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We present DFFR (drug force-field recalibration) a new method for the refining automatic force-
fields used to represent small drugs in docking and molecular dynamics simulations. The method is 
based on a fine tuning of torsional terms to obtain ensembles that reproduce observables derived 
from reference data. DFFR is fast, flexible and can be easily automatized for a high-throughput 
regime, making it useful in drug design projects. We tested the performance of the method in a 
few model systems and also in a variety of drug-like molecules using reference data derived from: 
i) DFT/SCRF (density functional theory coupled to a self-consistent reaction field representation of 
solvent) calculations on highly populated conformers and ii) enhanced sampling QM/MM where 
the drug is reproduced at the QM level while solvent is represented by classical force-fields. 
Extension of the method to include other source of reference data is discussed 
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INTRODUCTION 

 

Force-fields (FFs) are a set of simple mathematical expressions connecting the coordinates of a 
system with its potential energy [1]–[3]. They are the central element in any classical molecular 
simulation and their accuracy is crucial to obtain meaningful results. The first FFs for the 
representation of complex molecules were developed by Lifson’s and Allinger’s groups [4][5] 
focusing in the first case on biomacromolecules and in the second in small organic molecules. 
While Allinger’s MMx FF reproduced accurately hydrocarbon-based compounds the flexibility of 
Lifson’s functional make them preferred by the community and in fact, most of current force-fields 
are based on it; eq. 1:  

 

𝑉ிி = 𝑉௕௢௡ௗ + 𝑉௔௡௚௟௘ + 𝑉ௗ௜௛௘ௗ௥௔௟ + 𝑉஼௢௨௟௢௠௕ + 𝑉௅௘௡௡௔௥ௗି௃௢௡௘௦.          (1) 

 

where 𝑉௕௢௡ௗ  and 𝑉௔௡௚௟௘stand for stretching and bending  (typically represented by harmonic 
terms), 𝑉ௗ௜௛௘ௗ௥௔௟  is a torsional energy related to the rotation of chemical bonds (captured by a 
Fourier expansion), 𝑉஼௢௨௟௢௠௕ stands for electrostatic interactions (typically represented by an 
atom-centered Coulomb term) and 𝑉௅௘௡௡௔௥ௗି௃௢௡௘௦ is a van der Waals term (typically represented 
by a r-12- r-6 term). 

FF developers quickly addressed their efforts in two different directions: i) the development of 
potentials able to reproduce small solvents such as water and organic liquids [6], [7] which were 
needed to perform realistic simulations of any chemical or biochemical system; ii) the 
development of operational FFs for describing proteins and nucleic acids [8]–[11]. In the first case, 
FF calibration focused in the non-bonded part and was carried out manually in a trail-and-error 
process until the refinement of the FF makes possible to obtain Monte Carlo (MC) or molecular 
dynamics (MD) ensembles reproducing well known experimental observables of the system (ex. 
vaporization heat, density, compressibility, internal energy, radial distribution functions, dielectric 
constant,…). In the second case, parametrization was less obvious as the number of parameters to 
fit for a macromolecule is enormous and the amount of experimental information available is 
rather limited. To reduce the parametrization problem macromolecular FFs assumed group 
transferability, but even with this strong assumption, parametrization was difficult due mainly to 
the lack of reference data. Consequently, a large part of terms in force-fields has been 
parametrized using low level gas phase quantum mechanical (QM) calculations, which introduces 
a non-negligible source of error in the FF parameters. 

FFs for small liquids have remained unaltered for years [12], [13]; they are reliable and their 
caveats emerge only when they are used in conditions [14] very different to those considered in 
their original refinement. Macromolecule FFs do not have the same resiliency to the pass of time, 
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and none of them has survived a decade as the state of the art in the field. The reasons are 
multiple: simplicity of the functional, problems of transferability, lack of reference experimental 
data and use of too simplistic QM calculations as fitted observables. All these practical problems 
make the parametrization prone to uncertainties, and after their publication all FFs are scrutinized 
by the community to detect errors that should be corrected in further revisions. Despite this 
inefficient evolutionary model, after more than 4 decades of refinements, the last generation of 
FFs for proteins and nucleic acids, provide results of high quality, in many cases not far from 
experiments [15]–[19].  

