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1 Introduction

The statistical ensembles of random matrices have a vast number of applications in various
domains [1–4]. Originally introduced by Wigner [5] — motivated by the spectral properties
of nuclear resonance levels — they rose in the late 70’s as a tool to elucidate aspects of
the non-perturbative structure of QCD in the large N expansion [6]. Random matrices
can be used to generate sums over random surfaces, a feature that led to non-perturbative
formulations of two-dimensional gravity and non-critical strings [7]. More generally, matrix
models are very efficient in computations of combinatorial graph generating functions [8, 9].
This property has been exploited in different contexts, including classifying numbers of
RNA complexes of an arbitrary topology [10, 11]. The topological expansion of the free
energy also provides an ideal framework to understand detailed aspects of resurgent analysis
and large N instantons [12–14]. Large N expansions can be recursively generated by loop
equations [15], which are encoded in a spectral curve.

Large N random matrices, in particular, multi-matrix ensembles, have also been used
to model interesting statistical systems, including Ising [16, 17] and Potts [18, 19] models,
O(N) models [20, 21], among others. Other important aspects of random matrices include
the description in terms of a conformal field theory and relations with integrable hierarchies
(see e.g. [22]).

The Penner model [23] is a hermitian one-matrix model with a potential containing
polynomial terms and logarithmic terms. It has been exhaustively investigated, including
the classification of critical points to all genera [24]. In this paper we will explore random
matrix models arising as a limit of models with potentials having logarithmic singularities
in the complex plane. We will focus on a particular theory of a general class of models
having large N quantum phase transition of the third order at a critical coupling. Large N
phase transitions are familiar in random matrix models [25–27] and singularities typically
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reflect the finite convergence radius of the planar expansion. The model is introduced in
section 2, where the large N limit is studied. The construction hints that the present
matrix model might be exactly solvable at finite N , though solving the model is beyond
the scope of this paper. A discussion of finite N partition functions is included in section 3.

2 The model

We consider an hermitian N ×N matrix M with the dynamics governed by the potential

V (M) = ATr ln(1 +M2) +B Tr 1
1 +M2 . (2.1)

For stability, we must require A > 0. However, convergence of the partition function will
imply the stronger condition A > N − 1.

2.1 The 3-parameter deformed Cauchy model

Before studying the dynamics of the matrix theory (2.1) for its own sake, it is instructive
to elucidate on the close relation to the familiar Penner random matrix models, where the
potential is of the form

U(x) = U0(x)−
n∑
i=1

Ai ln(x− αi) , (2.2)

where U0 is a polynomial (for example, the Gaussian potential U0 = c x2). In a number
of cases, the Penner model can be exactly solvable, with the partition function computed
for any N , using Selberg’s integral formula [28] and generalizations [1]. Alternatively, the
partition function can be computed by recursion relations using the method of orthogonal
polynomials [7, 29] (see [30] for applications of this method to Penner models).

We consider the potential

U(x) = A ln(x2 + 1) + β ln(x2 + 1 + ε)− β ln(x2 + 1) . (2.3)

This is in the class of Penner models (2.2) with the choice

U0(x) = 0 , n = 6 , α1,2 = α5,6 = ±i , α3,4 = ±i
√

1 + ε ,

A1 = A2 ≡ −A , A3 = A4 = −β , A5 = A6 = β .

The particular case with A = N was recently studied in section 3 of [31], where it originated
from a family of unitary matrix models through the map to the unit circle. This case is
special, as we shall discuss, and in the large N theory corresponds to the marginal case
for stability of the model. When ε = 0, the potential (2.3) describes a Cauchy ensemble,
studied in [31, 32].

The potential (2.3) has one absolute minimum at x = 0 for εβ ≤ A(1 + ε) and two
minima at x = ±

√
εβ
A − 1− ε for εβ > A(1 + ε). We will refer to the hermitian one-matrix

theory with potential (2.3) as the 3-parameter deformed Cauchy model, or 3-parameter
biphasic Cauchy model, since the theory has a large N phase transition on a critical line in
parameter space. In this paper we will not study the phase transitions of this model, but
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instead focus on the matrix theory with potential (2.1). We will return to the 3-parameter
biphasic Cauchy model in section 3.

