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Abstract
We study the relationship between sampling sequences in infinite dimensional Hilbert
spaces of analytic functions and Marcinkiewicz–Zygmund inequalities in subspaces
of polynomials. We focus on the study of the Hardy space and the Bergman space in
one variable because they provide two settings with a strikingly different behavior.
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Reproducing kernel

Mathematics Subject Classification 30E05 · 30H20 · 41A10 · 42B30

1 Introduction

Marcinkiewicz–Zygmund inequalities are finite-dimensional models for sampling in
an infinite dimensional Hilbert or Banach space of functions. Originally they were
studied in the context of interpolation by trigonometric polynomials. They became
prominent in approximation theory, where they appear in quadrature rules and least
square problems, and were usually studied in the context of orthogonal polynomials.

In an abstract setting one is given a reproducing kernel Hilbert space H on a set S
with reproducing kernel k and a sequence of finite-dimensional subspaces Vn such that
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Vn ⊆ Vn+1 and
⋃

n Vn is dense inH. Each Vn comes with its own reproducing kernel
kn , which is the orthogonal projection of k. A family of (finite) subsets�n ⊆ S is called
a Marcinkiewicz–Zygmund family for Vn inH, if there exist constants A, B > 0, the
sampling constants, such that for all n large, n ≥ n0,

A‖p‖2H ≤
∑

λ∈�n

|p(λ)|2
kn(λ, λ)

≤ B‖p‖2H for all p ∈ Vn . (1)

Thus a Marcinkiewicz–Zygmund family comes with a sequence of Marcinkiewicz–-
Zygmund inequalities, which are sampling inequalities for the finite-dimensional
subspaces Vn . The point of the definition is that the sampling constants are inde-
pendent of the subspace Vn .

The diagonal of the reproducing kernel kn furnishes the most natural choice of
weights and goes back to the corresponding notion of interpolating sequences in
reproducing kernel Hilbert spaces studied by Shapiro and Shields [26]. The weights
are intrinsic to the underlying spaces Vn . Another hint for using kn comes from frame
theory: Since p(z) = 〈p, kn(·, z)〉 for p ∈ Vn , the sampling inequality amounts to
verifying that the normalized reproducing kernels kn(·, λ)/kn(λ, λ)1/2 form a frame
in Vn all whose elements have unit norm in H.

Marcinkiewicz–Zygmund inequalities havebeen studied inmanydifferent contexts,
e.g., for trigonometric polynomials [6,22], for spaces of algebraic polynomials with
respect to some measure [14,15], for spaces of spherical harmonics on the sphere
[16,17,19], for spaces of eigenfunctions of the Laplacian on a compact Riemannian
manifold [21], or even more generally for diffusion polynomials on a metric measure
space [7]. In sampling theory Marcinkiewicz–Zygmund inequalities can be used to
derive sampling theorems for bandlimited functions [8,9].

In this paper we initiate the investigation of Marcinkiewicz–Zygmund inequal-
ities for polynomials in spaces of analytic functions. As the reproducing kernel
Hilbert space we take either the Bergman space A2(D) or the Hardy space H2(D)

of analytic functions on the unit disk D. The natural finite-dimensional subspaces
will be the family of the polynomials Pn of degree n. In this context it is clear
that an arbitrary set of at least n + 1 distinct points yields a sampling inequality
A‖p‖2 ≤ ∑

λ∈� |p(λ)|2 kn(λ, λ)−1 ≤ B‖p‖2H for all p ∈ Pn . The objective of
Marcinkiewicz–Zygmund inequalities is to construct a sequence of finite sets �n ,
such that the constants A, B are independent of the degree n. The game is therefore to
diligently keep track of the constants and show that they do not depend on the degree.

We will see that this problem is deeply related to sampling theorems for the full
space A2 or H2. We say that � ⊆ S is a sampling set for H, if there exist constants
A, B > 0, such that

A‖ f ‖2H ≤
∑

λ∈�

| f (λ)|2
k(λ, λ)

≤ B‖ f ‖2H for all f ∈ H, (2)

where now k(z, w) is the reproducing kernel of H. In our case H = A2(D) or =
H2(D).
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Both the Bergman space and theHardy space are reproducing kernel Hilbert spaces,
in which the polynomials are dense and kn(λ, λ) → k(λ, λ) pointwise. However, the
underlying measures are different, and as a consequence the reproducing kernels and
the implicit metrics are different. We will see that these differences imply a drastically
different behavior of Marcinkiewicz–Zygmund families. In the Bergman space the
points of a Marcinkiewicz–Zygmund family will be “uniformly” distributed in the
entire disk, in Hardy space the points will cluster near the boundary of the disk. The
concentration will depend on the degree. It will therefore be practical to introduce
a notation of the relevant disks and annuli. For a fixed parameter γ > 0, we will
write

B1−γ /n = {z ∈ D : |z| < 1 − γ
n } = B(0, 1 − γ

n ) (3)

for the centered disk of radius 1 − γ
n , and

Cγ /n = {
z ∈ D : 1 − γ

n ≤ |z| < 1
}
. (4)

for the annulus of width γ /n at the boundary of D.
Our main result for the Bergman space A2(D)with norm ‖ f ‖2

A2 = 1
π

∫
D

| f (z)|2dz,
where dz is the area measure on D, establishes a clear correspondence between sam-
pling sets for A2(D) and Marcinkiewicz–Zygmund families for the polynomials Pn

in A2 as follows.

Theorem 1.1 (i) Assume that � ⊆ D is a sampling set for A2(D). Then for γ > 0
small enough, the sets �n = � ∩ B1−γ /n form a Marcinkiewicz–Zygmund family for
Pn in A2(D).

(ii) Conversely, if (�n) is a Marcinkiewicz–Zygmund family for the polynomials
Pn in A2(D), then every weak limit of (�n) is a sampling set for A2(D).

See Sect. 2.5 for the definition of a weak limit of sets. The theorem shows that the
construction of Marcinkiewicz–Zygmund families for the Bergman space is on the
same level of difficulty as the construction of sampling sets for A2. Fortunately, these
sampling sets have been characterized completely in the deep work of Seip [23,24].
Sampling sets are completely determined by a suitable density, the Seip–Korenblum
density. As a consequence of our main theorem, one can now give many examples of
Marcinkiewicz–Zygmund families for A2.

By contrast, the Hardy space does not admit any sampling sequences. By a theo-
rem of Thomas [27] (Props. 2 and 3), a function f ∈ H2(D) satisfying A‖ f ‖2

H2 ≤
∑

λ∈� | f (λ)|2k(λ, λ)−1 ≤ B‖ f ‖2
H2 must be identical zero. Therefore there can be

no analogue of Theorem 1.1(ii).
Despite the lack of a sampling theorem for H2(D) we can show the existence of

Marcinkiewicz–Zygmund families for polynomials with a different method. The idea
is to connect polynomials on the disk to polynomials on the torus in L2(T). Bymoving
a Marcinkiewicz–Zygmund family for polynomials on T into the interior of D, we
obtain a Marcinkiewicz–Zygmund family for polynomials in Hardy space. Since the
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problem on the torus is well understood [22], we can derive a general construction of
Marcinkiewicz–Zygmund families in H2(D).

Theorem 1.2 Assume that the family (�̃n) =
(
{eiνn,k : k = 1, . . . , Ln}

)
⊆ T is a

Marcinkiewicz–Zygmund family for Pn on the torus, i.e.,

A‖p‖2L2(T)
≤

Ln∑

k=1

|p(eiνn,k )|2
n

≤ B‖p‖2L2(T)

for all polynomials p of degree n.
Fix γ > 0 arbitrary, choose ρn,k ∈ [1− γ

n , 1) arbitrary, and set �n = {ρn,keiνn,k :
k = 1, . . . , Ln} ⊆ Cγ /n for n ∈ N. Then (�n) is a Marcinkiewicz–Zygmund family
for Pn in H2(T).