Small molecules with unusual functional groups and potential therapeutic action are the ultimate 
challenge for FF development. Pharmaceutical companies have physical libraries with millions of 
such molecules and virtual datasets containing a much larger number of synthetically accessible 
compounds. Functional groups in these molecules can be extremely diverse, making transferability 
of parameters difficult. Experimental information on these compounds (many of them existing 
only in silico) is null, precluding empirically based parametrization. Finally, systematic QM 
parametrization exploring all degrees of freedom is simply impossible, as some ligands have a 
large number of correlated degrees of freedom (for some of our ligands in our BCE database (see 
previous companion paper) QM calculations on 1018 different conformers would be required to 
systematically explore their conformational space). This situation has forced the community to use 
of variety of approximated methods [20]–[29], which in general assign parameters based on risky 
group similarity criteria and very low level QM calculations. 

We present here DFFR, a new FF refinement scheme aimed to improve automatic parameter 
assignment methods by recalibrating those torsions that have the largest impact in determining 
the conformational space of drug-like small molecule. The method is based on the maximum 
entropy principle [30] and introduces the minimum changes in a guess force-field needed to 
reproduce reference data, for example the relative population of representative conformations 
obtained from DFT/SCRF calculations of ensembles derived from QM/MM molecular dynamics 
simulation. The procedure is fast, flexible, expandable to incorporate other type of reference data 
and easy to automatize, i.e. suitable for the high throughput regime. 

 

METHOD DESCRIPTION 

DFFR starting point is a MD simulation (ideally an enhanced sampling one) obtained using a guess 
FF from which rough ensembles are obtained. The ensembles are analyzed to detect those 
torsions changing the most, i.e. represent the most important degrees of freedom in the molecule. 
Within the BCE procedure (see previous companion paper) this implies Hamiltonian Replica 
Exchange (HREX) [31] simulations performed with standard GAFF [21] FF and AM1-BCC charges 
[32], but the method can be coupled to any other sampling strategy and approximate FF. We 
present here examples of use of the method taking as reference DFT/SCRF and QM/MM data, but 
the method can be extended to any reference data including experimental one (details on how to 
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incorporate NMR observables are provided). 

 

Definition of the parametrization space. Even the approach outlined here can be extended to 
any FF term, we will focus here in the parametrization of the torsional term, as it has the largest 
impact in determining the conformational preferences of small molecules. In most FFs this implies 
the parametrization of an energy term defined as shown in eq. 2: 

𝑉ௗ௜௛(𝜙ଵ, . . , 𝜙ே) = ෍ ෍
𝑉௝,௡

2
൫1 + cos൫𝑛𝜙௝ − 𝜙௝,௡൯൯ = ෍ 𝑉௝൫𝜙௝൯

ே

௝ୀଵ

ଷ

௡ୀଵ

ே

௝ୀଵ

 

where 𝜙௝  is the value of the dihedral 𝑗, 𝑉௝,௡ are the amplitudes and 𝜙௝,௡ are phase angles and the 
sum extends for all the chemical bonds. 

A pure force approach would imply fitting amplitudes (barriers) and phases for all the dihedrals in 
the molecule, which is impractical even for medium sized molecules. Thus, as noted above, we 
ignore rigid torsions, i.e. those that are confined in a narrow region of the conformational space 
and fit only one dihedral per torsion. With these assumptions, we can define an optimal torsional 
(𝑉෨ௗ௜௛) applying only to a subset (M) of the original dihedral space (eq. 3). 

 

𝑉෨ௗ௜௛(𝜙ଵ, . . , 𝜙ே) = ෍ ෍
𝑉෨௝,௡

2
൫1 + cos൫𝑛𝜙௝ − 𝜙෨௝,௡൯൯ + ෍ ෍

𝑉௝,௡

2
൫1 + cos൫𝑛𝜙௝ − 𝜙௝,௡൯൯

ଷ

௡ୀଵ

=

ே

௝ୀெାଵ

ଷ

௡ୀଵ

ெ

௝ୀଵ

= ෍ 𝑉෨௝൫𝜙௝൯

ெ

௝ୀଵ

+ ෍ 𝑉௝(𝜙௝)

ே

௝ୀெାଵ

 

 

Modification of the method to other Fourier expansions is straightforward. For a given dihedral, 
the best set of amplitudes and phases are those minimizing the error function with respect to a 

reference potential 𝑉௥௘௙ ቀ𝑋′ሬሬሬ⃗ , 𝜙௝ቁ as shown in eq 4: 

  

