fullscreen on a
native resolution of 2880x1800 and being this application the only user process opened at
the moment of rendering.

Now we present some tables with benchmarks tested on both 2D and 3D Fractals.

8.2.1 2D Fractals

We divide this subsection in two parts. One for each 2D Fractal rendered. This is, the
Mandelbrot Set and the Julia Set.

All renders in this subsection are plotted over a 750x750 image.

Mandelbrot Set

We have tested our rendering pipeline for different values of the maximum iterations N of
the rendering algorithm. Tables 8.1, 8.2 and 8.3 summarise the results for the rendering
on the Mandelbrot Set for values N = 100, 200 and 300, respectively. In order to do this
comparison, we have fixed Zoom = 0.000122, Pan X = -1.253600 and Pan Y = 0.384466. On
Henriksen algorithm, the parameter that handles the size of a pixel is fixed to 10.000 on all
cases. In addition to this, on all CPU benchmarks (both Single-Thread and Multi-Thread),
the value displayed on the table is the best result in a Best of 5 runs on the same parameters.

We can observe an increase in rendering time as we increase the maximum iterations
value. It is important to note that the Shader GPU column shows this data using other
units because it makes no sense to measure this in terms of seconds.

8.2 Benchmarks 81

Mandelbrot Set N=100 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 10.16s 2.08s 40.8ms (25 FPS)
Henriksen Algorithm 22.64s 4.65s -

Table 8.1: Rendering results for Mandelbrot set of z2 + c. N = 100. s: seconds, ms:
milliseconds, FPS: Frames Per Second

Mandelbrot Set N = 200 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 11.80s 2.38s 47.5ms (21 FPS)
Henriksen Algorithm 26.16s 5.13s -

Table 8.2: Rendering results for Mandelbrot set of z2 + c. N = 200. s: seconds, ms:
milliseconds, FPS: Frames Per Second

Mandelbrot Set N = 300 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 13.00s 2.62s 47.6ms (21 FPS)
Henriksen Algorithm 28.66s 5.80s -

Table 8.3: Rendering results for Mandelbrot set of z2 + c. N = 300. s: seconds, ms:
milliseconds, FPS: Frames Per Second

In concrete terms, the GPU boost the rendering pipeline by an average of ≈ ×52 if we
compare it with Multi-Thread on CPU. Nonetheless, we can achieve a ≈ ×273 in rendering
performance if we compare it with Single-Thread. For instance,

Single-Thread: 13.00s = 13.000ms =⇒ 13.000ms
52, 6ms ≈ 273.

Multi-Thread: 2, 08s = 2.080ms =⇒ 2.080ms
44, 5ms ≈ 50.

In addition, on Figure 8.5 you can see the results obtained during this rendering.

One can easily note that the results from the Henrisken Algorithm are more detailed and
well defined. However, we can achieve more level of detail with this algorithm in exchange
of larger rendering times as we can see on the previous tables.

82 Results and Benchmarks

(a) Escape Algorithm. N = 100 (b) Escape Algorithm. N = 200. (c) Escape Algorithm. N = 300.

(d) Henriksen Algorithm. N =

100.
(e) Henriksen Algorithm. N =

200.
(f) Henriksen Algorithm. N =

300.

Figure 8.5: Images obtained for Mandelbrot Set.

Julia Set

As before, we have tested our rendering pipeline for different values of the maximum iter-
ations N of the rendering algorithm. Tables 8.4, 8.5 and 8.6 summarise the results for the
rendering on the Julia set for values N = 100, 200 and 300, respectively. In order to do this
comparison, we have fixed Zoom = 0.250000, Pan X = -0.498667 and Pan Y = 0.054667, as
well as the Seed = -0.765 + 0.12i. On Henriksen algorithm, the parameter that handles the
size of a pixel is fixed to 10.000 on all cases. In addition to this, on all CPU benchmarks
(both Single-Thread and Multi-Thread), the value displayed on the table is the best results
in a Best of 5 runs on the same parameters.

Just like before, we can observe an increase in rendering time as we increase the maximum
iterations on the algorithms.

In concrete terms, this time the GPU boosts the rendering pipeline by an average of
≈ ×19. If we compare it with the Single-Thread rendering, we get a boost in rendering time
by an average of ≈ ×96.

