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Amplitude death and restoration in networks
of oscillators with random-walk diffusion
Pau Clusella 1✉, M. Carmen Miguel2,3 & Romualdo Pastor-Satorras 1

Systems composed of reactive particles diffusing in a network display emergent dynamics.

While Fick’s diffusion can lead to Turing patterns, other diffusion schemes might display

more complex phenomena. Here we study the death and restoration of collective oscillations

in networks of oscillators coupled by random-walk diffusion, which modifies both the original

unstable fixed point and the stable limit-cycle, making them topology-dependent. By means

of numerical simulations we show that, in some cases, the diffusion-induced heterogeneity

stabilizes the initially unstable fixed point via a Hopf bifurcation. Further increasing the

coupling strength can moreover restore the oscillations. A numerical stability analysis indi-

cates that this phenomenology corresponds to a case of amplitude death, where the inho-

mogeneous stabilized solution arises from the interplay of random walk diffusion and

heterogeneous topology. Our results are relevant in the fields of epidemic spreading or

ecological dispersion, where random walk diffusion is more prevalent.
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Complex systems composed by many units interrelated
through a heterogeneous topological pattern of interac-
tions form a wide class of natural and man-made systems

that can be fruitfully represented in terms of complex networks1.
Under this representation, in which nodes stand for units and
edges for pairwise unit interactions, a natural framework arises
that is capable of unifying the functional and structural properties
of a wide variety of different systems. Particularly important in
this respect are those systems that are the substrate for some
dynamic of transport process, whose properties can be strongly
impacted by the topology of interaction2,3.

A versatile formalism to describe dynamical processes on net-
works is given by the theory of reaction–diffusion processes,
described in terms of different kinds of particles or species that
diffuse along the edges of the network and interact among them
inside the nodes. Reaction–diffusion systems find a natural repre-
sentation in terms of sets of nonlinear differential equations,
representing in-node interactions, coupled by a diffusion term
representing transport between nodes. Successful applications of
this formalism can be found, for example, in the study of ecological
species dispersal4 or epidemic spreading5. In these studies, the
network structure represents a metapopulation6, defined as a group
of populations or physical patches, joined by migration or mobility
paths.

In the context of reaction–diffusion systems on networks, it is
particularly noteworthy the work of Nakao and Mikhailov7,
where it was outlined the relation between the usual under-
standing of pattern formation in reaction–diffusion systems in
lattices, established by the seminal work of Turing8, and its
counterpart in irregular topologies. In both cases, the stability of
the homogeneous equilibrium, preserved by the diffusion, can be
attained by means of the dispersion relation, which, in the
complex network case, relies on the diagonalization of a Laplacian
operator7,9,10. As a result, Turing patterns are observed to arise in
networked substrates, characterized by a node-dependent pattern
of species density7. The observation of Nakao and Mikhailov has
spurred a flurry of activity in the field of reaction–diffusion
processes on networks, leading to the study of the effects of
directedness in the network edges10, the competition in predator-
prey models11, the effects on limit cycles12, the role of time-
varying networks13, and methods for pattern tunning14–16.

Most previous works, however, are based on models where the
coupling follows Fick’s diffusion law, used to model chemical
reactions and heat transport. In this case, the exchange rate of the
physical quantities between two nodes is proportional to their
density difference. A different choice for the diffusive coupling
that can be considered on complex networks corresponds to
random-walk diffusion5,17,18. In this case the exchange rate
between two nodes is proportional to the inverse of their degree,
thus corresponding to particles diffusing by jumping between
randomly chosen nearest neighbor sites. This version of diffusion
is particularly relevant in the case of ecology dynamics where
each node represents a population of a certain species in an
ecosystem, which then might randomly migrate to the sur-
rounding environments19,20. Random walks have been exten-
sively studied in complex networks21, but their application in the
context of reaction–diffusion systems is rather limited5,17,18,22.

The differences between the two coupling schemes significantly
affect the nature of the system. As a starting point, except for
specifically devised cases23, random-walk diffusion does not
accept, in general, a homogeneous equilibrium, hence the steady
states are topology-dependent17. As direct implication of this
situation, even if an equilibrium point of the network is known,
its stability will depend on both its shape and the underlying
Laplacian, thus making an analytical treatment in terms of a
dispersion relation difficult. In fact, most of the existing literature

on the topic addresses the question of how random-walk diffu-
sion modifies the steady states of the system5,17,18, the manifes-
tation of Turing bifurcations using random-walk diffusion17, and
how such inhomogeneous states might be used to identify
topological properties of the underlying network22.

Oscillatory systems represent an important class for the choice
of the reaction terms. Complex oscillatory systems are indeed used
as a proxy to study many relevant phenomena such as chemical
reactions24,25, cardiac cells26,27 neural dynamics28,29, and ecolo-
gical fluctuations30,31. Amplitude Death and Oscillation Death are
the two main routes through which the coupling among the
oscillatory units leads to a state of steadiness32. Although the two
mechanisms have been prone to confusion, they correspond to
two different dynamical phenomena, with different implications
on their applicability. The emergence of OD occurs when the
coupling among units induces the creation of new inhomogeneous
stationary solutions. Upon modifying the coupling strength, an
originally oscillatory solution, such as a limit-cycle, is destabilized
and the system falls into the steady state created by the coupling.
Nevertheless, the (unstable) oscillatory solution and the inhomo-
geneous fixed-point coexist12,25. On the other hand, AD occurs
when different coupled oscillators pull each other out of the limit-
cycle upon increasing the interaction strength. Thus, the ampli-
tude of the oscillations diminish until it completely vanishes and
the oscillators fall into the homogeneous fixed point of the system.
Therefore, in this case, the oscillatory solution collapses into the
steady state and there is no coexistence33–35.

In oscillatory systems coupled with Fick’s diffusion it is pos-
sible to compute the dispersion relation associated to the
homogeneous time-varying solution, whose instability leads to
Turing patterns. If these patterns are steady in time, then we are
before a case of OD12. Nevertheless, as we review in detail in this
paper, the AD phenomena is forbidden in networks with identical
reaction terms and Fick’s diffusion, as the instability of the
homogeneous fixed point is preserved by the coupling33. There-
fore, one needs to invoke further complexity on the description of
the model, such as distributed frequencies34, delayed interac-
tions35, or dynamic coupling36. Choosing random-walk diffusion
strongly modifies this scenario.