To connect with theory (2.1), we take the limit β → ∞, ε → 0, with fixed βε ≡ B.
This exactly gives our model (2.1). The close relation with Penner models suggests that
the model (2.1) could be exactly solvable at finite N (see section 3).

2.2 Partition function at large N

The partition function is given by

Z = 1
vol
(
U(N)

) ∫ DM exp [−V (M)] . (2.4)

After gauge fixing to a diagonal U(N) matrixM = diag(a1, . . . , aN ), the partition function
becomes

Z = 1
N !

∫
dNa

(2π)N
∏
i<j

(ai − aj)2 exp [−W (ai)] , (2.5)

where

W (ai) =
N∑
i=1

(
A ln(1 + a2

i ) +B
1

1 + a2
i

)
. (2.6)

We note that the integral is convergent provided A > N − 1. In the large N theory,
this condition will naturally arise in order to avoid an instability in the distribution of
eigenvalues.

The dynamics of the system can be intuitively understood as follows. There is the
usual repulsive force between eigenvalues produced by the Vandermonde determinant. In
addition, each eigenvalue is subject to the potential

V = A ln(1 + x2) +B
1

1 + x2 . (2.7)

The first term, with A > 0, produces an attractive force that pushes the eigenvalue towards
the origin. The second term produces an attractive force for B < 0 and a repulsive force
for B > 0. The potential has an absolute minimum at the origin for B < A. However,
when B > A, in the vicinity of the origin the repulsive force overcomes the attractive force
and the vacuum at x = 0 becomes unstable: the potential develops a double well, with
minima at x = ±

√
B
A − 1 (see figure 1).1

We will study the large N limit with A,B →∞ and fixed couplings τ, κ defined by

τ ≡ A

N
= fixed , κ ≡ B

N
= fixed . (2.8)

We introduce the eigenvalue density

ρ(x) = 1
N

N∑
i=1

δ(x− ai) . (2.9)

1One could introduce a small symmetry breaking term to look for broken symmetry solutions. We will
not attempt this here (a discussion can be found in [33]).
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Figure 1. The potential has a minimum at x = 0 for B < A and two minima at x = ±
√

B
A − 1

for B > A. In figure a), A = 2, B = 1.5. Figure b) A = 2, B = 3.5.

It satisfies the normalization condition∫
L
dx ρ(x) = 1 , (2.10)

where L is the region of the complex x plane where eigenvalues condense.
In the large N limit, the partition function can be computed exactly by the saddle-

point method. In this limit, the saddle-point equations reduce to the following singular
integral equation

−
∫
L
dz

ρ(z)
x− z

= 1
2 V

′(x) = τ
x

1 + x2 − κ
x

(1 + x2)2 . (2.11)

Starting with small κ, one expects a one-cut eigenvalue distribution, as the potential
has an absolute minimum at x = 0 and eigenvalues will be pushed towards the minimum.
However, the potential develops a double well when κ > τ . As κ is further increased
there should be critical point where the eigenvalues get separated into a symmetric two-cut
distribution. This would imply that the system undergoes a phase transition at a critical
κc. In what follows we confirm this picture by explicitly solving the integral equation in
the two phases.

2.3 The one-cut solution

For sufficiently small κ, the eigenvalues are expected to condense in one cut, −µ < x < µ,
with a density satisfying the normalization condition (2.10) with L = (−µ, µ), i.e.∫ µ

−µ
dx ρ(x) = 1 . (2.12)

In order to solve the saddle-point equation, as usual one introduces the resolvent

ω(z) =
∫
dx

ρ(x)
z − x

. (2.13)

Then the density is determined by

ρ(x) = − 1
2πi (ω(x+ iε)− ω(x− iε)) . (2.14)

– 4 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
4

This leads to
ρ(x) = − 1

2π2

√
µ2 − x2

∫ µ

−µ
dz

V ′(z)√
µ2 − z2(x− z)

. (2.15)

The integral can be computed by residues by considering a contour surrounding the cut.
There is no pole at infinity, and the result is given by the residues at z = ±i. We obtain
the following expression for the eigenvalue density

ρ(x) = 1
2π(1 + µ2)