𝜀 = ෍ ൬𝑉௥௘௙ ቀ𝑋′ሬሬሬ⃗ , 𝜙௝ቁ − 𝑉෨ிி ቀ𝑋′ሬሬሬ⃗ , 𝜙௝ቁ൰
ଶ

థೕ

 

 

where 𝑉෨ிி൫𝑋⃗, 𝜙௝൯ = 𝑉ிி൫𝑋⃗, 𝜙௝൯ − 𝑉௝൫𝜙௝൯ + 𝑉෨௝൫𝜙௝൯ and  𝑋′ሬሬሬ⃗ = ൛𝑥ଵ, . . , 𝑥ோ; 𝜙ଵ, . . , 𝜙௝ିଵ, 𝜙௝ାଵ, . . , 𝜙ேൟ 
refer to all coordinates different to the optimized dihedral. Notice that the sum extends over a 
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certain 2𝜋-periodic interval. As above, values marked with the super-index ˜ refers to opƟmized FF 
and those without it to the original set of parameters. 

Minimizing eq. 4 for the entire torsional profile is the standard procedure used to refine force-
field, but this is impractical for ligands with many rotatable bonds. Thus, as a first approach, we 
assume here that the general shape of the approximated potential energy function is not too 
different to the real one, and that the main discrepancies appear mainly in the relative population 
of the most stables regions. With these assumptions, we can simplify the configurational space as 
a set of families obtained by clustering of the original trajectory as shown in eq. 5: 

 

〈𝑋〉 = ෍〈𝑋௞〉

௞

~ ෍ 𝑃௞𝜒௞

௞

 

 

where the brackets mean Boltzmann’s ensembles,  𝑋 stands for configurational variables, k are the 
number of clusters in which the original ensemble is divided, 𝜒௞  is the representative structure of 
cluster k and 𝑃௞ is the associated probability of the cluster. As shown below, in the unlikely case 
that we can have QM/MM data as reference simplifications implicit to the use of eq.5 are relaxed 
and we can use the entire density profile as reference. Note that by extending the sum to a large 
number of states (𝑘 → ∞) the complete torsional density profile is obtained. 

Maximum entropy principle and refinement strategy. The objective of the DFFR is to obtain 
a new set of parameters that make the associated state probabilities match the reference ones i.e. 

{𝑃෨௞} = ൛𝑃௞
௥௘௙

ൟ, perturbing as little as possible the general shape of the conformational space, i.e. 
introducing the minimum bias in the original FF. This refinement strategy follows the maximum 
entropy (ME) principle [30] which implies that the best fitting procedure is that reproducing the 
reference values introducing a minimum external information (i.e. reducing the loss of Shanon’s 
entropy; [33]). As shown by others [34] ME solutions can be derived by imposing Lagrange 
constrains forcing the system to fulfill some reference values. Thus, it is straightforward to 
demonstrate that this can be done by minimizing the Lagrange function (eq. 6).  

 

Г(𝜆) = ln∫ 𝑑𝜙 exp൫−𝜆(𝜙)൯ 𝑃ிி(𝜙) + ∫ 𝑑𝜙𝜆(𝜙)𝑃௥௘௙(𝜙) 

 

where −𝜆(𝜙) is a continuum function describing the variation of Lagrange constraints with the 
torsion 𝜙, 𝑃ிி(𝜙) is the probability distribution (in the dihedral space) obtained by the 
approximate FF and 𝑃௥௘௙(𝜙) is a continuum function used as reference.  

Imposing minimum in the Lagrange variable we derive eq.7: 
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𝛿𝛤[𝜆]

𝛿𝜆(𝜙)
=

−𝑃ிி(𝜙) exp൫𝜆(𝜙)൯

𝐴
+ 𝑃௥௘௙(𝜙) = 0 

where 𝐴 is a constant, and we can conclude that (eq.8): 

exp(−𝜆(𝜙)) ∝
𝑃௥௘௙(𝜙)

𝑃ிி(𝜙)
 

which assuming 𝑃௥௘௙(𝜙) = 𝑃ொ(𝜙) is equivalent to Bussi’s equation (eq 16 in reference [34]) for a 
set of reference observables. Rearranging eq. 8 and using Boltzmann’s relation we obtain (eq.9): 

 

𝑉௥௘௙(𝜙) = 𝑉ிி(𝜙) + 𝑘஻𝑇𝜆(𝜙) 

 

This means that the new FF, i.e. that reproducing the reference distribution (𝑃௥௘௙(𝜙)) generated 
by (𝑉௥௘௙(𝜙)) will be that obtained by adding to the original one a continuum biasing equation 
( 𝑘஻𝑇𝜆(𝜙)). 