In addition, on Figure 8.6 you can see the results obtained during this rendering.

8.2 Benchmarks 83

Julia Set N = 100 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 6.62s 1.33s 45.8ms (22 FPS)
Henriksen Algorithm 15.68s 3.22s -

Table 8.4: Rendering results for Julia set of z2 + c. N = 100. s: seconds, ms: milliseconds,
FPS: Frames Per Second

Julia Set N = 200 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 6.77s 1.38s 79.1ms (13 FPS)
Henriksen Algorithm 15.93s 3.31s -

Table 8.5: Rendering results for Julia set of z2 + c. N = 200. s: seconds, ms: milliseconds,
FPS: Frames Per Second

Julia Set N = 300 Single-Thread
CPU

Multi-Thread
CPU Shader GPU

Escape Algorithm 6.78s 1.37s 115.1ms (9 FPS)
Henriksen Algorithm 15.94s 3.29s -

Table 8.6: Rendering results for Julia set of z2 + c. N = 300. s: seconds, ms: milliseconds,
FPS: Frames Per Second

Again as before, one can easily note that Henriksen performs better in terms of detail,
however, it is slower than the Escape Algorithm.

84 Results and Benchmarks

(a) Escape Algorithm. N = 100 (b) Escape Algorithm. N = 200 (c) Escape Algorithm. N = 300

(d) Henriksen Algorithm. N =

100
(e) Henriksen Algorithm. N =

200
(f) Henriksen Algorithm. N =

300

Figure 8.6: Images obtained for Julia Set.

8.2.2 3D Fractals

Let us move to the 3D Fractals benchmark. In this case we divide this subsection in three
parts. One for each type of 3D Fractal rendered.

On all cases, we fixed MAX_STEPS to 64. This is the maximum number of iterations allowed
to iterate the Ray-Marching algorithm. The automatic camera rotation was deactivated as
well.

8.2 Benchmarks 85

Mandelbulb

In this benchmark we fixed the Power parameter to 8 and fixed the camera position. The
results of this test are on Table 8.7.

Resolution vs.
Detail

Very Low
(640x360)

Low
(960x540)

Medium
(1280x720)

High
(1920x1080)

Low 32.3ms (31 FPS) 53.8ms (19 FPS) 84.3ms (12 FPS) 164.4ms (6 FPS)
Medium 36.5ms (27 FPS) 62.1ms (16 FPS) 95.8ms (10 FPS) 171.1ms (6 FPS)
High 41.8ms (24 FPS) 68.4ms (15 FPS) 109.7ms (9 FPS) 205.2ms (5 FPS)
Ultra 45.6ms (22 FPS) 79.1ms (13 FPS) 113.3ms (9 FPS) 237.5ms (4 FPS)

Table 8.7: Rendering results for Mandelbulb image of z8 + c. ms: milliseconds, FPS: Frames
Per Second

You can see some images of the results above on Figure 8.7.

(a) Low Detail (b) Medium Detail

(c) High Detail (d) Ultra Detail

Figure 8.7: Images obtained on Mandelbulb shader for High Resolution (1920x1080)

It is important to note that, since we are estimating distances using a Distance Estimator
function, the does not provide the normal vector used when colouring. However, we have
estimated the normal of each point using the Finite Difference Method (FDM) [37].

Once we have obtained an estimation for the normal, we have applied the same Distance
Estimator of the Mandelbulb to obtain the final colour.

86 Results and Benchmarks

Sierpiński Tetrahedron

In this benchmark we fixed the IFS Iters parameter to 12 and fixed the camera position.
The results of this test are on Table 8.8.

Resolution vs.
Detail

Very Low
(640x360)

Low
(960x540)

Medium
(1280x720)

High
(1920x1080)

Low 77.2ms (13 FPS) 145.2ms (7 FPS) 207.2ms (5 FPS) 347.5ms (3 FPS)
Medium 79.6ms (13 FPS) 163.6ms (6 FPS) 260.3ms (4 FPS) 549.1ms (2 FPS)
High 80.8ms (12 FPS) 157.2ms (6 FPS) 266.1ms (4 FPS) 580.2ms (2 FPS)
Ultra 81.5ms (12 FPS) 159.7ms (6 FPS) 274.5ms (4 FPS) 589.4ms (2 FPS)

Table 8.8: Rendering results for Sierpiński Tetrahedron. IFS Iters = 12. ms: milliseconds,
FPS: Frames Per Second

You can see some images of the results above on Figure 8.8.