In this paper, we show a novel instance, to the best of our
knowledge, of emerging collective behavior induced by random-
walk diffusion beyond the Turing paradigm. In particular, we
investigate a phenomena which is forbidden in reaction systems
with Fick’s diffusion: the quenching of the oscillatory dynamics
through the Amplitude Death mechanism, as opposed to the
Oscillation Death mechanism that has been indeed studied in
systems with Fick’s diffusion32. Here, we show that an increase of
the diffusion strength diminishes the amplitude of the oscillations
until they collapse into an inhomogeneous steady state. This
phenomena differs from OD in the sense that there is no coex-
istence between the oscillatory solution and the fixed point. We
show that the stationary solution corresponds to the uncoupled
local equilibria of each node that has been modified aniso-
tropically by the coupling. Therefore, the cease of the oscillations
corresponds a case of AD where the stabilized solution is inho-
mogeneous. Here we extensively study this transition towards AD
and the later restoration of the oscillations, as well as we show
how suitable modifications of the network topology lead towards
the disappearance of AD. We also perform heterogeneous mean-
field analysis in order to validate the generality of this phenomena
for large systems.

Results and discussion
Gradient-driven diffusion. In this section, we illustrate how Fick’s
diffusion law affects oscillatory solutions in reaction–diffusion
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systems. In particular, we show that OD phenomena might emerge
as a Turing bifurcation of the limit-cycle solution, whereas AD is
not possible in such setup.

General two-species reaction–diffusion processes on a network
can be represented by the set of equations

_xi ¼ f ðxi; yiÞ þ Dx

PN
j¼1

Δijxj

_yi ¼ gðxi; yiÞ þ Dy

PN
j¼1

Δijyj

8>>><
>>>:

;

whereDx and Dy are the coupling (diffusion) coefficients, f and g are
nonlinear reactive terms, and the matrix Δij is the discrete Laplacian
operator specifying the diffusive transport of species between
connected nodes. If diffusive transport is ruled by Fick’s law, that is,
by the sum of fluxes of incoming species at each node, where the
flux is assumed to be proportional to the concentration37, the
discrete Laplacian can be written as Δij= aij− kiδij, where ki is the
degree of node i, δij is the Kronecker symbol and aij is the network
adjacency matrix, taking value 1 when nodes i and j are connected,
and zero otherwise1. In this case the equations of motion ruling the
dynamics of the ith node of the network read

_xi ¼ f ðxi; yiÞ þ Dx

PN
j¼1

aijðxj � xiÞ

_yi ¼ gðxi; yiÞ þ Dy

PN
j¼1

aijðyj � yiÞ

8>>><
>>>:

: ð1Þ

For this gradient-driven diffusion scheme, any solution of the
uncoupled system (Dx=Dy= 0) corresponds to a solution of the
coupled system. Indeed, the diffusion term only depends on the
density difference between connected nodes, so if all nodes evolve
with the exact same dynamics, (xj(t), yj(t))= (x(t), y(t)) for all j=
1,…,N, then the diffusive coupling vanishes and the solution is
preserved. Such solutions are homogeneous, meaning that the
dynamical evolution of the system is the same for all nodes
independently of their topological properties. As we consider that
the dynamics of each node has two dimensions, only two types of
attractors are possible here: (i) fixed points of the original
uncoupled system, (x(0), y(0)), and (ii) periodic solutions, also
referred to as limit cycles38.

The addition of the coupling diffusive terms can spontaneously
modify the stability of these homogeneous solutions. In principle,
the stability of a homogeneous fixed point of system (1) boils
down to study the eigenvalues λi of a 2N × 2N Jacobian matrix.
Nevertheless, it is possible to relate the eigenvalues of such high-

dimensional operator to the eigenvalues of the Laplacian matrix
of the system by means of a dispersion relation

λ ¼ FðΛÞ
which maps all the Laplacian matrix eigenvalues Λj to the
eigenvalues of the system Jacobian λj. This corresponds to the
extension of discrete dispersion relations in lattices to the
complex network case7,39 (see Methods for a detailed explana-
tion). We notice that other works define the dispersion relation in
terms of the largest real part of λ.

In order to illustrate this situation, we consider as an example
the Brusselator model, whose dispersion relation can be worked
out analytically (see Methods). As it is well-known, if the network
has a single connected component, the associated Laplacian
always contains a single zero eigenvalue corresponding to a
uniform eigenvector, and the rest are all negative. In the
dispersion relation, such zero eigenvalue always returns the
eigenvalues of the uncoupled Jacobian (see Eq. (9) in Methods).
Assuming that the fixed point is originally stable for Dx=Dy= 0,
the rest of the eigenvalues associated to the strictly negative
Laplacian eigenmodes might have a positive real part, thus
destabilizing the homogeneous solution and generating spatio-
temporal patterns. This is the well-known Turing instability,
which triggers the so-called Turing patterns7,8,39.

Instead, here we are interested in oscillatory systems, thus, we
set the system parameters as a= 1.3 and b= 2.5 so that the fixed
point of the uncoupled system is unstable and the Brusselator
displays periodic motion. The resulting dispersion relation is
depicted in Fig. 1a, where we plot the real part of the eigenvalues
controlling the stability of (x0, y(0)) as a function of the
eigenvalues of the Laplacian Λj for the case of an homogeneous
Erdös-Rényi (ER) network (see Methods). In this case, the system
eigenvalue corresponding to the uniform eigenvector, which is
associated to the zero Laplacian eigenvalue, has Re[λ0]= 0.1. In
other words, Fick’s diffusion law preserves the unstability of the
homogeneous fixed-point and, therefore, the AD phenomena, in
which the focus of a limit-cycle is stabilized through the coupling,
cannot manifest here.

On the other hand, performing a stability analysis of the limit-
cycle solution shows that the periodic solution might be
distabilized through a Turing mechanism, thus potentially leading
to a case OD. Indeed, it is possible to derive a numerical (and, in
some cases, analytical), dispersion relation of the Floquet
exponents corresponding to the homogeneous limit-cycle by
means of the master stability function9,12. Figure 1b depicts the
relation between the Floquet exponents μj of the limit-cycle for