This result provides a systematic construction of examples of Marcinkiewicz–-
Zygmund families for Hardy space, since Marcinkiewicz–Zygmund families for
polynomials on the torus can be characterized almost completely by their density [22].
Marcinkiewicz–Zygmund families on the torus andmore generally of orthogonal poly-
nomials have been studied intensely in approximation theory, see [6,8,14,15,18,20]
for a sample of papers.

The technical heart of thematter is, as so often in complex analysis, the investigation
and estimate of the reproducing kernels, namely the kernel k(z, w) for the entire space
A2 or H2 and the kernels kn(z, w) for the polynomials of degree n. The guiding
principle is to sample the polynomials in the region where the diagonals k(z, z) and
kn(z, z) are comparable in size. One may call this region the “bulk” region. For the
Bergman space the bulk region is the centered disk B1−γ /n , because this is where the
mass of polynomials of degree n is concentrated. For the Hardy space the bulk region
is the annulus Cγ /n , as the H2-norm sees only the boundary behavior of functions in
H2.

Our main insight may be relevant in other settings. For instance, our main theorems
can be extended to polynomials in weighted Bergman spaces or in Fock space [10].
We expect a version of Theorem 1.1 to hold for Bergman space on the unit ball in C

n ,
though this will be more technical to elaborate.

The paper is organized as follows: In Sect. 2 we treat the theory of Marcinkiewicz–
Zygmund families in the Bergman space A2(D) and in Sect. 3 we treat the Hardy
space H2(D). Each section starts with the necessary background, the comparisons
of the various reproducing kernels and the main contribution to the norms. Then we
formulate and prove the main results about Marcinkiewicz–Zygmund families.

Throughout we will use the notation � to abbreviate an inequality f ≤ Cg where
the constants is independent of the essential input, which in our case will be the degree
of the polynomial. To indicate the dependence of the constant on some parameter γ ,
say, we will write � γ . As usual, f � g means that both f � g and g � f hold.
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2 Bergman Space

2.1 Basic Facts

The Bergman space A2 = A2(D) consists of all analytic functions on the unit disk D

with finite norm

‖ f ‖A2 =
( 1

π

∫

D

| f (z)|2 dz
)1/2

, (5)

where dz is the area measure on D. For a detailed exposition of Bergman spaces we
refer to the excellent monographs [4,13], both of which contain an entire chapter on
sampling in Bergman space.

The monomials z �→ zk are orthogonal with norm ‖zk‖2
A2 = 1

k+1 . Consequently

the norm of f (z) = ∑∞
k=0 ak zk is

‖ f ‖2A2 =
∞∑

k=0

|ak |2 1

k + 1
. (6)

Let p(z) = ∑n
k=0 ak zk ∈ Pn , then its norm on a disk Bρ , ρ < 1, is given by

1

π

∫

Bρ

|p(z)|2 dz = 1

π

n∑

k,l=0

akal

∫

Bρ

zk z̄l dz

= 1

π
2π

n∑

k=0

|ak |2
∫ ρ

0
r2krdr

=
n∑

k=0

|ak |2ρ2k+2 1

k + 1
.

For p ∈ Pn , we therefore have

1

π

∫

Bρ

|p(z)|2 dz ≥ ρ2n+2‖p‖2A2 . (7)

To obtain a bound independent of n, we need to choose ρn such that ρ2n
n ≥ A for all

n. By picking ρn = 1 − γ
n , we find

e−2γ ≤ (
1 − γ

n

)n ≤ e−γ ∀n > 2γ. (8)

In the following we will use these inequalities abundantly.

Corollary 2.1 If p ∈ Pn, then for every γ > 0 and n > 2γ

1

π

∫

Cγ /n

|p(w)|2 dw ≤ ‖p‖2A2

(
1 − (1 − γ

n )2n+2) ≤ ‖p‖2A2(1 − 1
4e−4γ ).
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Furthermore, for ε > 0 there exists γ > 0 (small enough) such that

1

π

∫

Cγ /n

|p(w)|2 dw ≤ ε‖p‖2A2 for all p ∈ Pn

independent of n.

Proof With (7) and the partition D = B1−γ /n ∪ Cγ /n we obtain

1

π

∫

Cγ /n

|p(w)|2 dw = ‖p‖2A2 − 1

π

∫

B1−γ /n

|p(w)|2 dw

≤ ‖p‖2A2

(
1 − (1 − γ

n )2n+2) ≤ ‖p‖2A2(1 − 1

4
e−4γ ),

since (1 − γ
n )2n+2 ≥ e−4γ (1 − γ

n )2 ≥ e−4γ /4 for n ≥ 2γ . Also as γ → 0,
infn∈N(1 − γ

n )2n+2 → 1. ��

2.2 The Bergman Kernels

Since
√

k + 1 zk is an orthonormal basis for Pn in A2(D), the reproducing kernel of
Pn in A2 is given by

kn(z, w) =
n∑

k=0

(k + 1)(zw̄)k = 1 + (n + 1)(zw̄)n+2 − (n + 2)(zw̄)n+1

(1 − zw̄)2
. (9)

As n → ∞, the kernel tends to the Bergman kernel of A2,

k(z, w) = 1

(1 − zw̄)2
z, w ∈ D. (10)

We first compare these kernels in two regimes, namely the “bulk” regions B1−γ /n

and the boundary region Cγ /n .

Lemma 2.2 Let kn(z, w) be the reproducing kernel ofPn in A2 and γ > 0 be arbitrary.
(i) If |z| ≤ 1 − γ

n , then kn(z, z) � k(z, z) for n large enough, n ≥ nγ , precisely

cγ k(z, z) ≤ kn(z, z) ≤ k(z, z) = 1

(1 − |z|2)2 , (11)

where cγ > 0 can be chosen as cγ = 1 − e−2γ (1 + 2γ ).
(ii) If 1 − γ

n ≤ |z| < 1 and n > max(γ, 3), then kn(z, z) � n2, precisely,

e−4γ

4
n2 ≤ kn(z, z) ≤ n2 . (12)
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Thus inside the disk B1−γ /n the reproducing kernel forPn behaves like the reproducing
kernel of the full space A2, whereas in the annulus it behaves like n2 and is much
smaller than k(z, z) near the boundary of D.

Proof (i) It is always true that kn(z, z) ≤ k(z, z) = 1
(1−|z|2)2 . For the lower bound, let

r = |z| and observe that

kn(z, z) = k(z, z)
(
1 − (n + 2)r2n+2 + (n + 1)r2n+4) = k(z, z)(1 − q(r)). (13)

Since q(r) = (n + 2)r2n+2 − (n + 1)r2n+4 is increasing on (0, 1) and r ≤ 1 − γ
n ,

we need an upper estimate for q at 1 − γ
n . With the help of (8) and some algebra we

write q as

q(1 − γ
n ) = (1 − γ

n )2n+2(n + 2 − (n + 1)(1 − γ
n )2

)

= (1 − γ
n )2n(1 − γ

n )2
(
1 + 2γ + γ

n (2 − γ ) − γ 2

n2
)

= (1 − γ
n )2n

(
1 + 2γ − 5γ 2

n
+ αγ

n2 + βγ

n3

)

for some constants αγ , βγ . Using (8) and a sufficiently large n, n ≥ nγ say, the final
estimate for q is

q(1 − γ
n ) ≤ e−2γ (1 + 2γ ) < 1, for n ≥ nγ .