(a) Low Detail (b) Medium Detail

(c) High Detail (d) Ultra Detail

Figure 8.8: Images obtained on Sierpinski Tetrahedron shader for High Resolution
(1920x1080)

In a similar way as the Mandelbulb, we have estimated the normals using the Finite
Difference Method as well. However, we have coloured the Tetrahedron using the Distance
Estimator from a Sphere or radius 1 centred at origin.

8.2 Benchmarks 87

Menger Sponge

In this benchmark we fixed the IFS Iters parameter to 7 and fixed the camera position.
The results of this test are on Table 8.9.

Resolution vs.
Detail

Very Low
(640x360)

Low
(960x540)

Medium
(1280x720)

High
(1920x1080)

Low 46.0ms (22 FPS) 84.9ms (12 FPS) 125.7ms (8 FPS) 256.1ms (4 FPS)
Medium 48.6ms (21 FPS) 89.4ms (11 FPS) 149.3ms (7 FPS) 314.3ms (3 FPS)
High 49.3ms (20 FPS) 93.5ms (11 FPS) 154.4ms (6 FPS) 317.0ms (3 FPS)
Ultra 52.2ms (19 FPS) 94.3ms (11 FPS) 160.4ms (6 FPS) 332.8ms (3 FPS)

Table 8.9: Rendering results for Menger Sponge. IFS Iters = 7. ms: milliseconds, FPS:
Frames Per Second

You can see some images of the results above on Figure 8.9.

(a) Low Detail (b) Medium Detail

(c) High Detail (d) Ultra Detail

Figure 8.9: Images obtained on Menger Sponge shader for High Resolution (1920x1080)

In this case, we have not coloured the results. Nonetheless, we have calculated shadows
in order to visualise better this set.

In general, we can see low FPS on some benchmarks (specially when we approach to
High Resolution and/or Ultra level of detail). This is, mostly, because the GPU used for
this benchmark is a mid-tier one [38].

88 Results and Benchmarks

However, in general, any GPU will have similar behaviour in terms of performance, it
will perform worse as long as we increase the resolution and/or level of detail.

Chapter 9

Conclusions and Future work

9.1 Conclusions

Regarding the objectives that were set at the beginning of the project, we can state that
they have been satisfactorily fulfilled.

Firstly, an extensive study has been carried out about iteration of holomorphic functions
and its fractals resulting in Part I, specially focusing on polynomial mappings. However, we
have done this study with the goal of obtain and proof the rendering algorithms that have
been implemented on the software project.

Once this study has been done, we have analysed the existing software that accomplishes
goals similar to our Problem, defined on Chapter 6. However, we have realised that there is
no software that fulfil these requirements, so we get encouraged and hence we designed and
developed a software project that allows the user to visualise 2D and 3D fractals directly on
the web.

Furthermore, thanks to WebGL technology, we have enhanced this fractal visualisation
by optimising these algorithms implementing them over shaders that run on the GPU. For
this reason, we have obtained a boost in rendering time up to 273 times faster than using
the regular CPU algorithms.

Finally, we wanted to compare the results obtained due to this optimisation on the
GPU against the same implementation over the CPU, so we placed a detailed benchmark
comparing them on Chapter 8.

In summary, we have obtained an application to explore and analyse 2D and 3D fractals,
that could be used to as an educational tool to teach properties of fractals all provided by
an easy interface.

89

90 Conclusions and Future work

9.2 Future work

The overall result is encouraging, however, one can always improve a project like this. It
should not cost too much to implement new features since we have developed the software
as extensible and reusable as possible.

Regarding the visualisation of 2D fractals, new rendering algorithms can be implemented
in order to enrich the visualisation. For instance, one can consider to implement the Inverse
iteration method explained on Subsection 6.2.1. In order to do this, our software design
allows to add new types of fractals easily.