Biasing the dihedral distributions. In our case we define the continuum biasing function as a 
Gaussian Mixture (eq. 10) 

𝑃௥௘௙൫𝜙௝൯ = ෍ 𝛺௜𝑓௜൫𝜙௝ , 𝜇௜ , 𝜎௜൯

஼

௜ୀଵ

 

where Ω௜  are the weights of each component and 𝑓௜(𝜙, 𝜇௜ , 𝜎௜) =
ଵ

ටଶగఙ೔
మ

exp ൬−
(థ ିఓ೔)మ

ଶఙ೔
మ ൰  are 

different Gaussian density functions with centers at 𝜇௜  and variances 𝜎௜
ଶ. Notice that ∑ Ω௜௜ = 1. 

Gaussian functions fit well population densities, but assume an energy function defined by the 
combination of harmonic potentials, which is not practical for MD codes. Thus, we should re-write 
the biasing potentials with other functions. To this we end, we first use again the Boltzmann’s 
relationship (eq. 11).  

𝑉௥௘௙൫𝑋⃗, 𝜙௝൯ − 𝑉ிி൫𝑋⃗, 𝜙௝൯ = −𝑘஻𝑇 ቆln
∑ 𝛺௜𝑓௜൫𝜙௝ , 𝜇௜ , 𝜎௜൯

஼
௜ୀଵ

𝑃ிி൫𝜙௝൯
ቇ 

Note that here 𝜆(𝜙) would be exactly −ln
௉ೝ೐೑൫థೕ൯

௉ಷಷ൫థೕ൯
, as outlined in eq. 8.  

We can now fit the torsional profiles to Fourier expansions (eq. 3) and use eq. 12 to obtain the 
new set of parameters. 
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𝑉෨௝൫𝜙௝൯ ≈ 𝑉௝൫𝜙௝൯ + 𝑉௥௘௙൫𝑋⃗, 𝜙௝൯ − 𝑉ிி൫𝑋⃗, 𝜙௝൯ = 𝑉௝൫𝜙௝൯−𝑘஻𝑇 ቆln
∑ 𝛺௜𝑓௜൫𝜙௝ , 𝜇௜, 𝜎௜൯

஼
௜ୀଵ

𝑃ிி൫𝜙௝൯
ቇ 

 

Iteration procedure for force-field refinement. The procedure described above provide a 
modified set of parameters {𝑦}ଵ, which yields to a different potential and a different ensemble, 
eventually even to different clusters and representatives, i.e. {𝑦}ଵ → ൛𝑉෨௝,௡, 𝜙෨௝,௡ൟ

ଵ
. This means that 

a further refinement might be required by computing new ensembles, new reference values and 
new biasing function, which in turn will lead to {𝑦}ଶ → ൛𝑉෨௝,௡, 𝜙෨௝,௡ൟ

ଶ
, the process being repeated 

until convergence. This procedure will be slow and computationally expensive, as it will require 
many MD simulations and eventually more reference calculations. Fortunately, in most cases we 
can guess the corrected distribution of dihedrals from the previous one as shown in eq. 13: 

𝑃ிிೞ
൫𝜙௝൯ ∝ exp൫−𝛽𝑉ிிೞ

൯ = exp ቀ−𝛽𝑉ிிೞషభ 
ቁ exp(−𝛽𝛥𝑉) ∝ 𝑃ிி 

൫𝜙௝൯ exp(−𝛽𝛥𝑉) 

where s is one iteration of the force-field refinement, and 𝛥𝑉 = 𝑉ிிೞ
− 𝑉ிிೞషభ 

. The Iteration is 

performed until convergence (𝑃ிிೞ
= 𝑃ிிೞషభ

, or alternatively {𝑦௦}= {𝑦௦ିଵ}) refining FF parametters 
without the need of re-computing the trajectories. In our experience (see Results below), the 
procedure fails only in a very few cases, where original parameters are extremely poor, and 
torsions show strong correlations. For general real applications the method is fast and quite 
accurate. 

