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1. SUMMARY 

The main goal of this work was to obtain 3d and 4f polynuclear coordination compounds with 

Schiff bases as ligands and the study of their magnetic and structural properties. A few trials were 

carried out using Ni(II), Mn(II), Cu(II), Gd(III) and Dy(III), although only two compounds using 

Cu(II) and Mn(II) were able to crystallize. Their structures were successfully determined by X-ray 

diffraction. The copper compound crystallized as a dinuclear unit with formula C30H30Cl2Cu2N6O14, 

and a monomeric unit with formula C15H17Cl2CuN3O3 that co-crystallizes in the same crystal 

structure. The manganese complex was a dinuclear complex with formula C30H34Cl2Mn2N6O4 

bridged by two chloride anions. Instead of the desired Schiff base, two new types of ligands were 

obtained due to an unexpected cyclization of one of the hydroxy groups leading to an oxazolidine 

ring in the first compound, and a rare double oxazolidine ring ligand that is able to complex the 

manganese (II) atoms in the second compound. Magnetic susceptibility measures were 

performed for both compounds. Compound 1 exhibits a weak antiferromagnetic coupling between 

the two Cu(II) metal ions, with an exchange constant J=-0.67 cm-1. Compound 2 exhibits a very 

weak antiferromagnetic coupling between the two Mn(II) metal ions, with an exchange constant 

J=-0.24 cm-1. 

Keywords: Coordination chemistry, molecular magnetism, Schiff bases, oxazolidines 
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2. RESUM 

L’objectiu principal d’aquest treball de fi de grau va ser l’obtenció de complexos de 

coordinació utilitzant metalls 3d i 4f amb bases de Schiff com a lligands i l’estudi de les seves 

propietats estructurals i magnètiques. Es van dur a terme diverses síntesis utilitzant Ni(II), Mn(II), 

Cu(II), Gd(III) i Dy(III), tot i que només dos compostos de Cu(II) i Mn(II) van cristal·litzar. El 

compost de coure cristal·litza com a una unitat dinuclear de fórmula C30H30Cl2Cu2N6O14, i una 

unitat monomèrica de fórmula C15H17Cl2CuN3O3 que co-cristal·litza en la mateixa estructura 

cristal·lina. El segon compost es tracta d’un complex dinuclear de manganès de fórmula 

C30H34Cl2Mn2N6O4 unit per un pont format per dos clorurs. En lloc d’obtenir la base de Schiff 

desitjada, dos tipus de lligands es van formar degut a la inesperada ciclació d’un dels grups 

hidroxil del lligand, formant una oxazolidina en el primer compost i una doble oxazolidina en el 

segon compost que actua com a lligand dels àtoms de Mn(II). Es van dur a terme mesures de 

susceptibilitat magnètica en els dos compostos. El primer mostra un acoblament 

antiferromagnètic feble entre els dos ions de Cu(II), amb una constant d’intercanvi J=- 0,67 cm-1. 

El segon compost presenta un acoblament antiferromagnètic molt feble entre els dos àtoms de 

Mn(II), amb una constant d’intercanvi J=-0,24 cm-1. 

Paraules clau: Química de coordinació, magnetisme molecular, bases de Schiff, oxazolidines 
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3. INTRODUCTION 

3.1. SCHIFF BASES AND THEIR PROPERTIES 

Schiff bases are an important type of organic ligand in coordination chemistry due to their 

ability to coordinate with most metallic cations to form complexes with interesting magnetic and 

structural properties. A Schiff base is a functional group that contains a carbon-nitrogen double 

bond, with the nitrogen atom bonded to an aryl or alkyl group. They are easily synthesized by the 

condensation of a primary amine with an aldehyde or ketone. The mechanism of the reaction 

proceeds as follows: the lone pair of the nitrogen attacks the carbonyl giving a hemiaminal, which 

quickly undergoes a hydrogen shift, thus favouring the loss of a water molecule. In this work, 

pyridine-2-carboxaldehyde and 2-amino-1,3-propandiol were used to synthetize the Schiff base 

ligand H2L ((E)-2-((pyridin-2-ylmethylene)amino)propane-1,3-diol). 

 

 

 

 

 

 

 

Owing to the fact that ligands containing Schiff bases may have different types of donor 

atoms, they can coordinate both transition metals and lanthanides in the same structure, giving 

rise to new compounds with interesting magnetic properties. 

Fig. 2. Imine formation mechanism 

Fig. 1. Synthesis of the Schiff base used in this work 
(H2L) 
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As we will see on the next section, a different reaction might take place depending on the 

conditions of the experiment and the position of the hydroxo groups that are present on the 

aminoalcohol used in this work. One of the oxygen atoms from the hydroxo groups may attack 

the carbon from the C and form an oxazolidine (a five-membered ring containing an oxygen and 

a nitrogen atom on the 1 and 3 positions respectively). Despite being an unexpected reaction, 

oxazolidines are well known for their interesting properties (p. e. chiral auxiliary for asymmetric 

synthesis). They can be used as a ligand for the development of asymmetric catalysts, among 

other applications. [1] 

3.1.2. Other ligands used in molecular magnetism. 

A wide variety of co-ligands can be used to give different structural and magnetic properties 

(p. e. halides, pseudohalides, dicyanamide, carboxylates, oxalates and nitrites, among others). 