In order to build up the mathematical features that this project provides about fractals,
one can study another family of functions like the logistic family.

Another improvement in order to enhance the visualisation about 3D fractals, is the
implementation of a new feature that automatically handles the level of detail displayed on
the scene, based on the position of the camera. This is, the closer to the fractal we are, the
more details it renders.

Finally, a clear next step of this project is to make a study of usability over real students.

Appendix A

Class Diagrams

In this appendix we present the complete version of the Class Diagrams showed on Chapter
7, Section 7.3.

Figure A.1: Class Diagram for Fractals Package

91

92 Class Diagrams

Figure A.2: Class Diagram for Interface Controller Package

93

Figure A.3: Class Diagram for Controller Package

Figure A.4: Class Diagram for Utilities Package

94 Class Diagrams

Figure A.5: Class Diagram for Tabs Package

Figure A.6: Class Diagram for Export Package

Appendix B

Application Screenshots

In this appendix we present some additional screenshots about the application developed
explained on Chapter 8, Section 8.1.

(a) Information tab about 2D CPU Scene (b) Information tab about 2D GPU Scene

(c) Information tab about 3D GPU Scene (d) About page

Figure B.1: Images from welcome page of Yet Another Fractal Explorer Application

95

96 Application Screenshots

(a) sin Colormap (b) cos Colormap

(c) tan Colormap (d) Gradient Colormap

Figure B.2: Results for different colormaps using Escape Algorithm on CPU

97

(a) sin Colormap (b) cos Colormap

(c) tan Colormap (d) Gradient Colormap

Figure B.3: Results for different colormaps using Henriksen Algorithm on CPU

98 Application Screenshots

(a) Mandelbrot and Julia sets for z2 + c on GPU (b) Mandelbrot and Julia sets for z3 + c on GPU

(c) Mandelbrot and Julia sets for z4 + c on GPU (d) Mandelbrot and Julia sets for z5 + c on GPU

Figure B.4: 2D GPU Scene rendering zd + c for d = 2, 3, 4, 5

Appendix C

Minimum Requirements

Here we describe the minimum requirements of the application for each platform.

Visit https://github.com/adry26/YetAnotherFractalExplorer for more information.

C.1 Desktop Platform

It requires a i5 Intel CPU at 2.0Ghz (or higher). A Nvidia GT 750M GPU (or higher) 2GB
or more of RAM and 150MB of HDD Space. Minimum screen resolution 1280x800.

You can find the latests compiled version for Desktop on https://github.com/adry26/
YetAnotherFractalExplorer/releases/latest.

To use this application, just download and run it.

C.2 Mobile Platform

Tested on an iPad Pro 2018. It may work on any iOS device running iOS 10.0 or higher.

Not tested on Android. It may work on any Android device running Android 4.4 KitKat
(API level 19) or higher.

Pending to be published on App Store and Play Store. It will be published under the
name "Yet Another Fractal Explorer".

C.3 Website Platform

You can find a web version of this project on https://adry26.github.io/YetAnotherFractalExplorer/

It requires a i5 Intel CPU at 2.0Ghz (or higher). A Nvidia GT 750M GPU (or higher)
2GB of RAM or more. Minimum screen resolution 1280x800.

99

https://github.com/adry26/YetAnotherFractalExplorer
https://github.com/adry26/YetAnotherFractalExplorer/releases/latest
https://github.com/adry26/YetAnotherFractalExplorer/releases/latest
https://adry26.github.io/YetAnotherFractalExplorer/

100 Minimum Requirements

It requires to use a browser compatible with WebGL and have WebGL enabled. Tested
on Firefox 77.0.1 for MacOS and Brave Browser for MacOS Version 1.10.90 Chromium:
83.0.4103.97 (Official Build) (64-bit).

Bibliography

[1] Robert Brooks, J Peter Matelski, et al. Collars in kleinian groups. Duke Mathematical
Journal, 49(1), 1982.

[2] John Milnor. Dynamics in One Complex Variable, volume 160. 2006.

[3] Núria Fagella and Xavier Jarque. Iteración Compleja y Fractales, volume 1. 2007.

[4] Lennart Carleson and Theodore W. Gamelin. Complex Dynamics, volume 1. 1993.