Fig. 1 Dispersion relation for the Brusselator system with Fick’s diffusion. Red dots indicate the discrete dispersion relation as obtained by diagonalizing
the Laplacian operator (see Methods) corresponding to an Erdös-Rényi network with N= 1000 nodes and average degree 〈k〉= 20. Continuous lines show
the continuous dispersion relation associated to a lattice at the thermodynamic limit (see Methods). System parameters of the reactive terms are a= 1.3
and b= 2.5. Diffusion values are Dx= 0.7 and Dy= 5. a Real part of the eigenvalues λj controlling the stability of the homogeneous fixed point as a function
of the Laplacian eigenvalues Λj, j= 1,…, 2N. b Real part of the Floquet exponents μj controlling the stability of the homogeneous limit-cycle solution as a
function of the Laplacian eigenvalues Λj, j= 1,…, 2N. Since we are considering two-dimensional single-node dynamics, blue and green continuous lines
show the two different branches of the dispersion relation whenever they are different, such as in b. Notice that with our definition of the Laplacian, the
eigenvalues Λj are non-positive, thus we display−Λj in the x axis. Other works might use a different definition.
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the Brusselator system and the eigenvalues of the network
Laplacian. The Floquet exponents corresponding to the uniform
eigenvector are μþ0 ¼ 0 and μ�0 ’ �0:216, but there are many
other Floquet exponents associated to different network Laplacian
modes that are positive. Thus, in this case, the originally stable
limit-cycle is being destabilized through a Turing instability, so an
arbitrary perturbation of the homogeneous solution will develop
heterogeneous patterns. If these heterogeneous patterns are
stationary, then we would be before a case of OD12.

Random-walk diffusion. Let us move now to a different coupling,
the so-called random-walk diffusion18,22. Here variables xj and yj
might represent the population density of animals that coexist in an
ecosystem divided in different discrete patches (a metapopulation6).
Animals interact inside patches following some nonlinear dynamics
and can migrate between connected patches. Representing the
pattern of connections between patches by a network, and assuming
that animals move at random between patches, we have that
population of node i diffuses uniformly through its ki neighbors,
each receiving a flux proportional to 1/ki. The Laplacian matrix can
thus be written as ~Δ ¼ ð~ΔijÞ, with ~Δij ¼ aij=kj � δij. The
reaction–diffusion process then reads

_xi ¼ f ðxi; yiÞ þ Dx

PN
j¼1

aij
xj
kj
� xi

 !

_yi ¼ gðxi; yiÞ þ Dy

PN
j¼1

aij
yj
kj
� yi

 !
8>>>>><
>>>>>:

: ð2Þ

Here, the solution of the uncoupled system (Dx=Dy= 0) is not a
solution of the coupled system unless we have a regular network,
i.e., all nodes have the same degree ki= k ∀ i. In this case, one can
again study the stability of the system by means of a dispersion
relation and the arguments exposed above still hold. However, for
generic non-regular networks there is no theory that applies, and
thus, the collective effects induced by the coupling are unknown.

To study the effects of random-walk diffusion, we consider the
Brusselator dynamics and integrate numerically the system
defined by Eq. (2) in an ER network with average degree 〈k〉=
20 (see Methods). For simplicity we set Dx=Dy=D throughout
the rest of the paper. Unequal diffusion coefficients can lead to
much more complex dynamics; in fact, the generation of static
Turing patterns in models with Fick’s diffusion requires Dx ≠Dy

and, in particular, it requires than the inhibitor diffuses much
faster than the activator, i.e., Dy≫Dx in our case39,40. Unless
otherwise stated, we set the system parameters a= 0.5 and b=
1.7, thus an uncoupled oscillator displays oscillatory behavior (see
Methods). In Fig. 2 we show the evolution of the variable yi
resulting from numerical integration for different values of the
diffusion coefficient D and starting from random initial
conditions uniformly distributed xj(0), yj(0)∈ [0.2, 0.8].

In Fig. 2a, we can see that a very small diffusion D= 0.02 does
not strongly affect the behavior of the system. The limit cycle
defined by the variables in each node oscillates with a very similar
amplitude and period, this last one close to the estimate for an
isolated Brusselator, T ¼ 2π=

ffiffiffi
a

p
. The different oscillators

fluctuate however out-of-phase. Upon increasing the coupling,
(Fig. 2b, corresponding to D= 0.3), the oscillators evolve in
periodic phase-synchrony, but each having a different amplitude
of the limit-cycle, amplitude that is related to the degree of the
corresponding node in the network (see Supplementary Fig. 6a in
Supplementary Note 2). Increasing the coupling to D= 2,
(Fig. 2c), the system reaches a steady state, the heterogeneous
oscillations being substituted by a heterogeneous fixed point,
whose value is also related to the node’s degree. Further

increasing of the coupling up to D= 3.5 (Fig. 2d), restores the
in-phase synchrony, with node-dependent amplitude. These
preliminary observations indicate the existence of an oscillation
quenching phenomenon, and a later oscillation restoration. In the
oscillatory regimes for D > 0, the nodes appear to have the same
period (except in the vicinity of the first oscillation quenching
transition), period that depends on D, as a power spectrum
analysis reveals (see Supplementary Fig. 5a). Whether it
corresponds to OD or AD is not yet clear.

In order to characterize the oscillation quenching behavior of
the system we consider the average of variable y over the whole
network,

yðtÞ ¼ 1
N

XN
j¼1

yjðtÞ ;

and measure the temporal average hyi and standard deviation
σ ¼ σðyÞ, defined as

hyi ¼ lim
T!1

1
T

Z T

0
yðt0Þ dt0; σðyÞ2

¼ lim
T!1

1
T

Z T

0
yðt0Þ2 dt0 � hyi2;

ð3Þ

that works as a measure of the average amplitude of oscillations,
with σ= 0 indicating a steady state.

Fig. 2 Time series of individual nodes of the Brusselator system with
random-walk diffusion. Each line indicates the time evolution of the y
variable of node i, where i corresponds to 15 randomly chosen nodes (same
nodes for each panel). Results obtained from the numerical integration of the
Brusselator model Eq. (10) with random-walk diffusion Eq. (2) on an Erdös-
Rényi networks of size N= 1000 and average degree 〈k〉= 20. System
parameters for the Brusselator reaction terms are a=0.5, b= 1.7. The values
of diffusion coefficient are a D=0.02, b D=0.3, c D= 2, and d D= 3.5.
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In Fig. 3a we show in blue circles the value of yh i as a function
of the diffusion coefficient D. The associated error bars indicate
the corresponding standard deviation σðyÞ. For small values of D
the network displays oscillatory dynamics, as indicated by the
non-zero amplitude σðyÞ. Upon increasing D, such oscillations
diminish until they vanish completely for diffusion larger than
D1≃ 0.3775. The system is frozen in a heterogeneous steady state
until the oscillations are restored again for a diffusion D larger
than D2≃ 3.095. We are therefore in front of a case of oscillation
quenching occurring at D1, followed by a subsequent oscillation
restoration when D crosses D2. Whereas the inhomogeneity of the
fixed point would support the idea that the phenomenology
corresponds to OD, the two transitions between oscillatory and
steady regimes strongly resemble the AD phenomena, where the
periodic solutions collapse into the fixed point, which in this case
happens to be heterogeneous as opposed to the common cases of
AD32,41. In the following, we study the two bifurcations through
which the oscillations vanish and restore in order to unveil the
mechanism responsible for the cessation of the oscillations.