For example, azido bridges are widely used because of their versatility: they display various 

coordination modes in polynuclear transition complexes, the most common of them being end-on 

(1,1), double end-on and end-to-end (1,3). Depending on these modes, a different magnetic 

interaction can be transmitted between the metallic centres.  

β-diketonates are another important group of co-ligands used in molecular magnetism 

because they can efficiently coordinate both transition metals and lanthanides due to the strong 

coordinating character of the deprotonated β-diketonate group. This anion has a great 

coordinating ability since negatively charged O atoms can coordinate more than one metal ions. 

Some of these co-ligands have been used during this work, although no compounds could be 

obtained. 

3.2. MAGNETISM 

 In coordination chemistry, the magnetic properties of complexes arise when a paramagnetic 

metal is present, which means that they have unpaired electrons. These electrons possess 

magnetic moments as a result of their orbital and spin angular moments, and both these moments 

interact with an external magnetic field.  

3.2.1. Initial considerations 

When a polyelectronic metal with unpaired electrons interacts with a coordination 

environment, different perturbations modify the energies of the electrons, giving rise to the energy 
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terms. In transition metals, the most significant perturbations are due to the interelectronic 

repulsions and the electrostatic potential around the cation (crystal field) generated by the 

surrounding ligands. These energy terms may be affected by lower energy perturbations, such 

as spin orbit coupling and the Zeeman effect, which is derived from the application of an external 

magnetic field. These perturbations induce the splitting of the terms in level and sublevels, splitting 

the terms or multiplets from the crystal field to give magnetic states (mj) [2]. 

3.2.2. Molecular magnetism 

When a complex with unpaired electrons is placed within an external magnetic field H, it 

becomes magnetized, which means that the electrons in the sample become aligned with the 

field. This phenomenon is known as magnetization, and it can be expressed in terms of magnetic 

susceptibility (χ). Every complex has a diamagnetic susceptibility due to the paired electrons of 

the inner orbitals. The total susceptibility measured in a sample is the sum of the diamagnetic and 

paramagnetic contributions. The diamagnetic contribution can be calculated using Pascal tables 

or using equation 1. Usually, in molecular magnetism, susceptibility measures are calculated as 

χMT, where χM is the molar susceptibility. 

 𝜒 =  𝜒𝑝𝑎𝑟𝑎𝑚.  −  𝜒𝑑𝑖𝑎𝑚.   (Eq. 1) 

Let us consider a simple dinuclear complex with two paramagnetic cations bridged by a 

diamagnetic ligand. From a magnetic point of view, these cations can either act independently, 

giving a paramagnetic compound, or they can interact between them giving a new molecular 

paramagnetic compound. This behaviour is due to the fact that the linear combination of the d-

orbitals of the metals and the p orbital of the ligand gives rise to three molecular orbitals: one fully 

occupied bonding orbital, one non-bonding orbital and an antibonding orbital, with the highest 

energy. Two electrons are placed in the bonding orbital and do not have a magnetic contribution. 

The other two electrons may go either both into the non-bonding orbital (ST=0 spin singlet) or one 

in the non-bonding and the other in the antibonding orbital. (ST=1, spin triplet). If the ground state 

is a spin singlet, we say that the interaction is antiferromagnetic, and if the ground state is a spin 

triplet, the interaction is ferromagnetic [2].  
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The Heisenberg-Dirac-Van Vleck Hamiltonian (HDVV) describes the interaction between the 

spins of these two metallic centres, also known as exchange: 

    Ĥ = −JABŜAŜB       (Eq. 2) 

where JAB is the exchange constant between both spins (SA and SB) and it is measured in cm-1. 

J<0 corresponds to an antiferromagnetic coupling, whereas J>0 corresponds to ferromagnetic 

coupling. If J<0, χMT tends to 0 cm3 K mol-1 at 0 K because S in the ground state is 0 while if J>0, 

χMT tends to 1 cm3 K mol-1, because S in the ground state is 1, as expected for two coupled 

electrons (in the case of a dinuclear copper (II) complex, see fig. 4). The magnitude of J is the 

sum of the contribution of the ferro (F) and antiferromagnetic (AF) components. JF depends on 

the exchange integral between the two magnetic orbitals, which means that a large overlap 

between orbitals results in a larger JF. JAF is proportional to the square of the energy gap between 

the symmetric and antisymmetric molecular orbitals (Δ2, see fig. 3) 

 

 

 

 

 

 

 

 

 Fig. 4. Representation of a plot of χMT versus T. 

Fig. 3. Bonding scheme of a simple dinuclear copper (II) system when the ground state is a spin triplet 
(ST=1). 
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3.2.3. Lanthanide properties 

The magnetic properties of the lanthanide metals are quite different from those of the 

transition metals. In a lanthanide atom, the 4f orbitals are highly contracted and shielded by the 

fully occupied 5s and 5p orbitals, so the crystal field effect is much smaller than both the 

interelectronic repulsion and the spin-orbit coupling [3]. Because of this, the orbital momentum of 

the electrons is not negligible, which results in a large spin-orbit coupling. The trivalent rare earth 

metals 2S+1L multiplets are further split by spin-orbit coupling to give J states. The ligand-field 

effect in lanthanides is weaker than interelectronic repulsions and spin-orbit coupling. In fact, the 

crystal field splitting of f-orbitals is a about 1% that of d-orbitals. The energy spectrum of these 

states can be calculated as: 

    𝐸((2𝑆+1𝐿𝐽) = (
𝜆

2
) [𝐽(𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆(𝑆 + 1)]                           (Eq. 3) 