3
2

√
µ2 − x2

(1 + x2)2

(
2τ(1 + µ2)(1 + x2)− κ(2 + µ2(1− x2))

)
. (2.16)

The parameter µ representing the width of the eigenvalue distribution is determined
by the normalization condition (2.12). Computing this integral, we obtain the condition

1 = τ

(
1− 1√

1 + µ2

)
− κ

2
µ2

(1 + µ2)
3
2
. (2.17)

This leads to a cubic equation for X ≡ µ2. A valid solution for a one-cut distribution
requires that µ2 is real and that ρ(x) is non-negative in the interval −µ < x < µ. For τ > 1,
the normalization condition always has a real solution for µ, irrespective of the value of
κ. If τ < 1, then the system is unstable at large N ; the repulsive (Vandermonde) force of
eigenvalues dominate over the attractive force and eigenvalues spread out to infinity. The
mathematical origin of the condition τ > 1 is the convergence condition of the (large N)
matrix integral (2.5).2 Finally, the case τ = 1 is marginal and will be discussed separately
in section 2.6.

Next, let us consider the condition that ρ(x) is non-negative. From (2.16) we see that
ρ becomes negative in an interval when

κ > κc = τ
1 + µ2

1 + µ2

2
, (2.18)

where µ is determined in terms of τ and κ by the normalization condition (2.17). This
condition indeed determines the critical value of the phase transition. Note that κc/τ is
greater than one, which implies that the transition occurs after the potential developed a
double well. We can use (2.18) to find the critical µ:

µ2
c = 2(κ− τ)

2τ − κ . (2.19)

Substituting into (2.17), we find

κc = τ +
√

2τ − 1 . (2.20)

At the critical point, the eigenvalue density becomes

ρc(x) = (τ − 1)x2

π(1 + x2)2

√
µ2 − x2 . (2.21)

2We thank K. Zarembo for this remark.
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Figure 2. The eigenvalue density in the one-cut case describing the subcritical regime κ < κc. (a)
τ = 2, κ = 1.5. (b) τ = 2, κ = 3. In this case, the potential has already developed a double-well,
but there is an overfilling of eigenvalues, which are still distributed in one cut.
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Figure 3. The eigenvalue density at the critical point.

The eigenvalue density is shown in figure 2 for κ < κc and the critical eigenvalue density
is shown in figure 3.

The critical coupling κc lies in the interval τ < κc < 2τ (in particular, this ensures that
µ2
c > 0). For example, for τ = 2, the potential has a double-well when κ > 2. However,

eigenvalues are still distributed along one cut until the critical value κc ≈ 3.73, where
µc ≈ 3.6. As shown below, for κ > κc, eigenvalues get distributed symmetrically in a
two-cut distribution.

Another interesting limit is the case κ = 0, where the density takes the form

ρ(x) = τ − 1
π(1 + x2)

√
µ2 − x2 , µ =

√
2τ − 1
τ − 1 . (2.22)

2.4 The two-cut solution

Above the critical coupling, κ > κc, one has to search for a two-cut solution. We assume
that the eigenvalue density has support in two disconnected regions (−a,−b) and (b, a),
with real a, b and 0 < b < a. The density is assumed to be of the form

ρ(x) = f(x)
√

(a2 − x2)(x2 − b2) . (2.23)

– 6 –



J
H
E
P
1
1
(
2
0
2
0
)
0
1
4

For a two-cut (Z2-symmetric) solution, the resolvent is given by

ω(z) = 1
2

√
(a2 − z2)(z2 − b2)

∮
C

dx

2πi
V ′(x)
z − x

1√
(a2 − x2)(x2 − b2)

. (2.24)

The contour C is the union of two contours surrounding the two cuts. The integral can be
computed by residues, and it is contributed by the poles at z = ±i. We find

f(x) =
√
x2

(
− τ

π(1+a2)
1
2 (1+b2)

1
2 (1+x2)

+κ
(4+3a2 +3b2 +(a2 +b2 +2)x2 +2a2b2)

2π(1+a2)
3
2 (1+b2)

3
2 (1+x2)2

)
.