Heterogeneous fixed points. In order to investigate the nature of
these transitions, we start considering the underlying fixed points,
corresponding to the solutions of the nonlinear system

f ðxi; yiÞ þ D
PN
j¼1

~Δijxj ¼ 0;

gðxi; yiÞ þ D
PN
j¼1

~Δijyj ¼ 0 ;

8>>><
>>>:

ð4Þ

that we solve numerically using a standard multidimensional root
solver based on the Newton-Raphson method42. Figure 3b shows
the results obtained for different values of D in the phase space.
For any value of D > 0, we obtain an inhomogeneous solution, i.e.,

depending on the node i, that for small values of D is relatively
close to the fixed point of the uncoupled system (x(0)= 1, y(0)=
b/a) (see green points). Upon increasing D, the network equilibria
spread, covering a wider area of the phase space. For large dif-
fusion (see for instance red dots, corresponding to D= 2) the
solution shows clusters of nodes with similar values which cor-
respond to nodes with the same degree (see Supplementary
Fig. 6b). In principle nothing prevents the existence of other
solutions. Nevertheless, it is worth noticing that we find only one
solution of Eq. (4) for each value of D. Overall, it looks like the
random-walk diffusion induces the hetoregeneity of the equili-
bria, which becomes homogeneous only for D= 0. The analysis
presented in the next section provides a more rigorous analysis of
this situation via a perturbative approach.

Dispersion of the fixed point. The previous numerical analysis
points out that the heterogeneous equilibrium of the network is
linked with the equilibrium of the uncoupled system for small
diffusion values, thus indicating that the fixed point of the net-
work corresponds to a coupling induced modification of the
original steady state. We validate this assumption by exploring
the effect that small modifications of the coupling strength D have

on the fixed point. Let ðxð0Þj ðDÞ; yð0Þj ðDÞÞ be the solution of Eqs.
(4) for the diffusion value D. Assuming that the dependence on D
is smooth, we consider a small increment of the diffusion, ϵ > 0.
Expanding up to first-order terms in equation (4) one obtains (see
Methods for a detailed derivation) the system of equations

J xð0Þi ; yð0Þi

� � dxð0Þi
dD

dyð0Þi
dD

0
@

1
Aþ D

XN
j¼1

~Δij

dxð0Þj

dD

dyð0Þj

dD

0
B@

1
CA ¼ �

XN
j¼1

~Δij

xð0Þj

yð0Þj

0
@

1
A
ð5Þ

Fig. 3 Results of simulations and numerical analysis for the Brusselator model in an Erdös-Rényi (ER) network. System parameters for the reactive
terms are a= 0.5 and b= 1.7. Network topology corresponding to a ER with N= 1000 nodes and average degree kh i ¼ 20. a Blue circles indicate the time-
averaged mean-field corresponding to the y variable of each node, hyi, obtained from numerical simulations for different values of diffusion D. Error bars
indicate the temporal standard deviation of the mean-field, σðyÞ (definitions in the text). Red continuous line shows the mean-field corresponding to the
heterogeneous fixed point obtained solving numerically the system of equations (4). Black crosses correspond to the mean-field obtained by integrating
the peturvative equation (5). Vertical black dashed lines indicate the bifurcation points derived from the stability analysis. b Coordinates of the
heterogeneous fixed point of the system ðxð0Þj ; yð0Þj Þ, j= 1,…, N, in the phase space. Green plusses, blue crosses, and red points correspond to numerical
solutions of system (4) for different diffusion values D. Black squares correspond to the solution obtained by integrating Eq. (5) up to D= 2. Each symbol
corresponds to a different network node j= 1,…,N. The crossing of the two black dashed lines indicate the equilibria of the uncoupled system, (x(0), y(0))
= (1, b/a). c Largest eigenvalue’s real part for different values of D. Vertical black dashed lines indicate the bifurcation points where the largest eigenvalue
crosses de x axis. d Eigenvalue spectra in the complex plane for different values of D (same symbols as in b).
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for i= 1,…,N, where J(x, y) is the 2 × 2 Jacobian matrix of the
(uncoupled) reactive field, (f(x, y), g(x, y)). Such equations form
an implicit linear non-autonomous system of differential equa-
tions with the diffusion strength D as an independent variable.

An analytical solution of system in Eq. (5) is generally
unfeasible, but a simple numerical integration of such equation
using Euler’s method, starting from the uncoupled system
equilibrium, leads to the average activity reported in black
crosses in Fig. 3a, whereas black squares in Fig. 3b correspond to
the fixed point obtained with this method for D= 2. Both results
match the solutions obtained by directly solving Eqs. (4), hence
confirming that the heterogeneous equilibria of the system
coupled through random-walk diffusion corresponds to a
modification of the solution of the uncoupled system. In other
words, the steady state is not a completely new state induced by
the coupling, but a smooth transformation of the original
equilibrium of the system, which turns out to be node-
dependent as soon as D > 0. As the steady state associated with
OD corresponds to new states created by the coupling, the
observation that here the fixed point is not new is key to classify
the observed oscillation quenching mechanism as AD rather
than OD.

Stability analysis. With the numerical solution of the system
obtained by directly solving Eq. (4) one can study the stability of
the system by numerically computing the eigenvalues and
eigenvectors of the full system 2N × 2N Jacobian using standard
numerical tools42. Figure 3c shows the dependence of the real
part of the maximum eigenvalue as the diffusion D is tuned and
Fig. 3d shows the full spectra for three different values of the
diffusion. As it happens with the fixed point, for small D all the
eigenvalues are located close to the eigenvalues of the uncoupled
system λ±= 0.1 ± 0.7i. Thus, there is at least a pair of complex
conjugate eigenvalues with positive real part. As D increases, most
of the eigenvalues rapidly spread and are pushed to the left of the
complex plane. Nevertheless, a pair of complex conjugate eigen-
values remain isolated from the rest and do not cross the ima-
ginary axis until D1 (see isolated symbols close to the imaginary
axis in fig. 3d). Upon further increasing the diffusion, the same
isolated pair of eigenvalues crosses again the imaginary axis at D2,
signaling the restoration of the oscillations (see Fig. 3c).
According to these results, it is clear that both transitions, D1 and
D2, are Hopf supercritical bifurcations. Indeed, as shown in Fig. 4,
the amplitude of the oscillations vanishes as σ ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijD� D1j

p
, as

expected for a supercritical Hopf bifurcation, and is restored then
again at D2 with the same exponent. Also, the limit-cycle centroid

of each node approaches the fixed-point solution as D approaches
the bifurcation point (see Supplementary Fig. 5b, c).