3.2.4. Single molecule magnets  

Single molecule magnets (SMM) are a series of molecular based systems that, under a 

certain temperature value Tc, show slow relaxation of the magnetization, i.e., they behave as tiny 

 

Fig 5. Splitting of the energy terms of a Ln(III) ion under different perturbations (Interelectronic repulsion, 
spin-orbit coupling, crystal field, magnetic field). 
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magnets. Gatteschi et al. discovered this phenomenon at the beginning of the 1990s [4].  These 

types of systems consist of discrete molecules or molecular clusters with a large total spin S in  

the ground state and a strong magnetic anisotropy. In these systems, the application of a 

magnetic field leads to the splitting of the ST levels into ms sublevels. The anisotropy of these 

systems is described by the Hamiltonian Ĥ=DSz2, where D is the zero-field splitting parameter. 

When an external magnetic field is applied, the magnetic moment of the molecule lines up in one 

of the two possible directions. Both states are separated by an energy barrier Ueff, the maximum 

value of which is -DS2 for an integer spin and -D(S2-1/2) for a half integer spin. The states with a 

negative Ms are stabilized because they are parallel to the applied field. On the other hand, the 

states with a positive Ms are destabilized because they correspond to magnetization against the 

applied field. The energy potential between these two states takes the shape of a double well 

(see figure 4), with the potential barrier (Ueff) in between. The magnetization is relaxed through 

different relaxation mechanisms, one of them being quantum tunnelling. The key factor for 

obtaining SMM is having a large magnetic anisotropy and a large magnetic moment. Because of 

this, lanthanides are the best candidates. Continuous efforts on synthetizing SMM’s are being 

made due to their potential applications, such as high density data storage, quantum computing 

and spintronics [5]. 

3.3. CRYSTALLIZATION TECHNIQUES 

In order to know the structure of the obtained compound, monocrystal X-ray diffraction (XRD) 

is used. However, the difficulty of this technique lays on the fact that the obtention of a single 

crystal is usually hard. Therefore, we need various techniques that allow us to obtain good-sized 

crystals with a decent quality, suitable for XRD structural determination. 

Fig. 6. Double well diagram representing the potential energy when a magnetic field is applied. 
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Slow evaporation: a vial with the complex solution is left undisturbed in open atmosphere until 

it reaches the saturation point and crystals start to appear. 

Layer crystallization: it allows crystals to grow based on the difference of the complexes 

solubility in the solvent and the antisolvent (precipitating agent). The antisolvent is placed on the 

bottom of a glass tube and then, the complex solution is injected carefully using a glass syringe 

at the bottom of the glass tube. The antisolvent must have a lower density than the solution. 

Usually, diethyl ether is used. 

Vapour diffusion: the principle is the same as in the layer crystallization technique, but in this 

case, the solution and the antisolvent are placed separately in a closed vial. As the antisolvent 

slowly diffuses into the solution, the solubility of the complex decreases until it precipitates as 

crystals. 

3.4. CHARACTERIZATION TECHNIQUES 

As previously mentioned, in molecular magnetism we need a way to elucidate the structures of 

the compounds that we manage to obtain in the laboratory.  

XRD: This technique uses the diffraction of a beam of X-ray to determine the exact structure of 

the compounds. The way this beam is diffracted depends on the crystal structure of the complex.  

The data obtained in this technique provides information of the molecular structure in the space. 

IR spectra: This technique gives information about the different functional groups that the 

compound may have depending on the wavelength at which these compounds absorb IR light. It 

does not provide any information about the disposition of the atoms. 

 

 



14  Caballero Gutiérrez, Sergio 

 
 

4. OBJECTIVES 
The main objectives of this work are: 

• Synthesis and characterization of the Schiff base ligand ((E)-2-((pyridin-2-

ylmethylene)amino)propane-1,3-diol. 

• Design and synthesis of new polynuclear 3d (Mn2+, Ni2+, Cu2+) and 4f (Gd3+, Dy3+) 

coordination complexes using the previously synthesised Schiff bases as ligands 

and other anions as co-ligands. 

• Obtention of a single crystal (monocrystals) of the complexes suitable for XRD using 

various crystallization techniques. 

• Structural determination of the complexes using XRD. 

• Study of the magnetic properties of the complexes. 

• Establish possible magneto-structural correlations of the complexes. 
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5. RESULTS AND DISCUSSION 

5.1. IR SPECTRA OF THE COMPLEXES 

The infrared spectra (4000-400 cm-1) of both compounds were collected on a Nicolet 5700 FT-

IR spectrophotometer. Both spectra are presented in fig. 7 above and the peak assignment of the 

most significant bands is shown in table 1 and table 2 below.  

 

 

Peak (cm-1) Assignment 

3415  N-H stretching 

3240  O-H stretching 

1610  C=N stretching 

1479 C-H δ 

1096  ClO4 -  

1013 C-O stretching 
 

Table 1. IR bands and assignment of compound 1. 

 
 

Fig. 7. IR spectra of compound 1 (top) and compound 2 (bottom). 
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Table 2. IR bands and assignment of compound 2. 