Definition of the reference probability (𝑷𝒓𝒆𝒇൫𝝓𝒋൯). The method outlined here is in principle 
general, but practical implementation requires the definition of the reference probability function, 
which depends on the type of reference data available. We have explored three different sources 
of reference distributions:  

 DFT/SCRF calculations. This is the standard BCE procedure as described in a previous 
companion paper. It implies to compute the energy of each cluster representative at the 
DFT level using a continuum description of the solvent. We start by fitting the distributions 
around free energy minima found in MD simulations to a mixture of Gaussian functions 
(eq. 10) as shown in eq. 14:  

𝑃ிி൫𝜙௝൯ = ෍ 𝜔௜𝑓௜(𝜇௜ , 𝜎௜)

஼

௜ୀଵ

 

where 𝜔௜  is the weight of the 𝑖-th component and 𝑓௜(𝜇௜ , 𝜎௜) is the 𝑖-th Gaussian density 
function with mean 𝜇௜  and standard deviation 𝜎௜, as outlined above. 

We refine the geometry of the k-cluster representatives at the DFT/SCRF level [35] 
assuming that QM/SCRF optimization does not drive the molecule to a different cluster 
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(which is a valid assumption in all tested systems). Thus, the weight of the different 
minima can be easily determined by using eq 15: 

𝑒௞ =
exp(−𝛽𝐸௞)

∑ exp(−𝛽𝐸௦)௦
 

where k refers to each cluster representative and energies are always referred to the most 
stable cluster representative. We then define for each cluster (eq. 16): 

Ω௜ = ෍ 𝑒௞

 

௞∈஼೔

 

where 𝐶௜  is the set of QM-conformers classified in the 𝑖-th component (a structure is 
classified into the 𝑖-th component if 𝜇௜  is the closest value to the dihedral value of the 
structure). Assuming all free energy minima have equal curvature, we can use these 
weights to define the biasing Gaussians as shown in eq. 17: 

𝑃௥௘௙൫𝜙௝൯ = ෍ Ω௜𝑓௜൫𝜙௝ , 𝜇௜ , 𝜎௜൯

஼

௜ୀଵ

 

 QM/MM calculations. Last generation MD codes [36]–[39] allow a reasonably fast 
implementation of QM/MM methods, where solute is represented at the quantum level 
while solvent is represented by means of classical force-fields. If the progression 
continues, we can expect a near future, where medium or low-level QM/MM simulations 
might be used to fit force-fields. In these cases, the Information extracted from QM/MM 
trajectories could be used in at least two different ways.  

i) Clustering QM/MM ensembles to obtain populations around minima [40], [41] which 
are fitted to Gaussian functions (as in eq. 14). We then reweight the Gaussian Mixture 
that represents 𝑃ிி(𝜙) using QM/MM cluster population, so 𝑃௥௘௙(𝜙) can be written 
as 

𝑃௥௘௙(𝜙) = ෍ 𝑝௜

௞

௜ୀଵ

𝑓௜൫𝜙௝ , 𝜇௜ , 𝜎௜൯ 

where  

𝑝௜ = ෍
𝑃௞

𝑃்ை்

 

௞∈஼೔

 

where 𝐶௜ is the set of QM/MM-conformers classified in the 𝑖-th component, 𝑃௞ is the 
cluster k population and 𝑃்ை்  is the total number of snapshots in our trajectory. This 
procedure is equivalent to the DFT/SCRF one except for the substitution of probability 
derived by Boltzmann´s inversion of DFT/SCRF free energies to real distributions 
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derived from sampling. 

ii) The entire dihedral distribution of the QM/MM trajectory is used as the reference. In 
this case the Expectation-Minimization algorithm is used to fit the QM/MM data to a 
Gaussian Mixture in the entire dihedral space, from which a continuum biasing 
potential is derived and fitted to Fourier potentials as shown above.  

 Experimental data. In the daily practice of a drug design laboratory the availability of 
reference experimental data is rare. However, if available the method can easily 
incorporate such data into the refinement process. Particularly, 3J-couplings and NOEs 
which can be translated into dihedral preferences and distance restraints which can be 
used to re-weight the states sampled in unbiassed simulations in a manner nearly 
equivalent to the refinement model used taking SCRF/DFT data as reference.   