Combined with (13) we have the lower estimate

kn(z, z) ≥ (1 − e−2γ (1 + 2γ ))k(z, z) = cγ k(z, z)

for |z| ≤ 1 − γ
n and n ≥ nγ .

(ii) If 1 − γ
n ≤ |z| < 1, then

kn(z, z) =
n∑

k=0

|z|2k(k + 1) ≤
n∑

k=0

(k + 1) = (n + 1)(n + 2)

2
≤ n2,

for n ≥ 4, and, for n ≥ 2γ ,

kn(z, z) =
n∑

k=0

|z|2k(k + 1) ≥
n∑

k≥n/2

(1 − γ
n )2n n

2
≥ e−4γ n2

4
.

��
We will also need some information about the behavior of the reproducing kernels

kn near the diagonal. It will be convenient to use the normalized reproducing kernel
κn(z, w) for Pn at the point w, i.e., κn(z, w) = kn(z, w)/

√
kn(w,w). It satisfies

‖κn(·, w)‖A2 = 1, and as we have observed in (11), if w ∈ B1−γ /n , then κn(w,w) �
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1
1−|w|2 . The following lemma collects the properties of κn near the diagonal in the
different regimes in D.

Lemma 2.3 (i) There is a constant γ0 such that for all w ∈ B1−γ0/n and z ∈
B(w, 0.5(1 − |w|2)) we have

1

4(1 − |w|2) ≤ |κn(z, w)| ≤ 9

4(1 − |w|2) .

(ii) For every γ > 0 there are K > 0 and ε > 0 depending only on γ such that

n

K
≤ |κn(z, w)| ≤ K n for all w ∈ Cγ /n, z ∈ B(w, ε/n)

and n > γ .

Proof (i) If z ∈ B(w, 0.5(1 − |w|2)), then

|1−zw̄| = |1−|w|2−w̄(z−w)|≥(1−|w|2)−|w̄(z − w)| ≥ 1
2 (1 − |w|2), (14)

and likewise |1 − zw̄| ≤ 3
2 (1 − |w|2). To obtain similar bounds for the numerator, it

suffices to prove that

|(n + 2)(zw̄)n+1 − (n + 1)(zw̄)n+2| < 1
2 .

for γ sufficiently large. We replace n + 1 by n and rewrite this expression as

|(n + 1)(zw̄)n − n(zw̄)n+1| =
∣
∣
∣n(zw̄)n

(
n+1

n − zw̄
)∣
∣
∣

≤ n|w|n
(
|1 − zw̄| + 1

n

)

≤ n|w|n 3
2 (1 − |w|2) + |w|n . (15)

Themap r → rn(1−r2) in (15) is increasing on [0, ( n
n+2 )

1/2]. Therefore itsmaximum
is taken at r = 1 − γ

n , provided that γ ≥ 1 and n ≥ 1. So we obtain the estimate

|(n + 1)(zw̄)n − n(zw̄)n+1| ≤ 3n(1 − γ
n )n γ

n
+ (1 − γ

n )n ≤ 3e−γ γ + e−γ < 1/2,

for γ large enough. In fact, we may take γ ≥ 3.
(ii) We know from (12) that kn(w,w) � n2. Furthermore

|κ ′
n(z, w)| = 1

kn(w,w)1/2

∣
∣
∣
∂kn(z, w)

∂z

∣
∣
∣ � 1

n

∣
∣
∣

n∑

k=1

k(k + 1)(zw̄)k−1w̄

∣
∣
∣ ≤ Cn2

Thus, if z ∈ B(w, ε/n), then κn(z) ≥ e−2γ

2 n − Cεn. Now take ε ≤ Ce−2γ

4 and

K = e−2γ

4 and (ii) follows. ��

123



Marcinkiewicz–Zygmund Inequalities 7603

2.3 Separation and Carleson-Type Conditions

We first study the upper estimate of the Marcinkiewicz–Zygmund inequalities and
derive a geometric description.

Let d(z, w) = ∣
∣ z−w
1−zw̄

∣
∣ be the pseudohyperbolic metric onD. We denote(w, ρ) =

{z ∈ D : d(z, w) < ρ} the hyperbolic disk in D. While (w, ρ) is also a Euclidean
disk (albeit with a different center and radius), it will be more convenient for us to
compare it to a Euclidean disk with the same center w. In fact, we have the following
inclusions:

B(w,
ρ

1 + ρ
(1 − |w|2)) ⊆ (w, ρ) ⊆ B(w,

ρ

1 − ρ
(1 − |w|2)), (16)

where the latter inclusion holds for ρ < 1/2.
A set� ⊆ D is called uniformly discrete, if there is a δ′ > 0 such that d(λ, μ) ≥ δ′

for all λ,μ ∈ �,λ �= μ. In view of (16) this is equivalent to the fact that the Euclidean
balls B(λ, δ(1−|λ|)), λ ∈ � are disjoint inD for some δ > 0.We refer to this condition
as � being δ-separated.

In A2(D) the upper estimate of the sampling inequality is characterized by the
following geometric condition. See [4, Sect. 2.11, Thm. 15] and [24].

Proposition 2.4 For � ⊆ D the following conditions are equivalent:

(i) The inequality
∑

λ∈�
| f (λ)|2
k(λ,λ)

≤ B‖ f ‖2
A2 holds for all f ∈ A2(D).

(ii) � is a finite union of uniformly discrete sets.
(iii) supw∈D #

(
� ∩ (w, ρ)

)
< ∞ for some (hence all) ρ ∈ (0, 1).

Condition (i) is often formulated by saying that the measure
∑

λ∈� k(λ, λ)δλ is a
Carleson measure for A2.

If we add the (much more difficult) lower sampling inequality to the assumptions,
we also have the following lemma of Seip [24] (see Lemma 5.2 and Thm. 7.1)

Lemma 2.5 If � is a sampling set for A2(D), then � contains a uniformly discrete set
�′ ⊆ � that is also sampling for A2(D).

Theproof of the implication (i i) ⇒ (i)yields a local versionof theBessel inequality
that will be needed.

Lemma 2.6 Let � be a δ-separated set and let γ > 0. Then there exists a constant
C = C(δ) and γ ′ > γ , such that

∑

λ∈�∩Cγ /n

| f (λ)|2
k(λ, λ)

≤ C
∫

Cγ ′/n

| f (w)|2 dw for all f ∈ A2. (17)

The constants depend only on the separation via γ ′ = (1 + δ)γ and C = 4
πδ2

.

Proof See [4], Sect. 2.11, Lemma 14. For completeness we include the proof.
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By assumption the Euclidean balls Bλ = B(λ, δ(1 − |λ|)) ⊆ D for λ ∈ Cγ /n are
disjoint. Since |Bλ|k(λ, λ) = πδ2(1−|λ|)2(1−|λ|2)−2 ≥ πδ2/4, the submean-value
property for | f |2 yields the estimate

| f (z)|2
k(λ, λ)

≤ 1

k(λ, λ)|Bλ|
∫

Bλ

| f (w)|2 dw ≤ 4

πδ2

∫

Bλ

| f (w)|2 dw. (18)

By summing over λ ∈ � ∩ Cγ /n and using the disjointness of the disks Bλ we obtain
that

∑

λ∈Cγ /n

| f (λ)|2
k(λ, λ)

≤ 4

πδ2

∑

λ∈Cγ /n

∫

Bλ

| f (w)|2 dw = 4

πδ2

∫

⋃
λ∈Cγ /n

Bλ

| f (w)|2 dw.