5.2. CRYSTAL STRUCTURES 

5.2.1. CRYSTAL STRUCTURE OF COMPOUND 1 [Cu2(L1)2ClO4][CU(L1’)Cl](ClO4) 

 

 

 

  

Peak Assignment 

3475  O-H stretching 

2884 C=C aromatic 

1601  C=N stretching 

1477 C-H δ 

1020 C-O asymmetric stretching 

945 C-O symmetric stretching 

Fig. 8. (Left) Partially labelled structure of the dinuclear complex in compound 1 (hydrogen atoms omitted 
for clarity). (Right) Coordination polyhedron of the copper (II) atom in the dinuclear complex in compound 1 

(the solid lines represent the ideal octahedron) 
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The single-crystal X-ray structure of compound 1 shows that it crystallizes in the triclinic space 

group P-1. The analysis reveals the formation of a neutral dinuclear copper complex and a 

positively charged mononuclear complex. In the dinuclear unit, each copper atom is 

hexacoordinated with a distorted octahedral CuO3N3 coordination sphere. Two units of a newly 

formed ligand and a perchlorate anion surround each copper atom in the dinuclear complex, 

where one ligand unit acts as a tridentate chelate for one copper atom and a bidentate chelate 

for the other copper atom. The Cu-O coordination distances vary in the range between 1.910 and 

2.686 Å due to the presence of three different types of O-donors. The same applies for the Cu-N 

distances, which vary between 1.993 and 2.032 Å due to the presence of two different types of 

N-donors. The coordination geometry of the copper atom in the cationic monomer is square 

pyramidal with the basal coordination plane provided by one oxygen atom, four nitrogen atoms 

and a chloride anion at the tip of the pyramid. The Cu-O distance is 2.276 Å and the Cu-N 

distances vary from 1.976 to 2.055 Å. The intermetallic Cu-Cu distance is significantly large, 4.361 

Å. The distortion of the coordination sphere of the Cu(II) ions in compound 2 has been calculated 

using the SHAPE v2 program based on continuous shape measures (CShM). CShM allows us to 

determine the distances between the ideal coordination environment and our real structure, 

yielding a deviation from the ideal polyhedron of 3.689.  Valence bond calculations have been 

performed in the coordination sphere of the copper (II) atoms, giving a value of 2.21.  

Fig. 9. (Left) Partially labelled structure of the mononuclear complex in compound 1 (hydrogen atoms 
omitted for clarity). (Right) Coordination polyhedron of the copper (II) atom in the mononuclear complex in 

compound 1 (the solid lines represent the ideal square-planar pyramid). 
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Bond Distance (Å) Atoms Angle (º) 

Cu(1)- Cu(1) 4.361 N(1)-Cu-O(2) 98.97 

Cu(1)-O(3) 1.910 N(1)-Cu-O(3) 84.12 

Cu(1)-N(3) 1.993 N(1)-Cu-O(5) 87.05 

Cu(1)-N(1) 1.995 N(1)-Cu-N(2) 97.82 

Cu(1)-N(2) 2.032 N(1)-Cu-N(3) 177.29 

Cu(1)-O(2) 2.517 O(2)-Cu-O(3) 113.09 

Cu(1)-O(5) 2.686 O(2)-Cu-O(5) 151.83 

Cu(2)-N(3a) 1.976 O(3)-Cu-O(5) 94.83 

Cu(2)-N(1a) 1.987   

Cu(2)-N(2a) 2.055   

Cu(2)-Cl(1a) 2.239   

Cu(2)-O(2a) 2.277   

Table 3. Bonding parameters of the dinuclear copper complex in compound 1. 

Fig.10. (Left) Schematic representation of the dinuclear complex in compound 1. (Right) Schematic 
representation of the neutral mononuclear complex in compound 1. 
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5.1.2.2. DISCUSSION 

It is clear that the structures obtained are not the desired Schiff base compounds that we were 

looking for. A new oxazolidine ring has been formed, and an additional pyridin-2-carboxaldehyde 

molecule has condensed with another ligand unit. This could be as a result of the reported 

compound being prepared by mixing the pyridine-2-carboxaldehyde, the amino-alcohol and the 

copper salt without refluxing. This was done to avoid heating perchlorate salts. The ring-closure 

reaction takes place because the cyclization of a five membered ring is usually favoured. 

Furthermore, it is believed that, in the presence of a complexed metallic cation, the imine bond 

may be polarized, increasing the electrophilic character of the iminic carbon, facilitating the 

nucleophilic attack of one of the two hidroxyl groups. On the mononuclear complex, the same 

cyclization has taken place, but in this case, the condensation between the ligand and the 

aldehyde proceeds through the nitrogen, creating a new nitrogen-carbon bond. It is unclear how 

and why these reactions have taken place.  

 

5.2.2. CRYSTAL STRUCTURE OF COMPOUND 2 [Mn2(L2)2(μ2-Cl2)Cl2] 

 

 

 

Fig. 11. (Left) Partially labelled structure of complex 2 (hydrogen atoms omitted for clarity). (Right) 
Coordination polyhedron of the manganese (II) atoms in complex 2 (the solid lines represent the ideal 
octahedron) 
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The single crystal X-ray structure of complex 2 shows that it crystallizes in the space group C2/c. 