[5] Robert Devaney. An introduction to chaotic dynamical systems.
TheBenjamin/CummingsPu- blishing co., 1986.

[6] I. N. Baker. Wandering domains in the iteration of entire functions. Proceedings of the
London Mathematical Society, s3-49(3):563–576, 1984.

[7] Edward Angel, Dave Shreiner, et al. Interactive computer graphics: a top-down ap-
proach with shader-based OpenGL. Boston: Addison-Wesley„ 2012.

[8] Homogeneous coordinates. https://en.wikipedia.org/wiki/Homogeneous_coordinates.
Last Accessed: June 21, 2020.

[9] James F Blinn. Models of light reflection for computer synthesized pictures. 1977.

[10] Bui Tuong Phong. Illumination for computer generated pictures. Communications of
the ACM, 18(6), 1975.

[11] Mandelbulb. https://en.wikipedia.org/wiki/Mandelbulb. Last Accessed: June 21, 2020.

[12] Ifs, iterated function system. https://en.wikipedia.org/wiki/Iterated_function_
system. Last Accessed: June 21, 2020.

[13] Vasileios Drakopoulos, N Mimikou, and Theoharis Theoharis. An overview of parallel
visualisation methods for mandelbrot and julia sets. Computers & Graphics, 27(4):635–
646, 2003.

[14] Some algorithms for drawing mandelbrot and julia sets. https://www.mi.sanu.ac.rs/
vismath/javier/b2.htm. Last Accessed: June 21, 2020.

[15] Distance estimators for fractals. https://www.iquilezles.org/www/articles/
distancefractals/distancefractals.htm. Last Accessed: June 21, 2020.

101

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Mandelbulb
https://en.wikipedia.org/wiki/Iterated_function_system
https://en.wikipedia.org/wiki/Iterated_function_system
https://www.mi.sanu.ac.rs/vismath/javier/b2.htm
https://www.mi.sanu.ac.rs/vismath/javier/b2.htm
https://www.iquilezles.org/www/articles/distancefractals/distancefractals.htm
https://www.iquilezles.org/www/articles/distancefractals/distancefractals.htm

102 BIBLIOGRAPHY

[16] Tomasz Martyn. Realistic rendering 3d ifs fractals in real-time with graphics accelera-
tors. Computers & Graphics, 34(2):167–175, 2010.

[17] Z-buffer. https://en.wikipedia.org/wiki/Z-buffering. Last Accessed: June 21, 2020.

[18] Ray-tracing. https://en.wikipedia.org/wiki/Ray_tracing_(graphics). Last Accessed:
June 21, 2020.

[19] Ray-marching. https://en.wikipedia.org/wiki/Volume_ray_casting. Last Accessed:
June 21, 2020.

[20] Shadowing on fractals. https://www.iquilezles.org/www/articles/mandelbulb/
mandelbulb.htm. Last Accessed: June 21, 2020.

[21] Mandel. http://www.mndynamics.com/. Last Accessed: June 21, 2020.

[22] Mandelbulber. https://www.mandelbulber.com/. Last Accessed: June 21, 2020.

[23] Frax. http://fract.al/. Last Accessed: June 21, 2020.

[24] Xaosjs. https://xaos-project.github.io/. Last Accessed: June 21, 2020.

[25] Unity technologies. https://unity.com/. Last Accessed: June 21, 2020.

[26] Webgl. https://en.wikipedia.org/wiki/WebGL. Last Accessed: June 21, 2020.

[27] Webgl and threads. https://docs.unity3d.com/Manual/webgl-gettingstarted.html. Last
Accessed: June 21, 2020.

[28] Ray-marching algorithm. http://jamie-wong.com/2016/07/15/
ray-marching-signed-distance-functions/#:~:text=In%20raymarching%2C%20the%
20entire%20scene,of%20a%20signed%20distance%20function.&text=Instead%20of%
20taking%20a%20tiny,which%20the%20SDF%20provides%20us! Last Accessed: June
21, 2020.

[29] Mandelbulb formulation. http://blog.hvidtfeldts.net/index.php/2011/09/
distance-estimated-3d-fractals-v-the-mandelbulb-different-de-approximations/. Last
Accessed: June 21, 2020.