Since dist (0, Bλ) = |λ| − δ(1 − |λ|) = |λ|(1 + δ) − δ ≥ (1 − γ
n )(1 + δ) − δ =

1 − (1+δ)γ
n = 1 − γ ′

n , the disks Bλ are contained in the annulus Cγ ′/n . Since they are
disjoint, we obtain

∫

⋃
λ∈Cγ /n

Bλ

| f (w)|2 dw ≤
∫

Cγ ′/n

| f (w)|2 dw.

If � is a union of K separated sets �m , we apply the above argument to each �m and
then obtain the constant C = 4K

πδ2
. ��

Next we develop a geometric description for the upper Marcinkiewicz–Zygmund
inequalities in A2 that is similar to Proposition 2.4. For this we estimate the number
of points of a Marcinkiewicz–Zygmund family in the relevant regions of the disk,
namely in the bulk B1−γ /n , the annulus Cγ /n , and in the cells B(w, ε/n) ∩ D for w

near the boundary of D.

Proposition 2.7 Assume that (�n) satisfies the upper Marcinkiewicz–Zygmund inequal-
ities (1) for Pn in A2(D).

(i) Then for every γ > 0

#(�n ∩ Cγ /n) ≤ Cn. (19)

(ii) There are γ0 > 0 (γ0 ≈ 3) and C > 0 such that

#(�n ∩ B(z, 0.5(1 − |z|))) ≤ C, ∀z ∈ B1−γ0/n .

As a consequence, �n ∩ B1−γ0/n is a disjoint union of at most C uniformly discrete
subsets with a separation δ independent of n.

(iii) For every γ > 0 there is ε > 0 such that

#(�n ∩ B(z, ε
n )) ≤ C, ∀z ∈ Cγ /n .

The constants depend only on γ and the upper Marcinkiewicz–Zygmund bound B.
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Proof In each case we test the upper Marcinkiewicz–Zygmund inequalities against a
suitable polynomial in Pn .

(i) Choose the monomial p(z) = zn ∈ Pn with norm ‖p‖2
A2 = 1

n+1 . Since for

λ ∈ Cγ /n , |p(λ)| �γ 1 by (8) and kn(λ, λ) �γ n2 by (12), we obtain

1

n2 #(�n ∩ Cγ /n) �γ

∑

λ∈�n∩Cγ /n

|p(λ)|2
kn(λ, λ)

≤ B‖p‖2A2 = B

n + 1
.

This implies #(�n ∩ Cγ /n) � n.
(ii) We choose κn(·, z) ∈ Pn . For z ∈ B1−γ /n and λ ∈ B(z, 0.5(1 − |z|)) we have

|κn(λ, z)|2 � (1 − |z|2)−2 by Lemma 2.3(i), and kn(λ, λ) � (1 − |λ|2)−2 �
(1 − |z|2)−2 by Lemma 2.2. We conclude that |κn(λ,z)|2

kn(λ,λ)
≥ C for some constant,

and thus

C#(�n ∩ B(z, 0.5(1 − |z|))) ≤
∑

λ∈B(z,0.5(1−|z|))

|κn(λ, z)|2
kn(λ, λ)

≤ B‖κn(·, z)‖2A2 = B.

The relative separation follows as in [4], Sect. 2.11, Lemma 16.
(iii) Again we choose κn(·, z), this time for z ∈ Cγ /n . By Lemma 2.3 |κn(λ, z)|2 � n2

for λ ∈ B(z, ε/n). Likewise kn(z, z) � n2 for z ∈ Cγ /n by Lemma 2.2. Thus

C#
(
�n ∩ B(z, ε

n )
) ≤

∑

λ∈�n∩B(z, ε
n )

|κn(λ, z)|2
kn(λ, λ)

≤ B‖κn(·, z)‖2A2 = B. ��

As a consequence we see that the cardinality of a Marcinkiewicz–Zygmund family
for polynomials obeys the correct order of growth.

Corollary 2.8 If (�n) satisfies the upper Marcinkiewicz–Zygmund inequality, then
#�n � n.

Proof Choose γ large enough as in Lemma 2.7(ii). We cover B1−γ /n = (0, 1 − γ
n )

with hyperbolic disks (z j ,
1
3 ) ⊆ B(z j , 0.5(1 − |z j |)), such that the disks (z j ,

1
6 )

are disjoint. Since the hyperbolic area of B1−γ /n is
∫

B1−γ /n

dz
(1−|z|2)2 ≤ n/γ , we need

at most cn/γ disks (where c−1 is the hyperbolic area of (z j ,
1
6 )). By Lemma 2.7(ii)

every hyperbolic disk B(z j , 0.5(1−|z j |)) containsC points, so that #(�n ∩B1−γ /n) ≤
Cn for a suitable constant.

By Lemma 2.7(i) #(�n ∩ Cγ /n) � n as well. ��
We can now formulate a geometric description of the upper Marcinkiewicz–Zyg-

mund inequality (1), that is, the Bessel inequality of the normalized reproducing
kernels.

Theorem 2.9 For a family (�n) ⊆ D the following conditions are equivalent:
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7606 K. Gröchenig and J. Ortega-Cerdà

(i) For all n ≥ n0

∑

λ∈�n

|p(λ)|2
kn(λ, λ)

≤ B‖p‖2A2 , ∀p ∈ Pn .

(ii) There are γ > 0 and C > 0 such that (�n) satisfies

#
(
�n ∩ B(w, 0.5(1 − |w|))) ≤ C ∀w ∈ B1−γ /n, (20)

#(�n ∩ B(w, 1/n)) ≤ C ∀w ∈ Cγ /n . (21)

Proof (i) ⇒ (ii): This is Proposition 2.7.
(ii) ⇒ (i): We write

∑

λ∈�n

|p(λ)|2
kn(λ, λ)

=
∑

λ∈�n∩B1−γ /n

· · · +
∑

λ∈�n∩Cγ /n

. . .

and control each term with the appropriate geometric condition.
On B1−γ /n we may replace kn by k (Lemma 2.2). Since �n ∩ B1−γ /n is a union

of at most C uniformly discrete sets with fixed separation independent of n by our
assumption (20), Proposition 2.4—or the appropriate version of Lemma 2.6—implies
that

∑

λ∈�n∩B1−γ /n

|p(λ)|2
kn(λ, λ)

�γ

∑

λ∈�n∩B1−γ /n

|p(λ)|2
k(λ, λ)

� ‖p‖2A2 .

OnCγ /n we have kn(λ, λ)|B(λ, 1/n)| � 1 by (12); therefore using the submean-value
property we obtain

∑

λ∈Cγ /n

|p(λ)|2
kn(λ, λ)

≤
∑

λ∈Cγ /n

1

kn(λ, λ)|B(λ, 1/n)|
∫

B(λ,1/n)

|p(z)|2 dz

�
∫ ( ∑

λ∈�n∩Cγ /n

χB(λ,1/n)(z)
)
|p(z)|2 dz.

The integral is over the slightly larger annulus C(γ+1)/n ⊇ ⋃
λ∈Cγ /n

B(λ, 1/n), and

by assumption (21) the sum in the integral is bounded, whence
∑

λ∈Cγ /n

|p(λ)|2
kn(λ,λ)

�
‖p‖2

A2 . ��
In a more general formulation we can use measures in condition (i) instead of

discrete samples. This motivates the following definition.

Definition 2.1 We say that a sequence of measures {μn} defined on the unit disk form
a Carleson sequence for polynomials in the Bergman space if there is a constantC > 0
such that
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∫

D

|p(z)|2 dμn(z) ≤ C
∫

D

|p(z)|2 dz for all p ∈ Pn (22)

uniformly in n.

Thus a sequence (�n) ⊆ D satisfies the upper inequality in (1) if and only if the
measures μn = ∑

λ∈�n

δλ

kn(λ,λ)
form a Carleson sequence.