A supercritical Hopf bifurcation induced by the coupling is one
of the main routes to Amplitude Death, the other being a saddle-
node bifurcation32. On the other hand, OD is associated to a
symmetry breaking pitchfork bifurcation, which allows for the
coexistence of the oscillatory solution and the steady state32.
Here, there is no such symmetry breaking, the inhomogeneity of
the fixed point being induced by the heterogeneous coupling
structure, that is not arbitrary. Moreover, the limit-cycle perishes
at the bifurcation points, and thus no coexistence between the two
solutions is possible. This set of observations altogether indicates
that the oscillation quenching mechanism presented here falls
into the category of Amplitude Death, with the novelty that the
underlying fixed point is heterogeneous due to the combination
of random-walk diffusion and irregular network structure.
Although all the results reported so far have been obtained using
the Brusselator model, in the Supplementary Note 1 we show the
exact same phenomenology using the Holling-Tanner predator-
prey system43. Additional material for the Brusselator system can
be found in the Supplementary Note 2.

Sensitivity to topology and parameter modification
Network density. In order to clarify the impact that irregular
network topologies have on the stabilization of the fixed point
and the later restoration of the oscillations we have performed
numerical simulations of the Brusselator system (10) with
random-walk diffusion in different classes of complex networks
(in the Supplementary Note 1 we report results corresponding the
Holling-Tanner system).

As a heterogeneous network topology is key for the emergence
of the amplitude death, we first consider ER networks with
different average degree 〈k〉. In order to avoid fluctuations due to
independent generations of the networks, that have slightly
different transition points and therefore show a blurred transition
when one performs an ensemble average, we choose to construct
networks starting form an initial ER configuration with given size
and 〈k〉= 6, and progressively add at random new connections in
order to generate denser topologies with largest average degree.
Figure 5a, b show the amplitude of the mean-field oscillations for
different D using ER networks with increasing average degree. In
Fig. 5a, we can observe that AD takes place only in sparse
networks, as increasing the connectivity favors the oscillation
amplitude. In Fig. 5b, the black region corresponding to AD
clearly vanishes smoothly with increasing kh i. In fact, for the
smaller values of the average degree, oscillations are not restored
even for very large values of D. As more connections are added to
the topology, the stable steady state shrinks, until it completely
vanishes for 〈k〉 ≃ 45. The density of the connections thus is an
important factor to determine the existence of AD.

Small-world network. Apart from the overall connectivity density,
the inner topological structure of the network also plays a role in
the AD and restoration. Indeed, for regular networks (where all
nodes have the same degree), no quenching can emerge, whereas
irregularity seems to induce AD. To unveil this situation, we
repeat the same analysis on small-world networks generated
according to the Watts-Strogatz (WS) algorithm44 (see Methods).
In this case, the network topology depends on a rewiring para-
meter p∈ [0, 1]. For p= 0 the generated architecture corresponds
to a regular network, thus homogeneous solutions exist and
Turing patterns could, in principle, arise. In this case, for p= 0,
no Turing-pattern is triggered and the fully synchronized solution
is the only stable attractor. Instead, p= 1 corresponds to a ran-
dom network similar to the ER model, and the behavior of the

Fig. 4 Scaling behavior of the amplitude close to the bifurcation points.
Dependence of the mean-field oscillation amplitude σ on ∣D− D1∣ (red
circles) and ∣D− D2∣ (blue squares) where D is the diffusion value, and D1≃
0.3775 and D2≃ 3.095 are the critical points corresponding to the death
and restoration of the oscillations respectively. Black dashed lines
correspond to power laws with exponent β= 0.5.
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system does not differ much from the results reported in Fig. 3a.
Therefore, the behavior observed for intermediate values of p
should reveal a topologically induced transition from synchro-
nization to amplitude death.

Figure 5c, d show the outcome of such simulations in WS. As
we are considering two-dimensional single-node dynamics, blue
and green continuous lines show the two different branches of the
dispersion relation whenever they are different, such as in panel b.
networks for different values of p. To avoid fluctuations on the
topology generation algorithm, we construct the networks by
progressively rewiring a larger fraction of random edges in the
same network. We use 1− p as topological order parameter,
measuring the network departure from randomness, i.e., random
for 1− p= 0 and regular for 1− p= 1. As expected, for 1− p= 0
the situation is similar to the ER topology with 〈k〉= 20: there is a
first bifurcation towards steadiness for small D, and a second
bifurcation where oscillations are restored. For larger regularity,
the two bifurcation points come closer together until they collide
and vanish for p≃ 0.36. Overall the scenario is analogous to that
seen in ER networks with increasing density, but now with the
disorder parameter 1− p playing the role of control parameter,
instead of the average degree. Both scenarios are also reminiscent
of the amplitude death bifurcation observed in systems of
oscillators with quenched heterogeneity34,45. In our case, how-
ever, the heterogeneity resides in the connectivity structure rather
than in the reactive terms, which remain homogeneous.

System parameter. Finally, the choice of the dynamical parameters
also plays a role on whether amplitude death arises or not. Fig-
ure 5e, f shows the outcome of numerical simulations for the
same ER network with kh i ¼ 20, keeping fixed the parameter a=
0.5 and varying b. For b < a+ 1= 1.5 the reactive part does not
display oscillations and the fixed point is stable. For b > a+ 1=
1.5 the uncoupled system undergoes a Hopf bifurcation and the
stable limit-cycle emerges. Here we investigate the dynamics of
the coupled system for b varying from 1.52 to 2.1. Not

surprisingly, for values of b close to the bifurcation of the
uncoupled system the amplitude death regime is quickly attained
at small values of D, and the restoration of the oscillations is not
triggered even for large coupling, i.e., the fixed point stabilizes
quickly with D. As b increases, the limit-cycle has a larger
amplitude and the diffusion-induced stabilization of the fixed
point requires larger diffusion values. Indeed, the region of
amplitude death becomes smaller as the parameter moves away
from the single-node bifurcation point (bc= 1.5), until it com-
pletely vanishes for b≃ 2.0 in the same manner as it does when
the modifications are done in the topology of the network.