[30] Sierpinski tetrahedron. https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle. Last
Accessed: June 21, 2020.

[31] Menger sponge. https://en.wikipedia.org/wiki/Menger_sponge. Last Accessed: June
21, 2020.

[32] Sierpiński tetrahedron formulation. http://blog.hvidtfeldts.net/index.php/2011/08/
distance-estimated-3d-fractals-iii-folding-space/. Last Accessed: June 21, 2020.

[33] Menger sponge formulation. https://www.iquilezles.org/www/articles/menger/menger.
htm. Last Accessed: June 21, 2020.

https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Volume_ray_casting
https://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm
https://www.iquilezles.org/www/articles/mandelbulb/mandelbulb.htm
http://www.mndynamics.com/
https://www.mandelbulber.com/
http://fract.al/
https://xaos-project.github.io/
https://unity.com/
https://en.wikipedia.org/wiki/WebGL
https://docs.unity3d.com/Manual/webgl-gettingstarted.html
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/#:~:text=In%20raymarching%2C%20the%20entire%20scene,of%20a%20signed%20distance%20function.&text=Instead%20of%20taking%20a%20tiny,which%20the%20SDF%20provides%20us!
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/#:~:text=In%20raymarching%2C%20the%20entire%20scene,of%20a%20signed%20distance%20function.&text=Instead%20of%20taking%20a%20tiny,which%20the%20SDF%20provides%20us!
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/#:~:text=In%20raymarching%2C%20the%20entire%20scene,of%20a%20signed%20distance%20function.&text=Instead%20of%20taking%20a%20tiny,which%20the%20SDF%20provides%20us!
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/#:~:text=In%20raymarching%2C%20the%20entire%20scene,of%20a%20signed%20distance%20function.&text=Instead%20of%20taking%20a%20tiny,which%20the%20SDF%20provides%20us!
http://blog.hvidtfeldts.net/index.php/2011/09/distance-estimated-3d-fractals-v-the-mandelbulb-different-de-approximations/
http://blog.hvidtfeldts.net/index.php/2011/09/distance-estimated-3d-fractals-v-the-mandelbulb-different-de-approximations/
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
https://en.wikipedia.org/wiki/Menger_sponge
http://blog.hvidtfeldts.net/index.php/2011/08/distance-estimated-3d-fractals-iii-folding-space/
http://blog.hvidtfeldts.net/index.php/2011/08/distance-estimated-3d-fractals-iii-folding-space/
https://www.iquilezles.org/www/articles/menger/menger.htm
https://www.iquilezles.org/www/articles/menger/menger.htm

BIBLIOGRAPHY 103

[34] Cpu benchmark specification. https://ark.intel.com/content/www/es/es/ark/
products/76086/intel-core-i7-4850hq-processor-6m-cache-up-to-3-50-ghz.html. Last
Accessed: June 21, 2020.

[35] Gpu benchmark specification. https://www.notebookcheck.net/
NVIDIA-GeForce-GT-750M.90245.0.html. Last Accessed: June 21, 2020.

[36] Macbook pro retina late 2013, 15 inch specs. https://
everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.
3-15-dual-graphics-late-2013-retina-display-specs.html#macspecs1. Last Accessed:
June 21, 2020.

[37] Finite difference method. https://en.wikipedia.org/wiki/Finite_difference_method.
Last Accessed: June 21, 2020.

[38] Gpu rank. https://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GT+
750M&id=2492. Last Accessed: June 21, 2020.

Figures licences

[39] Elphaba. Wikipedia under free license.

[40] J. de Vries. Learn OpenGl under CC BY 4.0 license.

[41] J. de Vries. Learn OpenGl under CC BY 4.0 license.

[42] Pere Gilabert Roca. NPR Shading Evaluation on Virtual Reality under CC BY 4.0
license.

[43] Angel, Edward and Shreiner, Dave and others. Interactive computer graphics: a top-
down approach with shader-based OpenGL under CC BY 4.0 license.

[44] M. Kraus Wikipedia under CC0 license.

[45] B. Smith Wikipedia under CC BY-SA 3.0 license.

[46] Henrik. Wikipedia under CC BY-SA 4.0 license.