Theorem 2.10 A sequence of measures μn is a Carleson sequence for polynomials in
the Bergman space if and only if there exist γ > 0 and C > 0 such that

μn(B(z, 0.5(1 − |z|2))) ≤ C(1 − |z|2)2 ∀z ∈ B1−γ /n,

μn(B(z, 1/n)) ≤ C/n2 ∀z ∈ Cγ /n .

The proof is similar to the proof of Theorem 2.9. As we will not need the general
statement about Carleson sequences, we omit the details.

Remark The geometric condition in Theorems 2.9 and 2.10 can be stated more
concisely in terms of the first Bergman metric ρn = kn(z, z)ds2, see [1, p. 32]
instead of the Euclidean metric. This is not to be confused with the more usual sec-
ond Bergman metric given by  log kn(z, z)ds2. The reformulation is as follows: if
Dn(z, r) denotes a disk in the first Bergman metric ρn , then a sequence of measures
{μn} is a Carleson sequence if and only if there are r > 0 and C > 0 such that
μn(Dn(z, r)) ≤ C |Dn(z, r)|, for all n > 0 and for all z ∈ D, where |D(z, r)| is the
Lebesguemeasure of D(z, r). The conditions of (ii) in Theorem2.9 are then equivalent
to #(�n ∩ Dn(z, r)) ≤ C for all z ∈ D.

This reformulation is of course similar to the characterization of the Carleson
measures for the Bergman space obtained in [12]. The geometric description is
μ(B(z, 0.5(1 − |z|))) � |B(z, 0.5(1 − |z|))| for all z ∈ D.

2.4 Sampling Implies Marcinkiewicz–Zygmund Inequalities

After these preparations we can show that every sampling set for A2(D) generates a
Marcinkiewicz–Zygmund family for the polynomials.

Theorem 2.11 Assume that � ⊆ D is a sampling set for A2(D). Then for γ > 0 small
enough, the sets �n = � ∩ B1−γ /n form a Marcinkiewicz–Zygmund family for Pn in
A2(D).

Proof The assumption means that there exist A, B > 0, such that

A‖ f ‖2A2 ≤
∑

λ∈�

| f (λ)|2
k(λ, λ)

≤ B‖ f ‖2A2 for all f ∈ A2. (23)
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7608 K. Gröchenig and J. Ortega-Cerdà

Since � is sampling for A2, by Lemma 2.5 it contains a uniformly discrete set �′
with separation constant δ, say. We now choose γ > 0 so small that

1 −
(
1 − (1 + δ)γ

n

)2n+2 ≤ Aδ2

8
for all n > 2γ . (24)

This is possible because
(
1 − (1+δ)γ

n

)2n+2 ≥ e−4(1+δ)γ (1 − (1+δ)γ
n )2 by the lower

estimate in (8), and thus tends to 1 uniformly in n, as γ → 0. Note that the choice of
γ depends on the lower sampling constant A and the separation of �′.

We now apply Lemma 2.6 and Corollary 2.1 to the points � \ �n = � ∩ Cγ /n . Set
γ ′ = (1 + δ)γ . Then for p ∈ Pn we obtain

∑

λ∈�\�n

|p(λ)|2
k(λ, λ)

≤ 4

πδ2

∫

Cγ ′/n

|p(w)|2 dw

≤ 4

δ2

(
1 −

(
1 − (1 + δ)γ

n

)2n+2)‖p‖2A2 ≤ A

2
‖p‖2A2 .

Consequently,

∑

λ∈�n

|p(λ)|2
k(λ, λ)

=
∑

λ∈�

−
∑

λ∈�\�n

. . .

≥ A‖p‖2A2 −
∑

λ∈�\�n

|p(λ)|2
k(λ, λ)

≥ (A − A/2)‖p‖2A2 .

Since always kn(λ, λ) ≤ k(λ, λ), we finish the estimate by

∑

λ∈�n

|p(λ)|2
kn(λ, λ)

≥
∑

λ∈�n

|p(λ)|2
k(λ, λ)

≥ A

2
‖p‖2A2 for all p ∈ Pn .

As usual, the upper bound is easy. Since by (11) kn(λ, λ) � k(λ, λ) for λ ∈ B1−γ /n ,
it follows that

∑

λ∈�n

|p(λ)|2
kn(λ, λ)

�γ

∑

λ∈�n

|p(λ)|2
k(λ, λ)

≤
∑

λ∈�

|p(λ)|2
k(λ, λ)

≤ B ‖p‖2A2 ,

since � is sampling for A2(D). ��
Since sampling sets for A2(D) are completely characterized by means of the Seip–

Korenblum density [24], Theorem 2.11 provides a wealth of examples of Marcinkie-
wicz–Zygmund families. However, the parameter γ in the statement depends on the
lower sampling constant A and the separation δ of �.

123



Marcinkiewicz–Zygmund Inequalities 7609

2.5 FromMarcinkiewicz–Zygmund Inequalities to Sampling

Choose either the Euclidean or the pseudohyperbolic metric on D and let d(E, F) be
the corresponding Hausdorff distance between two closed sets E, F ⊆ D. We say
that a sequence of sets �n ⊆ D converges weakly to � ⊆ D, if for all compact disks
B ⊆ D

lim
n→∞ d

(
(�n ∩ B) ∪ ∂ B, (� ∩ B) ∪ ∂ B

) = 0.

See [4,11,13] for equivalent definitions. The main consequence of weak convergence
is the convergence of sampling sums. If all �n are uniformly separated with fixed
separation δ, then

∑

λ∈�n∩B

| f (λ)|2
k(λ, λ)

→
∑

λ∈�∩B

| f (λ)|2
k(λ, λ)

for all f ∈ A2(D). More generally, if each �n is a finite union of K uniformly
separated sets with separation constant δ independent of n, then we need to include
multiplicities m(λ) ∈ {1, . . . , K }. We then obtain

∑

λ∈�n∩B

| f (λ)|2
k(λ, λ)

→
∑

λ∈�∩B

| f (λ)|2
k(λ, λ)

m(λ). (25)

Since the multiplicities m(λ) are bounded, they only affect the constants, but do not
change the arguments.

Theorem 2.12 Assume that (�n) is a Marcinkiewicz–Zygmund family for the polyno-
mials Pn in A2(D). Let � be a weak limit of (�n) or of some subsequence (�nk ). Then
� is a sampling set for A2(D).

Proof Step 1.We assume that �n is a Marcinkiewicz Zygmund family and therefore

there are A, B > 0 such that A‖p‖A2 ≤ ∑
λ∈�n

|p(λ)|2
kn(λ,λ)

≤ B‖p‖2
A2 for all polynomials

p ∈ Pn . The upper inequality implies that there are C > 0 and γ > 0 such that
#(�n ∩ B(w, 0.5(1 − |w|))) ≤ C for all w ∈ B1−γ /n and all n (Theorem 2.9). In
addition, each set �n ∩ B1−γ /n is a finite union of K uniformly separated sequences
with separation δ independent of n.

Since �n converges to � weakly, � satisfies the same inequality

#(� ∩ B̄(w, 0.5(1 − |w|))) ≤ C, ∀w ∈ B1−γ /n,

and thus � is also a union of K uniformly discrete sequences with separation δ, see,
e.g., [4], Sect. 2.1, Lemma 16.

Note that the geometric conditions furnish constants cγ for the comparison of the
kernels k and kn on B1−γ /n , the separation constant δ, and the multiplicity K . In
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7610 K. Gröchenig and J. Ortega-Cerdà

the next step we will choose a suitable radius r that solely depends on these given
constants.

Step 2We prove the desired sampling inequality in A2(D) for all polynomials and
then use a density argument.