The structure is shown in fig. 11. The analysis reveals the formation of a symmetrical dinuclear 

manganese (II) neutral complex bridged by two chloride anions (η2). Each manganese atom is 

hexacoordinated with a significantly distorted octahedral MnCl3N3 coordination sphere. The 

formed ligand acts as a tridentate chelate that coordinates the metal through its three nitrogen 

atoms adopting the mer conformation around the cation. Additionally, each manganese atom is 

coordinated by a terminal chloride anion. The Mn-N distances vary between 2.205 Å and 2.367 Å 

due to different N donors. The Mn-N distances for the two pyridine nitrogen atoms are significantly 

shorter than the one for the tertiary amine nitrogen atom. This reflects the strong coordination 

ability of the pyridine nitrogen.  The distance between the manganese atom and the axial Cl2 is 

2.789 Å, while the distance with the equatorial Cl2 is 2.443 Å. The distance between the 

manganese atom and the terminal Cl1 is 2.455 Å. The main contributions to the distortion are the 

N-Mn-N and the Cl-Mn-Cl angles. The axial Cl1-Mn-Cl2 angle is 174º, which results in an almost 

linear arrangement. The Mn-Cl2-Mn angle is 94.54º and the Cl2-Mn-Cl2 angle is 85.47º. The 

intermetallic distance between both manganese atoms is 3.850 Å, significantly shorter than in the 

first structure. All these results are consistent with other complexes containing the [Mn2(μ-Cl)2]2+ 

unit found in the literature [6], [7], [8]. 

The ideal coordination polyhedron of complex 2 was measured using SHAPE v2 software. 

The central cation coordination geometry shows a deviation from the ideal octahedron of 2.449. 

Valence bond calculations have been performed in the coordination sphere of Mn(II), giving a 

deviation from the ideal polyhedron of 2.01. By looking at these results, it is expected that the 

ferro- or antiferromagnetic interactions between the manganese atoms through the chloride 

bridges will be very weak, if there is any interaction at all. 

This time, a double cyclization process has taken place due to the electrophilic character of 

the iminic carbon, increased by the presence of a metal cation that acts as a catalyst, and the 

high stability of the newly formed five-membered rings. The cyclization leading to an oxazolidine 

ring is not rare and it has been reported before in the literature [1], [9], [10], although Saleem et 

al. reported that the reaction may take place even in the absence of a metal cation. However, the 

double cyclization step leading to a dinuclear complex has only been reported twice before: in a 

dinuclear iron complex [11] and in a mononuclear copper complex [12]. A proposed mechanism 

for the double cyclization is shown in fig. 12 below [13]. 
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Bond Distance (Ǻ) Atoms Angle (º) 

Mn-N(1) 

Mn-N(2) 

Mn-N(3) 

Mn-Cl(1) 

Mn-Cl(2) (axial) 

Mn-Cl(2) (equatorial) 

2.206 

2.211 

2.370 

2.455 

2.789 

2.443 

Cl(2)-Mn-Cl(2) 

Cl(2)-Mn-Cl(1) 

Mn-Cl-Mn 

N(2)-Mn-Cl(1) 

N(3)-Mn-Cl(1) 

N(1)-Mn-Cl(1) 

N(2)-Mn-Cl(2) 

N(3)-Mn-Cl(2) 

N(1)-Mn-Cl(2) 

N(1)-Mn-N(2) 

N(1)-Mn-N(3) 

85.47 

174.34 

94.53 

103.25 

97.64 

92.38 

102.31 

166.27 

105.77 

146.09 

73.99 

 

Table 4. Selected bond parameters of complex 2 

  

Fig. 12. Proposed reaction pathway of the double cyclization of the ligand in compound 2. 
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6. MAGNETISM STUDIES 

 Magnetic susceptibility measurements for the compound were carried out on polycrystalline 

samples, at the Servei de Magnetoquímica of the Universitat de Barcelona, with a Quantum 

Design SQUID MPMS-XL susceptometer apparatus working in the range 2-300 K under a 

magnetic field of approximately 5000 G (from 2-300 K) and 300 G (from 2-30 K). Diamagnetic 

corrections were estimated from Pascal Tables. 

6.1. MAGNETIC PROPERTIES OF COMPOUND 1 

The χMT value for compound 1 at 300 K is 0.790 cm3 mol-1 K for two copper (II) ions, which is 

as expected for two isolated copper (II) ion with g = 2.05. The χMT values are almost constant 

until ca. 40 K and then it decreases sharply, giving the minimum value of 0.667 cm3 K mol-1 at 2K 

as it shown in figure 13. The drop in χMT at low temperatures indicates the presence of a very 

weak antiferromagnetic coupling between the copper (II) ions. 

As it is indicated in the description of the structure paragraph, the structure of compound 1 

consist of two copper ions linked between the fragment formed by a carbon-oxygen-carbon bridge 

giving a dinuclear system. Thus, one coupling parameter J can be considered to interpret the 

magnetic interaction in the complex and the magnetic susceptibility can be fitted with the Bleaney-

Bowers equation (equation 1) for a couple of S = 1/2 spins [14]. 

 

𝜒𝑇 =
2𝑁𝐴𝑔2𝜇𝐵

2

𝑘
·

1

3+𝑒
−𝐽
𝑘𝑇

                    (Eq. 4) 

 

The parameters N, μB and K in the equation have their usual meanings. The best fit 

parameters from 300 down to 2 K are found as J = -0.67 cm-1 and g = 2.05 with an error R = 

3.97·10-5 for compound 1, where R = Σ[(χMT)exp - (χMT)calc]2 / S[(χMT)exp]2. 

The magnetization measurements at 2 K up to an external field of 5.5 T confirm the very weak 

antiferromagnetic interaction. At a higher field, the reduced molar magnetization M/Nβ units tends 

to 1.88 (Figure 14). This value is slightly less to the expected for two isolated Cu(II) ion (2 M/Nb 

with g = 2.0), which is consistent with a very weak antiferromagnetic interaction. This confirms 

that if J is small, the XT product will be close to the expected value for two non-coupled electrons. 