[47] Nvidia. GPU Gems 2: Chapter 8

Software Assets Licenses

[48] Gökhan Gökçe. UnityStandaloneFileBrowser URL: https://github.com/gkngkc/UnityStandaloneFileBrowser
under MIT license.

[49] Ryan. Unity-native-toolkit URL: https://github.com/ryanw3bb/unity-native-toolkit
under MIT license.

https://ark.intel.com/content/www/es/es/ark/products/76086/intel-core-i7-4850hq-processor-6m-cache-up-to-3-50-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/76086/intel-core-i7-4850hq-processor-6m-cache-up-to-3-50-ghz.html
https://www.notebookcheck.net/NVIDIA-GeForce-GT-750M.90245.0.html
https://www.notebookcheck.net/NVIDIA-GeForce-GT-750M.90245.0.html
https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.3-15-dual-graphics-late-2013-retina-display-specs.html#macspecs1
https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.3-15-dual-graphics-late-2013-retina-display-specs.html#macspecs1
https://everymac.com/systems/apple/macbook_pro/specs/macbook-pro-core-i7-2.3-15-dual-graphics-late-2013-retina-display-specs.html#macspecs1
https://en.wikipedia.org/wiki/Finite_difference_method
https://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GT+750M&id=2492
https://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GT+750M&id=2492
https://github.com/gkngkc/UnityStandaloneFileBrowser
https://github.com/ryanw3bb/unity-native-toolkit

104 BIBLIOGRAPHY

List of Figures

1 On the left, the hand drawn sketch of the Julia set for the polynomial P (z) =
1
2 (3z − z3), drawn by Julia. On the right the actual Julia set. vi

2 On the left we can see the first picture of the Manelbrot set made by Brooks
and Matelski. On the right we can see a modern image of the Mandelbrot set. vii

1.1 The dynamic in a neighbourhood around the origin for different functions . . 7

2.1 The Julia set for c ≈ −0.390541− 0.586788i is a Siegel disc. You can see the
invariant curves in yellow . 20

4.1 The Mandelbrot set . 30

4.2 Multibrot sets . 30

4.3 In black we represent the filled Julia set. We can see on (a) that this set is
connected, while in (b) J (P) is a totally disconnected set (a Cantor set) . . . 31

5.1 Non-Positional Camera . 40

5.2 Projection types of a camera . 41

5.3 Coordinate Systems and its matrices involved. 42

5.4 OpenGL Visualisation Pipeline . 43

5.5 Vectors involved in illumination . 45

5.6 Blinn-Phong Illumination . 46

6.1 Use Cases Diagram for the Main Page . 48

6.2 Use Cases Diagram for 2D Fractals on CPU Page 49

6.3 Use Cases Diagram for 2D Fractals on GPU Page 51

6.4 Use Cases Diagram for 3D Fractals on GPU Page 52

6.5 Mandel Software . 56

6.6 Mandelbulber Software . 57

105

106 LIST OF FIGURES

6.7 FRAX Software . 57

6.8 XaoSjs Software . 58

7.1 Unity3D Logo . 59

7.2 Ray-Tracing . 63

7.3 Sphere Tracing for Ray-Marching . 63

7.4 Class diagram showing the relation between the different packages 68

7.5 Class Diagram for Fractals Package . 69

7.6 Class Diagram for Interface Controller Package 71

7.7 Class Diagram for Controller Package . 71

7.8 Class Diagram for Utilities Package . 72

7.9 Class Diagram for Tabs Package . 73

7.10 Class Diagram for Export Package . 73

7.11 Diagram for Shaders Package . 74

8.1 Main Page of Yet Another Fractal Explorer 77

8.2 Finding periodic orbits . 78

8.3 Fractal Parameters and Export Options . 78

8.4 3D Fractal Results . 79

8.5 Images obtained for Mandelbrot Set. 82

8.6 Images obtained for Julia Set. 84

8.7 Images obtained on Mandelbulb shader for High Resolution (1920x1080) . . . 85

8.8 Images obtained on Sierpinski Tetrahedron shader for High Resolution (1920x1080) 86

8.9 Images obtained on Menger Sponge shader for High Resolution (1920x1080) . 87

A.1 Class Diagram for Fractals Package . 91

A.2 Class Diagram for Interface Controller Package 92

A.3 Class Diagram for Controller Package . 93

A.4 Class Diagram for Utilities Package . 93

A.5 Class Diagram for Tabs Package . 94

A.6 Class Diagram for Export Package . 94

B.1 Images from welcome page of Yet Another Fractal Explorer Application . . . 95