(2.25)
The parameters a and b representing the endpoints of the eigenvalue distribution can be
computed by demanding two conditions: 1) normalization and 2) the asymptotic condition
obeyed by the resolvent

ω(z) ∼ 1
z
. (2.26)

One can get the equivalent condition by substituting the above solution (2.23), (2.25)
into the integral equation. The integral equation then implies that the residues at infinity
coming from the two terms with coefficients τ and κmust cancel. This leads to the condition

τ(1 + a2)(1 + b2)− 1
2 κ(2 + a2 + b2) = 0 . (2.27)

The normalization condition leads to the following relation between parameters

1 = −τ2
2 + a2 + b2

(1 + a2)
1
2 (1 + b2)

1
2

+ τ + κ

4
(a2 − b2)2

(1 + a2)
3
2 (1 + b2)

3
2
. (2.28)

Using condition (2.27), this simplifies to

(1 + a2)(1 + b2) = κ2

(τ − 1)2 . (2.29)

Equations (2.27) and (2.29) can be explicitly solved for a and b. One obtains

1 + a2 = κ(τ +
√

2τ − 1)
(τ − 1)2 , 1 + b2 = κ

τ +
√

2τ − 1
. (2.30)

Substituting these formulas in (2.25), the eigenvalue density dramatically simplifies,

ρ(x) = τ − 1
π(1 + x2)2

√
x2
√

(a2 − x2)(x2 − b2) . (2.31)

This represents the exact eigenvalue distribution in the supercritical phase in the stability
regime τ > 1.

The critical point of the transition corresponds to b = 0. This gives

κc = τ +
√

2τ − 1 , (2.32)

in agreement with the critical point obtained in the subcritical regime. At the critical
point,

a2
c = µ2

c = 2τ
(√

2τ − 1 + 2
)
− 2

(τ − 1)2 , (2.33)

and ρ matches the critical density ρc, given in (2.21), obtained from the subcritical phase.
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Figure 4. The eigenvalue density in the two-cut case describing the supercritical regime κ > κc.
(a) τ = 2, κ = 4. (b) τ = 2, κ = 100, illustrating the asymptotic shape of the eigenvalue density.

Finally, at large κ, the density takes the asymptotic shape shown in figure 4(b), with

a2 ≈ κ

τ −
√

2τ − 1
. , b2 ≈ κ

τ +
√

2τ − 1
. (2.34)

Thus a2, b2 grow linearly with κ with a/b tending to a fixed value for given τ .

2.5 Critical behavior

To understand the nature of the phase transition we now study the analytic properties of
the free energy F = − lnZ at the critical point. The free energy can be computed in the
subcritical and supercritical regimes by using the one-cut and two-cut eigenvalue densities
obtained above. We shall fix τ and increase κ until it overcomes the critical value, where
the system undergoes a phase transition. Instead of computing the free energy, it is more
convenient to consider the first derivative

∂F

∂κ
= 〈Tr 1

1 +M2 〉 =
∫
L
dx ρ(x) 1

1 + x2 . (2.35)

Subcritical regime κ < κc. The integral (2.35) can be computed by residues us-
ing (2.16) and choosing a contour surrounding the cut from −µ to µ. We obtain

∂F

∂κ

∣∣∣∣
κ<κc

= τµ2

2(µ2 + 1) −
κµ2 (µ2 + 4

)
8 (µ2 + 1)2 , (2.36)

where µ = µ(τ, κ) is implicitly defined by the condition (2.17) (we omit the explicit expres-
sion given in terms of a solution of a cubic equation).

Higher derivatives of the free energy in the subcritical phase can be computed by dif-
ferentiating (2.36) with respect to κ. We need ∂µ2/∂κ, which is obtained by differentiating
the normalization condition (2.17). We get

∂µ2

∂κ
= 2µ2(1 + µ2)

2τ (µ2 + 1) + κ (µ2 − 2) . (2.37)
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Differentiating (2.36) and using (2.37) we find

∂2F

∂κ2

∣∣∣∣
κ<κc

= − µ4

8 (µ2 + 1)2 ,

∂3F

∂κ3

∣∣∣∣
κ<κc

= − µ4

2 (µ2 + 1)2 (2τ (µ2 + 1) + κ (µ2 − 2))
. (2.38)