Fix a polynomial p of degree N , say. We know that there is an r = r(N ) < 1 such

that
∫
|z|>r−δ(1−r)

|p|2 ≤ cγ δ2 A
8K ‖p‖2

A2 because r − δ(1 − r) → 1 as r → 1. We take
n ≥ N big enough such that r < 1 − γ /n. In this case we have

A‖p‖2A2 ≤
∑

λ∈�n

|p(λ)|2
kn(λ, λ)

=
∑

λ∈�n ,|λ|<r

|p(λ)|2
kn(λ, λ)

+
∑

λ∈�n ,r≤|λ|<1− γ
n

|p(λ)|2
kn(λ, λ)

+
∑

λ∈�n ,|λ|≥1− γ
n

|p(λ)|2
kn(λ, λ)

=In + I I n + I I I n .

According to Lemma 2.2 we may replace kn(λ, λ) by k(λ, λ) in the first two terms
and by n2 in the third term. Thus with a constant depending on γ , we obtain

A‖p‖2A2 ≤ c−1
γ

( ∑

λ∈�n∩Br

|p(λ)|2
k(λ, λ)

+
∑

λ∈�n ,r≤|λ|<1− γ
n

|p(λ)|2
k(λ, λ)

+
∑

λ∈�n∩Cγ /n

|p(λ)|2
n2

)

.

(26)

In the sum In all points λ lie in the compact set B(0, r), and by weak convergence
including multiplicities m(λ) ∈ {1, . . . , K }, we obtain

lim
n→∞ In ≤ c−1

γ lim
n→∞

∑

λ∈�n∩Br

|p(λ)|2
k(λ, λ)

= c−1
γ

∑

λ∈�∩Br

|p(λ)|2
k(λ, λ)

m(λ) ≤ c−1
γ K

∑

λ∈�∩Br

|p(λ)|2
k(λ, λ)

.

To treat I I n , we use the assertion of Step 1 that every �n ∩ B1−γ /n is a finite union
of at most K uniformly separated sequences with separation δ. Lemma 2.6, (18) and
the choice of r yield

I I n ≤ c−1
γ

∑

λ∈�n ,r≤|λ|<1−γ /n

|p(λ)|2
k(λ, λ)

≤ 4K

πδ2cγ

∫

|z|>r−δ(1−r)

|p(z)|2 ≤ A

2
‖p‖A2 .

Finally, the last term I I I n is negligible when n → ∞ because

I I I n ≤ c−1
γ

∑

λ∈�n∩Cγ /n

|p(λ)|2
n2 ≤ ‖p‖2∞

1

n2 #(�n ∩ Cγ /n).
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By Lemma 2.7(i) I I I n tends to 0, as n → ∞.
Finally we take the limit in (26) and obtain inequality

A‖p‖2A2 ≤ c−1
γ K

∑

λ∈�∩B(0,r)

|p(λ)|2
k(λ, λ)

+ A

2
‖p‖2A2 . (27)

This implies the lower sampling inequality valid for all polynomials.
Since the polynomials are dense in A2(D), (27) can be extended to all of A2(D). 1

Step 3 As always, the upper bound is much easier to prove: Let p ∈ PN . Then by
Lemma 2.6

∑

λ∈�∩Cγ /N

|p(λ)|2
k(λ, λ)

≤ C
∫

Cγ ′/N

|p(w)|2 dw ≤ C‖p‖2A2 .

On the disk B1−γ /N we use the weak convergence and deduce that

∑

λ∈�∩B1−γ /N

|p(λ)|2
k(λ, λ)

m(λ) = lim
n→∞

∑

λ∈�n∩B̄1−γ /N

|p(λ)|2
kn(λ, λ)

≤ B‖p‖2A2 ,

because�n is a Marcinkiewicz–Zygmund family for polynomials and p ∈ PN ⊆ Pn .
The sums of both terms yield the upper sampling inequality for � for all polynomials,
which extends to A2(D) by density. ��

Theupper bound can also be derived from the geometric description ofTheorem2.9.
With a bit more effort one can prove an Ap-version of Theorems 2.11 and 2.12.

The proof requires several modifications of interest. For instance, to obtain (7) for
the Ap-norm, one needs an argument similar to [22, Lemma 7]. The Ap-norm of the
normalized reproducing kernel in Proposition 2.7 requires the boundedness of the
Bergman projection on L p.

3 Hardy Space

3.1 Basic Facts

The Hardy space H2 = H2(D) consists of all analytic functions inDwhose boundary
values on ∂D = T are in L2(T) with finite norm

‖ f ‖H2 =
( ∫ 1

0
| f (e2π i t )|2 dt

)1/2
. (28)

1 Note that
∑

λ∈�
|p(λ)|2
k(λ,λ)

= ∑
λ∈� |〈p, κλ〉|2, where κλ(z) = k(z, λ)k(λ, λ)−1/2 is the normalized

reproducing kernel. Thus the left-hand side in (27) is just the frame operator associated to the set {κλ}. For
boundedness and invertibility it therefore suffices to check on a dense subset.
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7612 K. Gröchenig and J. Ortega-Cerdà

The monomials z → zk form an orthonormal basis, and the norm of f (z) =∑∞
k=0 ak zk is

‖ f ‖2H2 =
∞∑

k=0

|ak |2. (29)

For p(z) = ∑n
k=0 ak zk ∈ Pn and 0 < ρ ≤ 1, let pρ(z) = p(ρz), then

‖pρ‖2H2 =
n∑

k=0

|ak |2ρ2k ≥ ρ2n‖p‖2H2 ,

and clearly ‖pρ‖H2 ≤ ‖p‖H2 . If p ∈ Pn , ρ = 1 − γ
n , and n > 2γ , then by (8)

‖p‖2H2 ≥ ‖pρ‖2H2 ≥ (1 − γ
n )2n‖p‖2H2 ≥ e−4γ ‖p‖2H2 . (30)

The reproducing kernel of Pn in H2 is given by

kn(z, w) =
n∑

k=0

(zw̄)n = 1 − (zw̄)n+1

1 − zw̄
. (31)

As n → ∞, the kernel tends to the reproducing kernel of H2,

k(z, w) = 1

1 − zw̄
(32)

for z, w ∈ D. For Marcinkiewicz–Zygmund families for polynomials in Hardy space
it will be necessary to also consider sampling points outside the unit disk as in [22].
With this caveat in mind, we define the appropriate annuli as

Aγ /n = {z ∈ C : 1 − γ
n ≤ |z| ≤ (1 − γ

n )−1}. (33)

We now compare the kernels for Pn and H2.

Lemma 3.1 Let kn(z, w) be the reproducing kernel of Pn in H2 and let γ > 0 be
arbitrary.

If z ∈ Aγ /n, i.e., 1 − γ
n ≤ |z| ≤ (1 − γ

n )−1, and n > 2γ , then

1 − e−2γ

2γ
n ≤ kn(z, z) ≤ e4γ

γ
n. (34)

Consequently, if �n ⊆ Aγ /n, then, for all polynomials p ∈ Pn,

1

n

∑

λ∈�n

|p(λ)|2 �
∑

λ∈�n

|p(λ)|2
kn(λ, λ)

. (35)
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On the annulus Aγ /n we may therefore always work with the weight 1/n for polyno-
mials of degree n.

Proof Writing r = |z|, the kernel kn(z, z) = 1−r2n+2

1−r2
is increasing in r , so that for

z ∈ Aγ /n we have

1 − (1 − γ
n )2n+2

1 − (1 − γ
n )2

≤ kn(z, z) ≤ (1 − γ
n )−2n−2 − 1

(1 − γ
n )−2 − 1

= (1 − γ
n )−2n − (1 − γ

n )2

1 − (1 − γ
n )2

.