 
Technical details: Molecules considered here were prepared as described in a previous paper (see 
previous companion paper) and explored using HREX simulations [31] as implemented in Gromacs 
4.6.7 [42] patched with Plumed 2.1 [43].  Simulations were performed in truncated octahedron 
boxes of TIP3P water molecules [44] (periodic boxes were selected to guarantee a minimum 
distance greater than 8 Å from the ligand to the closest face). The systems were neutralized by 
adding suitable ions, minimized, thermalized and equilibrated for 1 ns. We used 16 replicas with 
the scaling parameter λ going from 1 to 0.59 following a geometrical progression. Individual 
replicas were followed by 10 ns simulations, taking data every 1 ps. Replica exchanges were 
attempted every 500 steps and each of the individual trajectories was performed at the NVT 
ensemble. Particle Mesh Ewald (PME,[45]) and periodic boundary conditions were used to 
represent long-range electrostatic effects. All bonds linking hydrogens were frozen using SHAKE 
[46], which allowed us the use of 2 fs time scale for integration of Newton equations of motion. 
Trajectories were processed to define the most populated clusters using inhouse modified version 
of advanced clustering method based on dihedral matrix [40]. The geometries of cluster 
representatives were used as starting point for IEF-MST//B3LYP/6-31G(d) geometry refinement as 
implemented in Gaussian [47]. IEF-MST calculations were done considering water as solvent and 
the associated cavity and van der Waals parameters [35].  

QM/MM-REMD (Quantum Mechanical/Molecular Mechanics-Replica-Exchange MD) simulations 
were done for five molecules using the DFTB3 Hamiltonian [48] (QM) and TIP3P water model [13] 

as implemented in the AMBER program [49]–[51]. 32 replicas were used for each of the molecules, 
with temperatures ranging from 298 to 498 K. Trajectories were extended for 10 ns for each 
replica.  Results were subjected to the BCE procedure to define flexible bonds and the associated 
probability density maps.  

Trajectories were stored for further analysis using MD database recommendations [52].  
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RESULTS AND DISCUSSION 

Model systems: Small molecules are ideal systems to check for the ability of the method to correct 
errors in the guess force-field. We choose methanol, butane and alanine dipeptide as prototypic 
small molecules, for which torsions have been previously parametrized with high accuracy, 
allowing us to obtain reference distributions by running HREX simulations with “gold-standard” 
parameters, and in parallel “guess distributions” obtained by using different guess torsional 
parameters which deviates significantly from the real ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. TOP: Density distributions of selected torsions for (left to right) methanol, butane and 
alanine dipeptide. BOTTOM: torsional potentials leading to the above distributions. Reference 
torsional potentials and associated distributions are marked as dashed lines. Lines marked as it1 
correspond to guess torsional parameters, quite distant in general to the real ones. Lines marked 
as itn correspond to profiles obtained after n-virtual iterations of the refinement procedure (see 
above).  

We found that, in general, convergence to the real FF parameters is very fast (see Figure 1) even in 
cases where very incorrect parameters were considered. For example, for methanol we defined a 
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guess set of parameters (iteration_1) that underestimates the stability of the trans 180º minima 
and moves the position of the -60 and +60 minima, yielding to a very unrealistic distribution of 
torsion probability, but just three virtual iterations (see eq. 13 above) are enough to converge to 
the reference parameters (Figure 1). For butane our “guess” torsional parameters have only a V1 
term which yields to a single maximum in the torsional probability distribution. As the +60 and -60 
minima were not present in the original distribution convergence requires a few more virtual 
iterations to obtain parameters matching the reference ones (Figure 3). Finally, for alanine 
dipeptide we define as “guess” torsional parameters a single (and high) V1 term for  and  
torsions both centered at 0º, which yield to completely incorrect torsional distributions and a 
Ramachandran’s plot where none of the secondary elements are present (Figure 1). The method 
requires only 4-5 iterations to converge to the reference values and provide correct mono and bi-
dimensional probability maps. In summary, DFFR seems able to refine FF even in those cases 
where the guess values are inaccurate. 