Heterogeneous mean-field analysis. In order to gain some
insight on the behavior of amplitude death an restoration induced
by random-walk diffusion, we apply the standard tool of het-
erogeneous mean-field (HMF) theory3,46, specialized to
reaction–diffusion processes18. The basis of HMF consists in the
annealed network approximation3,47, that replaces the static
adjacency matrix of a real network by an average over degree
classes �aij that, in the case of uncorrelated networks, takes the
form

�aij ¼
kikj
kh iN :

Introducing this expression into Eq. (2), we obtain the HMF
dynamical equations

_xi ¼ f ðxi; yiÞ þ Dð~kix � xiÞ
_yi ¼ gðxi; yiÞ þ Dð~kiy � yiÞ

(
ð6Þ

where ~ki ¼ ki= kh i, x ¼ 1
N

PN
j¼1 xj, and y ¼ 1

N

PN
j¼1 yj are the

average (mean-field) activities of x and y variables. Within this
framework, the dynamics of each node depends only on its own
degree, the mean-field values x and y, and the average con-
nectivity of the network. In fact, one can assume then that all

Fig. 5 Amplitude death and restoration dependence on different topological and system parameters. Top panels show the dependence of the amplitude
of the mean-field oscillations on the diffusion value D. Oscillation amplitude measured as the temporal standard deviation of the y variable’s mean-field,
σ ¼ σðyÞ. Each line corresponds to a specific topological or system parameter value. Bottom panels show heatmaps of the amplitude upon tuning the
diffusion and the corresponding parameter. Results obtained with simulations of the Brusselator model in networks with N= 1000 nodes and system
parameters for the reaction terms a= 0.5 and b= 1.7 unless otherwise stated. a, b Dependence of the oscillation amplitude σ on the diffusion D in a range
of Erdös-Rényi (ER) networks with different average degree kh i. Values of kh i for each curve in a are, from top to bottom, 80, 70, 60, 50, 40, 30, 20, and
10. c, d Dependence of the oscillation amplitude σ on the diffusion D for a range of Watts-Strogatz networks with average degree kh i ¼ 20 and rewiring
probability p∈ [0, 1]. Values of 1− p for each curve in c are, from top to bottom, 1.0, 0.8, 0.6, 0.4, 0.2, and 0. e, f Dependence of the oscillation amplitude σ
on the diffusion D for different values of the system parameter b with fixed a= 0.5 in a single ER networks with 〈k〉= 20. Values of b for each curve in e are,
from top to bottom, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, and 1.6.
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nodes with the same degree behave identically, thus formally
reducing the 2N-dimensional system (6) to a 2n-dimensional
system where n is the number of different degrees in the net-
work3. An additional interest of this approach lies in the fact that
it allows us to consider network sizes much larger than those
permitted in a direct numerical integration, as in general n≪N.

System (6) can be solved semi-analytically assuming that x and
y are parameters that are to be determined self-consistently a
posteriori (see Methods for details). Figure 6 shows the results of
the heterogeneous mean-field approximation. In Fig. 6a, we show
the fixed point obtained for the reduced system (black squares)
compared with the actual fixed point obtained solving Eq. (4) (red
circles) for D= 2. The solution of the reduced system matches the
overall spreading of the solution, with the black squares fitting
nicely the center of the bands displayed by the actual fixed point,
corresponding to nodes with the same degree. In Fig. 6b the
mean-field activity of y determined by the HFM equations
(dashed black curve) matches with good accuracy that of the
actual system (red continuous curve). Moreover, the stability
analysis of the fixed point also coincides with that of the original
system, with a cloud of eigenvalues lying far on the stable part,
and a pair of complex conjugate eigenvalues crossing back and
forth the imaginary axis upon modifying D. Thus, the mean-field
reduction does not only provide a good proxy to study the fixed
point, but also allows to study the amplitude death phenomena in
terms of stability.

Large network size limit. The good agreement of the mean-field
theory with the numerical results of the ER networks allows to
extend our analysis to larger systems. Figure 6d shows the largest
eigenvalue real part for different values of D as obtained from the
heterogeneous mean-field analysis (see also the Supplementary
Fig. 8). We analyzed four sets of ER networks of size N= 103, 104,
105, and 106, with different average degrees kh i ¼ 20, 30, 40, and
50. For a specific value of 〈k〉, we observe that networks with
different sizes produce qualitatively similar results, converging to
a well defined limit for sufficiently large N. For instance, for
kh i ¼ 20 the upper red curve, corresponding to N= 103, shows a
smaller region of amplitude death, whereas the red curves below,

corresponding to larger systems, converge nicely upon increasing
N. The same situation is repeated for the other values of kh i, thus
confirming that the effects of the average degree on the amplitude
death are not finite-size but rather robust. Indeed, the overall
conclusion of this analysis is that the network behavior depends
strongly on the degree of each node, but is only mildly dependent
on system size. In the Supplementary Figs. 4 and 7 we extend this
analysis to the other topological parameters displayed in Fig. 5 for
the Holling-Tanner and the Brusselator systems respectively.

Conclusion. Reaction–diffusion processes are a powerful form-
alism to represent general dynamical processes on networks, in
which particles or species interact inside nodes while moving
diffusively between pairs of connected nodes. By analogy with
chemical reactions, a gradient-driven diffusion term, given by
Fick’s law, is usually assumed. However, in certain circumstances,
a random-walk diffusion term, in which particles jump at random
along edges, might be more realistic. Cases in which this kind of
diffusion should be relevant include ecological dynamics, where
Fick’s diffusion law establishes migration only from highly
populated nodes to low-concentration sites, whereas random-
walk diffusion instead accounts for the well-analyzed erratic
behavior of individuals19,20. On the other hand, in the propaga-
tion of epidemic processes, the description of the patterns of
mobility and commuting of individuals is better described in
terms of random-walk diffusion5,48. Both diffusion prescriptions
are analogous in the case of homogeneous networks, but they
radically differ in the presence of topological heterogeneity.