This result is consistent with another dinuclear copper complex found in the literature [15].  
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This behaviour is expected because there is more than one diamagnetic atom acting as a 

bridge between the metallic centres, so there is not almost any exchange interaction between the 

copper atoms through the ligand. Due to the very long intermetallic distance (4.361 Å, see 

structural description), there is very little overlap between the d-orbitals of the copper atoms, so 

the through-space interaction contribution to the J value is negligible. The magnitude of this weak 

antiferromagnetic coupling comes from the overlap between the d-orbitals of the metal and the p-

orbitals of the bridge ligand [16] 

 

 

 

Fig. 13. (a) χMT vs. T plot for compound 1 at 5000 Oe. The solid red line corresponds to 
the best fit (see text). 
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6.2. MAGNETIC PROPERTIES OF COMPLEX 2 

The temperature dependence of χMT (χM being the magnetic susceptibility for two Mn(II) ions) 

for complex 2 is shown in Figure 15 (from 300 K to 2 K). χMT value is 8.763 cm3 mol-1 K at 300K, 

a value which is as expected for two “isolated” Mn(II) ions (with g ~ 2.00). Decreasing the 

temperature, the values of χMT are practically constant to ca. 45 K (8.455 cm3mol-1K). From this 

value to 2 K the decrease is more pronounced reaching a value of 5.146 cm3mol-1K, at 2 K. The 

shape of this curve is characteristic of the occurrence of weak antiferromagnetic interactions 

between the Mn(II) centres. 

 Taking into account the dinuclear nature of complex 2, the susceptibility data were fitted 

by the equation 2 formula given by Kahn [17] based on the exchange Hamiltonian H = -JSiSj. The 

best fit is given by the exchange parameters J = -0.240 ± 0.003 cm-1, g = 1.988 ± 0.002 (the 

standard value for Mn(II) ions) and R = 3.8 x 10-5, where R = Σ[(χMT)exp - (χMT)calc]2 / Σ[(χMT)exp]2. 

    

(𝑥 =  
−𝐽

𝑘𝑇
)                   (Eq. 5) 

 

The magnetization measurements at 2 K up to an external field of 5.5 T confirm the very weak 

antiferromagnetic interaction. At higher field, the reduced molar magnetization molar M/Nβ units 

Fig. 14. Plot of the M/Nβ vs. H at 2K for compound 1. The solid red line corresponds to the M/Nβ 
simulation for two isolated S = 1/2 at 2 K, g = 2.07 
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tends to 9.66 (figure 16). This value is close to the expected for two isolated Mn(II) ion (10 M/Nβ 

with g = 2.0). Confrontation of the overall shape of the plot of the compound with the Brillouin [2] 

one (solid plot) for two isolated Mn(II) with S = 5/2 and g = 2.00 at T = 2 K indicates slower 

saturation which is consistent with the weak antiferromagnetic coupling between the two 

manganese centres. 

 

 

 

Fig. 15. Plot of χMT vs T for complex 2 The solid red line represents the best-fit calculation (see text). 

Fig. 16. Plot of the reduced magnetization at 2 K for complex 2, solid line represents the M/Nβ 

simulation for two isolated S = 5/2 system at 2 K with g = 2.00. 
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In order to stablish a correlation between the J value and the Mn-Cl-Mn angle, a few examples 

of already reported manganese complexes containing the [Mn2(μ-Cl)2]2+ unit were found using 

the CCDC ConQuest software[18]. By looking at the values in the table below, it is clear that 

there is not a clear dependency, although the exchange parameter J seems to increase by 

increasing the Mn-Cl-Mn angle.  

 

 

 

 

 

 

  

Mn-Cl-Mn (º) Mn-Mn (Å) J (cm-1) Ref. 

96.59 3.859 0.15 [7] 

96.42 3.850 0.55 [6] 

95.84 3.777 -0.17 [19] 

95.72 3.835 0.68 [20] 

95.52 3.726 1.49 [21] 

94.53 3.850 -0.24 This work 

93.53 3.740 0.53 [22] 

92.71 3.640 -0.024 [23] 

90.69 3.612 -5.2 [24] 

Table 5. Structural parameters and magnetic coupling constant (J) for Mn(II) compounds with a [Mn2(μ-

Cl)2]2+ unit. 
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7. EXPERIMENTAL SECTION 

7.1. MATERIALS AND METHODS 

All reagents and solvents were purchased from commercial sources and used without further 

purification. The Schiff base ligand H2L was synthetized from the condensation of 2-

pyridincarboxaldehyde and 2-amino-1,3-propanol using methanol as a solvent.   

7.2. PREPARATION OF H2L LIGAND 

A methanolic solution of 10 mmol pyridine-2-carboxaldehyde and 10 mmol of 2-amino-1,3-

propanediol in 100 mL of methanol was heated under reflux at 70 ºC for two hours. The solution 

was allowed to cool down to room temperature and used without further purification. The product 

was not isolated and left in the freezer for storage. 

7.3. Syntheses of the complexes 

Only the syntheses of the two compounds that were able to crystallize are shown here. In total, 

67 syntheses were performed using various metals and ligands. Unfortunately, none of them 

were able to crystallize. 