Supercritical regime κ > κc. Let us now compute the integral (2.35) by residues
using (2.31). We choose a contour which is the union of two contours surrounding the two
cuts from −a to −b and from b to a. We find the remarkably simple formula:

∂F

∂κ

∣∣∣∣
κ>κc

= 2τ − 1
2κ . (2.39)

By differentiating with respect to κ, we obtain second and third derivatives

∂2F

∂κ2

∣∣∣∣
κ>κc

= −2τ − 1
2κ2 ,

∂3F

∂κ3

∣∣∣∣
κ>κc

= 2τ − 1
κ3 . (2.40)

We can now examine the continuity properties of derivatives of the free energy at the
critical point. For the first and second derivatives we obtain

∂F

∂κ

∣∣∣∣
κ→κ+

c

= 2τ − 1
2
(
τ +
√

2τ − 1
) = ∂F

∂κ

∣∣∣∣
κ→κ−

c

,

∂2F

∂κ2

∣∣∣∣
κ→κ+

c

= − 2τ − 1
2
(
τ +
√

2τ − 1
)2 = ∂2F

∂κ2

∣∣∣∣
κ→κ−

c

. (2.41)

Therefore the first and second derivatives of the free energy are continuous at the transition
point. For the third derivative, at the critical point we find

∂3F

∂κ3

∣∣∣∣
κ→κ−

c

= τ
(
2−
√

2τ − 1
)
− 1

2
(
τ +
√

2τ − 1
)3 ,

∂3F

∂κ3

∣∣∣∣
κ→κ+

c

= 2τ − 1(
τ +
√

2τ − 1
)3 , (2.42)

and
∂3F

∂κ3

∣∣∣∣
κ→κ+

c

− ∂3F

∂κ3

∣∣∣∣
κ→κ−

c

= τ
(
2 +
√

2τ − 1
)
− 1

2
(
τ +
√

2τ − 1
)3 . (2.43)

This is different from zero for any τ in the region of stability of the theory τ > 1 (it has
a zero at τ = 1/2). Thus we conclude that the system undergoes a third-order large N
phase transition. The susceptibility χ = −∂2F

∂κ2 is continuous at the transition point, but
its derivative has a jump. This is shown in figure 5.

2.6 The marginal case τ = 1

The case τ = 1 is the marginal case for stability. It corresponds to having A = N + O(1)
in the original coupling. The eigenvalue density can be obtained from the formulas of the
previous subsections by taking the limit τ → 1.
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Figure 5. The first derivative of the susceptibility is discontinuous, indicating a third-order phase
transition. The figure corresponds to τ = 2, in which case κc ≈ 3.73.

In the subcritical case, τ → 1 gives µ → ∞, that is, eigenvalues are spread from −∞
to ∞. The critical coupling is

κc = 2 . (2.44)

In the supercritical case, a→∞ and b2 becomes

b2 = κ

2 − 1 . (2.45)

The resulting eigenvalue densities in the subcritical and supercritical case are

ρ(x) = 1
π (x2 + 1) + κ

x2 − 1
2π (x2 + 1)2 , τ = 1 , κ ≤ κc , (2.46)

and
ρ(x) =

√
2κ

π (x2 + 1)2

√
x2
√
x2 − b2 , τ = 1 , κ > κc . (2.47)

One can check that they satisfy the normalization condition for any κ. The densities are
shown in figures 6(a),(b).

At the critical point, the free energy exhibits the same non-analytic behavior as in the
case τ > 1, with a discontinuous third derivative. The jump is obtained from (2.43) by
setting τ = 1.

3 Finite N partition functions

Let us consider the 3-parameter deformed Cauchy matrix model with potential (2.3) at
finite N , i.e. before the limit ε→ 0. The partition function is given by

Z = 1
N !

∫
dNa

(2π)N
N∏
i<j

(ai − aj)2
N∏
i=1

(1 + a2
i )β

(1 + a2
i )A(1 + ε+ a2

i )β
. (3.1)

The integral is a complicated generalization of the Selberg’s integral, with singularities at
different places. The particular case A = N was studied recently in [31].