Here, we have shown how the nature of the diffusion term can
alter the behavior of the limit cycles in oscillatory
reaction–diffusion processes when driven by the diffusion term.
Thus, although gradient–diffusion can quench the oscillations by
means of an oscillation death mechanism, in which the stability of
the original fixed point is preserved by the diffusion operator,
random-walk diffusion generates an amplitude death quenching
characterized by a inhomogeneous steady state induced by the
structure of the diffusion operator. In this case, a further increase
in diffusion restores the oscillations, in the form of a set of limit
cycles with different amplitude for each node. The transitions to

Fig. 6 Heterogeneous mean-field analysis of the Brusselator model. a Phase space for the stationary solution ðxð0Þj ; yð0Þj Þ, j= 1,…, N. Red circles correspond
to the fixed point for diffusion value D= 2 as obtained from solving system (4). Black squares correspond to the mean-field result for the same D.
b Eigenvalue spectra resulting from stability analysis. Red circles correspond to the eigenvalues λj, j= 1,…, 2N, of the original fixed point for each for D= 2,
whereas open black squares indicate the spectra resulting from the mean-field reduction. c Mean-field value of the y variable, y, for the fixed point. Results
obtained from directly solving system (4) (red continuous curve), and from the mean-field reduction (black dashed curve). d Largest eigenvalue’s real part
for the mean-field solution with ER networks with average degree 〈k〉= 20 (red), 30 (blue), 40 (green), and 50 (purple). For each set of networks each line
denotes a different network size. From top to bottom, N= 103, 104, 105, and 106.
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amplitude quenching and restoration are observed to correspond
to Hopf supercritical bifurcations, in agreement with an
amplitude death mechanism at work. Our observations, backed
up by direct numerical integration of the Brusselator systems in
random networks, are confirmed by a linear stability analysis of
the eigenvalues of the diffusion operator and by a seminumerical
heterogeneous mean-field approximation, which allows us to
check the phenomenology in very large networks. The role of
random-walk diffusion in the amplitude quenching of oscilla-
tions, which is observed for different classes of homogeneous
networks, different sets of parameters and even different reaction
terms, is thus a robust phenomenology, which could be relevant
in processes such as epidemic spreading or ecological dispersion.
Future promising work along these lines would include studying
the effects of a heterogeneous, scale-free topology49, as observed
in many natural networks.

Previous works on reaction–diffusion systems with random-
walk diffusion focused on the emergence of inhomogeneous fixed
points5,17,18 and the study of the Turing mechanism acting on
such states17. To our knowledge, this is the first study showing
that random-walk diffusion does not only modify the steady state
of the system, but it also strongly affects its stability properties
beyond the Turing framework, thereby changing the macroscopic
evolution of the system. In particular, this study represents an
instance of diffusion-induced stabilization of a fixed point,
opposed to the Turing mechanism where the steady state is
destabilized through the interactions between sites. From the
point of view of potential applications, our results indicate that
oscillatory ecological systems could be stabilized to a steady state
if the diffusion of species between patches is tuned to an
appropriate interval of values, which implies that seasonal
variations in the mobility of animals could result in an alternation
between oscillatory and steady situations. From a more
theoretical perspective, by relaxing the simplifying constrain
Dx ≠Dy we have imposed, it might be possible to link the
amplitude death and oscillation death frameworks, by obtaining a
Turing-like bifurcation pattern using random-walk diffusion.
This could potentially lead to the emergence of OD in the case the
oscillatory state is the one destibilized by the coupling41. We leave
the investigation of this issue for future work.

Methods
Dispersion relation in reaction–diffusion processes. For a detailed introduction
on Turing patterns and how to compute dispersion relations on regular lattices the
reader can check Murray’s book39. Here we summarize the results of Nakao et al.7 on
reaction–diffusion systems in complex networks. Let us consider a reaction–diffusion
system in a complex network with a gradient-driven diffusion term

_xi ¼ f ðxi; yiÞ þ Dx

PN
j¼1

Δijxj;

_yi ¼ gðxi; yiÞ þ Dy

PN
j¼1

Δijyj;

8>>><
>>>:

with a Laplacian matrix Δij= aij− kiδij. This Laplacian matrix is semi-definite
negative, and its eigenvalues are all real and non-positive. Let (x(0), y(0)) be a fixed
point of the uncoupled system (Dx=Dy= 0), and hence the homogeneous solution of
the coupled system. Inserting an arbitrary perturbation fðδxiðtÞ; δyiðtÞÞgNi¼1 of the
homogeneous solution to the equations and retaining up to first-order terms one gets
that the evolution of the perturbation behaves as

_δxi
_δyi

 !
¼ J xð0Þ; yð0Þ
� � δxi

δyi

� �
þ
XN
j¼1

Δij

Dxδxj
Dyδyj

 !
; ð7Þ

where J is the Jacobian of the homogeneous system, evaluated at (x(0), y(0)). Let

ΦðαÞ ¼ ðϕðαÞ1 ; ¼ ; ϕðαÞN ÞT be the Laplacian normalized eigenvector associated the
eigenvalue Λα for α= 1,…,N, such thatX

m

Δjmϕ
ðαÞ
m ¼ Λαϕ

ðαÞ
j : ð8Þ

We can express the perturbation of the homogeneous solution in terms of the basis of
the eigenvectors as

δxj
δyj

 !
¼
XN
α¼1

uðαÞ

vðαÞ

 !
ϕðαÞj :

Applying this change of coordinates on Eq. (7) and making use of the relation (8) and

of the linear independence of the eigenvectors fΦðαÞgNα¼1 one obtains that the evo-

lution of ð _uðαÞ; _vðαÞÞT becomes independent for each α= 1,…,N through the relation

_uðαÞ _vðαÞ
� �

¼ J xð0Þ; yð0Þ
� � uðαÞ

vðαÞ

 !
þ Λα

Dxu
ðαÞ

Dyv
ðαÞ

 !

¼
∂f
∂x xð0Þ; yð0Þ
� �þ DxΛα

∂g
∂x xð0Þ; yð0Þ
� �

∂f
∂y xð0Þ; yð0Þ
� � ∂g

∂y xð0Þ; yð0Þ
� �þ DyΛα

 !
uðαÞ

vðαÞ

 !
:

ð9Þ

Thus, the stability of the homogeneous solution simplifies to the study of the
eigenvalues (and eigenvectors) of the previous 2 × 2 matrix, which are obtained as
functions of the Laplacian eigenvalues Λα. See below for an explicit application to the
Brusselator system. The extension of this analysis to limit cycles makes use of Floquet
theory, see12.

The Brusselator. The Brusselator25 is a prototypical model of autocatalytic che-
mical reaction with two-species showing oscillatory behavior in the form of a limit
cycle. In its dimensionless form, in the absence of diffusion, it is defined by the
reaction terms

f ðx; yÞ ¼ 1� xðbþ 1Þ þ ax2y;

gðx; yÞ ¼ bx � ax2y;
ð10Þ

where a, b > 0 are model parameters. The system has a single fixed point at (x(0), y
(0))= (1, b/a), whose stability is ruled by the Jacobian

J xð0Þ; yð0Þ
� �

¼ b� 1 a

�b �a

� �
:

The fixed point is therefore stable for b < a+ 1. Otherwise, the system exhibits
periodic behavior, with a period, for b close to 1+ a, approximately equal to
T ¼ 2π=

ffiffiffi
a

p
. The transition from the fixed point to the oscillatory regime is

through a supercritical Hopf bifurcation. Unless otherwise stated, the system
parameter values used in the paper are a= 0.5 and b= 1.7.