7.3.1. Synthesis of compound 1 

1 mmol of CuClO4·H2O (0.371 g) in methanol (5 mL) was added dropwise to 10 mL (1 mmol) 

of the L1 ligand solution and stirred for ten minutes. A solution of DyCl3·6H2O (1mmol, 0.377 g) 

in methanol (5 mL) was added to the resulting blue solution. The solution turned dark blue after a 

while and it was allowed to stir overnight. The resulting solution was left in open atmosphere to 

evaporate. Small crystals not suitable for XRD appeared after four days. They were redissolved 

in MeOH/H2O in a 1:1 proportion and left undisturbed in open atmosphere to evaporate. Bigger 

crystals suitable for XRD were obtained after ten days.  

Although we have not experienced any problems, perchlorate salts are explosive and should 

be handled with care. 

9.2.2. Synthesis of compound 2 

1 mmol of MnCl2·4H2O and 1 mmol of DyCl3·6H2O, both dissolved in 5 mL of methanol, were 

added to 10 mL (1 mmol) of the ligand solution and refluxed for 2 h. The formed pale-orange 
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solution was left undisturbed in open atmosphere. A solid precipitate appeared after two weeks, 

although it was not in the desired crystalline form. The precipitate was dissolved in methanol (10 

mL) and layered with diethyl ether. Medium-sized pale-yellow crystals suitable for XRD appeared 

after two weeks. Due to lack of material to carry on with the magnetic measurements, the same 

synthesis was repeated, this time without adding the DyCl3·6H2O, as the lanthanide is not inserted 

in the structure (see structural description).  
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8. CONCLUSIONS 

The Schiff base ligand could not be successfully synthetized. Instead, an interesting new 

ligand containing an oxazolidine ring has been assembled. Two dinuclear transition metal 

complexes have been successfully synthetized and their crystal structures have been determined 

by XRD. In the first compound, two copper (II) complexes of different nuclearity co-crystallize in 

the same crystal structure. In the second compound, a dinuclear manganese (II) complex bridged 

by two chloride anions has been successfully characterized. In this case, a second cyclization 

has taken place in the ligand, leading to a rare double oxazolidine ring coordinated to the metal. 

Only a few complexes found in literature have a similar ligand coordinated to a transition metal. 

Magnetic studies were performed in both compounds. The two metallic centres in both 

complexes are antiferromagnetically coupled with a very small exchange constant, as expected 

by looking at their structural properties. These results are in good agreement with those found in 

literature. 

We were not able to insert a lanthanide metal in the complexes. No SMM measurements have 

been performed in this work. 
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10. ACRONYMS 

SMM: Single molecular magnet 

ZFS: Zero field splitting 

XRD: X-Ray diffraction 

L1: pyridin-2-yl(2-(pyridin-2-yl)oxazolidin-4-yl)ethoxy)methanolate 

L1’: 2-(3-(hydroxy(pyridin-2-yl)methyl)-2-(pyridin-2-yl)oxazolidin-4-yl)ethanol 

L2: 3,5-di(dipyridin-2-yl)dihydro-1H,3H,5H-oxazolo[3,4-c]oxazole 
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APPENDICES 
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APPENDIX 1: OTHER STRUCTURES 

The crystal structures of unsuccessful syntheses are reported here. 

 [CUCl(py)4]+ 

As we can see in this structure, the strong coordinating ability of the pyridine drives the 

formation of the complex and avoids the coordination of the metal with the desired ligand. The 

same structure is already reported in the literature and lacks interesting magnetic properties, so 

no further measurements have been performed. 

 

Fig. 17. Crystal structure obtained (Colour code: orange, copper; green, chlorine; blue, nitrogen; black, 
carbon) 
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APPENDIX 2: CRYSTALLOGRAPHIC DATA 

Crystal Structure Report for I55ZB55 (compound 1) 

A blue prism-like specimen of C60H70Cl6Cu4N12O31, approximate dimensions 0.160 mm 

x 0.190 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity 

data were measured on a D8 Venture system equipped with a multilayer monochromator and a 

Mo microfocus (λ = 0.71073 Å). 

The frames were integrated with the Bruker SAINT software package using a narrow-frame 

algorithm. The integration of the data using a triclinic unit cell yielded a total of 74097 reflections 

to a maximum θ angle of 30.55° (0.70 Å resolution), of which 10945 were independent (average 

redundancy 6.770, completeness = 99.0%, Rint = 2.72%, Rsig = 1.66%) and 10125 (92.51%) 

were greater than 2σ(F2). The final cell constants 

of a = 10.6886(7) Å, b = 11.9370(8) Å, c = 16.1341(10) Å, α = 108.127(2)°, β = 97.404(2)°, γ 

= 107.698(2)°, volume = 1806.1(2) Å3, are based upon the refinement of the XYZ-centroids of 

reflections above 20 σ(I). Data were corrected for absorption effects using the Multi-Scan method 

(SADABS). The calculated minimum and maximum transmission coefficients (based on crystal 

size) are 0.6920 and 0.7461. 