B.2 Results for different colormaps using Escape Algorithm on CPU 96

LIST OF FIGURES 107

B.3 Results for different colormaps using Henriksen Algorithm on CPU 97

B.4 2D GPU Scene rendering zd + c for d = 2, 3, 4, 5 98

108 LIST OF FIGURES

List of Tables

6.1 Comparison Table among existing Fractal Visualisation Software 58

8.1 Rendering results for Mandelbrot set of z2 + c. N = 100. s: seconds, ms:
milliseconds, FPS: Frames Per Second . 81

8.2 Rendering results for Mandelbrot set of z2 + c. N = 200. s: seconds, ms:
milliseconds, FPS: Frames Per Second . 81

8.3 Rendering results for Mandelbrot set of z2 + c. N = 300. s: seconds, ms:
milliseconds, FPS: Frames Per Second . 81

8.4 Rendering results for Julia set of z2 + c. N = 100. s: seconds, ms: millisec-
onds, FPS: Frames Per Second . 83

8.5 Rendering results for Julia set of z2 + c. N = 200. s: seconds, ms: millisec-
onds, FPS: Frames Per Second . 83

8.6 Rendering results for Julia set of z2 + c. N = 300. s: seconds, ms: millisec-
onds, FPS: Frames Per Second . 83

8.7 Rendering results for Mandelbulb image of z8 + c. ms: milliseconds, FPS:
Frames Per Second . 85

8.8 Rendering results for Sierpiński Tetrahedron. IFS Iters = 12. ms: millisec-
onds, FPS: Frames Per Second . 86

8.9 Rendering results for Menger Sponge. IFS Iters = 7. ms: milliseconds,
FPS: Frames Per Second . 87

109

	Introduction
	I Iteration of Holomorphic Functions
	General Concepts and Local Theory
	Basic concepts in dynamics
	Local Stability
	Towards Global Theory

	Global Theory
	Normal Families
	Julia and Fatou Sets
	Henriksen Algorithm for Julia set
	Classification of Periodic Components
	Wandering Domains
	Classification Theorem of Fatou's Components

	The Dynamical Plane of Polynomials
	Julia and Fatou Sets for Polynomials
	Escape Criteria for Julia set
	Escape Algorithm for Julia set

	Parameter space: The Mandelbrot and Multibrot sets
	The Basic Dichotomy
	Escape Criteria
	Escape Algorithm for Mandelbrot and Multibrot sets

	Another approach to rendering the Mandelbrot and Multibrot set
	Henriksen Algorithm for Mandelbrot and Multibrot sets

	II Visualisation of Fractals
	Basic Notions on Computer Graphics
	The camera object
	Types of Camera Projection
	Coordinate Systems
	Programable Visualisation Pipeline
	Shader Structure
	Type of Shaders
	Vertex Shaders
	Geometry Shaders
	Fragment Shaders
	Post-Processing Shaders

	Some Shader Parameters
	Blinn-Phong Illumination

	Problem Overview
	Analysis of Requirements
	Functional Requirements
	Non-Functional Requirements

	Antecedents
	State-of-the-Art: 2D Fractal Visualisation
	State-of-the-Art: 3D Fractal Visualisation
	Existing Software Comparison

	Conclusions

	Proposal
	Strategy of 2D visualisation
	Rendering 2D Fractals using the CPU
	Optimisations on GPU

	Strategy of 3D visualisation
	Ray-Marching
	Our implementation

	Architecture of the System
	Fractals Package
	Interface Controller Package
	Controller Package
	Utilities Package
	Tabs Package
	Export Package
	Shaders Package

	Results and Benchmarks
	Application
	Benchmarks
	2D Fractals
	3D Fractals

	Conclusions and Future work
	Conclusions
	Future work

	Class Diagrams
	Application Screenshots
	Minimum Requirements
	Desktop Platform
	Mobile Platform
	Website Platform

	Bibliography