The DFT/SCRF refinement: We tested the power of the default refinement method using 
DFT/SCRF energy values as reference for 13 small drug-like molecules, all of them present in our 
BCE database and for which the bioactive conformation is known (see Suppl. Figure S1). Based on 
the default analysis of torsional space in BCE we refine from 1 to 3 torsions for each ligand. The 
refinement procedure leads to representation of the torsional space that agree much better with 
the reference QM data, as shown (for selected molecules) in Figure 2, even for those cases where 
original GAFF values leads to quite incorrect samplings (see for example dihedral 8 in panel B or 
dihedral 5 in panel F of Figure 2). A global analysis of the differences between QM torsional 
density (inferred from the minima free energy; see above) and the MM torsional density profiles 
demonstrates a massive improvement in the density profile errors (Figure 3) with respect to the 
results obtained using the default force-field GAFF. The difference in the stability of the best 
optimized geometry is however small (Figure 3), indicating that the QM optimization procedure is 
quite robust to the geometry of the cluster representative derived from classical simulations.  In 
fact, inspection of individual profiles in Figure 2 strongly suggests that for most purposes DFT/SCRF 
and refined FF results are hardly distinguishable, allowing the user to perform classical calculations 
with a quality similar to that obtained at the DFT/SCRF -level of accuracy.  
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Figure 2. Selected density distributions obtained by the default FF (GAFF in red), the reference 
DFT/SCRF data (obtained by Gaussian fitting of the relative population of the fitting; in blue) and 
the refined FF (in green). Note in all cases the much closer similarity of blue and green profiles 
compared with the red one. Values shown here correspond typically to 3rd iteration refinement (in 
most cases functionals are already converged after 2 iterations). Representation of the ligands 
considered are shown in Figure S1.  
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Figure 3. TOP panel: histogram of errors in the profile (refined FF or GAFF) with respect to 

DFT/SCRF values. Errors were determined as 𝑒𝑟𝑟𝑜𝑟 = ඥ∑(𝜌(𝐷𝐹𝑇/𝑆𝐶𝑅𝐹) − 𝐷𝐹𝑇(𝐹𝐹))ଶ 
computed for the entire 0360 degrees every degree. BOTTOM: Difference in the free energy 
minima at the DFT/SCRF level obtained after optimization of GAFF and refined FF representatives.  

 

The QM/MM refinement: The development of fast QM/MM codes taking advantage of GPUs will 
make possible in a future to refine some crucial dihedrals taking directly QM/MM data [53] elimi-
nating then the intrinsic shortcomings of the incomplete sampling and the continuum-related arti-
facts implicit to DFT/SCRF calculations. The QM-based parametrization has the additional ad-
vantage that it can use direct torsional population profiles rather than Gaussian-fitted estimates 
obtained from the analysis of the relative stability of DFT/SCRF free energy minima. The obvious 
shortcoming of this approach is the large computational cost which limits today (perhaps not in a 
near future) its general application in the context of drug-design pipelines. 
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To test the applicability of QM/MM calculations within the DFT/SCRF framework we tested the 
method in six prototypical drugs for which QM/MM calculations were performed at the DFTB3 
level of theory (see Methods). Results in Figures 4A and B were obtained for cases where GAFF 
default torsional parameters are reasonable and accordingly no dramatic changes in the torsional 
density profiles are found after recalibration of the FF. On the contrary, Figure 4F represent one of 
the cases where very significant changes in the torsional energy was required to reproduce the 
QM/MM torsional density profile. In all cases the improvement in the torsional profiles is evident, 
indicating the robustness of the process to the source of data used for recalibration of the FF. As 
computational power increases and QM/MM calculations can be done at higher levels of QM the-
ory we can envision a full parametrization procedure relying on QM/MM simulations for hits ap-
pearing promising in drug design pipelines. 
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Figure 4. TOP: Potential energy profiles obtained from GAFF and our refined FF for selected 
dihedrals and molecules. BOTTOM: Density distributions around marked dihedral obtained from 
QM/MM, GAFF and the refined FF for the same set of dihedrals and molecules.  
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CONCLUSIONS 

 

We present a fast, robust and automatized method for recalibration of FF based on reference 
distributions obtained from reference calculations obtained at the QM level. The method is 
general and can incorporate experimental data, for example relative state populations derived 
from J-coupling or NOEs, which are not difficult to obtain in a short time scale. The method is fast 
and can be implemented in the high throughput regime, which facilitates its application by pharma 
industry for the refinement of parameters assigned by means of low-level automatic FF 
annotators. DFFR is highly recommended for hits and lead compounds that can be used as starting 
point for an optimization process and that are likely be used in massive docking experiments or as 
a template in similarity-powered studies. The method will help to discard compounds unable to 
reach the bioactive conformation and will provide estimates of the distortion energy required to 
adopt the bioactive state, enriching then scoring functions used in most structure-based drug 
design protocols.  
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