 

The structure was solved and refined using the Bruker SHELXTL Software Package, using the 

space group P -1, with Z = 1 for the formula unit, C60H72Cl6Cu4N12O31. The final anisotropic full-

matrix least-squares refinement on F2 with 535 variables converged at R1 = 2.66%, for the 

observed data and wR2 = 7.10% for all data. The goodness-of-fit was 1.044. The largest peak in 

the final difference electron density synthesis was 0.857 e-/Å3 and the largest hole was -0.665 e-

/Å3 with an RMS deviation of 0.064 e-/Å3. On the basis of the final model, the calculated density 

was 1.769 g/cm3 and F(000), 982 e-. 
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Crystallographic author: Mercè Font-Bardia, Unitat de Difracció de RX. Centres Científics i 

Tecnològics de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona. Solé i Sabarís 

1-3. 08028-Barcelona 

 

  

Identification code I55ZB55_0m_a 

Empirical formula C60 H72 Cl6 Cu4 Dy0 N12 O31 

Formula weight 1924.15 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P -1 

Unit cell dimensions a = 10.6886(7) Å α= 108.127(2)°. 

b = 11.9370(8) Å β= 97.404(2)°. 

c = 16.1341(10) Å γ= 107.698(2)°. 

Volume 1806.1(2) Å3 

Z 1 

Density (calculated) 1.769 Kg/m3 

Absorption coefficient 1.482 mm-1 

F(000) 982 

Crystal size 0.200 x 0.190 x 0.160 mm3 

Theta range for data collection 2.527 to 30.547°. 

Index ranges -15<=h<=15, -17<=k<=17, -23<=l<=23 

Reflections collected 74097 

Independent reflections 10945 [R(int) = 0.0272] 

Completeness to theta = 25.242° 99.2 % 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7461 and 0.6920 

Refinement method Full-matrix least-squares on F2 
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Data / restraints / parameters 10945 / 6 / 535 

Goodness-of-fit on F2 1.044 

Final R indices [I>2sigma(I)] R1 = 0.0266, wR2 = 0.0678 

R indices (all data) R1 = 0.0300, wR2 = 0.0710 

Extinction coefficient n/a 

Largest diff. peak and hole 0.857 and -0.665 e/Å3 

Table 6. Crystal data and structure refinement for I55ZB55_0m_a. 

Crystal Structure Report for I55ZB74A (compound 2) 

A colorless prism-like specimen of C63H72Cl8Mn4N12O11, approximate dimensions 0.100 mm 

x 0.120 mm x 0.150 mm, was used for the X-ray crystallographic analysis. The X-ray intensity 

data were measured on a D8 Venture system equipped with a multilayer monochromator and a 

Mo microfocus (λ = 0.71073 Å). 

The frames were integrated with the Bruker SAINT software package using a narrow-frame 

algorithm. The integration of the data using a monoclinic unit cell yielded a total 

of 30283 reflections to a maximum θ angle of 30.53° (0.70 Å resolution), of which 5462 were 

independent (average redundancy 5.544, completeness = 98.6%, Rint = 2.65%, Rsig = 2.07%) 

and 4848 (88.76%) were greater than 2σ(F2). The final cell constants 

of a = 20.5981(8) Å, b = 11.0699(4) Å, c = 17.4397(7) Å, β = 114.596(2)°, volume 

= 3615.8(2) Å3, are based upon the refinement of the XYZ-centroids of reflections above 20 

σ(I). Data were corrected for absorption effects using the Multi-Scan method (SADABS). The 

calculated minimum and maximum transmission coefficients (based on crystal size) 

are 0.6615 and 0.7461. 

 

The structure was solved and refined using the Bruker SHELXTL Software Package, using the 

space group C 1 2/c 1, with Z = 2 for the formula unit, C63H72Cl8Mn4N12O11. The final anisotropic 

full-matrix least-squares refinement on F2 with 229 variables converged at R1 = 3.96%, for the 

observed data and wR2 = 10.84% for all data. The goodness-of-fit was 1.068. The largest peak 

in the final difference electron density synthesis was 1.136 e-/Å3 and the largest hole was -

0.839 e-/Å3 with an RMS deviation of 0.090 e-/Å3. On the basis of the final model, the calculated 

density was 1.540 g/cm3 and F(000), 1716 e-. 
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Crystallographic author: Mercè Font-Bardia,  Unitat de Difracció de RX. Centres Científics i 

Tecnològics de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona. Solé i Sabarís 

1-3. 08028-Barcelona 

 

  

Identification code  I55ZB74A_0m_a 

Empirical formula  C63 H72 Cl8 Mn4 N12 O11 

Formula weight  1676.68 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C 2/c 

Unit cell dimensions a = 20.5981(8) Å α= 90° 

 b = 11.0699(4) Å β= 114.596(2)° 

 c = 17.4397(7) Å γ = 90° 

Volume 3615.8(2) Å3 

Z 2 

Density (calculated) 1.540 Kg/m3 

Absorption coefficient 1.044 mm-1 

F(000) 1716 

Crystal size 0.150 x 0.120 x 0.100 mm3 

Theta range for data collection 2.248 to 30.528°. 

Index ranges -29<=h<=29, -15<=k<=15, -22<=l<=24 

Reflections collected 30283 

Independent reflections 5462 [R(int) = 0.0265] 

Completeness to theta = 25.242° 99.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7461 and 0.6615 

Refinement method Full-matrix least-squares on F2 
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Data / restraints / parameters 5462 / 2 / 229 

Goodness-of-fit on F2 1.068 

Final R indices [I>2sigma(I)] R1 = 0.0396, wR2 = 0.1024 

R indices (all data) R1 = 0.0471, wR2 = 0.1084 

Extinction coefficient n/a 

Largest diff. peak and hole 1.136 and -0.839 e-/Å3 

Table 7. Crystal data and structure refinement for I55ZB74A_0m_a. 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