For n ≥ 2γ , the denominator 1 − (1 − γ
n )2 = γ

n + γ
n (1 − γ

n ) is between γ /n and
2γ /n, for the numerator we use (8) and obtain (1 − γ

n )−2n − (1 − γ
n )2 ≤ e4γ and

1 − (1 − γ
n )2n+2 ≥ 1 − (1 − γ

n )2n ≥ 1 − e−2γ . Thus both ratios are of order n with
the constants (1 − e−2γ )/(2γ ) and e4γ /γ . ��

3.2 FromMarcinkiewicz–Zygmund Families onT to Marcinkiewicz–Zygmund
Families for H2(D)

In contrast to the situation for the Bergman space, there are no sampling sequences for
the Hardy space H2(D) by the results of Thomas [27]. Duren and Schuster [4, p. 154]
give the following simple argument: a sampling set � for H2 must be a Blaschke
sequence. However, every Blaschke sequence is a zero set in H2, which contradicts
the sampling inequality. Therefore there can be no analogue of Theorem 2.11.

Nevertheless, we prove that Hardy space admits Marcinkiewicz–Zygmund fami-
lies for polynomials. The idea is to associate a Marcinkiewicz–Zygmund family for
polynomials in H2(D) to every Marcinkiewicz–Zygmund family for polynomials on
the torus. As these are well understood [8,22], we obtain a general class of Marcinkie-
wicz–Zygmund families in H2(D).

We use the following notation: for λ ∈ C \ {0} let λ̃ = λ
|λ| be the projection from

the complex plane C \ {0} onto the torus ∂D = T.

Theorem 3.2 Assume that the family (�n) ⊆ C has the following properties:

(i) there exists γ > 0, such that �n ⊆ Aγ /n for all n ≥ γ .
(ii) The projected family (�̃n) ⊆ T is a Marcinkiewicz–Zygmund family for the poly-

nomials Pn ⊆ L2(T).
(iii) The projection �n → �̃n from Aγ /n to T is one-to-one for all n.

Then (�n) is a Marcinkiewicz–Zygmund family for the polynomials Pn in H2(D).

The statement in the introduction is just a reformulation of Theorem 3.2 without
additional notation.

The proof is inspired by a sampling theoremofDuffin and Schaeffer for bandlimited
functions from samples in the complex plane (rather than from samples on the real
axis). See [5] and [25,28]. In analogy to the theory of bandlimited functions, one can
view Theorem 3.2 also as a perturbation result for Marcinkiewicz–Zygmund families
in L2(T), where the points in T are perturbed in a complex neighborhood of T.

We wrap the main part of the proof into a technical lemma.
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Lemma 3.3 Let γ > 0 and n > 4γ . Assume that �n is a finite set contained in Aγ /n

so that the projection �n → �̃n is one-to-one. Then there exists a set �
(1)
n with the

following properties:

(i) �
(1)
n is contained in the smaller annulus A 3γ

4n
and #�(1)

n = #�n.

(ii) For every λ ∈ �n there is a μ ∈ �
(1)
n , such that λ̃ = μ̃, and

(iii) For every p ∈ Pn there exists p1 ∈ Pn satisfying

‖p1‖2H2 ≥ e−2γ /3‖p‖2H2

and

1

n

∑

λ∈�n

|p(λ)|2 ≥ 1

n

∑

λ∈�
(1)
n

|p1(λ)|2. (36)

As we will apply the lemma to a Marcinkiewicz–Zygmund family, it is important the
constants and the construction are independent of the degree n.

Proof Step 1. Construction of �
(1)
n . If λ ∈ �n and |λ| ≤ 1, set μ = (1 + γ

3n )λ. If
λ ∈ �n and |λ| > 1, set μ = (1 + γ

3n )/λ̄. By construction, μ̃ = λ̃. Since �n → �̃n

is one-to-one by assumption, �(1)
n has the same cardinality as �n .

[To appreciate this assumption, consider the case when both λ and 1/λ̄ are in �n .
They both would be mapped to the same point μ.] If 1 − γ

n ≤ |λ| ≤ 1 and n > 4γ ,
then μ = (1 + γ

3n )λ satisfies the inequalities

1 − 3γ
4n ≤ (1 + γ

3n )(1 − γ
n ) ≤ |μ| ≤ (1 + γ

3n ) ≤ (1 − 3γ
4n )−1 .

If 1 < |λ| ≤ (1− γ
n )−1, thenμ = (1+ γ

3n )/λ̄ satisfies the same inequalities. It follows

that �(1)
n is contained in the smaller annulus A3γ /(4n).

Step 2. Construction of p1. Given p ∈ Pn with zeros z j and factorization p(z) =
z�

∏
(z − z j ), we obtain p1 by reflecting all its zeros intoD and an appropriate scaling.

We multiply p by several Blaschke factors and set

p̃1(z) = zl
∏

|z j |≤1

(z − z j )
∏

|z j |>1

(1 − z j z) = p(z)
∏

|z j |>1

1 − z j z

z − z j
. (37)

By construction, all zeros of p̃1 are now in the unit diskD. In engineering terminology,
p̃1 is the minimum phase filter associated to p. Furthermore, p̃1 has the following
properties:

(i) By (37) and the property of Blaschke factors we have

| p̃1(z)| = |p(z)| for z ∈ T,

and thus ‖ p̃1‖H2 = ‖p‖H2 .
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(ii) For z ∈ D we have

| p̃1(z)| ≤ min
(
|p(z)|, |p(1/z̄)|

)
. (38)

To see this, observe that for |z j | > 1 each Blaschke factor in (37) satisfies

∣
∣
∣
1 − z̄ j z

z − z j

∣
∣
∣ =

∣
∣
∣

z̄−1
j − z

z−1
j z − 1

∣
∣
∣ ≤ 1,

thus | p̃1(z)| ≤ |p(z)| for z ∈ D. Using the first factorization of p̃1 in (37) and
p(1/z̄) = z̄−l ∏

|z j |≤1

(
1/z̄ − z j

) ∏
|z j |>1

(
1/z̄ − z j

)
, the second inequality in (38)

follows from

| p̃1(z)|
|p( 1z̄ )| = |z|2l

∏

|z j |≤1

|z − z j |
|z̄−1(1 − z̄z j )|

∏

|z j |>1

|1 − z̄ j z|
|z̄−1(1 − z̄z j )| ≤ 1.

Finally we set

p1(z) = p̃1
(
(1 + γ

3n
)−1z

)
∈ Pn . (39)

Then by (30)

‖p1‖2H2 ≥ (1 + γ

3n
)−2n‖ p̃1‖2H2 ≥ e−2γ /3‖p‖2H2 .

and obviously ‖p1‖2H2 ≤ ‖ p̃1‖2H2 = ‖p‖2
H2 .

Step 3. Sampling on �
(1)
n . If μ = (1 + γ

3n )λ ∈ �
(1)
n ⊆ D, then by (38)

|p1(μ)| = | p̃1(λ)| ≤ |p(λ)| ;

if μ = (1 + γ
3n )/λ̄ ∈ �

(1)
n ⊆ D, then

|p1(μ)| = | p̃1(1/λ̄)| ≤ |p(λ)|.