When considering the Brusselator reaction terms (10) with Fick’s diffusion (1)
one can obtain the dispersion relation of the homogeneous fixed point. Following
Eq. (9), one only needs to to compute the eigenvalues of

b� 1þ DxΛα a

�b �aþ DyΛα

 !
;

which yields

λ ± ðΛαÞ ¼
1
2

b� a� 1� ΛαðDx þ DyÞ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDy � DxÞΛα þ b� 1þ a� 4ab

q� �
:

This is the continuous curve displayed in Fig. 1a.

Dispersion of the fixed point. Let ðxð0Þi ðDÞ; yð0Þi ðDÞÞ be the fixed-point solution of
the reaction–diffusion system (2) with diffusion value D, so that

f xð0Þi ðDÞ; yð0Þi ðDÞ
� �

þ D
PN
j¼1

~Δijx
ð0Þ
j ðDÞ ¼ 0

g xð0Þi ðDÞ; yð0Þi ðDÞ
� �

þ D
PN
j¼1

~Δijy
ð0Þ
j ðDÞ ¼ 0 :

8>>><
>>>:

ð11Þ

for i= 1,…,N. Assuming a smooth dependence of ðxð0Þj ðDÞ; yð0Þj ðDÞÞ on D for j=
1,…,N, we consider a small increment of the diffusion ϵ > 0. The aim is to solve
then

f xð0Þi ðDþ ϵÞ; yð0Þi ðDþ ϵÞ
� �

þ ðDþ ϵÞ
XN
j¼1

~Δijx
ð0Þ
j ðDþ ϵÞ ¼ 0 and

g xð0Þi ðDþ ϵÞ; yð0Þi ðDþ ϵÞ
� �

þ ðDþ ϵÞ
XN
j¼1

~Δijy
ð0Þ
j ðDþ ϵÞ ¼ 0:

Expanding such equations around ðxð0Þj ðDÞ; yð0Þj ðDÞÞ and retaining the first-
order terms one obtains,

ϵ f x xð0Þi ðDÞ; yð0Þi ðDÞ
� � dxð0Þi ðDÞ

dD
þ ϵ f y xð0Þi ðDÞ; yð0Þi ðDÞ

� � dyð0Þi ðDÞ
dD

þ ϵ
XN
j¼1

~Δij D
dxð0Þj ðDÞ

dD
þ xð0Þj ðDÞ

 !
¼ 0 and

ϵ gx xð0Þi ðDÞ; yð0Þi ðDÞ
� � dxð0Þi ðDÞ

dD
þ ϵ gy xð0Þi ðDÞ; yð0Þi ðDÞ

� � dyð0Þi ðDÞ
dD

þ ϵ
XN
j¼1

~Δij D
dyð0Þj ðDÞ

dD
þ yð0Þj ðDÞ

 !
¼ 0 :

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00516-w ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:13 | https://doi.org/10.1038/s42005-020-00516-w |www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


Dividing then both sides of these equations by ϵ one finally can write the

differential system that rules the dependence of ðxð0Þi ; yð0Þi Þ on D,

J xð0Þi ; yð0Þi

� � dxð0Þi
dD

dyð0Þi
dD

0
@

1
Aþ D

XN
j¼1

~Δij

dxð0Þj

dD

dyð0Þj

dD

0
B@

1
CA ¼ �

XN
j¼1

~Δij

xð0Þj

yð0Þj

0
@

1
A for i ¼ 1; ¼ ;N

where J(x, y) is the 2 × 2 Jacobian matrix of the (uncoupled) reactive field, (f(x, y), g
(x, y)). The previous equation is thus an implicit linear non-autonomous system of
differential equations that can be solved by means of usual numerical integrators
using as initial condition for D= 0 the solution of the uncoupled oscillators.

Network models. All networks used in this work have been generated numerically
using the igraph C library50.

ER networks. The ER model for network generation provides random network topol-
ogies1. In particular, we use the G(N, p) model, where each pair of nodes is connected
with probability p∈ [0, 1]. The average degree of the network is then 〈k〉= pN and the
degree distribution follows a binomial distribution with parameters N− 1 and p.

WS model. The WS model generates networks with small-world connectivity, i.e.,
with small density and diameter, while still showing a large degree of transitivity or
clustering44. We use this model as way to generate networks halfway between
random and regular topologies. The model starts with N nodes distributed on a
ring, each node being connected to its 〈k〉 nearest neighbors. Then, every edge of
the network is rewired with probability p∈ [0, 1]. The small-world network class is
represented for small values of the rewiring probability, whereas for p close to 1 the
topology becomes closer to that of a ER network.

Heterogeneous mean-field analysis. We consider the HMF equations Eq. (6)
specialized for the Brusselator reaction terms. Solving for the fixed point one
obtains that (dropping the subindices for simplicity), we obtain

y ¼ 1� xðbþ 1Þ þ Dð~kx � xÞ
�ax2

¼ bx þ Dy
ax2 þ D

; ð12Þ

from where one can obtain a cubic equation for the value of x:

�aðDþ 1Þx3 þ að1þ Dðx þ yÞÞx2 � Dðbþ 1þ DÞx þ Dð1þ DxÞ ¼ 0 :

Thus,

x ¼ �1
3a

bþ C þ Δ0

C

� �
ð13Þ

where,

C ¼
Δ1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
1 � 4Δ3

0

q
2

0
@

1
A

1=3

Δ0 ¼a2ð1þ Dðx þ yÞÞ2 � 3aDðDþ 1Þðbþ 1þ DÞ
Δ1 ¼2a2ð1þ Dðx þ yÞÞ2

� 9a2DðDþ 1Þðbþ 1þ DÞð1þ Dðx þ yÞÞ
þ 27a2ðDþ 1ÞDð1þ DxÞ:

The Brusselator system has the property that, in the fixed point and even without
using any kind of approximation, x ¼ 1. However, in order to obtain y self-
consistently one needs to rely on numerics. In practice, one starts with an educated
guess for the mean-field y and determines then all xj and yj using equations (13)
and (12). Using a bisection method one can reduce the error between the new
estimated values x and y and the initial ones to the desired accuracy.

Data availability
Network topologies used in this study are available from the corresponding author upon
reasonable request. No other data sets were generated or analyzed during the
current study.
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