In the case ε = 0, one has the Cauchy random matrix ensemble (see e.g. [32]). Note
that for any given A all moments 〈Tr M2n〉 with n ≥ 1

2 + A − N are divergent. This is
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Figure 6. Eigenvalue densities in the marginal case τ = 1. The phase transition occurs at κc = 2.
(a) Subcritical case with κ = 1.5. (b) Supercritical case with κ = 4.

of course the same pathology that is present in the Cauchy probability distribution. This
feature is also present in the above three-parameter deformed Cauchy matrix model. It
is worth noting that the large N theory does not suffer from this pathology as long as
A > N : then all moments 〈x2n〉 are finite. The problem appears at large N when A ≤ N .
In the marginal case A = N , discussed in section 2.6, already the moment 〈x2〉 is ill-defined.
However, we stress that there are observables which are well defined, such as the free energy
and its derivatives, computed in the previous section.

For any given N , the integral (3.1) can be carried out explicitly in terms of hypergeo-
metric functions. In the U(1) case, we obtain

ZU(1) = 1
2 sec(π(α− β))

((ε+ 1)
1
2−αΓ

(
α− 1

2

)
Γ(β)Γ

(
α− β + 1

2

) 2F1

(
α− 1

2 , α− β;α− β + 1
2; 1
ε+ 1

)

− π1/2(ε+ 1)−β

Γ(α− β)Γ
(
−α+ β + 3

2

) 2F1

(1
2 , β;−α+ β + 3

2; 1
ε+ 1

))
, (3.2)

where α ≡ A.
It is interesting to take the limit β →∞, ε → 0, with fixed B = βε, where the model

reduces to the theory with potential (2.7) studied here. The partition function reduces to

ZU(1) → Z
U(1)
0 ≡

∫ ∞
−∞

dx

2π
exp[−B/(1 + x2)]

(1 + x2)A . (3.3)

This integral can be computed by taking the ε → 0 limit on the result (3.2). For this,
one first uses Kummer’s transformations to bring the hypergeometric functions to hyper-
geometric functions with argument −ε. Then one considers the Taylor series expansion of
the hypergeometric in powers of ε and uses the Stirling-de Moivre formula for the Gamma
functions with large arguments in the coefficients of the series. Upon taking the ε → 0
limit with fixed B and resumming the resulting series, the hypergeometric functions become
confluent hypergeometric functions and one finally obtains

Z
U(1)
0 = −

π1/2 sec(πA) 1F1
(
A− 1

2 ;A;−B
)

2Γ
(

3
2 −A

)
Γ(A)

. (3.4)
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One can check numerically that this is indeed the exact formula for the integral (3.3). Thus
we have computed the partition function for our theory in the U(1) case. For positive
integer A, ZU(1)

0 is expressed in terms of Bessel functions.
In the U(2) case, one obtains

ZU(2) = ZU(1)J , (3.5)

where J is the integral

J =
∫ ∞
−∞

da

2π
a2(1 + a2)β

(1 + a2)A(1 + ε+ a2)β . (3.6)

This is also expressed in terms of 2F1 hypergeometric functions.
A challenging problem is to derive a closed formula for arbitrary N . A standard

method to compute the partition function is through orthogonal polynomials and recursion
relations. In the particular case ε = 0, the partition function substantially simplifies and
it can be computed using Romanovski polynomials [31, 32].

The ensemble (3.1) with general A, β, ε and N seems to have been overlooked in
the literature. It would be extremely interesting understand its different limits and phase
structure.

Note added. By the stereographic map of real eigenvalues to the unit circle, one con-
structs the unitary matrix model which is dual to the present Hermitian matrix model. It
was recently found [34] that the resulting unitary matrix model represents a 1-parameter
deformation of the celebrated Gross-Witten-Wadia (GWW) matrix model [25, 26] describ-
ing lattice gauge theory in 1+1 dimensions, where the coupling B corresponds to −4/g2,
g being the gauge coupling and the coupling A corresponding to a specific characteristic
polynomial insertion of the form det(1 +U)A det(1 +U †)A. Thus the partition function of
the model computes the vacuum expectation value of this gauge invariant, physical observ-
able. The phase transition described here also takes place in this deformed GWW model
and generalizes the GWW phase transition in the presence of an extra coupling.
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