In conclusion, we obtain

1

n

∑

μ∈�
(1)
n

|p1(μ)|2 ≤ 1

n

∑

λ∈�n

|p(λ)|2,

which was to be shown. ��
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Proof of Theorem 3.2 Applying Lemma 3.3 repeatedly, after � steps we construct a set
�

(�)
n ⊆ D with the following properties:

�(�)
n ⊆ Aγ�/n with γ� = 3

4γ�−1, (40)

˜
�

(�)
n = �̃n . (41)

Furthermore, for given p ∈ Pn weconstruct a sequenceonpolynomials p1, . . . , p�, . . .

with decreasing norm ‖p�‖H2 ≤ · · · ≤ ‖p1‖H2 ≤ ‖p‖H2 , such that

‖p�‖2H2 ≥e− 2
3 γ�−1‖p�−1‖2H2 ≥e− 2

3 (γ�−1+γ�−2)‖p�−2‖2H2 ≥ . . .≥e− 2
3

∑�−1
j=0 γ j ‖p‖2H2 . (42)

Since γ j = 3γ j−1/4 and γ0 = γ , we find γ� = ( 3
4

)�
γ and

2
3

�−1∑

j=0

γ j ≤ 2
3

∞∑

j=0

(3/4) jγ ≤ 8
3γ.

It follows that always ‖p�‖2H2 ≥ e− 8
3 γ ‖p‖2

H2 .
We now let � tend to∞. Since the sequence p� is bounded in the finite-dimensional

space Pn , it contains a convergent subsequence such that lim j→∞ p� j = p∞ ∈ Pn .
Furthermore, by (42) the limiting polynomial p∞ must be non-zero. By (40) every
point in �

(�)
n converges to a point on the torus, precisely to the corresponding point in

the projection �̃n . Using (42), it follows that

1
n

∑
λ∈�n

|p(λ)|2
‖p‖2

H2

≥ e−8γ /3
1
n

∑
λ∈�̃n

|p∞(λ)|2
‖p∞‖2

H2

.

Finally, we recall the assumption that the projected family �̃n is a Marcinkiewicz–-
Zygmund family for the polynomials of degree n in L2(T). Consequently, we obtain
that 1

n

∑
λ∈�̃n

|p∞(λ)|2 ≥ A‖p∞‖2
H2 , which implies the corresponding sampling

inequality for p ∈ Pn .
The upper bound is proved almost exactly as the corresponding2 statement for Pn

in L2(T) in Thm. 9 of [22]. Since �̃n is a Marcinkiewicz–Zygmund family for Pn

in L2(T) by our assumption, [22, Thm. 9] asserts that for every interval I ⊆ T of
length 1/n we have #(�̃n ∩ I ) ≤ C . Since �n ⊆ Aγ /n , this condition implies that
#�n ∩ B(z, 1/n) ≤ C ′ for all z ∈ Aγ /n . This geometric condition now yields the
upper bound 1

n

∑
λ∈�n

|p(λ)|2 � ‖p‖2
H2 for all p ∈ Pn precisely as in [22]. Indeed

that proof uses the submean-value property and the extension to Aγ /n . ��
Theorem 3.2 shows that to every Marcinkiewicz–Zygmund family for polynomials

on T we can associate Marcinkiewicz–Zygmund families in H2(D) by moving points
from the boundary T = ∂D into a carefully controlled annulus Cγ /n ⊆ D. The

2 Note that [22] uses the weights mn = #�n instead of kn(λ, λ) � n. This does not affect the estimates.
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following example investigates the role of points in the interior of D for Marcinkie-
wicz–Zygmund families.

Example We construct an example of a Marcinkiewicz–Zygmund family (�n) for
polynomials Pn in H2(D), so that (�n ∩ Cγ /n) is not a Marcinkiewicz–Zygmund
family in H2 and the projection (�̃n) is not a Marcinkiewicz–Zygmund family forPn

in L2(T). Let γ > 0, αn > 0, and

�n = {(1 − γ
n )e2π ik/n : k = 0, . . . , n − 1} ∪ {αne2π i/n2}. (43)

(i) If αn < 1− γ
n , then #(�n ∩ Cγ /n) = n < dimPn and thus (�n ∩ Cγ /n) cannot

be a Marcinkiewicz–Zygmund family for Pn in H2.
(ii) The projected family �̃n = {e2π ik/n : k = 0, . . . , n − 1} ∪ {e2π i/n2} is not a

Marcinkiewicz–Zygmund family for Pn in L2(T). We choose p(z) = zn − 1 with
‖p‖2

H2 = 2. Then p(e2π ik/n) = 0 and |p(e2π i/n2)| = |e2π i/n − 1| � 1/n, so that

1

n + 1

∑

λ∈�̃n

|p(λ)|2 � 1

n3 ,

violating the sampling inequality for large n.
(iii) However, (�n) is a Marcinkiewicz–Zygmund family for Pn in H2(D). To see

this, we consider the modified set �′
n = {(1 − γ

n )e2π ik/n : k = 0, . . . , n − 1} ∪ {0}
and then use a perturbation argument.

We write p ∈ Pn as p(z) = p(0) + z p̃(z) for a unique p̃ ∈ Pn−1. Then ‖p‖2
H2 =

|p(0)|2 + ‖ p̃‖2
H2 . Let q(z) = p̃((1 − γ

n )z), then by (30) ‖q‖2
H2 ≥ e−4γ ‖ p̃‖2

H2 .
Calculating the norm of q by sampling, we obtain

‖ p̃‖2 � ‖q‖2 = 1

n

n−1∑

j=0

|q(e2π i j/n)|2 = 1

n

n−1∑

j=0

| p̃
(
(1 − γ

n
)e2π i j/n)|2

= 1

n(1 − γ
n )2

n−1∑

j=0

|(1 − γ

n
)e2π i j/n p̃((1 − γ

n
)e2π i j/n)|2.

If n ≥ 2γ we have

‖q‖2 ≤ 8

n

n−1∑

j=0

(
|p((1 − γ

n
)e2π i j/n)|2 + |p(0)|2

)
.

Since by (34) kn(λ, λ) � n for λ = (1 − γ
n )e2π i j/n , and kn(0, 0) = 1, the above

inequality states that

‖q‖2 �
∑

λ∈�′
n

|p(λ)|2
kn(λ, λ)
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7618 K. Gröchenig and J. Ortega-Cerdà

and finally

‖p‖2 ≤ ‖q‖2 + |p(0)|2 �
∑

λ∈�′
n

|p(λ)|2
kn(λ, λ)

.

Thus (�′
n) is a Marcinkiewicz–Zygmund family for Pn in H2(D). The small pertur-

bation 0 → 1
n2

e2π i/n2 is of order 1/n2 and thus preserves the sampling inequality.

As already mentioned, the standard definition of sampling sequences is vacuous in
the Hardy space. Thus Thomas in [27] proposed an alternative definition of sampling
in terms of the non-tangential maximal function M�.

M�( f )(eiθ ) := sup
�(eiθ )∩�

| f |,

where �(eiθ ) = {z ∈ D : |z−eiθ |
1−|z| < 1 + α} is a non-tangential Stolz angle at the

point eiθ . A set � is called PT-sampling3 in H2(D) if ‖M�( f )‖L2 � ‖ f ‖2 for all
f ∈ H2(D).
Thomas proves that a set � is sampling for H2 if and only if it is norming for H∞,

this condition was geometrically described by Brown et al. [2] by the property that
the non-tangential limit set of � must be of full measure in T. This alternative notion
of sampling was inspired by a corresponding alternative definition of interpolating
sequences in the Hardy space by Bruna, Nicolau and Øyma [3].

The relation between Marcinkiewicz–Zygmund families and PT-sampling sets for
H2 is not clear. We only mention that there is no analog of Theorem 2.12 for PT-
sampling: Consider the Marcinkiewicz–Zygmund family �n in the example (43). Its
weak limit in D is just {0}, which is obviously not PT-sampling. Its weak limit in C

is {0} ∪ ∂D, and this not even covered by the definition of PT-sampling. We have not
pursued this aspect further.
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